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Abstract. An ideal observer model is developed for the task of detecting blood 
perfusing or flowing through tissue. The ideal observer theory relies on a linear 
systems model that describes tissue and blood object functions and electronic noise 
as random processes. When aliasing is minimal, the system is characterized by a 
quantity similar to Noise-Equivalent Quanta used in photon imaging modalities. A 
simple 1-D model is used to illustrate the effect of the system and object parameters 
on task performance. Velocity and decorrelation are seen to be advantageous for 
detection. Aliasing can degrade performance. The ideal observer model provides a 
framework for assessing the performance of Power Doppler ultrasound systems, and 
may aid in their design.  

1 Introduction  

Estimation of blood velocity has been widely dealt with in the medical ultrasound 
literature [1]. Less has been done on detection of blood. Our motivation for studying 
detection is angiogenesis in tumors. Increased microvascular density and metabolic 
demand have been correlated with malignant growth. In many cases this means a greater 
flow rate through capillary networks. Various techniques have been used to quantify 
blood volume fraction and flow rates to monitor tumor progression [2]. Perfusion 
quantification could be an extension of this work, but we focus early detection of 
neoplasm perfusion with ultrasonic techniques.  

Color Doppler Ultrasound systems display mean velocity estimates of blood motion, 
and have been effective for looking at larger vessels. These systems typically send a 
sequence of pulses and measure inter-pulse motion to estimate flow. The systems consist 
of a wall filter to reject stationary tissue clutter, and a mean velocity estimator that often 
relies on lag-0 and lag-1 autocorrelation estimates [3]. Cross-correlation techniques also 
exist, some of which provide sensitivity to velocity in all directions [4]. Unfortunately, 
color Doppler systems are not very effective for studying perfusion in the 
microvasculature where in a single sample volume blood may be moving in multiple 
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directions, giving a zero mean velocity estimate. Slow flow in perfusion-based models is 
another problem since clutter and blood spectra will often overlap.  

Power Doppler systems [5] do not attempt to estimate velocity but rather display the 
signal power from blood that is moving. Hence, Power Doppler systems are often much 
more effective for detection of blood than Color Doppler techniques. Power Doppler is 
approximately independent of blood-flow velocity and Doppler angle, provided the 
Doppler frequency shift is non-zero. Another important feature of Power Doppler 
estimates for microvascular flow imaging is that they are not subject to aliasing, enabling 
use of a lower pulse repetition frequency (PRF) than that necessary in color Doppler. 
Power Doppler ultrasonography is therefore more sensitive to slow flow than color 
Doppler. Spectral integration means that noise is also less of a problem than in color 
Doppler. High gain settings are therefore possible with power Doppler. Tissue motion is 
however a problem. Tissue clutter will tend to bias the result, dominating the total energy. 
Wall filters may be used to partially reject tissue clutter. Power Doppler systems can use 
lag-0 autocorrelation estimates already computed for Color Doppler mode imaging. The 
post-wall filtered lag-0 autocorrelation simply gives the power in the moving signal, by 
Parseval’s theorem.  

Despite wide commercial implementation, very little has been written in the literature 
about engineering approaches used in Power Doppler, and there are no first principle 
performance assessment techniques for Power Doppler systems. This is our contribution. 
We provide a framework for modeling the ideal observer for detection of blood. The ideal 
observer provides the upper bound on detection performance for a Power Doppler system.  
It can be applied to standard measurement approaches to evaluate system design and wall 
filters, and it provides a framework for improvements. 

2 Modeling Perfusion and Echo Signals 

2.1 Signal Models 

In Doppler ultrasound systems ensembles of L pulses are sent in sequence along axial 
lines of sight at a rate called the pulse repetition frequency (PRF). The echoes from each 
pulse return to the transducer following their propagation and scattering by 
microstructures in the body. The measured voltage trace from a single pulse is indicative 
of scattering strength as a function of depth. The voltage signal is sometimes called radio-
frequency (RF) data because it has an underlying modulation (due to the transmitted 
pulse) in the frequency range of MHz. The modulation of the signal allows for phase 
sensitive measurements to be made. Motion between pulses can be used to estimate 
velocity. With L pulses, there will be L voltage traces initiated at times t1, …, tL, where tk 
= (k-1)∆t , k = 1, ..., L, and ∆t is the pulse repetition interval (PRI).  These are called slow 
times. Voltage traces for each pulse are acquired in fast time. Fast time acquisition rates fs 

  



are usually 10 times the modulation frequency or better, whereas slow time pulse-
repetition frequencies are more typically in the order of magnitude of 1-100 KHz.  A 
voltage trace for each pulse sent is collected before the next pulse is sent. After the entire 
ensemble of pulses is sent along one line of sight, the beam is translated mechanically or 
‘steered’ electronically (using phased array transducers) to interrogate an adjacent line of 
sight with another ensemble of pulses (Fig. 1).  
 

 
Fig. 1. Illustration of pulse sequence of a typical Doppler ultrasound system 

To investigate estimation and detection problems, we assume that echo signals due to 
Doppler pulse sequences may be modeled as a shift-invariant linear system. While 
ultrasound systems have spatially varying beam properties, many modern phased array 
systems use special techniques such as dynamic focusing to obtain a reasonably uniform 
resolution cell throughout much of the image.  We assume that the ultrasound system can 
take a sequence of  ‘snapshot images’ of the object, and that the object can vary over time. 

[ ] ),()()(*)()( kkckbk tntztzhtr xx,x,xx,
x

++=  (1) 

where r is the measured voltage trace due to the echo signal and n is a signal independent 
noise process. The shift-invariant function h(x) is the system pulse-echo impulse response, 
which defines the spatial resolution, and represents acoustic transmission, scattering from 
a point source, and reception. The object function consists of two components: blood and 
tissue clutter acoustic impedances represented as zb and zc respectively, defined 
continuously over times t and discretely over spatial locations x = [x1 x 2 … x M]t  � Ωx of 
measure X, and where each sub-vector xk defines a spatial coordinate point. The operation 
of convolution with h may alternatively be represented in operator notation as H. Hence 
(1) may be written as r n++= cb zz HH , where r is an RF data vector for the 
experiment. The signal model is graphically illustrated in Fig. 2. 

 
Spatial Fourier Domain. It will be convenient to study the problem in the spatial Fourier 
Domain: 
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One advantage of this form is that that for large image sizes, a shift-invariant system and 
WSS object functions, the Fourier transform is a Karhunen-Loeve transformation that 
uncouples signals in different spatial frequency channels uk. We will show later that the 
blood may be treated as a non-stationary process in special cases. R will often be 
represented in vector form [ ]tLMML tRtRtRtR ),(),...,,(),...,,(),...,,( 1111 uuuuR = . 

 

 
Fig. 2. Illustration of the linear systems model (1) neglecting clutter. 

Assumptions. Our model makes a number of assumptions besides linear shift-invariance. 
We assume that spatial sampling is done sufficiently densely such that the discrete object 
function over space is a reasonable model. We assume that echo signals have negligible 
interference from echoes due to previous pulses. This is reasonable because round trip 
signal attenuation in tissue is typically sufficiently low compared to the signals of interest 
and compared to the dynamic range of the hardware. We also assume that the object 
moves negligibly during the signal acquisition time due to one pulse within an ensemble. 
Thus, we only consider translational velocities that are much less than the speed of sound 
co. The examples in this paper will use a 1-D model for simplicity. In this case the 
coordinate xk is simply a scalar position xk. The disadvantage of the 1-D model is that we 
must neglect the three-dimensional nature of the beam. Despite our focus on 1-D models, 
we will nevertheless keep the discussion general, and assume that xk may be a vector 
coordinate to allow for fast acquisition schemes and future applications. A more complete 
linear systems model that allows for the 3-D beam properties, shift variance, and more 
complex motion within an image acquisition sequence is discussed in [6]. The purpose of 
the simple models used in this paper is to gain intuition and analytically tractable results.  

We will assume that the background clutter represented by the object function zc is a 
wide-sense stationary (WSS) stochastic process over space and over slow time, as is the 
noise n. In practice, objects heterogeneous on a scale larger than the transmitted pulse 

  



volume are partitioned in to locally wide-sense stationary regions. Tumor vessels are 
small compared with the pulse volume. We also assume that the tissue motion is WSS on 
the time scale of the measurement, and hence that tissue motion can be characterized by 
autocorrelations or power spectra. This requires that tissue motion patterns remain 
approximately constant over the interrogation time LxPRI, and that accelerations are 
minimal. This is a reasonable assumption even for arterial flows with a 1 Hz cardiac 
frequency when PRF>1 KHz and the ensemble size is L<10. Finally, we assume that 
blood, clutter, and noise processes are all statistically independent of each other. 

2.2 Cross-Spectral Density Matrix 

If X is the support region volume of the image, the cross-spectral density matrix Q is 
defined in a way similar to covariance matrices. Here we wish to consider the cross-
spectral density due to clutter and noise: 

†2
ncncnc X +++ = RRQ , (3) 

where elements of R are given as nc+ ),(),()(),( kkcknc tNtZHtR uuuu +=+ . For 
WSS clutter and noise processes, the cross-spectral density matrix is block diagonal: 
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where Q  is an LxL matrix with elements given by )( knc u+

)(),(),()()|,( *22
νµνµνµ δ ttStZtZXHttQ nkckckknc −+=+ uuuu . (5) 

Here we have assumed that electronic noise can be modeled as a white Gaussian noise 
process, and that Sn is the (flat) noise power spectrum. 

3 Detection Performance 

Equipped with the linear systems model, and the cross-spectral density structures, we now 
call on the tools of statistical decision theory to address the task: detection of blood that is 
perfusing through tissue (positive ‘+’ hypothesis) from region with no blood or negligibly 
weak blood (null ‘-’hypothesis). This task could be important for distinguishing perfused 

  



regions of a tumor from necrotic regions. The degree of perfusion heterogeneously may be 
correlated with metastatic potential. It is also one step towards the more complex task of 
discriminating two types of flow patterns. We also assume that the background clutter and 
the noise are random processes but that blood can be modeled as one deterministic 
realization of a random process. A similar model has been used for static target 
discrimination in ultrasound [7]. Likelihood models for the spatial frequency domain data 
are normally distributed under the assumptions of [8]: 
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Here the mean values for our task are:  
),()(),(),(),( lkbklknlklk tZHtBtRtR uuuuu ≡== ++  and 0),( =− lk tR u . 

The ideal observer test statistic obtained from the log-likelihood ratio is thus: 

RQR 1† −
+∆= ncλ , (8) 

where BRRR =−=∆ −+ .  This test statistic is linear in the data and for the situation 
at hand is equivalent to a Hotelling observer [9]. The strategy is to perform matched 
filtering of the time-evolving signal with a pre-whitening step. Pre-whitening over the 
slow time spectral domain means weighting the Doppler Fourier amplitudes R  by the 
factor 1† −

+∆ ncQR  that maximizes coefficients least influenced by clutter and noise. 
Performance is predicted by 

BQBRQR 1†1†2 −
+

−
+ =∆∆= ncncISNR . (9) 

Using the approach of [7], we average over random realizations of the blood to obtain  

{ } { }11†2 −
+

−
+ == ncbncI trtrSNR QQQBB , (10) 

where †BBQ =b . When Q  and  are simultaneously diagonalizable, by the 

same Karhunen-Loeve eigendecomposition, the SNR expression reduces to 
b

1−
+ncQ

  



[ ]{ }12 −+= ncbI trSNR ΛΛΛ , where the Λ’s are diagonal eigenvalue matrices 

corresponding to blood, clutter and noise cross-spectral density matrices respectively.  

3.1 Large Ensemble Size 

When L is large, and adequate slow time resolution exists, the Karhunen-Loeve 
transformation reduces to a temporal DFT. In this situation aliasing is largely avoided. 
The SNR can then be written as 
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This is a generalization of the Wagner-Brown theory of detectability [10] applied to 
Doppler ultrasound systems. Sc and Sn are the clutter and noise power spectra respectively. 
The power spectra are in the spatial frequency (u), temporal-frequency (f) domain. The 
object contrast or “task” is defined as  

XfZfS
b

kbkB /),(),( 2uu ∆=∆  
(12)

and represents the power spectrum of the difference between blood object functions of 
hypothesis (+) and hypothesis (-) signals. This is not the same thing as the difference of 
power spectral densities.  The SNRGNEQ is dependent on the differential blood object 
power spectrum to make a decision about flow being present or absent (normal or 
abnormal). The quantity that weights the blood object power spectrum in the integration is 
like a generalized version of Noise Equivalent Quanta (NEQ), a measure commonly used 
to characterize system performance in photon imaging modalities. In our situation, the 
generalized noise equivalent quanta (GNEQ) is defined as 
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and characterizes the system, noise and clutter in a blood flow independent way. NEQ for 
photon imaging systems represents the fraction of photons that contribute information. For 
ultrasound, GNEQ represents the fraction of speckle energy that carries information. In 
photon imaging systems, the ideal observer detection signal to noise ration is an 
integration of NEQ weighted by the Fourier magnitude of the target signal. Acoustic 
physics dictates that the mean of the object is not the important feature for detection using 
ultrasound, rather the variance or spatial fluctuations in the object function. Importantly, 
GNEQ can be measured for a particular system, tissue type, and tissue motion pattern 

  



since all of its components are measurable quantities. Curiously, H in this framework only 
depends on spatial frequencies, and not temporal frequencies: this is because all motion 
dependence is due to the object and not to the system. 

3.2 Limited Ensemble Size 

In general, simultaneous diagonalization of  and Q  is not possible. For small 
ensemble sizes, and wide-sense stationary statistics, the cross-spectral density matrices are 
Toeplitz, but not well approximated by block-circulant matrices, and hence are not 
diagonalizable by a DFT. Since most Power and Color ultrasound systems use only 4-20 
pulses, consideration of the limited ensemble size scenario is of great practical 
importance. We consider here specific analytically tractable models that may nevertheless 
be of considerable interest for tumor flow and perfusion imaging. 

bQ 1−
+nc

 
Clutter Model. Tissue motion is often minimal for tumor imaging. If we assume the 
clutter does not move, and remains correlated over the entire pulse train interrogation, 
then it can be shown that the clutter cross-spectral density has the block diagonal form of 
(4), with block-diagonal elements given as 

)()()()|,( 2
νµνµ δ ttSSHttQ nkckknc −+=+ uuu . (14) 

)( knc uQ +  is the sum of uniform matrix (a matrix with constant values everywhere) and 
a diagonal matrix. It has an analytically tractable inverse  
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matrices are small (only LxL) so computational approaches to inversion would also be an 
attractive future direction. 
 
Blood Model. As a first step to understanding more complicated flow models, we 
consider an object model for blood that is a random process moving with translational 
velocity vb:  
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In the spatial-frequency domain, this can be written as: 
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If blood is a non-stationary process then the cross-spectral density matrix may not be of 
block-diagonal form because of spatial frequency correlations. However, only the block 
diagonal elements of the cross-spectral density matrix are important for the trace (10). The 
block diagonal elements are given as: 
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If the blood object function can be modeled as a wide-sense stationary white gaussian 
noise process ~N(0,σ2I), windowed by a window w(x), it can be shown that  

AwdS kZb
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where A is the area of the perfused region. 
Another important aspect of the blood model is decorrelation over time. Microvascular 

networks can have tortuous and multidirectional flow patterns within an ultrasonic sample 
volume that makes velocity estimation difficult. One way of modeling this complex 
situation is to guess that the collection of blood scatterers decorrelates over time, and that 
the decorrelation rate is proportional to the flow rate, and hence metabolic demand. One 
model for temporal decorrelation is a complex exponential decay. As a phenomenological 
addendum to (18), we hence postulate the cross-spectral density model 
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where α is the decorrelation parameter. Gaussian decorrelation models and other 
diffusion-based models are also possible. Signal decorrelation may be due to object 
correlation or due scattering regions moving out of the ultrasonic sample volume. In the 
latter case the decorrelation parameter may depend on the velocity beam properties. 
 
SNR. Evaluating the trace (10), the ideal observer performance metric for stationary 
clutter and moving, decorrelating blood can be shown to be 
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and btit ee vu⋅∆−∆−= παα 2 . Here ∆t is the pulse repetition interval (PRI). The series can 
be evaluated as the sum of a geometric series and the derivative of a geometric series: 









−

++−
−








−
−

=−
++

=
∑ 2

11

1 )1(
1)1(

1
)(

α
ααα

α
ααα

LLLL

m

m LLLmL . 
(23) 

When there is no decorrelation, and zero blood velocity, Γ(u) vanishes, leaving 
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which is similar to expressions obtained previously, except that the noise power is 
lowered by a factor of L. This makes sense: the task is now to simply detect additive, 
unmoving blood from a random background, and there are L images averaged. Hence, the 
noise power should decrease as there are more images averaged. For L=1, the expression 
corresponds precisely to the lesion detection SNR of Ref. [7], Eq. 23.  

Clearly then, all the information about motion is contained in the function Γ, which 
depends on the PRI, decorrelation parameter, velocity, ensemble size, and spatial 
frequency vector. Aside from the PRI and the ensemble size, Γ is independent of the 
system, and represents the information about blood flow and perfusion. The SNR2 of (21) 
can thus be interpreted as the sum of a time-dependent term and a time-independent term. 
The time-dependent term gives all the information about motion and decorrelation. The 
time-independent term describes static detection.  

4 Results  

To gain more intuition regarding the role of motion, we computationally evaluated (21) 
with various system and motion parameters for a 1-D system where the system psf is 
modeled as a Gaussian weighted sinusoid. We modeled coherent motion as being along 
the direction of pulse propagation. Results are illustrated in Fig. 3. The system bandwidth 
was varied while maintaining the total pulse energy constant. Fig. 3(a) shows that 
bandwidth is relatively unimportant as long as the same amount of total energy is 
employed. Fig. 3(b) shows that detectability is lowest when there is no motion. The ideal 
observer uses motion information to help the detection process. There are repeating nulls 

  



every 250 mm/s. This is the point where PRI x 2fo/c x vb = 1. Note that 2fo/c is the spatial 
frequency at which there is greatest system sensitivity. As velocity is increased, blood 
power shifts away from the clutter power until it is aliased back into the clutter spectrum, 
giving the null at 250 mm/s etc. As expected, the detectability improves with L, and Fig. 
3(c) demonstrates that this relationship is nearly linear. As the PRI is increased, SNR is 
also improved (results not shown). Of course transient flow conditions may prevent one 
from using long PRI’s or large ensemble sizes if temporal resolution is desired.  One 
interesting point is that decorrelation of blood is actually helpful to signal detection (Fig. 
3(d).). The ideal observer is most interested with how the signal changes over time, hence 
the more change in the observation period the better. Thus decorrelation and velocity shift 
spectral energy of blood away from the DC region where clutter obscures detection. 
Velocity shifts can however be aliased back over the clutter region once again hampering 
the task. Large velocities are necessary to induce substantial aliasing, and these speeds are 
not physiological in tumors. Hence if decorrelation is well sampled, the large ensemble 
limit of section 3.2 may be a reasonable framework for studying tumor perfusion.  
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Fig. 3. Detection performance SNR as a function of (a) bandwidth, maintaining total pulse energy 
constant (b) velocity (c) ensemble length and (d) decorrelation parameter. Parameters were, fo=3 
MHz, BW=80%, c=1500 m/s, L=8 pulses, PRF=1 KHz., v=5 mm/s, and α =1/PRI unless otherwise 
specified. The clutter to noise and blood to noise ratios were 38.8 and 1.94 respectively. 

5 Conclusions 

An ideal observer model for detecting perfusing blood in a tissue background has been 
developed. When decorrelation is adequately sampled (large enough ensemble size), and 

  



  

                                                          

when velocities are low, the ideal observer signal to noise ratio depends on a quantity 
similar to Noise Equivalent Quanta (NEQ) used in photon imaging modalities. Coherent 
motion and temporal decorrelation of blood were modeled in a simple 1-D ultrasound 
system. The system detection performance for a simple model was shown to be the sum of 
motion-dependent and motion-independent terms. This model included the effects of 
aliasing. Decorrelation and translational velocity of blood were shown to be advantageous 
to the task. The ideal observer model, assumed that velocities and decorrelation rates were 
known a priori. Task performance may change when the velocity is unknown. The 
theoretical framework here is a starting point for future work in the area of performance 
assessment of Power Doppler systems. 
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