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Abstract

The role of shear in determining the ideal MHD stability properties of
tokamaks is discussed. In particular, we assess the effects of low shear
within the plasma upon pressure-driven modes, The standard ballooning theory
is shown to break down, as the shear s reduced and the growth rate is shown
to be an osciliatory function of n, the toroidal mode number, treated as a
continuous parameter. The oseillatlons are shown to depend on both the
pressure and safety-factor profiles. When the shear is sufficiently weak, the
oscillations can result in bands of unstable n values which are present even
when the standard ballooning theory  predicts .complete astability. These
‘1nstabilities are named "infernal modes.” The ocecurrence .of. these
instabilities at integer n is shown to be a sensitive function of g-axis,

raising the possibllity of a sharp onset as plasma parametzrs evolve.
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Introduction

The importance of shear in determining the ideal MHD stability properties
of tokamaks is well recognized. The general understanding of its role was
largely based on simple cylindrical models, e.g., the review articles of
Wesson [1] and Friedberg [2]. More recently is has bezome clear that careful
numerical treatment !s essential to define its effects on the stability of
ideal MHD modes {3-8]. This understanding has been used to propose paths to
second regions of stability [9-10]. However, there remain areas of imperfect
understanding, one of which we intend to explore in this report. In
particular, we assess the role of low shear on the stability of pressure-
driven mudes. The shear generally refers to a gradient in the safety-factor
profile. In some ‘situations it is represented by the ratio of g-edge to g-
axis, it may also be defined as ¥ dq/dé¢ (z¢q'}, which will be referred to here
as the global shear. Another form that plays an impertant role in nigh-n
ballooning modes is the leocal shear, a quantity which measures the skewness of
the magnetic field lines on nearby surfaces, and which has been identified as
playing a critical role in determining stability to ballooning meodes [7].

In this report we shall be largely cencerned with the global shear and
its effect on internal pressure-driven instabilities. These modes have been
analyzed extensively using analytical and numerical methods. In general, when
the toroidal mode number,. n, is large,' the .ballooning theory [131-13] is
applicable. In this approach it is. cbserved that ballooning modes may be
constructed from the overlap of many localized Fourier modes peaking on their
own rationmal surfaces, In the high-n limit this also implies a radial
localization of the mode, which permits the reduction of the equations to an
ordinary differential equation valid on each flux surface. Thus each flux
surface can be independently tested for stability to high-n ballooning
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modes. In contrast, when n is small (~1), the numerical approach of solving
the full two-dimensional ideal MHD equations [14-15] is required. This latter
approach can, in principle, be extended to high-n. However, in practice, mode
resolution and hence computer memory requirements restrict the analysis to n ¢
10. The ballooning theory has been modified to include finite-n corrections,
and has been shown to agree with the detailed MHD approach down to n ~ 5
[16-1B). Ballooning theory predicts that the largest n modes are the most
unstable, and that as n is decreased the growth rate decreases
monotoniecally. In certain circumstances this picture is modified to inelude
an oscillatory dependence of growth rate on mode number. This wzs shown
explicitly in Ref, 16 where n was treated as a continuous variable. The
.08cillatory behavior has been independently described by Hastie and Taylor
[19] who attribute the oscillations to a breakdown of the standard ballooning
theory when the global shear becomes weak. They also propose a new theory
which would supercede the standard ballooning theory in these conditions.
They p'ostulate regions of validity of their theory and show that in the high-n
limit the standard ballooning theory is recovered. This artiecle addresses
itself to the same problem. In particular, we verify the Hastie-Taylcr theory
when the shear i3 weak, and we shall also show that if the shear is further
reduced, that even this theory breaks down; instabilities are observed, which
can be present even when the standard ballooning .theory predicts complete
stability. We name these.'instabilities “infernal modes." We shall discuss
them and analyze the role of both p' (= dp/d¢) and q' in driving the
instability.

Weak shear near the axis is often accompanied by strong shear near the
plasma edge which has a strong stabilizing influence on the external kink

mode. In this situation the threshold for instability can be at very large



values of 8, (= 2 <p>/<52>) and the instability can take the form of an
internal mode, where the boundéry conditions play a minor role in determining
stability. In particular, when q' is small and p' is large near the axis, the
resulting instability may be dominated by a low-m {~1) Fourier component, even
when there is no q = 1 surface inside the plasia. This is significant, in
that it represents a fairly typical operating scenario for tokamaks suggesting
that these instabilities may play an 1Important role in present high-8
tokamaks.

In the following sections we shall describe the equilibrium models and
numerical methods used in this study. We then present our results, highlight-
ing several of the issues raised here. Finally, we present our observations

and conclusions,

Equilibrium Model and Numerical Methods

This study focuses on the role of the shear on stability to pressure-
driven modes. Since these are essentially profile-related effects, we choose
a simple geometry for the plasma, and consider a circular cross-sectional
tokamak with an aspect ratio, R/a = 4. The g-profile is specified o have the

functional form
_ a
Q-qo*q1 *q L

so that 9 determines G-axis, and q-edge = qd + qq. We have chosen qp = 1.09,
and qq = 2.05 for the majority of cases studied here - the exceptions will be
noted, The flux label, V¥, 1s normalized to have a value of zero at the
magnetic axis and unity at the plasma edge, a 1s used to vary the shear.

When g is greater than unity, which is the case for this study, the shear has



its mimimum near the axis. If g-axis and q-edge are held fixed, as g is
increased the effect is to weaken simultaneously the shear near the axis and
Increase the shear near the edge. Figure 1 shaws the g-profile for several
values of a . The main body of the results requires a large pressure gradient

q
in regions of low shear, hence we adopt a pressure profile of the form

_ LY ]
P = py (1-472)N

With a4 = k, and @y = 1.5. The central pressure, Po» is adjusted to yield the
desired value of' 8. The profile and its derivative are shown in Fig. 2a. We

choose B8 so that, as a, is varied the resulting equilibria remain unstable te

q
ballooning .modes. A convenlient choice, for ‘our study, is to set B equal to
1.5%. The eguilibrium calculations are made with a flux coordinate solver
[20] on 2 mesh with 50 radial and 100 poloidal intervals. This is then
interpolated onto a finer grid with 200 radial and 128 poloidal intervals for
the stability analysis which is conducted using the PEST code [14]. This mesh
is also used for the standard WKB-ballooning code [16]. 1In this study we
consider toroidal mode numbers up to 12, which requires an ability to resolve
poloidal harmonics with a value up to 40, To ensure this resolution, at Ehe
higher values of n, we double the number of poloidal mesh points up to 256.
An examination of the :resulting .eigenvectors shows the adequacy of these
meshes. Finally, we note that, -since we intend .to compare eigenvalues of
different toroidal modes, we cannot use the scalar version of PEST [21], and
must wuse the proper kinetic energy normalization of the complete
representation [14],

Our procedure 13 to generate several equilibria for different values of

% keeping 8 equal to 1.5%, and then analyze them for stability to ballooning



modes, A conducting shell is placed at the plasma edge and the radial
perturbation is required to ‘vanish there. We utilize the WKB code tfo
determine the stability properties according to the standard ballooning
theory, including predictions ol the ecritical-n for instability using the
quantization condition where applicable. We then analyze the same equilibria
using the PEST code, treating the toroidal meode number, n, as a continucus
real variable, rather than an integer. This is justified by the fact that n
appears as a fixed expansion parameter in the balleconing theery. Further, it
generally appears In stability analysis as a product of n with g, and we can
interpret noninteger n for & certain value of q, as an integer n for a
slightly modified g-profile. We plot the growth rate as a function of n and

compare the results with the.predictions -of the different ballooning theories.

Results

The PEST code, heing ao exact code with no approximations or orderings,
will be used to represent the true situation. We will then compare the
results of the ballooning mode amalysis with the PEST results. We commence
with a case which conforms to standard ballooning theory. For this we choose
% equal to 1.5, 8 -~ 0.8%, and the pressure-profile is that of Fig. 2a..
Figure 32 shows the results from the EST-II code [21], where we plot the
growth rate as a funetion of n. ' (The.PEST-II code has been used here as we
are only. looking for.the point of. marginal stability; .in all subsequent
studies we use the PEST-I code [14]1.) 4n extrapolation to zero growth rate
shows z critical-n of 5.6. The results of a balleoning mode analysis are
shown in Fig. 3b, where we plot contours of constant growth rate a1 in the b-0,
plane; 8, represents the angle between the radial component of the wave-

vector, kq, and the component parallel to the field line, kq. Details of this



can be found in Ref. 16. In this report we plot x(v,8,) rather than 1(q,6,)
to cnhance the visibility of the unstable regions. Using a WKB quantization
condition it is then possible to determine the value of the n-crit above which
the mode is unstable. In this example the critical-n has the value 5.7, which
is in vircual coincidence with the value predicted by the PEST analysis. This
confirms the general validity of the codes and procedures used in this study,
and reaffirms the possibility of correctly analyzing moderate-n ballooning
modes in a standard situation with both the ballooning and PEST codes. We now
proceed tc the analysis of weak shear equilibria.

The role of the shear is central to these results, hence we fix the
pressure profile and adjust Pg such that B remains approximately constant with
a value of 1.5%. We tﬁen yary the shear profile parameter g overla wide
range %o modify the shear. The results are shown in a form simila; to that of
Fig. 3. In each case we show the variation of the growth rate in units of the
poloidal Alfv;n frequency, as obtained from the PEST code, with the toroidal
mode number, n., Corresponding to the PEST analysis we also show the
baliconing code analysis as contours in the 4-8, plane. It will be noted that
some ~=f the contours appear as open lines when a separatriz is present. In
this situation the usual method cf determining n-erit from the area of the
closed contour corresponding to » = O breaks down, and tne n-crit reported
must be .considered as approximate. The.results.for ag equal to 1.1,.1.5, 2,
2., 3, 4, and 6 are shown in Figs. &4, 5, €, 7,.8,.9, and 10, respectively.
Thz PEST results far this sequence of equilibria show a distinct progression
from a relatively smooth monotonic dependence of the growth rate on n, to a
strongly ascillatory function, which eventually leads to alternating stable
and unstable hands in n. We athtribute this to the gradual reduction of the

shear, q', in the vicinity of the driving force, the pressure gradient. We



nete that when g is less than 3, that for n larger than 5, there is a
monotonie variation of the growth-rate, and for smaller values of n there are
oscillations, This result is in agreement with the low-shear theory §f
Ref. 19; which prediets that when q' is small there exists a critical value
of nn above which standard ballooning theary would apply, and below this value
cne would expect osciilations in the growth rate. This general picture is
clearly supported here and will be addressed in greater detail below. As %
increases, the oscillations are extended to larger values of n: the PEST code
is limited to n-values of about 10, hence the expected monotonie variation at
high-n is not observed in these cases.

The bzllooning analysis of these equilibria shows a distinct topological
change in the constant A . contours as ay is inereased. We note that the region
of instability extends to 9, equal to =, and a separatrix appears, In Ref. 16
it was argued that the appearance of this separatrix was responsible for the
oscillations in the growth rate, which would peak whenever a rational surface
coincided with Qs the surface corresponding to the separatrix. Flgure 5
shows that mild oscillations can be present even when there ig no
separatrix. We believe this is due to the high 8 value which, for this aqr is
considerably higher than the threshold value for marginal stability. This
characteristic appearance of a separatrix is an extremely useful diagnostic
for detecting the presence of oscillations. . Finally,'in relation to this set
of figures we comzent .that when the oscillations are limited .in size and range
there is some agresment between the n-crit determined by the PEST and WKB-
ballooning codes. When a4 is 3 or greater and the oscillations are strong,

there is no correlation whatever between the two. In fact, the concept of n-

erit 19 itself guestionable,



We have explored the role of the shear in determining the conditions for
oscillations. We now analyze the role of the pressure profile. The profile
used in the first set of equilibrla has its largest gradient at § of
approximately 0.2, as shown in Fig. 2a. This is also the region where the

shear 1s reduced the most as a, 13 changed. We now choose the pressure

q
prefile so that it peaks further out, nearer to the plasma edge, by setting ay
= 2.0 and o, = 6.0. This puts the maximum of p' at ¥ = 0.9, as shown in Fig.
2b. The g-prefile is chosen to be the same as the one analyzed in Fig. 9,
with aq = 4. Figure 11 shows the stability analysis of this equilibrium.
Figure 11a shows the PEST results and Fig. 11b the ballooning results. These
are to be compared with Fig, 9. The oseillatious have disappeared completely

. and- we recover a-smooth monctonic dependence of the. growth rate on n. This
suggests that to'get the oscillations it is necessary to have both low shear
as well as a large enough p' in the regiona of low sh2ar. In fact, based on
the results of Figs. 3 and 5, which were for the same g and pressure profile
shapes, and differ only in the 8 (0.8% and 1.5%, respectively), we note that
even if q' is moderate, the oscillations can be made to appear if B is
increased. However, once instability is reached, it is irrelevant to increase
B any further, and the issue of oscillations at higher B is of academic
interest. On the other hand, if the osecillations are present close to the

.threshold of instability,". they may  have.practical . consequences. . This. will

" become apparent when  we  study an equilibrium that is stable to infinite-n

ballooning modes. We do this by choosing an equilibrium with parameters

similar to those of Fig. 10, {i.e., pressvre profile of Fig. 2a and ag = 6,

and reducing 8 until we obtain stability to ballooning modes: this occurs at

B = 1%. This equilibrium is then analyzed to obtain the results shown in Fig.

12, Since this is stable to ballooning modes with n = =, there is no v-0)
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contour plot, We note the existence of unstable bands at low-n which vanish
wien n gets sufficiently large. This represents a case where the ballvaning
mode results would be misleading, as they would infer stability, when in fact
there are several low-n internal pressure-driven "ballconing-llke" modes. The
modes which persist even after the high-n rodes are stabilized are termed
"infernal-modes."

The results presented here have used a simple parametrization of the
g-profile, This form has the disadvantage that the shear throughout the
plasma is controlled by a single parameter. Thus, if the shear near the axis
is reduced, this Increases the shear near the edge. We now introduce a

parametrization of g which nas the form
a
q=q0+q1¢q f‘or0<¢<|um
a c'q_
q=q0+q1¢q+q2(0~¢m)z for v < ¥ <1

This form permits us to lower the shear in the region 0 < ¢ < Yoo without
requiring a large shear outside it, and can more closely represent
experimental profiles. In Fig. 13, we show the q, p, and J¢ profiles as a
function of the distance from the major axis for this profile when dgs d1» Qo
LI and ¥;.have “the values 1.05, 0.15, q,, 1.1, .2.8, and 0.3,
respectively. Note that.the value of q, is adjusted so  that g-edge = 3.1.
The pressure profile parameters are the same as those used earlier, i.e., a; =
4 .nd ay = 1.5. Hith Py adjusted to give B8 = 1.45%, we find the w dependence
shown in Fig. 1la, and the ballooning stability shown in Fig. 14b. As before

we note the pregence of the separatrix and the sharp resonances in the growth

rate for particular values of n. The peaks do not coincide with intege- n
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and, in fact. only n = 1 and n = 2 are found to be unstable. A4t lower B8,
(0.8%), the bailooning mode is stable: however, thc infernal medes are seen to
persist, as shown in Filg. 15. Ta deroastiate the relevance of these infernal
modes, we note that when the q {s rodifred slightly, the resonances can
destzt1lize seversl Integer values of n. Flgure 16 shows the growth rates for
the case of Fig. 15 with the toroidal field scaled so that g-axis changes from
1.05 to 0,96. We note that in this situation several integer n-values are
simultaneously destabilized.

The infernal modes add a new wrinkle to the estimation of beta limits.
Traditionaily, beta limits have been calculated from an analysis of the n = 1
external kink and the high-n ballooning instabilities; low- and intermediate-n
modes have been largely .ignored. This study -indicates that such an approach
may not be adequate. To illustrate this, we determine the beta limit for a
toroidal mode number near the peak of the resonance between n = 1 and n = 2,
i.e., ~1.8, for the sequence of g-profiles studles in Figs. 5-10. This beta
limit is compared with that of the high-n ballooning mode in Fig. 17. For 8,
> 2, the low-n mode 1s seen to have a significantly lower threshold. We also
nete that in this case the tordidal mede numbers with n corresponding to the
higher resonances have tbrzsholds which lje between that for n = 1.8 and n =
=, The region between the two curves marks the domain of the infernal mode.
Fiﬁally, Figs. 18 and ‘19 show plots of the displacement vector field for two
typical infernal modes with n = 3 and 7.  The low-n mode is Seer to be broad
in its radial extent and may be expected to affect the plasma drastically.
The higher-n mode .s, however, more localized in its radial extent and the

usual understanding of the ballooning mode may apply here.
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Discussion

Pressure-driven internal modes in tokamaks have been shown to exhibit a
rich complexity if the global shear is weak. Hastie and Taylor have pointed
to fhis in their work and identify two regimes of interes:i. When n and q'
saiisfy the relation, n > (¥q')=2 3> 1, they predict that the standard
vallooning theory is valid. When the shear is reduced so that (\laq')"2 >
n >> 1, they indicate a need for their new theory. The significan: features
of their tkeory are tnat the growth rate will be an oscillatory function of n
with decreasing amplitude, and that when n is large enough to recover the
first condition, the results match the standard ballooning theory. The period
of the oscillations is predicted to be constaat’ in n(an ~ 1/q), but the
amplitude decreases as 1/n2. To -determine the region of 'validity of each of
these theories, we plot (vq')'2 as a function of the fadial‘locatlon in the

plasma for different values of a, in Fig. 20. Since the gradient in the

q
pressure profile peaks at ¢ ~ 0.2, it 1s relevant to concentrate on that
surface. We note that for aq £ 2 at ¢ = 0.2 the value of (wq')'z is ~ 1, and
we might expect the standard theory to be valid for all n > 1. This {is
supparted by tﬁe results of Figs., 3-6. As g is increased from 2 to 3, (¥g*)~
2 jncreases sharply from 1.5 to 15. This gives us the ccnditions to test the
Hastie-~Taylor theory. In fact, when uq = 2.5 e have chaerved that when n is
greater than 10, the .oscillations in ue(n) ‘are damped and a monotonic
.variation is recovered as.predicted. '.This.is partly shown in Fig. 7 which is
restricted to n < 8, but clearly shows a diminishing amplitude of
oscillation, The reduction ir the amplitude does not exactly mateh the pre-
dictions of the Hastie-Taylor theory. At small values of n the amplitude
decreases slower than 1/n, and as n is increased it approaches the predicted

1/n2. However, for a_ > 3, we see no evidence of a reduction in the amplitude

q



of the oscillation and even the Hastie-Taylor theory breaks down as we enter
the infernal mode regime. 1t is important to note that it is the value of
(wq')‘2 at the surface of largest p' that matters, not ag itself. This is
evident from the results of Fig, {1, where p' was chosen to peak at ¢ - 0.9, a
surface at which (i-q')'2 <¢ 1. For this case we note an absence of the
oscillations in wz(n) .

In summary, for the model profiles chosen we have shown that when the
shear 1s moderate so that (vq')'2 £ 1 at the surface where the pressure has
its maximum gradient, then standard ballooning theory is valid; There is a
monotonic variation of uz(n) and there is also a reasonable correspondence
with the higher order theory which predicts the critical;n. At lower shear
when 1 = (Wq')'2 < 10, the Hastie-Taylor theory is-subgtanbially correct.
Oscillations in w?(n) are observed which have a constant perind in n.
However, the rezduction in the amplitude is slower than predicted except at
larger values of n. When (uq')'2 > 10, there is no correspondence with any
existing theory. Oscillations exist in ua(n) but the variation in the
amplitude is completely different, In that there is no evidence of racovering
the standard theory. This may also be noted from the sharp reduction of the
g-limit well below that of the infinite-n theory, In this region we have
infernal modes, which are defined here to be low-n internal pressure-driven
Yballooning" modes which ~are "not described "by the standard - ballooning

. theory. These modes may exist at noninteger n,. but .are still significant
since they can be induced at integer values of n in a neighboring equilibrium
with a slightly different safety-factor profile. These limited bands of
instability appear to pose a severe problem in determining g-limits. It would
appear necessary to examine several n-values to find the most unstable value

and its correspending 8 limit. However, our experience indicates that close
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to marginal stability, the most unstable n lles betuween 1 and 2. Further, we
have roted that if the 8 is high enough to destabilize the high-n ballooning
mode, then a separatrix appears in the x(q,ek) contours, and the q, value
corresponding te the location of the separatrix plays an important role in
determining the resonances in the w?(n) plot. A practical scheme that would
identify the inferual mode B8 limit, would involve evaluation of (ﬁ.»q’)'2 in
the vicinity of the maximum pressure gradlent, examination of A(q,uk) contours
for an unstable equilibrium to determine 1y, and finally a limited study for n
in the range m/q, * 0.2, where m = 1 or 2. This would identify the most
unstable n-value, for which a 8-limi% may then be determined.

We now comment on the possible relationship with other ideal MHD
instabilities. The low-n inferpal modes may have a connection with the
interchange mode;or the internal gi?k. The stardard Mercier criterion i§.
frequently satisfied here, however ﬁts validity when ;' vanishes is noé
obvious. This remains an area open to study. The connection to the internal
kink mode is less obvious when we observe that the instability does not seem
to require a rational surface in the plasma. Thus when n=1 and even though
(nq,,;g) 1s greater than unity, we observe an instability with a large m=1
content. However, previous studies [8,22] have shown a connection between the
internal kink mode and a low-n (= 1) ballooning-like mode. Hence this avenue
.remains open for exploration. ..Finally, we speculate on the possible role of
this .instability in. experimental situations, - We note that .they are pressure
driven modes and require the shear to be low in the regions of high pressure
gradients. Experimentally it is well known that tokamaks are subject to
sawtooth osecillations. It is believed that these oscillations result in a

large region of low shear within the inversion radius often identified as the

g=1 surface. If this picture of the g-profile is valid, than all sawtoothing
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discharges are prime candidates for these low-n infernal modes. In addition
to the lack of shear, a large enough pressure gradient is alsc required. This
would imply that any instability would occur only at moderate to large value:;
of B. There is recent evidence of unusual MHD behavior in connection with
events such as giant sawteeth and g collapse. It would be interesting to
analyze these discharges for a possible oconnection to infernal mode
activity. Unfortunately, the experimental data rarely provides detailed
information on the q-profile, a fundamental requirement for this sort of
analysis. Finally we note that these instabilities may play a major role in
ignited plasmas, where all the required plasma conditions may be present. To
avoid them it will be necessary to maintain finite gshear in the interlor of
the plasma or to .broaden the pressure profile so that the pressure gradients

are minimal in regions of low-shear.
4
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Figure Captions

Safety-factor profiles q{¢) used in this study. 1.05,

Qaxis

= 3.10 and a, varying between 1.1 and 6.0.

qedge q

The pressure profile and its derivative corresponding to
(a) ay = 4.0, a5 = 1.5 used for most of the studies reported.

{b) ey = 2.0, ay = 6.0 with the derivative shifted to the outside.

(a) The variation of the growth rate (mz), arbitrary units, with the
toroidal mode number, n, for the q~profile with ay = 1.5, 8 = 0.8%.
"B" marks the critical-n for marginal stabllity as determined by a
HWKB code.

(b} Contours of constant growth rate, 1(¢,ek), from the WKB code.
The cutermost contour signifies marginal stability, % = 0.

{a) v vs. n for a, = 1.7, 8 = 1.5%, w® is normalized in units of the

q
poloidal Alfven frequency for this and subsequent figures.

(b) Contours of A(¥,8,).

[

{a) «% vs. n for a, = 1.5, 8 = 1.5%.

q
(b) Contours of A(v,0,).

{a) «® vs. n for 9 = 2.0, 8 = 1.5%.

(b) Contours of A(¥,8,).

{a) «© vs. n for aq = 2.5, 8 = 1,5%.
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{(b) Contours of 1(¢,Bk).

(a) w2 vs. n for oq = 3,0, B = 1.5%.

(b) Contours of A(w,8,).

(a) w2 vs. n for aq = 4.0, B = 1.5%.

(b) Contours ol A(v,8,).

(a) w vs. n for aq = 6.0, 8 = 1.5%.

(b) Contours of A(y,8,).

(a) we vs. n for a, = 4.0 and the pressure profile of Fig. 2b.

q
g = 1.5%. The pressure profile is chosen to minimize the gradient in

the region of low shear.

(b) Contours of A(v,6,).

(a) w® vs. n for &g = 6.0 and the pressure profile of Fig. 2a,
g = 1.06. This equilibrium is stable teo high-n ballooning modes.

The low-n wodes are termed "infernal modes."
The current density, pressure profiles and q-profiles for a model
equilibrium that mimics typical experimental profiles. The units are

arbitrary, g-axis = 1.05, g-edge = 3.1, and B8 = 1.45%.

{(a) w? vs. n for the equilibrium of Fig. 13, when 8 = 1.45%.

(b) Contours of A(v,6,).

w? vs. n for the equilibrium parameters of Fig. 13 with 8 = 0.8%.,



Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.
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showing the infernal modes where high~n is stable.
w2 vs. n for the equilibrium of Fig. 15, with the toroidal field
scaled so that Q,,;. 15 0.96 instead of 1.05. Note the resonances of

the ingtabilities with integer-n.

The varlation of the B limit with the shear parameter Y for the
infinite-n ballooning mode, and for the mode with n = 1.8. The
region of instability for each mode lies above the corresponding
curve., The hatched region identifies the domain of the infernal

mode.,

A projection of the unstable displacement vector onto the x-z plane

for the case with ay = 3.0, 8 = 1.,5%, and toroidal mode number n =

3.0.

The displacement vector for the same equilibrium as Fig. 18, with

toroidal mode number n = 7.0.

Plots of (q')~2 vs. v for different o Standard balleoning theory

q°
is valid for n well above the appropriate curve.
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