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Abstract 
The role of shear in determining the ideal MHD stability properties of 

tokamaks is discussed. In particular, we assess the effects of low shear 
within the plasma upon pressure-driven modes. The standard ballooning theory 
is shown to break down, as the shear ia reduced and the growth rate is shown 
to be an oscillatory function of n f the toroidal mode number, treated as a 
continuous parameter. The oscillations are shown to depend on both the 
pressure and safety-factor profiles. When the 3hear is sufficiently weak, the 
oscillations can result in bands of unstable n values which are present even 
when the standard ballooning theory predicts complete stability. These 
instabilities are named "infernal modes." The occurrence of. these 
Instabilities at integer n is shown to be a sensitive function of q-axis, 
raising the possibility of a sharp onset AS plasma parameters evolve. 
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Introduction 
The importance of shear iri determining the ideal MHD stability properties 

of tokamaks is well recognized. The general understanding of its role was 
largely based on simple cylindrical models, e.g., the review articles of 
Wesson [1] and Friedberg [2], More recently is has become clear that careful 
numerical treatment ,'.s essential to define its effects on uhe stability of 
ideal MHD modes [3-8]. This understanding has been used to propose paths to 
second regions of stability [9-10]. However, there remain areas of imperfect 
understanding, one of which we intend to explore in this report. In 
particular, we assess the role of low shear on the stability of pressure-
driven modes. The shear generally refers to a gradient in the safety-factor 
profile. In some situations it is represented by the ratio of q-edge to q-
axis, it may also be defined as i> dq/d* C=Hiq* >, which, will be referred to here 
as the global shear. Another form that plays an important role in nigh-n 
ballooning modes is the local shear, a quantity which measures the skewnesa of 
the magnetic field lines on nearby surfaces, and which has been identified as 
playing a critical role in determining stability to ballooning modes [7]. 

In this report we shall be largely concerned with the global shear and 
its effect on internal pressure-driven instabilities. These modes have been 
analyzed extensively using analytical and numerical methods. In general, when 
the toroidal mode number,, n, is large,-the ballooning theory [11-13] is 
applicable. In this approach it is observed that ballooning modes may be 
constructed from the overlap of many localized Fourier modes peaking on their 
own rational surfaces. In the high-n limit this also implies a radial 
localization of the mode, which permits the reduction of the equations to an 
ordinary differential equation valid on each flux surface. Thus each flux 
surface can be independently tested for stability to high-n ballooning 
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modes. In contrast, when n is small (-1), the numerical approach of solving 
the full two-dimensional ideal 'MHD equations [14-15] is required. This latter 
approach can, in principle, be extended to high-n. However, in practice, mode 
resolution and hence computer memory requirements restrict the analysis to n ( 
10. The ballooning theory has been modified to include finite-n corrections, 
and has been shown to agree with the detailed MHD approach down to n - 5 
[16-18]. Ballooning theory predicts that the largest n modes are the most 
unstable, and that as n is decreased the growth rate decreases 
monotonically. In certain circumstances this picture is modified to include 
an oscillatory dependence of growth rate on mode number. This was shown 
explicitly in Ref. 16 where n was treated as a continuous variable. The 
oscillatory behavior has been independently described by Hastie and Taylor 
[19] who attribute the oscillations to a breakdown of the standard ballooning 
theory when the global shear becomes weak. They also propose a new theory 
which would supercede the standard ballooning theory in these conditions. 
They postulate regions of validity of their theory and show that in the high-n 
limit the standard ballooning theory is recovered. This article addresses 
itself to the same problem. In particular, we verify the Hastie-Taylor theory 
when the shear is weak, and we shall also show that if the shear is further 
reduced, that even this theory breaks down; instabilities are observed, which 
can be present even when the standard ballooning theory predicts complete 
stability. We name these instabilities "infernal modes." We shall discuss 
them and analyze the role of both p 1 (= dp/dip) and q' in driving the 
instability. 

Weak shear near the axis is often accompanied by strong shear near the 
plasma edge which has a strong stabilizing influence on the external kink 
mode. In this situation the threshold for instability can be at very large 
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values of 8, (.= 2 <p>/<Bd>) and the instability can take the form of an 
internal mode, where the boundary conditions play a minor role in determining 
stability. In particular, when q1 is small and p' is large near* the axis, the 
resulting instability may be dominated by a low-m (-1) Fourier component, even 
when there is no q - 1 surface inside the pli^iia. This is significant, in 
that it represents a fairly typical operating scenario for tokamaks suggesting 
that these instabilities may play an important role in present high-B 
tokamaks. 

In the following sections we shall describe the equilibrium models and 
numerical methods used in this study. We then present our results, highlight­
ing several of the issues raised here. Finally, we present our observations 
and conclusions. 

Equilibrium Model and numerical Methods 
This study focuses on the role of the shear on stability to pressure-

driven modes. Since theae are essentially profile-related effects, we choose 
a simple geometry for the plasma, and consider a circular cross-sectional 
tokamak with an aspect ratio, R/a = 4. The q-profile is specified to have the 
functional form 

q = % * q, * aq . 

so that q Q determines q axi3 t and q-edge = q n + q^. We have chosen q 0 = 1.05, 
and q̂  =2.05 for the majority of cases studied here - the exceptions will be 
noted. The flux label, i>, is normalized to have a value of zero at the 
magnetic axis and unity at the plasma edge, a- is used to vary the shear. 
When o_ is greater than unity, which is the case for this study, the shear has 
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its minimum near the axis. If q-axis and q-edge are held fixed, as n_ is 
increased the effect is to weaken simultaneously the shear near the axis and 
increase the shear near the edge. Figure J shows the q-profile for several 
values of a . The main body of the results requires a large pressure gradient 
in regions of low shear, hence we adopt a pressure profile of the form 

p = p Q (1-*a2)a1 

with a^ = 4, and og = 1.5. The central pressure, PQ, is adjusted to yield the 
desired value of 6. The profile and its derivative are shown in Fig. 2a. We 
choose e so that, as a is varied the resulting equilibria remain unstable to 
ballooning modes. A convenient choice, for our study, is to set & equal to 
1.5J. The equilibrium calculations are made with a flux coordinate solver 
[20] on a mesh with 50 radial and 100 poloidal intervals. This is then 
interpolated onto a finer grid with 200 radial and 128 poloidal intervals for 
the stability analysis which is conducted using the PEST code [1H}. This mesh 
is also used for the standard WKB-ballooning code [16]. In this study we 
consider toroidal mode numbers up to 12, which requires an ability to resolve 
poloidal harmonies with a value up to HO. to ensure this resolution, at the 
higher values of n, we double the number of poloidal mesh points up to 256. 
An examination of the resulting eigenvectors shows the adequacy of these 
meshes. Finally, we note that, since we intend to compare eigenvalues of 
different toroidal modes, we cannot use the scalar version of PEST [21], and 
must use the proper kinetic energy normalization of the complete 
representation [14]. 

Our procedure is to generate several equilibria for different values of 
a„ keeping B equal to 1.5#, and then analyze them for stability to ballooning 
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modes. A conducting shell is placed at the plasma edge and the radial 
perturbation is required to vanish there. We utilize the WKB code to 
determine the stability properties according to the standard ballooning 
theory, including predictions or the critical-n for instability using the 
quantization condition where applicable. We then analyze the same equilibria 
using the PEST code, treating the toroidal mode number, n, as a continuous 
real variable, rather than an integer. This is justified by the fact that n 
appears as a fixed expansion parameter in the ballooning theory. Further, it 
generally appears in stability analysis as a product of n with q, and we can 
interpret non integer n for a certain value of q, as an integer n for a 
slightly modified q-profile. We plot the growth rate as a function of n and 
compare the results with the.predictions of the different ballooning theories. 

Results 
The PEST code, being an exact code with no approximations or orderings, 

will be used to represent the true situation. He will then compare the 
results of the ballooning mode analysis with the PEST results. We commence 
with a case which conforms to standard ballooning theory. For this we choose 
a equal to 1.5, 6 - 0.8%, and the pressure-profile i3 that of Fig. 2a. 
Figure 3a shows the results from the r-£ST-II code [21], where we plot the 
growth rate as a function of n. (The.PEST-II code has been used here as we 
are only looking for the point of marginal stability; . in all subsequent 
studies we use the PEST-I code [14].) An extrapolation to zero gs-owth rate 
shows a critical-n of 5.6. The results of a ballooning mode analysis are 
shown in Fig. 3b, where we plot contours of constant growth rate \ in the i>-s^ 

plane; 8^ represents the angle between the radial component of the wave-
vector, k_, and the component parallel to the field line, k . Details of this 
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can be found in Ref. 16. In this report we plot Xfil),^) rather than X(q,6|c) 
to anhance the visibility of the unstable regions. Using a WKB quantization 
condition it is then possible to determine the value of the n-crit above which 
the mode is unstable. In this example the critical-n has the value 5.7, which 
is in vircual coincidence with the value predicted by the PEST analysis. This 
confirms the general validity of the codes and procedures used in this study, 
and reaffirms the possibility of correctly analyzing moderate-n ballooning 
modes in a standard situation with both the ballooning and PEST codes. We now 
proceed tc the analysis of weak shear equilibria. 

The role of the shear is central to these results, hence we fix the 
pressure profile and adjust p n such that e remains approximately constant with 
a value of 1.5?. We then vary the shear profile parameter a_ over a wide 
range to modify the shear. The results are shown in a form similar to that of 
Fig. 3- In each case we show the variation of the growth rate in units of the 
poloidal Alfven frequency, as obtained from the PEST code, with the toroidal 
mode number, n. Corresponding to the PEST analysis we also show the 
ballooning code analysis as contours in the ili-B̂  plane. It will be noted that 
some of the contours appear as open lines when a separatrix is present. In 
this situation the usual method cf determining n-erit from the area of the 
closed contour corresponding to > - 0 breaks down, and the n-crit reported 
must be.considered as approximate. The.results for a. equal to 1.1,.1.5, 2, 
2.5, 3, 4, and 6 are 3hown in Figs. 4, 5, 6, 7,-8,. 9, and 10, respectively. 
Tb.2 PEST results for this sequence of equilibria show a distinct progression 
from a relatively smooth monotonic dependence of the growth rate on n, to a 
strongly oscillatory function, which eventually leads to alternating stable 
and unstable bands in n. We attribute this to the gradual reduction of the 
shear, q', in the vicinity of the driving force, the pressure gradient. We 
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note that when a is less than 3, that for n larger than 5, there is a 
monotonic variation of the growth~rate, and for smaller values of n there are 
oscillations. This result is in agreement with the low-shear theory of 
Ref. 19; which predicts that when q* is small there exists a critical value 
of ri above which standard ballooning theory would apply, and below this value 
one would expect oscillations in the growth rate. This general picture is 
clearly supported here and will be addressed in greater detail below. As a 

increases, the oscillations are extended to larger values of n: the PEST code 
is limited to n-values of about 10, hence the expected monotonia variation at 
high-n is not observed in these cases. 

The ballooning analysis of these equilibria shows a distinct topological 
change in the constant X.contours as a is increased. We note that the region 
of instability extends to 8 k equal to n, and a separatrix appears. In Ref. 16 
it was argued that the appearance of this separatrix was responsible for the 
oscillations in the growth rate, which would peak whenever a rational surface 
coincided with q x, the surface corresponding to the separatrix. Figure 5 
shows that mild oscillations can be present even when there is no 
separatrix. We believe this is due to the high $ value which, for this a , is 
considerably higher than the threshold value for marginal stability. This 
characteristic appearance of a separatrix is an extremely useful diagnostic 
for detecting the presence of oscillations. . Finally, in relation to this set 
of figures we comassnt that when.the oscillations are limited .in size and range 
there is some agreement between the n-crit determined by the PEST and WKB-
ballooning codes. When a is 3 or greater and the oscillations are strong, 
there is no correlation whatever between the two. In fact, the concept of n-
erit is itself questionable. 
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We have explored the role of the shear in determining the conditions for 
oscillations. He now analyze the role of the pressure profile. The profile 
used in the first set of equilibria has its largest gradient at !p of 
approximately 0.2, as shown in Fig. 2a. This is also the region where the 
shear is reduced the most as a is changed. He now choose the pressure 
profile so that it peaks further out, nearer to the plasma edge, by setting a 1 

= 2.0 and a2 = 6.0. This puts the maximum of p* at v = 0.9, as shown in Fig. 
2b. The q-profile is chosen to be the same as the one analyzed in Fig. 9, 
with <»a = U. Figure 11 shows the stability analysis of this equilibrium. 
Figure 11a shows the PEST results and Fig. lib the ballooning results. These 
are to be compared with Fig. 9. The oscillatio.is have disappeared completely 
and'we recover a .smooth monotonia dependence of the. growth rate on n. This 
suggests that to get the oscillations it is necessary to have both low shear 
as well as a large enough p' in the regions of low shear. In fact, based on 
the results of Figs. 3 and 5, which were for the same q and pressure profile 
shapes, and differ only in the e (O.BJ and 1.5itt respectively), we note that 
even if q' is moderate, the oscillations can be made to appear if 3 is 
increased. However, once instability is reached, it is irrelevant to increase 
6 any further, and the iasue of oscillations at higher e is of academic 
interest. On the other hand, if the oscillations are present close to the 
threshold of instability, they may have practical consequences. This will 
become apparent when we study an equilibrium that is stable to infinite-n 
ballooning modes. He do this by choosing an equilibrium with parameters 
similar to those of Fig. 10, {i.e., pressure profile of Fig. 2a and o = 6;, 
and reducing S until we obtain stability to ballooning modes: this occurs at 
8 = 1J. This equilibrium i3 then analyzed to obtain the results shown in Fig. 
12, Since this is stable to ballooning modes with n = «„ there is no i|i-8k 
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contour plot. We note the existence of unstable bands at low-n which vanish 
when n gets sufficiently large. This represents a case where the ballooning 
mode results would be misleading, as they weald infer stability, when in fact-
there are several low-n internal pressure-driven "ballooning-llke" modes. The 
modes which persist even after the high-n rodes are stabilized are termed 
"infernal-modes." 

The results presented here have used a simple parametrivation of the 
q-profile. This form has the disadvantage that the shear throughout the 
plasma is controlled by a single parameter. Thus, if the shear near the axis 
is reduced, this increases the shear near the edge. We now introduce a 
parametrization af q which has the form 

q = q 0 + q 1 K»aq for 0 < i> < +ffl 

a 
q = q Q +• q 1 * a q + q2(i>~i>m) q 2 for * m < * < 1 

This form permits us to lower the shear in the region 0 < (i < i>m, without 
requiring a large shear outside it, and can more closely represent 
experimental profiles. In Fig. 13, we show the q, p, and J. profiles as a 
function of the distance from the major axis for this profile when q 0, q 1, q 2, 
o_, a2» and * a have the values 1.05, 0.15, q 2, 1.1, -2.8, and 0.3, 
respectively. Note that the value of q 2 is adjusted so that q-edge = 3.1. 
The pressure profile parameters are the same as those used earlier, i.e., a, = 
4 ..nd o 2 = 1.5. With p 0 adjusted to give 0 = 1.45%, we find the u 2 dependence 
shown in Fig. 14a, and the ballooning stability shown in Fig. 14b. As before 
we note the presence of the separatrix and the sharp resonances in the growth 
rate for particular values of n. The peaks do not coincide with integc- n 
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and, in fact, only n = 1 and n * 2 are found to be unstable. At lower B, 
(0.8J), the ballooning mode is stable- however, the- infernal modes are seen to 
persist, as shown in Fig. 15. To dertrenstrate the relevance of these infernal 
modes, we note that when the q is i.odified slightly, the resonances can 
desU.Hlize several integer values of n. Figure 16 shows the growth rates for 
the case of Fie. 15 with the toroidal field scaled so that q-axis changes from 
1.05 to 0.96. We note that in this situation several integer n-valuas are 
simultaneously destabilized. 

The infernal modes add a new wrinkle to the estimation of beta limits. 
Traditior.ai.ly, beta limits have been calculated from an analysis of the n s 1 
external kink and the high-n ballooning instabilities; low- and intermediate-n 
modes have been largely ignored. This study indicates that such an approach 
may not be adequate. To illustrate this, we determine the beta limit for a 
toroidal mode number near the peak of the resonance between n = 1 and n = 2, 
i.e., -1,8, for the sequence of q-profiles studies in Figs. 5-10. This beta 
limit is compared with that of the high-n ballooning mode in Fig. 17. For a 
> 2, the low-n mode is seen to have a significantly lower threshold. We also 
note that in this case the toroidal mode numbers with n corresponding to the 
higher resonances have thresholds which lie between that for n = 1.8 and n = 
». The region between the two curves marks the domain of the infernal mode. 
Finally, Figs. 18 and 19 show plots of the displacement vector field for two 
typical infernal modes with n = 3 and 7. The low-n mode is seen to be broad 
in its radial extent and may be expected to affect the plasma drastically. 
The higher-n mode is, however, more localized in its radial extent and the 
usual understanding of the ballooning mode may apply here. 

http://Traditior.ai.ly


- 12 -

Discussion 
Pressure-driven internal modes in tokamaks have been shown to exhibit a 

rich complexity if the global shear is weak. Hastie and Taylor have pointed 
to this in their work and identify two regimes of interest. When n and q 1 

satisfy the relation, n >> (*q')~2 >> 1, they predict that the standard 
ballooning theory is valid. When the shear is reduced so that (*q')~2 >> 
n » 1, they indicate a need for their new theory. The significant, features 
of their theory are that the growth rate will be an oscillatory function of n 
with decreasing amplitude, and that when n is large enough to recover the 
first condition, the results match the standard ballooning theory. The period 
of the oscillations is predicted to be constant in n(in - 1/q), but the 
amplitude decreases as V n . To determine the region of validity of each of 
these theories, we plot (+q')~ 2 as a function of the radial location in the 
plasma for different values of a in Fig. 20. Since the gradient in the 
pressure profile peaks at i> - 0.2, it is relevant to concentrate on that 
surface. We note that for a < 2 at * = 0.2 the value of (*q')~2 is - 1, and 
we might expect the standard theory to be valid for all n >> 1. This is 
supported by the results of Flg3. 3-6. As a„ is increased from 2 to 3, <*q')~ 
2 increases sharply from 1.5 to 15. This gives us the conditions to test the 
Hastie-Taylor theory. In fact, when a = 2.5 we have observed that when n is 
greater than 10, the oscillations in u 2(n) are damped and a monotonic 
.variation is recovered as.predicted. This.is partly shown in Fig. 7 which is 
restricted to n < 8, but clearly shows a diminishing amplitude of 
oscillation. The reduction in the amplitude does not exactly match the pre­
dictions of the Hastie-Taylor theory. At small values of n the amplitude 
decreases slower than 1/n, and as n is increased it approaches the predicted 
1/n2. However, for o > 3, we see no evidence of a reduction in the amplitude 
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of the oscillation and even the Hastie-Taylor theory breaks down as we enter 
the infernal mode regime. It is important to note that it is the value of 
U q ' ) ~ 2 at the surface of largest p' that matters, not a itself. This is 
evident from the results of Fig. 11, where p' was chosen to peak at \li - 0.9, a 
surface at which (*q *} ~ 2 << 1. For this case we note an absence of the 
oscillations in ID (n). 

In summary, for the model profiles chosen we have shown that when the 
shear is moderate so that (*q')~2 £ 1 at the surface where the pressure has 
its maximum gradient, then standard ballooning theory is valid. There is a 
monotonic variation of io (n) and there is also a reasonable correspondence 
with the higher order theory which predicts the criticalTn. At lower shear 
when 1 £ (1KJ') < 10, the Hastie-Taylor theory is substantially correct. 
Oscillations in u 2(n) are observed which have a constant period in n. 
However, the reduction in the amplitude is slower than predicted except at 
larger values of n. When (4iq')~2 > 10, there i3 no correspondence with any 
existing theory. Oscillations exist in <u2(n) but the variation in the 
amplitude is completely different, in that there is no evidence of recovering 
the standard theory. This may also be noted from the sharp reduction of the 
S-limit well below that of the infinite-n theory. In this region we have 
infernal modes, which are defined here to be low-n internal pressure-driven 
"ballooning" modes which are not described by the standard ballooning 
theory. These modes may exist at noninteger n, but are 3till significant 
since they can be induced at integer values of n in a neighboring equilibrium 
with a slightly different safety-factor profile. These limited bands of 
instability appear to pose a severe problem in determining s-limits. It would 
appear necessary to examine several n-values to find the most unstable value 
and its corresponding s limit. However, our experience indicates that close 
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to marginal stability, the most unstable n lies between 1 and 2. Further, we 
have noted that if the 3 is high enough to destabilize the high-n ballooning 
mode, then a separatrix appears in the X(q,6k) contours, and the q x value 
corresponding to the location of the separatrix plays an important role in 
determining the resonances in the ur(n) plot. A practical scheme that would 
identify the infernal mode 6 limit, would involve evaluation of (*q")~2 in 
the vicinity of the maximum pressure gradient, examination of X(q,0j,) contours 
for an unstable equilibrium to determine q x, and finally a limited study for n 
in the range m/q x ± 0.2, where m = 1 or 2. This would identify the most 
unstable n-value, for which a 8-limit may then be determined. 

We now comment on the possible relationship with other ideal MHD 
instabilities. The low-n infernal modes may have a connection with the 
interchange mode , or the internal kink. The star.dard Meroier criterion is 
frequently satisfied here, however its validity when q 1 vanishes is not 
obvious. This remains an area open to study. The connection to the internal 
kink mode is less obvious when we observe that the instability does not seem 
to require a rational surface in the plasma. Thus when n=1 and even though 
( n q a x i s ) is greater than unity, we observe an instability with a large m=1 
content. However, previous studies [8,22] have shown a connection between the 
internal kink mode and a low-n {= 1) ballooning-llke mode. Hence this avenue 
remains open for exploration. Finally, we speculate on the possible role of 
this instability in experimental situations. We note that .they are pressure 
driven modes and require the shear to be low in the regions of high pressure 
gradients. Experimentally it is well known that tokamaks are subject to 
sawtooth oscillations. It is believed that these oscillations result in a 
large region of low shear within the inversion radius often identified as the 
q=l surface. If this picture of the q-profile is valid, than all sawtoothing 
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discharges are prime candidates for these low-n infernal modes. In addition 
to the lack of shear, a large enough pressure gradient is also required. This 
would imply that any instability would occur only at moderate to large valuer 
of s. There is recent evidence of unusual MHD behavior in connection with 
events such as giant sawteeth and e collapse. It would be interesting to 
analyze these discharges for a possible connection to Infernal mode 
activity. Unfortunately, the experimental data rarely provides detailed 
information on the q-profile, a fundamental requirement for this sort of 
analysis. Finally we note that these instabilities may play a major role in 
ignited plasmas, where all the required plasma conditions may be present. To 
avoid them it will be necessary to maintain finite shear in the interior of 
the plasma or to.broaden the pressure profile so that the pressure gradients 
are minimal in regions of low-shear. 
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Figure Captions 

Fig. 1, Safety-factor profiles q{ty) used in this study. q a x i S = 1.05, 
q j g = 3.10 and o a varying between 1.1 and 6.0. 

Fig. 2. The pressure profile and its derivative corresponding to 
(a) a. = 4.0, cig s 1.5 used for most of the studies reported. 
(b) a^ = 2,0, a 2 = 6.0 with the derivative shifted to the outside. 

Fig. 3. (a) The variation of the growth rate (u 2), arbitrary units, with the 
toroidal mode number, n, for the q-profile with aa = 1.5, fl = O.&t. 

"B" marks the oritioal-n for marginal stability as determined by a 
WKB code. 
(b) Contours of constant growth rate, X(9,8i.)« from the WKB code. 
The outermost contour signifies marginal stability, X - 0. 

Fig, U. (a) u 2 vs. n for a Q = 1.1, fl = 1.5J, u> is normalized in units of the 
poloidal Alfven frequency for this and subsequent figures, 
(b) Contours of X(<i,ek). 

Fig. 5. (a) <a2 vs. n for o„ = 1.5, B = 1.5*. 
(b) Contours of Ufi,^). 

Fig. 6. (a) <a2 vs. n for a_ = 2.0, B = 1.5%. 
(b) Contours of X(*,9 k). 

Fig. 7. (a) oi2 vs. n for a q = 2.5, B = 1.5%. 
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(b) Contours of X(i|i,ek). 
Fig. 8. (a) u 2 vs. n for a = 3.0, B = 1.5?. 

(b) Contours of \<.i>,Bk). 

Fig. 9. (a) u>2 vs. n for a = 4.0, 6 = 1.5?. 
(b) Contours or x(i|i,8k). 

Fig. 10. (a) <u2 vs. n for a = 6.0, S = 1.5?. 
(b) Contours of X(^,e k). 

Fig. 11. (a) u>2 vs. n for a = 4.0 and the pressure profile of Fig. 2b. 
6 = 1.5?. The pressure profile is chosen to minimize the gradient in 
the region of low shear, 
(b) Contours of X<*,e k). 

Fig. 12. (a) w vs. n for o = 6.0 and the pressure profile of Fig. 2a, 
6 = 1.0?. This equilibrium is stable to high-n ballooning modes. 
The low-n modes are termed "infernal modes." 

t 

Fig. 13. The current density, pressure profiles and q-profiles for a roodel 
equilibrium that mimics typical experimental profiles. The units are 
arbitrary, q-axis = 1.05, q-edge =3.1, and 8 = 1.45?. 

Fig. 14. (a) « 2 vs. n for the equilibrium of Fig. 13, when a = 1.45?. 
(b) Contours of A(<i,ek). 

Fig. 15. ui2 vs. n for the equilibrium parameters of Fig. 13 with 6 = 0.8?., 
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showing the infernal modes where high-n is stable. 

16. u 2 vs. n for the equilibrium of Fig. 15, with the toroidal field 
scaled so that q a x j s is 0.96 instead of 1.05. Note the resonances of 
the instabilities with integer-n. 

17. The variation of the B limit with the shear parameter a- for the 
infinite-n ballooning mode, and for the mode with n = 1.8. The 
region of instability for each mode lies above the corresponding 
curve. The hatched region identifies the domain of the infernal 
mode. 

18. A projection of the unstable displacement vector op.to the x-z plane 
for the case with a = 3.0, S = 1.5%, and toroidal mode number n = 
3.0. 

19. The displacement vector for the same equilibrium as Fig. 18, with 
toroidal node number n = 7.0. 

20. Plots of (q')~ 2 vs. * for different o q. Standard ballooning theory 
is valid for n well above the appropriate curve. 
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