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It is well known that the set of all ideals(2) of a ring forms a complete
modular lattice with respect to set inclusion. The same is true of the set of
all right ideals. Our purpose in this paper is to consider the consequences of
imposing certain additional restrictions on these ideal lattices. In particular,
we discuss the case in which one or both of these lattices is complemented,
and the case in which one or both is distributive. In §1 two strictly lattice-
theoretic results are noted for the sake of their application to the comple-
mented case. In §2 rings which have a complemented ideal lattice are con-
sidered. Such rings are characterized as discrete direct sums of simple rings.
The structure space of primitive ideals of such rings is also discussed. In §3
corresponding results are obtained for rings whose lattice of right ideals is
complemented. In particular, it is shown that a ring has a complemented
right ideal lattice if and only if it is isomorphic with a discrete direct sum of
quasi-simple rings. The socle [7](3) and the maximal regular ideal [5] are
discussed in connection with such rings. The effect of an identity element is
considered in §4. In §5 rings with distributive ideal lattices are considered
and still another variant of regularity [20] is introduced. It is shown that a
semi-simple ring with a distributive right ideal lattice is isomorphic with a
subdirect sum of division rings. In the concluding section a type of ideal, in-
troduced by L. Fuchs [9] in connection with commutative rings with dis-
tributive ideal lattice, and which we call strongly irreducible, is considered.
Some properties of these ideals, analogous to corresponding ones for prime
ideals [19], are developed. Finally, it is observed that a topology may be
introduced in the set of all proper strongly irreducible ideals in such a way
that the resulting space contains the spaces of prime [19] and primitive [13]
ideals as subspaces.

I wish to take this opportunity to thank Professor M. F. Smiley for the
encouragement and many helpful suggestions he has given me throughout
the preparation of this paper.

1. Some lattice-theoretic preliminaries. In this section we state two re-
sults of a strictly lattice-theoretic nature with a view toward subsequent ap-
plications to rings. Our notation and terminology is that of Birkhoff [3]. In
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IDEAL LATTICES AND THE STRUCTURE OF RINGS 137

particular, if {ya} is an ascending chain of elements of a lattice L, where a
ranges over a set of ordinals, we write ya Î • Furthermore, if {ya} has a least
upper bound y in L, we write ya | y. The following result is well known (see
[3, p. 129]):

Lemma 1. Let L be a complete modular lattice in which ya î y implies
xf^ya î xf\y. If the unit I of L is a join of points, then each element of L is a
join of points and L is complemented.

We remark in passing that the ideal lattices of a ring satisfy the conditions
of the first statement of Lemma 1. We seek next a class of complete modular
lattices in which complementation implies that 7 is a join of points(4).

Lemma 2. If L is a complete complemented modular lattice with at least two
elements, and if each element of L is a meet of meet-irreducible elements, then I is a
join of points.

Proof. We show first that L contains at least one point. Since 0 is a meet
of meet-irreducible elements, there is a meet-irreducible element a in L such
that a<7. If a<b^I, then b\Jc = I and bC\c = a for some element c in L
since L is relatively complemented. Then c=a so that b = I, and we see that 7
covers a. It is then easy to show that any complement of a is a point. Thus the
join s of all points of L is not 0. If Sr^I, let s' be a complement of s. Since
the interval sublattice [0, s'] of L is isomorphic with [s, 7], it is clear that
[0, s'] satisfies the hypotheses of the lemma, and therefore, as in the first
part of this proof, contains a point p. Then p is a point of L so that p^si\s'
= 0, contrary to p5¿0. We conclude that s = 7, and the proof is complete.

The preceding observations are applicable in settings more general than
that of ring theory. For example, the lattice of all normal subloops of a loop
satisfies the conditions of the first statement of Lemma 1. Moreover, each
element of this lattice is a meet of meet-irreducible elements(5). Thus the
lattice of all normal subloops of a loop G (consisting of more than one element)
is complemented if and only if G is the sum of its minimal normal subloops.
However, since our primary interest here is in rings, we shall not pursue such
questions further.

2. Rings with complemented ideal lattice. In this section we consider the

(') In this connection we point out that there exist complemented lattices which satisfy
the requirements of the first statement of Lemma 1, but in which / is not a join of points.
The continuous geometries of J. von Neumann are examples of this type.

(5) See for example [16] or [9]. Since the proof is short, we reproduce that of [9] here. An
ideal S of a ring A is surely contained in the intersection X of all meet-irreducible ideals which
contain B. On the other hand, if a^B, then by Zorn's lemma there is an ideal M which is
maximal in the family of ideals containing B but not a. Then M is meet-irreducible so that aG %•
The same type of proof is clearly applicable to the lattice of right ideals of a ring, the lattice of
normal subloops of a loop, etc.
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role which complementation in the lattice of ideals of a ring plays in the struc-
ture of that ring. For brevity, we say that a ring A satisfies condition C
in case the lattice of ideals of A is complemented. We call an ideal of A
meet-irreducible in case it is meet-irreducible in the ideal lattice of A. Using
Zorn's lemma it is possible to show that each ideal of a ring is the intersection
of all those meet-irreducible ideals which contain it(6). Thus as an immediate
consequence of Lemma 2 we see that a ring which satisfies condition C is the
sum of its minimal two-sided ideals, and this sum may be refined to a direct
sum in the usual way(6). Conversely, Lemma 1 shows that a ring which is a
direct sum of minimal two-sided ideals must satisfy condition C. We there-
fore obtain the following result.

Theorem 1. A ring A satisfies condition C if and only if A is a direct sum
of minimal two-sided ideals.

We consider next a connection between condition C and the notion of the
discrete direct sum [18] of rings. We prove first the following lemma.

Lemma 3. If an ideal B is a direct summand of a ring A, then every iright)
ideal of B is a iright) ideal of A.

Proof. If / is a right ideal of B, let xCZ.1 and aCZA. Since B+B' =A for
some ideal B' of A, we have a = b+b' with bCZ-B and b'CZ-B' so that xa = xb
+xb'. Then xaCZ-I since xb' is in BC\B' = 0. Similarly, if 7 is a left ideal of B,
then axC£I.

Incidentally, Lemma 3 shows that condition C is preserved under homo-
morphism. For suppose that A satisfies condition C and that B' is an ideal of
A. Then B+B'= A for some ideal B of A, and A -B'^B. Any ideal / of B is
an ideal of A and hence, since the ideal lattice of A is relatively complemented,
I+V = B for some ideal I' of A. It follows that B, and hence A —B', satisfies
condition C.

It is easily shown that a ring A is isomorphic with the discrete direct
sum of rings Sa if and only if A is the direct sum of two-sided ideals Aa such
that, for each a, Aa=Sa. If each Sa is a simple ring, then clearly each Aa
is a minimal two-sided ideal of A so that A satisfies condition C by Theorem 1.
On the other hand, if A satisfies condition C, then A is the direct sum of mini-
mal two-sided ideals Aa, and by Lemma 3 each Aa is a simple ring. We may
therefore reformulate Theorem 1 as follows:

Theorem 2. A ring A satisfies condition C if and only if A is isomorphic
with a discrete direct sum of simple rings.

(6) A minimal two-sided ¡deal of a ring with more than one element means a minimal non-
zero two-sided ideal. However, we adopt the convention that a one-element ring is a minimal
two-sided ideal of itself. A similar convention is adopted for minimal right ideals. A ring A
is the direct sum of (right) ideals Aa of A in case A = ¿~iaAa and Ap(~\ 2~La^g Aa = 0. We also
remark that by a simple ring we mean a ring whose only ideals are itself and the zero ideal. Thus
in our terminology a simple ring may be a radical ring.
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We now make some remarks concerning a semi-simple ring A which
satisfies condition C. Since an ideal of a semi-simple ring is itself semi-simple,
a minimal two-sided ideal of A is semi-simple as well as simple; its comple-
ment is therefore a primitive ideal [13]. Conversely, a primitive ideal is
meet-irreducible by [12, Lemma 4] and hence maximal, as in the proof of
Lemma 2 ; its complement is then a minimal two-sided ideal. Thus the minimal
two-sided ideals of a ring of this type are the complements of primitive ideals.
It is clear also that every difference ring of A is semi-simple, and this implies
that a proper ideal of A must be contained in some primitive ideal of A.

In [13] Jacobson has shown that a Stone topology may be introduced in
the set S of all primitive ideals of a ring A. In fact, the closure of a subset S i
of S is defined to be the set of all primitive ideals of A which contain the
intersection flSi of all primitive ideals in Si- The resulting space is the
structure space of A. In the case of a semi-simple ring A which satisfies condi-
tion C, the lattice of all open sets of S bears a close relationship to the ideal
lattice of A, as we shall now show. If A is such a ring, consider the mapping
J—*f\J of the lattice of closed sets of S into the ideal lattice of A. If 7 is an
ideal of A, let J be the set of all primitive ideals which contain 7. Then
7 = C\J since A—lis semi-simple, and therefore, since J is clearly a closed sub-
set of S , the mapping is exhaustive.

Now let Ji and J2 be closed subsets of S • If JiQj2, then obviously
iVftcfrJi. Conversely, if f^Cfr/i and if BEJi, then B^Oj^Oji so that
B is in the closure of J2; hence BÇJ2. It follows that the mapping is a lattice
anti-isomorphism between the lattice of closed sets of S and the ideal lattice
of A. The following theorem expresses this result in terms of the lattice of
open sets of S •

Theorem 3. If A is a semi-simple ring which satisfies condition C, then the
ideal lattice of A is isomorphic with the lattice of open sets of the structure space
of A.

Incidentally, since the lattice of open sets of any topological space is
distributive, Theorem 3 shows that the ideal lattice of a semi-simple ring
which satisfies condition C is distributive, and hence a Boolean algebra. In
particular, complementation is unique in the ideal lattice of such a ring. A
somewhat sharper result of the same type will be given in Theorem 9 of the
next section. We conclude this section with some additional results concerning
the structure space of a ring which satisfies condition C.

Theorem 4. If A is a ring which satisfies condition C, then the structure
space of A is discrete. Moreover, the structure space of A is compact if and only if
there is an element in A which is in no primitive ideal of A.

Proof. If J is the Jacobson radical of A, we first observe that an element
x of A is in no primitive ideal of A if and only if x + 7 is in no primitive ideal
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of the semi-simple ring A— J. Thus, since the structure space of A is homeo-
morphic with the structure space of A— J [13], we may assume that A is
semi-simple, and the remarks following Theorem 2 are therefore applicable.
Then every primitive ideal of A is maximal so that the structure space S
of A is T\. Furthermore, Theorem 3 shows that the lattice of open sets of
S is complemented; it follows that S is discrete.

Now let x be an element of A which is in no primitive ideal of A, and let
% be a family of closed sets of S whose intersection is empty. Then, by [13,
Lemma l], the sum 23 Je8^7 is contained in no primitive ideal of A, and
hence is equal to A. Then x is in ^J^JÀJ for some finite subset §i of g»
and therefore ^JeSi^J is contained in no primitive ideal. Again using
[13, Lemma l], the intersection of the sets in §i is empty, and we conclude
that S is compact. To prove the remaining part of the second statement of
the theorem, we first observe that a compact discrete space is finite. Thus let
Bi (4 = 1, • • -, n) denote the primitive ideals of A, and let B{ be the (unique)
complement of Bi. Let x,- be a nonzero element of B[. Since 22»w BÍ =B¡,
it follows readily that x = Xi+ ■ ■ • +x„ is in no primitive ideal of A, and the
proof is complete.

Since the minimal two-sided ideals of a semi-simple ring which satisfies
condition C are the unique complements of primitive ideals, and since a dis-
crete space is compact if and only if it is finite, Theorem 4, together with
Theorem 2, yields the following corollary.

Corollary. A semi-simple ring A satisfies condition C and contains an
element which is in no primitive ideal of A if and only if A is isomorphic with
the direct sum of a finite number of simple rings.

The following result is a partial converse of Theorem 4.

Theorem 5. If a semi-simple ring A has a discrete structure space, and if
each proper ideal of A is contained in a primitive ideal, then A satisfies condi-
tion C.

Proof. Let I be an ideal of A and J the (closed) set of all primitive ideals
of A which contain I. Since the structure space of A is discrete, the set J'
of all primitive ideals which do not contain I is also closed. Then I+f\J' = A
since otherwise I+C\J' is contained in a primitive ideal, and this would imply
that jr\J' is not empty. Moreover, the intersection of / with f)J' is zero
since A is semi-simple. Thus I+Oj' = A, and A satisfies condition C.

The requirement that each proper ideal be contained in a primitive ideal
is satisfied, for example, by a ring with an identity element [13]. We remark
also that the preceding theorem is not true when the requirement of semi-
simplicity is omitted. For example, the ring of integers modulo 8 has a dis-
crete structure space, but does not satisfy condition C.

3. Rings with complemented right ideal lattice. We consider next those
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rings A which are such that the lattice of right ideals of A is complemented.
We shall say that a ring of this type satisfies condition Cr. This condition is
somewhat stronger than condition C discussed in the preceding section; in
fact, we shall show that in the semi-simple case condition Cr implies condition
C. As with two-sided ideals, a right ideal of a ring A is meet-irreducible in
case it is meet-irreducible in the lattice of right ideals of A, and, as before,
any right ideal of A is the intersection of all those meet-irreducible right ideals
which contain it. Thus as a consequence of Lemmas 1 and 2 we have the
following result.

Theorem 6. A ring A satisfies condition Cr if and only if A is a direct sum
of minimal right ideals.

The next lemma implies that condition Cr is preserved under homo-
morphism ; its proof is similar to that of Lemma 3.

Lemma 4. If B is a two-sided ideal of a ring A such that B+B' = A for some
right ideal B' of A, then every right ideal of B' is a right ideal of A.

Following Dieudonné [7], we call the sum 5 of all minimal right ideals
of a ring A the (right) socle of A. For convenience we list a few of the results
of [7]:

(a) If 7 is a minimal right ideal of A, then the sum of all minimal right
ideals of A which are A -isomorphic with 7 (i.e., isomorphic as A -modules) is
a two-sided ideal of A, and is called afoot of 5. The socle is itself a two-sided
ideal of A and is the direct sum of its feet.

(b) If A is a foot of the socle of A, then F = B + C, where B is a two-
sided ideal of A (the sum of all nilpotent minimal right ideals contained in F),
and C is a right ideal of A (the sum of all idempotent minimal right ideals
contained in F). The ring C is simple and B2 = 0.

We shall call a ring A quasi-simple in case it is the sum of A -isomorphic
minimal right ideals(7). In this connection we mention also that Jacobson
[12] has called a ring atomic in case it is the sum of its minimal right ideals.

Theorem 7. The following conditions are equivalent for a ring A:
(i) A satisfies condition Cr.
(ii) A is atomic.
(iii) A is isomorphic with a discrete direct sum of quasi-simple rings.

Proof. It is clear from Theorem 6 that (i) and (ii) are equivalent. If A
satisfies (ii), then A coincides with its socle and is therefore the direct sum
of its feet. Lemma 4 then shows that each foot is a quasi-simple ring, and
hence A satisfies (iii). If on the other hand A is isomorphic with the discrete
direct sum of quasi-simple rings Sa, then A is the direct sum of two-sided

(') This definition is that given by Dieudonné [7] except that we do not require the pres-
ence of an idempotent minimal right ideal.
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ideals Aa which are such that Aa=Sa lor each a. By Lemma 4 each minimal
right ideal of Aa is a minimal right ideal of A, and hence A satisfies (ii).

Using the first conclusion of Lemma 1, one may verify that the Jacobson
radical 7 of a ring A which satisfies condition Cr is just the sum of the nil-
potent minimal right ideals of A. For later use we note also that from (a)
and (b) and the preceding remark it follows that J is a direct sum of nilpotent
ideals of index 2 ; hence 72 = 0. Now if A is semi-simple and satisfies condition
Cr, each foot of A is a simple ring which contains a minimal right ideal, and A
is the direct sum of its feet. On the other hand, a simple ring which contains
a minimal right ideal is surely quasi-simple, and therefore a discrete direct
sum of such rings must satisfy condition Cr. These statements are summarized
in the next theorem.

Theorem 8. A semi-simple ring A satisfies condition Cr if and only if A
is isomorphic with a discrete direct sum of simple rings, each of which contains
a minimal right ideal.

In view of Theorems 2 and 8 we see that a semi-simple ring which satisfies
condition Cr also satisfies condition C. (The converse of this statement is not
true since there exist simple rings without minimal right ideals [ll].) We
shall now examine this situation in somewhat greater detail. An element x
of a ring A is a left annihilator of A in case xA =0. If B is an ideal of A, then
the annihilator of B (in A) is the two-sided ideal of A consisting of all xÇ^A
such that xB =Bx = 0. We denote the annihilator of B by B*. We prove first
the following lemma(8).

Lemma 5. Let Ai be an ideal of a ring A, and assume that the ring Ai con-
tains no nonzero left annihilator. If Bi and B2 are right ideals of A such that
Air\Bi = 0 and A =Ai+B2, then BiQB2.

Proof. Let 2>G7*i and write b = x+y with xG-4i and y<E.B2- Then xAi = Q
since Ai(~\Bi = 0 and ^4iP\£2 = 0. It follows that ac = 0, and hence ¿>G¿?2.

Under the hypotheses of the preceding lemma, it follows immediately that
if A=Ai+Bx=Ai+B2, then 5X = 52.

Lemma 6. Let B be an ideal of a ring A, and assume that the ring B contains
no nonzero left annihilator. If A=B-\-B' for some right ideal B' of A, then
B' = B*.

Proof. The set C of all xG^4 such that xB = 0 is clearly an ideal of A, and,
since B contains no nonzero left annihilator, Bi^C = 0. Then BC = 0 as well as
C73=0 so that CQB*, and hence C = B*. Moreover, B'B=0 because B'(~\B
= 0, and this implies that 5'ÇC. Then A =B-\-B* and, by the remark fol-
lowing Lemma 5, B' = B*.

If A is a semi-simple ring, then any ideal of A is semi-simple and therefore

(8) See also Lemma 1 of [18].
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contains no nonzero left annihilator. Thus Lemma 6 shows directly that in
the semi-simple case condition Cr implies condition C. In fact, in this last
statement condition Cr may be replaced by the following condition : every ideal
of A has a right ideal complement. We have also the following related result.

Theorem 9. Let A be a ring which contains no nonzero left annihilator. If
A satisfies condition C, then the ideal lattice of A is a Boolean algebra.

Proof. Since A satisfies condition C, a left annihilator of an ideal of A is
also a left annihilator of A. Lemma 6 then shows that complementation is
unique in the ideal lattice of A. The result then follows from the fact that a
complete atomic lattice with unique complements is a Boolean algebra [3,
p. 170].

A simple example considered by McCoy [18, p. 872] in another connec-
tion shows that the preceding theorem is not true when A contains a nonzero
left annihilator. The ring considered in this example is a zero ring which
satisfies condition C, but complementation in its ideal lattice is not unique;
it is well known, however, that complementation is unique in a Boolean alge-
bra.

The preceding remarks enable us to describe the structure space of a ring
which satisfies condition Cr:

Theorem 10. If A is a ring which satisfies condition Cr, then the structure
space of A is discrete. Moreover, the structure space of A is compact if and only
if there is an element in A which is in no primitive ideal of A.

Proof. If / is the Jacobson radical of A, then the semi-simple ring A — J
satisfies condition Cr, and hence condition C. We may therefore assume that
A satisfies condition C, and the result then follows from Theorem 4.

An element a of a ring A is said to be regular [20 ] in case a=axa for some
element xCZ-A, and an ideal of A is regular in case each of its elements is
regular. We consider next some connections between condition Cr and the
maximal regular ideal [5] of A. We use the following lemma.

Lemma 7. If A is a dense ring of finite-valued linear transformations of a
vector space R over a division ring D, then A is a regular ring.

Proof. Let a be an element of A, and let xi, ■ ■ ■ , xn be a basis for Ra.
For each x{, let yiCZR such that y»a = Xj. Since A is dense, there is an element
bCZA such that x¿o=y; (4 = 1, • • • ,n). If zC£-R, let aiCZD such that za
= 23x¿a¿! then ziaba) = ^lixJ>a)ai = ^Xiat. Hence a = aba and A is regular.

Theorem 11. Let J be the Jacobson radical of a ring A, and let S be the
socle of A. Then S is contained in the maximal regular ideal of A if and only
if JOS = 0.

Proof. Let M be the maximal regular ideal of A. Since jr\M — 0  [5],
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SÇJAf implies that /nS = 0. Conversely, if 7(^5 = 0, then 5 contains no
nilpotent minimal right ideal. It follows then from (a) and (b) that 5 is the
direct sum of two-sided ideals C« of A, and each C„ is a simple ring. Moreover,
by [7, Proposition 4], every right ideal of Ca is a right ideal of A so that each
ring Ca contains a minimal right ideal. Now a simple ring, not a zero ring,
which contains a minimal right ideal is isomorphic with a dense ring of finite-
valued linear transformations of a vector space over a division ring [ll], and
we conclude from Lemma 7 that each Ca, and hence S, is a regular ring.
Since 5 is an ideal of A, it follows that SÇJAf.

Corollary. If A is a semi-simple ring which satisfies condition Cr, then
A is a regular ring.

We formulate our next result in terms of a variant of regularity which is
due to Brown and McCoy [6]. An element a of a ring A is weakly regular in
case aCZaia), where (a) is the ideal generated by a. An ideal of A is weakly
regular in case each of its elements is weakly regular. If IF is a weakly regular
ideal of A, and if J is the Jacobson radical of A, then one may verify that
Wr\J — Q so that WJ = JW = Q. The proof of the following theorem is anal-
ogous to that of Theorem 4.3 of [2].

Theorem 12. Let W be a weakly regular ideal of a ring A, and let S be the
socle of A. Then WQS if and only if W = iW+J) —J is contained in the socle
ofA-J.

Proof. Assume that WQS, and let wCZW. Then wCZ ¿^,7» where each 7¿
is a minimal right ideal of A. Regarding I i and 7¿ as A -modules, I i is an
/1-homomorphic image of 7¿ and is therefore either zero or a minimal right
ideal of A — J. Hence w is in the socle of A — J. (In this part of the proof no
use has been made of the special properties of the ideals W and J.) Now
assume that W is contained in the socle of A—J, and let aCZ-W so that
a=ay with yCZia)QW. Then y£ ^7 i with each 7, a minimal right ideal of
A—J. If Ii is the inverse image of /,, then z+J—>az is an A -homomorphism
of 7i onto ali since aJ = 0. Then a/¿ = 0 or ali is a minimal right ideal of A.
Furthermore, aJ = 0 implies that ayCZ ¿^,ali. Hence aCZ-S so that WÇZS, and
the proof is complete.

Corollary. If J is the Jacobson radical of a ring A, and if A—J satisfies
condition Cn then the maximal weakly regular ideal [6] of A is contained in
the socle of A.

Now let J be the Jacobson radical of a ring A which satisfies condition Cr.
Then J+J'=A for some right ideal J' of A. If M is the maximal regular
ideal of A, and if aCZ-M, then a = axa for some xC£A, and we have a=j+j'
with jCZJ and j'CZJ'. Then a = ij+j')xa=j'xa since JC\M=0, and hence
aCZJ' and MÇ.J'. Since the lattice of right ideals of A is relatively comple-
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mented, we then have M-\-N = J' for some right ideal N of A, and then
A = 7+Af+A. The ring M-t-N=A —7 is semi-simple and satisfies condition
Cr. The corollary to Theorem 11 then shows that M+N is a regular ring,
from which we conclude that M is the largest two-sided ideal of A which is
contained in J'. By Lemma 6, A is a two-sided ideal of M+N; in fact, N
is the annihilator of M in M-\-N. Since A is a two-sided ideal of a regular
ring, A is itself a regular ring.

We now consider the decomposition -4=7+J7+A from a slightly dif-
ferent point of view. By Lemma 6, J-\-N=M* and therefore A=M-\-M*.
Since A is a regular ring, so is M* — 7= A. Furthermore, the maximal regular
ideal of M*^A — M is zero [5]. It follows then from [5, Theorem 6] that the
ring M* is bound to its radical in the sense of M. Hall [lO]. We therefore have
the following result(9).

Theorem 13. 7/^4 is a ring which satisfies condition Cr, and if M is the
maximal regular ideal of A, then A = M+M*. The ring M is semi-simple and
satisfies condition Cr; the ring M* is bound to its radical and satisfies condition
C

Remark 1. Using the same notation as before, we note that NJQNf^J
= 0. Thus if also 7A = 0, then ACT/*. Since M* is bound to its radical this
implies that AÇJ, and then J = M*. Conversely, J=M* implies that 7A = 0.
Thus 7= M* if and only if 7A = 0.

Remark 2. In the proof of [5, Theorem 6] Brown and McCoy show that
if A — 7 is regular, then the ideal 7*2 is regular, and this implies that 7*2 = M.
Thus if A —J satisfies condition Cr, then J*2 = M.

4. Rings with identity element. We now consider some consequences of
assuming an identity element in rings which satisfy condition C or Cr. We
call a right ideal 7 of a ring A right quasi-regular in case each of its elements
is right quasi-regular [12]. A right ideal 7 of A is modular(10) in case there is
an element eG-4 such that ex — xG7 for every xÇ_A. The following lemma
generalizes Theorem 7 of [12]:

Lemma 8. If I is a right quasi-regular right ideal of a ring A, and if 7+7'
= A for some modular right ideal I' of A, then 7 = 0.

Proof. Since 7' is modular, there is an element eG^4 such that ex—#G7'
for every xÇ_A, and we may write e = u+v with wG7 and vÇ.1'. Since 7 is
right quasi-regular, we have u-\-w — uw = 0 for some w<E.A. Then vw-\-u
= (e — u)w-\-u = ew — w so that u is in IC\I'= Q. Then eG7' which implies
that I'=A, and then 7 = 0.

Since the Jacobson radical of a ring is a right quasi-regular ideal, we ob-

(') Theorem 13 is closely related to Theorem 7 of [S].
(10) The notion of a modular right ideal is due to I. Segal; the term "modular" is due to

Jacobson.
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tain the following result as an immediate consequence of Lemma 8.

Theorem 14. If a ring A contains a (left) identity element and satisfies con-
dition C or Cr, then A is semi-simple.

Since a left identity element of a ring A cannot be contained in a primitive
ideal of A, Theorem 14, together with the corollary to Theorem 4, yields
the following result: A ring A satisfies condition C and contains a left identity
element if and only if A is isomorphic with the direct sum of a finite number of
simple rings, each of which contains a left identity element. As a second applica-
tion of Theorem 14, let A be a ring with a (two-sided) identity element, and
let A satisfy condition Cr. Then A is semi-simple and therefore, by Theorem
8, is isomorphic with a discrete direct sum of simple rings Si, each of which
contains a minimal right ideal. The presence of the identity element insures
that there are but a finite number of components in this direct sum, and that
each Si contains an identity element. Each 5¿ is then isomorphic with a
dense ring of finite-valued linear transformations of a vector space 22,- over
a division ring, and each Ri is clearly finite-dimensional. It follows that
each Si satisfies the descending chain condition for right ideals [ll]. On the
other hand, the direct sum of a finite number of simple rings of this type
surely contains an identity element and satisfies condition Cr.

Theorem 15. A ring A contains an identity element and satisfies condition
C, if and only if A is isomorphic with the direct sum of a finite number of simple
rings, each of which satisfies the descending chain condition for right ideals.

A fundamental Wedderburn-Artin structure theorem states that a ring A
is semi-simple and satisfies the descending chain condition for right ideals if
and only if A is isomorphic with the direct sum of a finite number of simple
rings, each of which satisfies this chain condition. Thus Theorem 15 shows
that condition Cr, together with an identity element, is equivalent to semi-
simplicity together with the descending chain condition for right ideals.

5. Rings with distributive ideal lattices. We turn now to a consideration
of distributivity in the ideal lattices of a ring. We say that a ring A satisfies
condition D (Dr) in case the lattice of ideals (right ideals) of A is distributive.
As an example of a (commutative) ring which satisfies condition D we men-
tion the ring of integers; in fact, the ring of algebraic integers of any extension
of the rational field of finite degree satisfies condition D [3, p. 135].

We observe first that condition D is preserved under homomorphism.
To see this, let B be an ideal of a ring A which satisfies condition D. The sub-
lattice of the ideal lattice of A which consists of all ideals between B and A
is then distributive, and this sublattice is isomorphic with the ideal lattice of
A— B. Similar observations show that condition Dr is also preserved under
homomorphism.

We point out next a rather obvious sufficient condition for condition D.
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In fact, if BC = BC\C for all ideals B and C of a ring A, then A surely satisfies
condition D. In this connection we introduce another variant of the notion
of regularity: an element a of A will be called f-regular in case aCZia)2, where
(a) is the principal ideal generated by a. An ideal of A is /-regular in case
each of its elements is/-regular, and A is /'-primitive in case there is a non-
zero element eC£A which is contained in every nonzero ideal of A and which
is such that (e)2 = 0.

Now let G be the additive group of A and let ñ be the set of all left mul-
tiplications and all right multiplications, together with the identity auto-
morphism, of A. For each aCZA, set Fia) = (a)2. It is then easily verified that
G is an (A, ñ, Ù)-group in the sense of Brown and McCoy [ó], and the results
of [6] are therefore applicable. In particular, the set N of all aCZA such that
(a) is /-regular is the maximal f-regular ideal of A. Furthermore, N is the in-
tersection of ideals Ma, and each A — Af„ is /-primitive. We obtain then the
following result:

Lemma 9. If a ring A satisfies any of the following equivalent conditions, then
A satisfies condition D:

(i) BC = BC\Cfor all ideals B and C of A.
(ii) For each ideal B of A, A—B contains no nonzero nilpotent ideal.
(iii) A is f-regular i11).

Proof. As remarked above, (i) implies that A satisfies condition D. Thus
we need only show that (i)—(iii) are equivalent. The verification that (i)
implies (ii) is straightforward. If A is not /-regular, then, by the remarks
above, A contains an ideal M such that A — M is /-primitive and therefore
(ii) does not hold; hence (ii) implies (iii). Finally, (iii) implies that (a) = (a)2
for every principal ideal (a) of A, from which (i) readily follows.

It is clear that any weakly regular ring is /-regular. Furthermore, any
regular, strongly regular [l], or biregular [l] ring is weakly regular. Thus we
have the corollary:

Corollary. If A is a weakly regular iregular, strongly regular, biregular)
ring, then A satisfies condition D.

We point out that none of the above mentioned conditions is a necessary
condition for condition D. For example, the ring of integers satisfies condi-
tion D but is not/-regular.

Lemma 10. If A is a dense ring of linear transformations of a vector space R
over a division ring D, then A is a division ring or A contains three distinct

(u) Levitzki [15] has observed that (ii) holds if and only if each ideal of A is the inter-
section of all prime ideals [19] which contain it. Thus Lemma 9 yields the following result:
A ring A is f-regular if and only if each ideal of A is the intersection of all prime ideals which
contain it. Since/-regularity reduces to regularity in a commutative ring with identity element,
this is a direct generalization of Theorem 9 of [16].
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maximal right ideals 7i, 72, and I3 such that Iir\I2QI3.

Proof. We introduce the following notation. If z(E.R, then l[z] denotes
the right ideal of A consisting of all aG^4 such that za = 0. If z^O, then 7[z]
is a maximal right ideal of A [ll, p. 231]. Now if R is one-dimensional over
D, then A is a division ring. Otherwise, R contains two 7>-linearly inde-
pendent elements x and y. Then x+yy^O so that 7[x], l[y], and 7[x+y] are
maximal right ideals of A, and clearly 7[x]P\7[y]Çi7[x+y]. Since A is a
dense ring, we have xa = 0 and ya^O for some aÇzA ; hence 7[x] 9eI[y ]. Again,
xb = x and yb=— x for some ¿>G^4- Then &G7[x+y] while £>G7[x] and
&G7[y]. Thus 7[x+y] is distinct from both 7[x] and l[y], and the proof is
complete.

Lemma 11. 7/ .4 is a primitive ring which satisfies condition Dr, then A is a
division ring.

Proof. We first represent A as a dense ring of linear transformations of a
vector space over a division ring. Then by Lemma 10, A is a division ring or
A contains three distinct maximal right ideals 7i, 72, and 73 such that
Iir\I2CZI3. In the latter case, 73 = 73 + (7in72) = (73+7i)n(73+72) =A, which
is a contradiction.

We point out now that neither condition Cr nor condition D implies condi-
tion Dr. As an example, the (semi-simple) ring of all 2X2 matrices with ele-
ments in a division ring satisfies conditions Cr and D. However, Lemma 11
shows that this ring does not satisfy condition Dr. We remark further that
condition D (Dr) does not imply condition C (Cr). For example, the ring of
integers satisfies condition D (Dr) but not condition C (Cr).

Now let A be a semi-simple ring (with more than one element) which
satisfies condition Dr. Then A is isomorphic with a subdirect sum of primitive
rings, each of which satisfies condition Dr. This observation, together with
Lemma 11, yields our principal result concerning rings which satisfy condi-
tion Dr:

Theorem 16. 7/^4 is a semi-simple ring (with more than one element)
which satisfies condition Dr, then A is isomorphic with a subdirect sum of di-
vision rings.

The converse of Theorem 16 is not true. For example, the ring of poly-
nomials in two indeterminants over the rational field is commutative and
semi-simple and is therefore isomorphic with a subdirect sum of fields. How-
ever, the ideal lattice of this ring is not distributive(12). Theorem 16 gen-
eralizes the following well known result of Forsythe and McCoy [8] : A regular
ring of more than one element and without nonzero nilpotent elements is iso-
morphic with a subdirect sum of division rings. For a regular ring without non-

(t2) See for example [9].
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zero nilpotent elements is strongly regular [8] and hence, by the corollary
to Lemma 9, satisfies condition D; moreover, any right ideal of a strongly
regular ring is a two-sided ideal [l].

We now combine the results just obtained with those of §3 and consider
rings whose lattice of right ideals is a Boolean algebra; that is, rings which
satisfy both conditions Cr and Dr. Let A be a semi-simple ring (with more
than one element) whose lattice of right ideals is a Boolean algebra. By Theo-
rem 8, A is isomorphic with a discrete direct sum of simple rings, each of
which is a division ring by Lemma 11. Conversely, if A is isomorphic with a
discrete direct sum of division rings, then A is strongly regular and therefore
satisfies condition D. As remarked above, any right ideal of a strongly regular
ring is two-sided and hence A satisfies condition Dr as well as Cr. This proves
the following theorem. \

Theorem 17. A ring A iwith more than one element) is semi-simple and has
a right ideal lattice which is a Boolean algebra if and only if A is isomorphic
with a discrete direct sum of division rings.

In view of Theorem 13 it is perhaps of some interest to investigate the
structure of a ring which is bound to its radical and whose lattice of right
ideals is a Boolean algebra. In this connection we have the following result.

Theorem 18. 7/ A is a ring which is bound to its radical, and if the lattice
of right ideals of A is a Boolean algebra, then A is a zero ring.

Proof. By Theorem 6, A is a direct sum of its minimal right ideals. If A is
not a radical ring, it follows that A must contain a minimal right ideal whose
square is not zero. Thus the sum C of all minimal right ideals with nonzero
square is a nonzero right ideal of A. We shall show that C is a two-sided ideal.
Let 7 be any minimal right ideal of A which satisfies 72?i0. Then I = eA for
some nonzero idempotent element e, and 7+73 =.4 for some right ideal B of
A. Moreover, since complementation is unique in the lattice of right ideals,
we may easily show that B is a maximal right ideal. Let (73:.4) denote the
ideal of A which consists of all x£.4 such that AxÇZ-B. If bÇ.IC\(B;A), then
b = eb is in 7H73 = 0 so that 7H(P:^)=0. Then (B:A) = (B:A)r\(I+B)
= (B:A)C\B, and hence (B:A)C.B. It follows that A—(B:A) is a primitive
ring, and hence a division ring by Lemma 11. Then (B;A) =73 and I=A — B
is a division ring with identity element e. Now let a be any element of A and
consider the right ideal ai. If al^O, then ai is a minimal right ideal and
ae^Q. Now since 7+73 =.4 we have a = x+y with xCZ-I and y£73. Then
(ae)2 = aexe+aeye, and ey£7C\73 = 0 so that (ae)2 = aexe. Since 7 is a division
ring there is an element 4i£7 such that xeu = e. Then (ae)2u = ae and hence
(ae)2¿¿0. This implies that (al)2^0 and therefore alQC. It follows now that
C is a two-sided ideal. Now let J be the Jacobson radical of A. Either JC\C
= 0 or jr\C contains a minimal right ideal of A whose square is not zero, and
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the latter is impossible since J contains no nonzero idempotent element.
Then JC=CJ = Q so that CÇ.J since A is bound to its radical. This is a
contradiction and we conclude that 7 = ^4. Since 72 = 0 in a ring which satisfies
condition Cr, the proof is complete.

If 7 is the Jacobson radical of a ring A whose lattice of right ideals is a
Boolean algebra, and if M is the maximal regular ideal of A, then we conclude
from Theorems 13 and 18 that A =J+M. Moreover, A is 7r-regular [17] in
the following strong sense: for each aÇ_A, a2 = a2xa2 for some element xG-4.

We consider now some further consequences of conditions D and Dr. Fol-
lowing Birkhoff [3] we call an element c of a lattice L the pseudo-complement
of an element a relative to an element b in case aC\x^b if and only if x^c.
A lattice is relatively pseudo-complemented in case a pseudo-complement of a
relative to b exists for each a and b in L. In [9] Fuchs has shown that the
lattice of ideals of a (commutative) ring which satisfies the ascending chain
condition for ideals is relatively pseudo-complemented, provided that this
lattice is distributive. We now point out that only distributivity is required ;
the following proof is essentially that of Fuchs, Zorn's lemma being used
in place of the chain condition. Let B and C be ideals of a ring A which
satisfies condition D. By Zorn's lemma there is an ideal M of A which is
maximal in the family of ideals 7 which satisfy BCMÇ^C. Moreover, if 7 is
any ideal of A for which BÍMQC, then Br\(I+M) = (Br\I) + (BC\M) is
contained in C so that I+M — M, and then IQM. It is now clear that M is
the pseudo-complement of B relative to C. Thus a ring which satisfies condi-
tion D has a relatively pseudo-complemented ideal lattice, and an analogous
proof shows that the corresponding result holds for right ideals. Furthermore,
it is known [3, p. 147] that if L is any complete relatively pseudo-comple-
mented lattice, than L satisfies the infinite distributive law x(~\\]axa
= \Ja(xr\xa). This proves the following theorem.

Theorem 19. The following conditions are equivalent for a ring A:
(i) A satisfies condition D (Dr).
(ii) The lattice of ideals (right ideals) of A is relatively pseudo-comple-

mented.
(iii)  The lattice of ideals (right ideals) of A satisfies the infinite distributive

towjn£0ja-¿a(/n/a).
6. Strongly irreducible ideals. We make the following definition : An ideal

(right ideal) 7 of a ring A is called strongly irreducibile(n) in case Br\CÇZI

(13) This type of ideal was introduced by Fuchs in [9]; our terminology, however, differs
from that of Fuchs. It is clear that "strongly irreducible" elements may be defined in any
lattice, and that many of the results of this section are applicable to systems more general than
rings (cf. [4]). For simplicity of exposition we have chosen to retain the ring terminology. We
might also remark that the term strongly irreducible has recently been used in a different sense
by C. W. Curtis (On additive ideal theory in general rings, Amer. J. Math. vol. 74 (1952) pp.
687-700).
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implies that PÇJ7 or CÇ7, where B and C are any ideals (right ideals) of A.
In [9] Fuchs has considered strongly irreducible ideals in a commutative ring
and the role which they play in the distributivity of the ideal lattice of that
ring. In this last section we consider some further properties of these ideals,
and obtain some additional results concerning conditions D and Dr.

An ideal P of a ring A is prime [14] in case BCQP implies that 73ÇP or
CQP, where B and C are any ideals of A. It is clear that any prime ideal
(and hence any primitive ideal) is strongly irreducible, but, as we shall
presently point out, the converse is not true. However, results can be obtained
for strongly irreducible ideals which are analogous to corresponding results
for prime ideals, as we shall now show.

In analogy with the notions of multiplicative system and m-system [19],
we shall call a subset Af of a ring A an i-system (intersection system) of A in
case bC£-M and cC£M implies that (b)C\(c)r\M is not empty. (Here (b) and
(c) denote the principal two-sided ideals generated by b and c, respectively.)
A right 4-system of A is defined in the obvious way.

Theorem 20. If I is an ideal (right ideal) of a ring A, then the following con-
ditions are equivalent:

(i) 7 45 strongly irreducible.
(ii) (a)f^(b)ClI implies that (a)QI or (b)QI, where (a) and (b) are any

principal ideals (right ideals) of A.
(iii) The set-theoretic complement of I in A is an i-system (right i-system)

of A.
Proof. We give the proof for ideals, that for right ideals requiring only a

trivial change of terminology. Clearly (i) implies (ii). Thus assume (ii) and
let 7' be the set-theoretic complement of 7 in A. If aCZI' and bCZI', then
(a)ï7 and (&)<3¡7 so that (a)P\(è)çf:7. Hence 7' is an 4-system and (ii) im-
plies (iii). Now assume that 7 is not strongly irreducible so that there exist
ideals B and C such that BCsCÇI, while 73Ç£7 and C$7. Then there are ele-
ments bCZBCW and cCZCfM'. But (ô)rN\(c)Çj7 so that 7' is not an 4-system,
and the proof is complete.

In earlier sections we have had occasion to refer to the topology intro-
duced by Jacobson in the set of primitive ideals of a ring. In [19] McCoy
points out that the set of prime ideals of a ring may be similarly topologized.
We now observe that the set of all iproper) strongly irreducible ideals may be
topologized in precisely the same way. To be specific, if S denotes the set of
all proper strongly irreducible ideals of A, and if Si^S, then the closure of
Si is defined to be the set of all ideals in S which contain flSi. Since any
prime ideal is strongly irreducible, it is clear that the space S contains the
spaces of prime and primitive ideals as subspaces. We point out also that
the set S r of all proper strongly irreducible right ideals of A may be topolo-
gized by using a similar definition of closure. Finally, we remark that the
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notion of a strongly irreducible ideal, together with the associated topological
space defined above, can be considerably generalized. This generalization will
be discussed elsewhere [4], and for this reason we omit further comment on
the spaces S and S r-

For convenience, we state the following result due to Fuchs [9]:

Lemma 12. A ring A satisfies condition D (Dr) if and only if every meet-
irreducible ideal (right ideal) of A is strongly irreducible.

Now let B be an ideal of a ring A which satisfies condition D. Since B
is the intersection of all meet-irreducible ideals which contain it, it follows
from Lemma 12 that B is the intersection of all strongly irreducible ideals
which contain it. Conversely, assume that A is a ring in which every ideal is
the intersection of all strongly irreducible ideals which contain it. A proof
similar to that of Theorem 3 then shows that the lattice of ideals of A is iso-
morphic with the lattice of open sets of the space of proper strongly irre-
ducible ideals of A. It follows that A satisfies condition D. Corresponding
remarks can be made when condition D is replaced by condition Dr. Thus we
have the following result.

Theorem 21. A ring A satisfies condition D (Dr) if and only if each ideal
(right ideal) of A is the intersection of all strongly irreducible ideals (right ideals)
which contain it.

If B is an ideal of a ring A, let 72(23) denote the intersection of all strongly
irreducible ideals of A which contain B. Then Theorem 21 states that A
satisfies condition D if and only if 22(23) =B for every ideal B of A. Thus a
convenient characterization of R(B) should be of some interest. Although
no such characterization has been obtained, we remark in this connection
that, since every prime ideal is strongly irreducible, R(B) is contained in the
intersection P(B) of all prime ideals which contain B. Since P(B)—B is a nil
ideal of A -B [19], it follows that 22(23) -B is a nil ideal of A -B. We note
finally that in the ring of integers modulo 8, 22(0) =0 since this ring satisfies
condition D, while P(0) $¿0. This shows, in particular, that not every strongly
irreducible ideal is prime.
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