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Abstract. The force-free coronal loop model by Titov & D´emoulin (1999) is found to be unstable with respect to the ideal kink
mode, which suggests this instability as a mechanism for the initiation of flares. The long-wavelength (m = 1) mode grows
for average twistsΦ >∼ 3.5π (at a loop aspect ratio of≈5). The threshold of instability increases with increasing major loop
radius, primarily because the aspect ratio then also increases. Numerically obtained equilibria at subcritical twist are very close
to the approximate analytical equilibrium; they do not show indications of sigmoidal shape. The growth of kink perturbations
is eventually slowed down by the surrounding potential field, which varies only slowly with radius in the model. With this field
a global eruption is not obtained in the ideal MHD limit. Kink perturbations with a rising loop apex lead to the formation of a
vertical current sheet below the apex, which does not occur in the cylindrical approximation.
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1. Introduction

Magnetic loops are the elementary building block of the solar
corona and of low-plasma-beta environments of astrophysical
objects in general. Understanding their instabilities is one of
the fundamental problems in corona physics. Due to the small
plasma beta (β = Pkin/Pmag ∼ 10−3 . . .10−2 in the inner so-
lar corona), the magnetic configuration of stable loops must be
nearly force free. Any instability must be caused by currents
flowing mainly along the loops. A sigmoidal (S- or inverse-S)
shape of the projection of loops onto the solar surface is re-
garded as a signature of such currents, and indeed, a strong
sigmoidal shape of soft X-ray loops correlates with eruptive
activity (Canfield et al. 1999).

The stability of current-carrying force-free (or nearly force-
free) fields was extensively studied for toroidal geometry in fu-
sion research (see, e.g., Biskamp 1993) and for cylindrical ge-
ometry with fixed ends in the astrophysical context. The latter
is considered as an approximation to coronal loops with large
aspect ratio which includes the effect of photospheric line tying
(e.g., Hood & Priest 1981; Velli et al. 1990; Miki´c et al. 1990;
Einaudi 1990; Hood 1992; Baty & Heyvaerts 1996; Baty 2001;
Gerrard et al. 2002). It was found that the stability is mainly
controlled by the total twist,

Φ =
lBφ(r)

rBz(r)
, (1)

wherel is the length of the current-carrying flux system,r is
the (minor) radius, andBz andBφ are the axial and azimuthal
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field components, respectively. In addition, the radial profile
of the twist, the effect of line tying, and the ratio of radius
and twist scale length (λ = 2πl/Φ) are important. For exam-
ple, the uniformly twisted force-free toroidal or periodic cylin-
drical configuration is kink-unstable forΦ > Φc = 2π, but
line tying raises the instability threshold to≈2.5π (Hood &
Priest 1981; Einaudi & van Hoven 1983). Localizing the cur-
rent within a certain radius,a, and embedding it in a potential
field also raises the threshold (as any substantial radial variation
of the twist). Configurations of this type were found to be sta-
ble forΦmax <∼ 5π, whereΦmax is the peak value of the twist in
the configuration (Miki´c et al. 1990; Baty & Heyvaerts 1996).
The instability threshold of embedded loops rises strongly if
their radius becomes very small, i.e. ifδ = 2πa/λ <∼ 1 (Baty
2001). For cylindrical line-tied force-free configurations it was
also shown that the longest-wavelength kink mode (azimuthal
wave numberm= 1) becomes unstable before any other mode
in the ideal MHD limit (van der Linden & Hood 1999).

The stability of arched magnetic loops has not yet been in-
vestigated. However, numerical studies of the injection of twist
by slow vortex motions at the footpoints of an initially current-
free loop-shaped flux bundle indicate that raising the twist of
a loop beyond a critical value leads to destabilization (Amari
et al. 1996; T¨orök & Kliem 2003). The critical twist lies in the
range 2.5π < Φc < 2.75π for the specific initial configurations
studied. The driving by photospheric vortices generally influ-
ences a large surrounding volume in addition to the twisted
loop. It also causes an increase of the loop length and width
with increasing twist. Clearly, a stability consideration of loops
free from such additional influences is needed.
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In this paper we study the stability of the loop model by
Titov & Démoulin (1999), cited as T&D in the following (see
their Fig. 2 for a schematic). This approximate, cylindrically
symmetric, force-free equilibrium consists of a toroidal ring
current of major radiusR and minor radiusa, whose outward-
directed Lorentz self-force is balanced with the help of a field
by two fictitious magnetic charges of opposite sign which are
placed at the symmetry axis of the torus at distances±L to the
torus plane. That axis lies below the photospheric plane{z= 0}
at a depthd. The resulting field outside the torus is current-free
and contains a concentric magnetic X line between the torus
and its centre. A toroidal field component created by a ficti-
tious line current running along the symmetry axis is added. Its
strength controls the twist of the field in the torus, and it turns
the X line into a hyperbolic flux tube (HFT; for a definition,
see Titov et al. 2002). The existence of the HFT is generic to
such force-free configurations with a net current. The accuracy
of the obtained equilibrium improves with decreasing parame-
tersa/R anda/L. Its section in the volume{z > 0} is a model
of a coronal magnetic loop.

T&D have investigated the stability of the torus with re-
spect to global expansion (growing perturbationsδR > 0) and
found instability for sufficiently large radii,R>∼

√
2L. Roussev

et al. (2003) confirmed this recently by numerical simulations,
which also suggested that the instability threshold lies near 5L
and that the slow decrease of the surrounding toroidal field with
distance from the generating line current leads to saturation of
the instability and prevents the loop from erupting. In the fol-
lowing, we investigate the stability of the configuration with
respect to ideal kink modes in dependence of the twist in its
coronal part.

2. Numerical model

Using the force-free equilibrium by T&D as the initial con-
dition, we integrate the compressible ideal MHD equations to
study whether instabilities occur. Based on the small value of
the plasma beta in the inner corona, we use the simplifying
assumptionβ = 0 in most of our parametric study:

∂tρ = −∇ · (ρu) , (2)

ρ ∂tu = −ρ ( u · ∇ ) u + j × B + ∇ · T , (3)

∂tB = ∇× ( u × B ) , (4)

j = µ−1
0 ∇ × B . (5)

HereT denotes the viscous stress tensor (Ti j = ρ ν [∂ui/∂xj +

∂uj/∂xi − (2/3)δi j ∇ · u]) and ν is the kinematic viscosity, in-
cluded to facilitate relaxation toward equilibrium in the stable
cases.

The conditionβ = 0 ensures that the numerically obtained
stable equilibria are force free, and in the unstable regime it
yields higher growth rates than the runs withβ > 0. Hence,
the threshold for onset of instability is correctly obtained. For
a few parameter sets, growth rates were also determined with
the pressure gradient term,−∇p, included in Eq. (3); a standard
form of the energy equation and an adiabatic equation of state
were then added to Eqs. (2)–(5), as e.g., in Kliem et al. (2000).

The equations are normalized in the usual manner (see,
e.g., Török & Kliem 2003) by quantites derived from a char-
acteristic length, taken here to beL, and the magnetic field,
B0(0, 0,R−d), and Alfvén velocity,va0(0, 0,R−d), at the loop
axis att = 0. The loop is chosen to lie in the plane{x = 0}. The
initial density distribution is specified such that the Alfv´en ve-
locity is uniform,ρ0 = B2

0, and in most cases the computation
is started with the system at rest,u0 = 0.

A modified Lax-Wendroff scheme is used on a nonuni-
form Cartesian grid in a box [−Lx, Lx] × [0, Ly] × [0, Lz] with
minimum grid spacing at the origin and very slowly increas-
ing grid spacing toward the upper, side, and back boundaries.
Lx = Ly = Lz/2 = 5 and∆xmin = ∆ymin = ∆zmin = 0.02 are
used. Line symmetry with respect to thez axis is prescribed
at the front boundary,{y = 0}, in order to use the available
computing resources efficiently for maximum resolution. This
implies ux,y(0, 0, z) = 0. The variables are held fixed at their
initial values at all other boundaries except for the bottom,
where the tangential magnetic field components are extrap-
olated onto the ghost points. This permits a weak evolution
of the fields in the plane{z = 0} (u(t) = 0 andρ(t) = ρ0

in {z < 0}), enhancing stability in comparison to a bottom
boundary with fixed variables (i.e., permitting the use of small
diffusion parameters). A test run with fixed magnetic field at
the bottom boundary (atR = 2.2,Φloop = 4.9π) gave qualita-
tively identical results with a reduction of the growth rate by
only 4 percent. A small amount of artificial spatial smoothing,
1 − σρ = 1 − σu = 0.005, is applied to the variablesρ andu,
respectively, to stabilize the scheme in addition to the stabiliza-
tion by the viscosity (ν = 0.05); see T¨orök & Kliem (2003) for
a detailed description of the numerical tools.

3. Kink instability

We start with a parameter set that is very close to those used
by T&D and yields a configuration with left-handed field line
twist which is stable against both global expansion and kink
modes. We choosed = L = 1 (50 Mm), R = 2.2, and the
number of field line turns about the axis of the whole torus at
its surface to beNt = 5, the coronal part beingNloop = 1.75.
The values of the currents and charges used by T&D and their
equilibrium conditions then yielda = 0.65. (The largerR, the
smaller the resultinga/R, so we have chosen a value ofR not
much smaller than the estimated stability limit of the global
expansion mode). The resulting coronal loop is shown in Fig. 1.

The T&D equilibrium has the property that the radial varia-
tion of the twist becomes substantial forNt >∼ R/a (Fig. 2). The
average twist of this configuration is found to beΦt = 6.0π,
the fraction in its coronal part beingΦloop = 2.1π (Table 1).
Figure 1 shows that the loop is stable for these parameters and
relaxes to a numerically force-free configuration very close to
the approximate analytical equilibrium. The fluid velocity at
the loop apex oscillates about zero with monotonically decreas-
ing amplitude (<9× 10−5 by t = 78). The HFT collapses into a
small vertical current sheet as the loop settles to the numerical
equilibrium, causing its inner edge to bulge out slightly (both
effects are very weak at higherΦ, as long asΦloop < Φc).
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Fig. 1. Top and side view of the isosurface| j| = 0.4 jmax for Φloop =

2.1π, R = 2.2, β = 0 at t = 0 (left) and t = 78 (right). Times are in
units ofτa. The volume|x| ≤ 1.5, |y| ≤ 3, 0≤ z≤ 3 is shown.
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Fig. 2. Radial profile of the twist at the loop apex, averaged over
azimuth angleφ; 〈Φ(r)〉φ = (l/2πr)

∫
(Bφ(r, φ)/By(r, φ))dφ, l =

2Rarccos(d/R), r = (x2 + (z− R+ d)2)1/2, φ = arctan((z− R+ d)/x);
Φloop = (2/a2)

∫ a

0
〈Φ(r)〉φrdr.

To check the stability of the loop, we have applied velocity
perturbations uniform in direction with peak magnitudeu1 =

0.05 in a spherical volume with radiusa and Gaussian profile
at the loop apex, ramped up over 10 Alfv´en times (τa = L/va0)
and then switched off. Both upward and downward directed
perturbations were damped away within∼20τa.

Next we consider the caseNt = 15 (Φloop = 4.9π). This
configuration shows the spontaneous development of the long-
wavelength (m= 1) kink mode very clearly (Figs. 3 and 4). The
mode is initiated by the weak, downward-directed forces that
result from the initial discretization errors of the current density
on the grid. The figures also show a run with a small upward
initial velocity perturbation applied at the apex (u1 = 0.01,
ramped up over 5τa); in this case them= 1 kink mode grows in
a similar manner in the linear phase, with an azimuthal phase
shift of π (opposite sigmoidal shape). Similar to the cylindri-
cal case, the growth of the mode leads to the formation of a
helically shaped current sheet at the interface of the perturbed
loop with the surrounding magnetofluid. The upward directed
kink instability of the loop forms a second, nearly vertical cur-
rent sheet, at the HFT underneath, which does not occur in the
cylindrical kink. The peak current density in these sheets rises
exponentially in the linear phase of the instability and exceeds
that in the kinked loop in the nonlinear stage. The implications

Table 1.Normalized parameters of the runs withd = L = 1 andβ = 0,
and growth rate of the kink instability for upward and downward apex
motion.δ = (a/l)Φloop. Growth rates marked with a dag refer to runs
with an initial velocity perturbation. The parameters of the first run
correspond to the values given in Fig. 4 of T&D (exceptR).

R Nt a Φloop/π δ γupa/va0 γdowna/va0

2.2 5 0.65 2.1 0.88 0 0
2.2 9 0.44 3.3 0.96 0 0
2.2 10 0.42 3.6 0.98 0.008† 0.001†

2.2 12 0.37 4.2 1.00 0.031† 0.023
2.2 15 0.32 4.9 1.03 0.059† 0.052
2.2 20 0.27 6.0 1.06 0.088† 0.076
2.2 25 0.24 7.0 1.08 0.102 0.091†

2.2 30 0.21 8.0 1.10 0.111 0.100†

3.4 9.1 0.44 5.0 0.80 0.005
3.4 11.4 0.38 6.0 0.83 0.021
3.4 13.9 0.34 7.0 0.87 0.034
3.4 16.4 0.31 8.0 0.89 0.044

Fig. 3. Top and side view of current density isosurfaces forΦloop =

4.9π, R = 2.2, β = 0. Left: | j| = 0.15 jmax at t = 35; unper-
turbed case.Right: | j| = 0.25 jmax at t = 28; run with an upward
initial velocity perturbation at the loop apex; see the online edition
at http://www.edpsciences.org for an animation of these data.
|x| ≤ 1.5, |y| ≤ 3, 0≤ z≤ 3.

of the helical kinking and current sheet formation for the inter-
pretation of sigmoidal structures in the solar corona have been
discussed in Kliem et al. (2004). Figure 4 shows that the apex
displacement grows exponentially: an instability occurs. The
total kinetic energy in the box grows exponentially as well.
Upward perturbations grow at a slightly higher rate because
the restoring forces due to the toroidal field by the line current,
the inertia of the fluid, and the effect of approach to a closed
boundary are all weaker than for downward displacements. We
expect that the kink mode with a sideward directed perturbation
at the loop apex, which can in a first approximation be regarded
as an azimuthally phase-shifted mode, is quantitatively similar
to the modes with vertical perturbation at the apex studied here.

A fit of the growth rates forR = 2.2 suggests a critical
average twist for onset of kink instability in the T&D equilib-
rium of Φc ≈ 3.5π, occurring at an aspect ratio of≈5 (Fig. 5,
Table 1). This threshold is similar to that found for cylindrical
equilibria with similar twist profiles (e.g., Miki´c et al. 1990;
Baty & Heyvaerts 1996). The growth rates, when normalized
in the same manner (γa/va0[Φloop − Φc]), are also similar
(the factor ≈1/2 in our growth rates nearly disappears if
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Fig. 4. Apex velocity and peak current density,| j(0,0, z, t)|max, in the
current sheets for upward (↑) and downward (↓) apex displacements.
R= 2.2,Φloop = 4.9π, β = 0. Exponential fits are shown dotted.
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Fig. 5. Kink instability growth rates of the T&D equilibrium of ra-
diusRderived from the upward (↑) and downward (↓) apex velocities.
Open symbols refer to runs withβ = 0. R= 2.2 for all β > 0 runs.

viscositiesν <∼ 0.005 are chosen; however, then them= 2 mode
starts to grow, which will be investigated separately).

A similar picture is obtained for larger loop radiusR (and
aspect ratioR/a). Since the parameterδ decreases with increas-
ing R, the threshold of instability increases (Fig. 5). The thresh-
old is probably smaller than≈3.5π for R < 2.2, but the cor-
responding small aspect ratios are not characteristic of solar
coronal loops. All growth rates are invariant against a reversal
of the sign of the twist.

Runs with nonvanishing pressure (set uniform initially such
that at the loop axisβ = 0.01; 0.03; 0.1) show identical quali-
tative behaviour with reduced growth rates (Fig. 5).

The instability enters a nonlinear saturation phase in all
runs. The apex velocity then drops, but the current density in
the formed sheets continues to rise until numerical instability
is unavoidable. Apparently, a global eruption is not reached in
ideal-MHD simulations, due to the counteraction by the strong
overlying field in the model, as also found by Roussev et al.
However, the exponential rise and helical shape of the loop and
the saturation correspond excellently to eruptive filaments that
do not succeed to escape from the Sun (Ji et al. 2003).

Finally, we have checked whether the numerical equilibria
develop a sigmoidal shape as the twist approachesΦc from be-
low. No indication of sigmoidality could be found up toΦloop =

3.3π (Nt = 9). Even after applying an upward initial perturba-
tion as in the run withNt = 5, the loop relaxed to its original
circular shape, straight in projection and similar to that shown
in Fig. 1.

4. Conclusions

The magnetic loop equilibrium by Titov & D´emoulin (1999)
is kink-unstable for twistsΦ > Φc, with Φc ≈ 3.5π at a loop
aspect ratioR/a ≈ 5. The instability threshold rises with rising
aspect ratio. No indication of sigmoidal shape at slightly sub-
critical twists was found. The unstable kink mode with upward
displacement of the loop apex forms a vertical current sheet at
the HFT underneath the loop, which has no counterpart in kink-
unstable cylindrical loop models but corresponds to the central
element of the “standard flare model” (e.g., Shibata 1999). The
surrounding potential field eventually terminates the exponen-
tial growth of kink modes in the considered configuration, ap-
parently inhibiting a global eruption within the framework of
ideal MHD. However, the configuration may nevertheless suf-
fer a global eruption if (a) a surrounding field which decreases
more rapidly with height is employed, (b) magnetic reconnec-
tion is permitted to occur in the formed current sheets, or (c)
magnetic reconnection with neighbouring loops is triggered in
a multiple-loop configuration.
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Miki ć, Z., Schnack, D. D., & VanHoven, G. 1990, ApJ, 361, 690
Roussev, I. I., Forbes, T. G., Gombosi, T. I., et al. 2003, ApJ, 588, L45
Shibata, K. 1999, Ap&SS, 264, 129
Titov, V. S., & Démoulin, P. 1999, A&A, 351, 707 (T&D)
Titov, V. S., Hornig, G., & Démoulin, P. 2002, J. Geophys. Res., 107,

doi:10.1029/2001JA000278
Török, T., & Kliem, B. 2003, A&A, 406, 1043
Van der Linden, R. A. M., & Hood, A. W. 1999, A&A, 346, 303
Velli, M., Einaudi, G., & Hood, A. W. 1990, ApJ, 350, 428

L
e
tt
e
r
to

th
e
E
d
it
o
r


