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Ideal kink instability of a magnetic loop equilibrium
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Abstract. The force-free coronal loop model by Titov &Bioulin (1999) is found to be unstable with respect to the ideal kink
mode, which suggests this instability as a mechanism for the initiation of flares. The long-wavetangth)(mode grows

for average twist® 2 3.57 (at a loop aspect ratio ¢§5). The threshold of instability increases with increasing major loop
radius, primarily because the aspect ratio then also increases. Numerically obtained equilibria at subcritical twist are very clos
to the approximate analytical equilibrium; they do not show indications of sigmoidal shape. The growth of kink perturbations
is eventually slowed down by the surrounding potential field, which varies only slowly with radius in the model. With this field
a global eruption is not obtained in the ideal MHD limit. Kink perturbations with a rising loop apex lead to the formation of a
vertical current sheet below the apex, which does not occur in the cylindrical approximation.
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1. Introduction field components, respectively. In addition, the radial prof

Magnetic loops are the elementary building block of the solg; the twist, the @ect of line tying, and the ratio of radius

. .and twist scale lengtm(= 2xl/®) are important. For exam-
corona and of low-plasma-beta environments of astrophysi a gthi( /®) P

objects in general. Understanding their instabilities is one the uniformly twisted force-free toroidal or periodic cylir
J 9 ’ 9 rilcal configuration is kink-unstable fab > ®. = 2, but

the fundamental problems in corona physics. Due to the sn"h';He tying raises the instability threshold te2.5z (Hood &

_ P, - 3 2 ; _
plasma beta = Piin/Pmag ~ 10°...10°% in the inner so Briest 1981, Einaudi & van Hoven 1983). Localizing the cL
lar corona), the magnetic configuration of stable loops musthe . . - ! : Lo ;

rent within a certain radiug, and embedding it in a potentia

Rgaﬂr)]/ f(r)r:;% IfreaeI;JnAnyt/hlgfé?)b|2tyAr2_usr';"t))%;:|auSsegr bg/ glrjsr;egt%ld also raises the threshold (as any substantial radial varia
wing mainly g ps. A sigmoidal (S- or inverse-Sl¢ twist). Configurations of this type were found to be st

shape of the projection of loops onto the solar surface is i fOr Drmax S 57, Wheredmay is the peak value of the twist in

garded as a signature of such currents, and indeed, a Str&%gconfiguration (Miki' et al. 1990: Baty & Heyvaerts 1996)

sigmoidal shape of soft X-ray loops correlates with erUpt'\‘fehe instability threshold of embedded loops rises strongly

activity (Canfield et al. 1999). ; . C
The stability of current-carrying force-free (or nearly forcet-he'r radius becomes very small, i.e4it= 2ra/d < 1 (Baty

) ) . ; . ~-2001). For cylindrical line-tied force-free configurations it we
free) fields was extensively studied for toroidal geometry in fléflso shown that the longest-wavelength kink mode (azimut
sion research (see, e.g., Biskamp 1993) and for cylindrical

ometry with fixed ends in the astrophysical context. The Iat%?r?’lz ?; ;?:AT'S ﬁr)n?te((\:/grr?zseru Eiitggle; Efggz air;)gg;her mo

is considered as an approximation to coronal loops with large I .

aspect ratio which includes thé&ect of photospheric line tying The stability of arched m_agnetlc I.OOPS has. n_ot y_et been

(e.g., Hood & Priest 1981; Velli et al. 1990; Mik#t al. 1990; vestigated. Howevgr, numerical stud_|es of the_ln_J(_actlon of tw

Einaudi 1990; Hood 1992; Baty & Heyvaerts 1996; Baty 200 rJy slow vortex motions at the f_oot_pomts of an _|n_|t|ally curren

Gerrard et al. 2002). It was found that the stability is mainl ee loop-shaped ﬂ!J_X bundle indicate that raising t_he twist
loop beyond a critical value leads to destabilization (Am

trolled by the total twist, ; - C
controfled by the fotal twis et al. 1996; Brok & Kliem 2003). The critical twist lies in the
_ 1By(1) (1) ange 2m < @ < 275 for the specific initial configurations
rB,(r)’ studied. The driving by photospheric vortices generally infl

wherel is the length of the current-carrying flux systemis ences a large surrounding volume in addition to the twisi

the (minor) radius, an®, andB,, are the axial and azimuthaIIO_Op'_ It also_ Causes an Increase Of. f[he IOOF.) Iengjch and wi
with increasing twist. Clearly, a stability consideration of 00}
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In this paper we study the stability of the loop model by The equations are normalized in the usual manner (see,
Titov & Demoulin (1999), cited as T&D in the following (seee.g., Torok & Kliem 2003) by quantites derived from a char-
their Fig. 2 for a schematic). This approximate, cylindricallgcteristic length, taken here to e and the magnetic field,
symmetric, force-free equilibrium consists of a toroidal rin®o(0, 0, R—d), and Alfvén velocity,v,0(0, 0, R—d), at the loop
current of major radiu® and minor radiug, whose outward- axis att = 0. The loop is chosen to lie in the plafe= 0}. The
directed Lorentz self-force is balanced with the help of a fielditial density distribution is specified such that the Adfvve-
by two fictitious magnetic charges of opposite sign which atecity is uniform,pg = Bg, and in most cases the computation
placed at the symmetry axis of the torus at distandeso the is started with the system at resg, = 0.
torus plane. That axis lies below the photospheric plare0} A modified Lax-Wendrf scheme is used on a nonuni-
at a deptfd. The resulting field outside the torus is current-frerm Cartesian grid in a box{L, L«] x [0, L,] x [0, L;] with
and contains a concentric magnetic X line between the tolihimum grid spacing at the origin and very slowly increas-
and its centre. A toroidal field component created by a ficiing grid spacing toward the upper, side, and back boundaries.
tious line current running along the symmetry axis is added. It§ = L, = L,/2 = 5 andAXmin = Aymin = AZmin = 0.02 are
strength controls the twist of the field in the torus, and it turngsed. Line symmetry with respect to thexis is prescribed
the X line into a hyperbolic flux tube (HFT; for a definition,at the front boundaryy = 0}, in order to use the available
see Titov et al. 2002). The existence of the HFT is generic g@mputing resourcedficiently for maximum resolution. This
such force-free configurations with a net current. The accuragyplies Ux,(0,0,2) = 0. The variables are held fixed at their
of the obtained equilibrium improves with decreasing paramigitial values at all other boundaries except for the bottom,
tersa/Randa/L. Its section in the volumg > 0} is a model where the tangential magnetic field components are extrap-
of a coronal magnetic loop. olated onto the ghost points. This permits a weak evolution

T&D have investigated the stability of the torus with reef the fields in the plangz = 0} (u(t) = 0 andp(t) = po
spect to global expansion (growing perturbatiéRs> 0) and in {z < 0}), enhancing stability in comparison to a bottom
found instability for sticiently large radiiR 2 V2 L. Roussev boundary with fixed variables (i.e., permitting the use of small
et al. (2003) confirmed this recently by numerical simulationgiffusion parameters). A test run with fixed magnetic field at
which also suggested that the instability threshold lies near the bottom boundary (& = 2.2, ®o0p = 4.97) gave qualita-
and that the slow decrease of the surrounding toroidal field wiiliely identical results with a reduction of the growth rate by
distance from the generating line current leads to saturationopfly 4 percent. A small amount of artificial spatial smoothing,
the instability and prevents the loop from erupting. In the folt — o, = 1 — oy = 0.005, is applied to the variablgsandu,
lowing, we investigate the stability of the configuration withespectively, to stabilize the scheme in addition to the stabiliza-
respect to ideal kink modes in dependence of the twist in tien by the viscosity = 0.05); see Btk & Kliem (2003) for
coronal part. a detailed description of the numerical tools.

2. Numerical model 3. Kink instability

Using the force-free equilibrium by T&D as the initial CONwe start with a parameter set that is very close to those used

dition, we integ.rate th?.compressible ideal MHD equations iz% T&D and yields a configuration with left-handed field line
study whether instabilities occur. Based on the small valuet ist which is stable against both global expansion and kink

the plasma beta in the inner corona, we use the simplifyiprg‘;;Odes We choosd = L = 1 (50 Mm),R = 2.2, and the

assumptior = 0 in most of our parametric study: number of field line turns about the axis of the whole torus at
its surface to bé\; = 5, the coronal part beinlipep = 1.75.

dp = =V-(pu), . (2) The values of the currents and charges used by T&D and their
pou = —p(u-V)u+|jxB+V.T, (3)  equilibrium conditions then yield = 0.65. (The largeR, the
0B = Vx(uxB), (4) smaller the resulting/R, so we have chosen a valueRhot
j = up'vxB. (5) much smaller than the estimated stability limit of the global
expansion mode). The resulting coronal loop is shown in Fig. 1.
HereT denotes the viscous stress tensoy € p v [dui/dx; + The T&D equilibrium has the property that the radial varia-

duj/ox; — (2/3)d;; V - u]) and v is the kinematic viscosity, in- tion of the twist becomes substantial tdr 2 R/a (Fig. 2). The
cluded to facilitate relaxation toward equilibrium in the stableverage twist of this configuration is found to tb¢ = 6.0x,
cases. the fraction in its coronal part bein@oop = 2.17 (Table 1).

The conditiorp = 0 ensures that the numerically obtaine#igure 1 shows that the loop is stable for these parameters and
stable equilibria are force free, and in the unstable regimeréiaxes to a numerically force-free configuration very close to
yields higher growth rates than the runs with> 0. Hence, the approximate analytical equilibrium. The fluid velocity at
the threshold for onset of instability is correctly obtained. Fahe loop apex oscillates about zero with monotonically decreas-
a few parameter sets, growth rates were also determined viith amplitude €9 x 107° by t = 78). The HFT collapses into a
the pressure gradient termy p, included in Eq. (3); a standardsmall vertical current sheet as the loop settles to the numerical
form of the energy equation and an adiabatic equation of statguilibrium, causing its inner edge to bulge out slightly (both
were then added to Egs. (2)—(5), as e.qg., in Kliem et al. (200@)tects are very weak at high®, as long asDjpep < D).
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Table 1.Normalized parameters of the runs with- L = 1 andg = 0,

and growth rate of the kink instability for upward and downward ap
- - motion.d = (a/l)Piep. Growth rates marked with a dag refer to rur,
with an initial velocity perturbation. The parameters of the first rt

correspond to the values given in Fig. 4 of T&D (excBit

R N a Dygop/m 6 Yup@/Va0  Ydownd/ Va0
2.2 5 0.65 2.1 0.88 0 0
2.2 9 0.44 3.3 0.96 0 0
2.2 10 0.42 3.6 0.98 0.008 0.001
2.2 12 0.37 4.2 1.00 0.031 0.023
2.2 15 0.32 4.9 1.03  0.0%59 0.052

Fig. 1. Top and side view of the isosurfa¢g = 0.4 jimax for ®ieep = 22 20 0.27 6.0 1.06 0.088 0.076
21r, R= 22,5 = 0 att = 0 (left) andt = 78 (right). Times are in 22 25 0.24 7.0 1.08 0.102 0.091
units of r,. The volumex| < 1.5,|y| < 3, 0< z < 3is shown. 2.2 30 0.21 8.0 1.10 0.111 0.100
3.4 9.1 0.44 5.0 0.80 0.005
201 ' ' . 34 114 038 60 083 0021
I i — Ppp = 2,11 34 139 0.34 7.0 0.87 0.034
15[ T Dpgp = 36T ] 34 164 031 80 089 0.044
I HEAN
E Lo — = = Dy = 49T
- ' \ 4
= 10f NN — = gy, = 8.0 ]
%" I ! //\‘:\ ]
[ ,// / \\\ |
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Fig. 2. Radial profile of the twist at the loop apex, averaged oveM

azimuth angleg; (®(r)), = (I/27rr)[(B¢(r,¢)/By(r,¢))d¢, I =

2Rarccosd/R), r = (X% + (z— R+ d)?)¥?, ¢ = arctan(¢— R+ d)/x); Fig.3. Top and side view of current density isosurfaces &g, =

Dioop = (2/@2) [(D(r))grdr. 497, R = 22,5 = 0. Left |j| = 0.15jmax att = 35; unper-
turbed caseRight |j| = 0.25]max att = 28; run with an upward
initial velocity perturbation at the loop apex; see the online editi

- . .athttp: .edpsci . for an animation of these data
To check the stability of the loop, we have applied velocltp)/<| < 1p5 |/y/|w<wg %fszci%nces oro

perturbations uniform in direction with peak magnitude=
0.05 in a spherical volume with radiwsand Gaussian profile
at the loop apex, ramped up over 10 Adfvtimes ta = L/vag) of the helical kinking and current sheet formation for the inte
and then switchedf Both upward and downward directedoretation of sigmoidal structures in the solar corona have b
perturbations were damped away withiBOr,. discussed in Kliem et al. (2004). Figure 4 shows that the aj
Next we consider the cadé = 15 (@io0p = 4.97). This displacement grows exponentially: an instability occurs. T
configuration shows the spontaneous development of the lotgal kinetic energy in the box grows exponentially as we
wavelengthifh = 1) kink mode very clearly (Figs. 3 and 4). ThdJpward perturbations grow at a slightly higher rate becat
mode is initiated by the weak, downward-directed forces thide restoring forces due to the toroidal field by the line curre
result from the initial discretization errors of the current densithe inertia of the fluid, and thefiect of approach to a closec
on the grid. The figures also show a run with a small upwalbundary are all weaker than for downward displacements.
initial velocity perturbation applied at the apes; (= 0.01, expectthatthe kink mode with a sideward directed perturbat
ramped up over®); in this case then = 1 kink mode grows in at the loop apex, which can in a first approximation be regar
a similar manner in the linear phase, with an azimuthal phaagan azimuthally phase-shifted mode, is quantitatively sim
shift of = (opposite sigmoidal shape). Similar to the cylindrito the modes with vertical perturbation at the apex studied ht
cal case, the growth of the mode leads to the formation of a A fit of the growth rates foRR = 2.2 suggests a critical
helically shaped current sheet at the interface of the perturlaeerage twist for onset of kink instability in the T&D equilib
loop with the surrounding magnetofluid. The upward directedim of ®. ~ 3.5z, occurring at an aspect ratio b (Fig. 5,
kink instability of the loop forms a second, nearly vertical cuffable 1). This threshold is similar to that found for cylindrici
rent sheet, at the HFT underneath, which does not occur in gguilibria with similar twist profiles (e.g., Miki‘et al. 1990;
cylindrical kink. The peak current density in these sheets risBaty & Heyvaerts 1996). The growth rates, when normaliz
exponentially in the linear phase of the instability and exceeiits the same mannery§/vad @ioop — PcJ), are also similar
that in the kinked loop in the nonlinear stage. The implicatiorfe factor ~1/2 in our growth rates nearly disappears
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N . . . " '|I 'l ] Finally, we have checked whether the numerical equilibria
- Slmax, “e"m'/\é-'%?""f develop a sigmoidal shape as the twist approadhédsom be-
oL ] e E low. No indication of sigmoidality could be found up 4@, =
! N 1/ lmax, vertcar T ~=--— 3.37 (Ny = 9). Even after applying an upward initial perturba-
] ~ 1IN e retcar .o tion as in the run with\; = 5, the loop relaxed to its original
-2 L. s p circular shape, straight in projection and similar to that shown
L. =" = ~1  inFig.1.
_4 - - S -
r ///\\<In |uapex(t)| 1
o =T In |Uye (D)) 4 4. Conclusions
6_\ —/./ apex
8 o L-"’/ The magnetic loop equilibrium by Titov & &houlin (1999)
ol : : : : : is kink-unstable for twist® > ®., with ®. ~ 3.5z at a loop
0 10 15 20 25 30 35

aspect ratidk/a ~ 5. The instability threshold rises with rising

t aspect ratio. No indication of sigmoidal shape at slightly sub-
critical twists was found. The unstable kink mode with upward
displacement of the loop apex forms a vertical current sheet at
the HFT underneath the loop, which has no counterpartin kink-
unstable cylindrical loop models but corresponds to the central
element of the “standard flare model” (e.g., Shibata 1999). The
surrounding potential field eventually terminates the exponen-
tial growth of kink modes in the considered configuration, ap-
parently inhibiting a global eruption within the framework of
ideal MHD. However, the configuration may nevertheless suf-
fer a global eruption if (a) a surrounding field which decreases
more rapidly with height is employed, (b) magnetic reconnec-
tion is permitted to occur in the formed current sheets, or (c)
magnetic reconnection with neighbouring loops is triggered in
a multiple-loop configuration.

Fig. 4. Apex velocity and peak current densitj(0, 0, z, t)|max in the
current sheets for upward)(and downward [) apex displacements.
R =22, ®jo0p = 4.97, 8 = 0. Exponential fits are shown dotted.
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Fig. 5. Kink instability growth rates of the T&D equilibrium of ra-
diusRderived from the upward?j and downward [) apex velocities.
Open symbols refer to runs with= 0. R= 2.2 for all 8 > 0 runs.
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