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We present a design of “ideal” optical delay lines (i.e., constant amplitude and constant group delay over the desired
bandwidth). They are based on reflection from coupled-resonator optical waveguides (CROWs). The inter-resonator
coupling coefficients are tailored and decrease monotonically with the distance from the input to realize all-pass
Bessel filters. The tailored coupling coefficients result in a frequency-dependent propagating distance which com-
pensates for the group velocity dispersion of CROWs. We present a simple formalism for deriving the time-domain
coupling coefficients and convert these coefficients to field coupling coefficients of ring resonators. The reflecting
CROWs possess a delay-bandwidth product of 0.5 per resonator, larger than that of any kind of transmitting CROW.
In the presence of uniform gain, the gain enhanced by slow light propagation and the constant group delay result in
efficient and dispersion-free amplifiers. © 2012 Optical Society of America
OCIS codes: 230.4555, 130.3120, 230.7370, 250.4480.

Optical delay lines and buffers are key components for
optical networks and information processing systems
[1]. Delay lines based on conventional optical wave-
guides are typically very long. The length can be greatly
reduced if the group velocity of light is significantly re-
duced. “Slow light” can be achieved in engineered struc-
tures which bounce light back and forth as it propagates.
Such structures include grating structures [2,3], photonic
crystal waveguides [4], and coupled-resonator optical
waveguides (CROWs) [5]. The general characteristic of
these slow-light waveguides is a dispersion curve ω�β�
whose slope dω∕dβ, equal to the modal group velocity,
is small over a range of frequencies. A major problem
in designing delay lines based on these waveguides is
the higher-order dispersion, which causes a distortion
of signal. Although the second-order dispersion of grating
structures and CROWs is zero at the band center, the
group velocity approaches zero at frequencies close to
the band edges [2,3,5]. Several efforts to cancel or mini-
mize higher-order dispersion have been reported [4,6].
A CROW consists of a chain of weakly-coupled resona-

tors where light propagates by virtue of inter-resonator
coupling. The original proposal of CROWs [5] was based
on uniform coupling coefficient κ, which leads to a disper-
sion curve and a group velocity dictated by the coupling
coefficient. If the coupling coefficients are allowed to vary
along the CROW, the dispersive properties can be further
controlled. In the transmission mode, the transfer func-
tion T is a function of s, where s � i�ω − ω0� is the
frequency detuning from the resonant frequency. Each re-
sonator can be considered as a feedback loop which con-
tributes a pole to the transfer function. An N -resonator
CROW is thus an all-pole filter of order N whose transfer
function is given by T�s� � k∕p�s�, where p�s� is a poly-
nomial in s. Filter design approaches can then be applied
to derive the coupling coefficients which determine the
transfer function of CROWs to achieve desired filter re-
sponses [7–9]. For example, Butterworth and Bessel
CROWs exhibit maximally flat transmission and group de-
lay, respectively. However, constant amplitude and group
delay cannot be achieved by any one of these filters

simultaneously, since the amplitude and the phase of
all-pole functions are related to each other.

In this Letter, we present an “ideal” optical delay line,
which possesses a constant group delay and a constant
amplitude transmission over a prescribed bandwidth. It
is based on the reflection of a CROW, whose inter-
resonator coupling coefficients are tailored to realize
an all-pass Bessel filter. The design of all-pass Bessel fil-
ters has been explored using microwave equivalent cir-
cuit methods [7]. In what follows, we present a simple
formalism for deriving the time-domain coupling coeffi-
cients and interpret the physics behind the idea.

An all-pass function �p�s���∕p�s� preserves the phase of
T�s� and has a constant output amplitude of 1. As a result,
an all-pass Bessel filter whose p�s� is a Bessel polyno-
mial possesses constant amplitude and maximally flat
group delay over a prescribed bandwidth, as shown in
Fig. 1(a). The higher-order dispersion is 0 up to the order
of N . Such all-pass filters can be realized in the reflection
mode of lossless CROWs, as shown in Fig. 1(b). The input
energy coupled into the CROW is eventually coupled
back as output into the original waveguide since, in
the limit of small resonator losses, it is the only exit
channel.

Reflecting CROWs can be realized using various kinds
of resonators. Figs. 1(c) and 1(d) illustrate reflecting
CROWs based on ring resonators and grating-defect re-
sonators, where the output sr is at the through port of
microring CROWs and at the reflection of grating
CROWs. The coupling coefficients can be controlled via
the gap between ring resonators or the number of holes
between adjacent defects. Microring reflecting CROWs
have been experimentally demonstrated for the purpose
of tunable delay [10]. To realize ideal delay lines, the cou-
pling coefficients need to be derived. The formalism is
based on coupled-mode theory.

Consider the CROW in Fig. 1(b), which consists of
N identical resonators and is coupled to an input
waveguide. For an input sin at a frequency ω, the steady-
state coupled-mode equation can be written as Aa � vin,
where
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is an N × N tridiagonal coupling matrix, a �
�a1 a2 � � � aN �T denotes the complex mode ampli-
tudes of the resonators, and vin � �−iμisin 0 � � � 0�T
is the input. The coupling between input waveguide
and the first resonator is modeled by an external loss
1∕τe1 and the coupling μ1 �

�����������
2∕τe1

p
. The equation is the

same as the equation of transmitting CROWs in [9], except
that 1∕τe2 � 0.
The transfer function of reflection can be written as

R�s� � sr
sin

� 1 − μ21�A−1�1;1 �
pN − μ21pN−1

pN
; (2)

where pk for k � 1; 2;…; N is defined as the determinant
of the bottom-right k × k submatrix of A and is a polyno-
mial in s with a leading term sk. The polynomials p1
through pN satisfy the recursive formulas [9]

pN �
�
s� 1

τe1

�
pN−1 � κ21pN−2;

pN−1 � spN−2 � κ22pN−3

..

.
;

p2 � sp1 � κ2N−1;

p1 � s: (3)

As an example we consider an all-pass Bessel filter of
order N � 6, whose transfer function is given by
R�s� � �p�s���∕p�s�, where is a Bessel polynomial, p�s� �
s6 � 4.495s5 � 9.622s4 � 12.358s3 � 9.92s2 � 4.672s� 1.
The group delay of R�s� is maximally flat between Δω �
−1 and 1. Since the coefficients of are real, �p�s���∕p�−s�.
Comparing R�s� with Eq. (2), we obtain p6 � p�s�
and μ21p5 � p�s� − p�−s�. Since the leading coefficient of
every polynomial pk is 1, μ21 � 8.990 and p5 � s5 �
2.749s3 � 1.039s. With p6 and p5, all the coupling coeffi-
cients can be extracted step by step, using Eq. (3). The
extracted coefficients are �1∕τe1; κ1; κ2; κ3; κ4; κ5� �
�4.495; 2.622; 1.207; 0.824; 0.632; 0.463�, which decrease
monotonically from the input. Finally, we multiply the
coefficients by a bandwidth parameter B to choose the
bandwidth, which leads to maximally flat delay between
Δω � −B and B. The group delay is inversely propor-
tional to B. The spectra of reflection and group delay
are shown in Fig. 1(a).
To understand the physics behind reflecting Bessel

CROWs, we plot the CROW propagation band as a func-
tion of distance. CROWs with uniform coupling coeffi-
cient κ form a constant height band between ω0 − 2κ
and ω0 � 2κ. Frequencies within the CROW band propa-
gate freely while those outside evanesce exponentially

with distance. CROWs with tailored coupling coefficients
correspond to a distance-dependent CROW band whose
thickness is 4κ�z�, where κ�z� is the local coupling coef-
ficient. Fig. 2(a) shows the modulated CROW band of an
N � 20 reflecting Bessel CROW, whose bandwidth de-
creases monotonically from the input. An input signal
at a given frequency propagates into the CROW until it
reaches the band edge where it is reflected back. The
red lines in Fig. 2(a) indicate the propagating distances
at Δω∕B � 0.14, and 2. Fig. 2(b) plots the field distribu-
tion at these frequencies. At Δω � 0, light propagates to
the last resonator. As the frequency moves away from the
resonant frequency, the propagating distance decreases.
The dependence of the propagating distance on fre-
quency compensates for the group velocity dispersion
of CROWs, whose group delay increases monotonically
from the band center to the band edge, and results in a
constant group delay.

To realize reflecting Bessel CROWs in ring resonators,
we convert the time-domain coupling coefficients to the
field coupling coefficients in the coupling regions.Wecon-
sider silicon ring resonators as an example. The mode in-
dex and group index of the Si waveguides are respectively
2.4 and 4. The radii of the rings are selected as 20 μm so
that one resonant wavelength is 1570.8 nm and the free
spectral range f FSR is 597 GHz. The relation between
the field coefficient η and the coupling coefficient κ is gi-
ven by η � sin�κ∕f FSR� for inter-resonator coupling and
ηi �

�����������������������������������������������������������������������������
2 sin�1∕τe1f FSR�∕�1� sin�1∕τe1f FSR�

p
at the input

[9]. We choose B � ωFSR · 0.003 and B � ωFSR · 0.03,
which lead to field coupling coefficients of (0.395,
0.0494, 0.0228, 0.0155, 0.0119, 0.0087) and (0.926, 0.474,
0.226, 0.155, 0.119, 0.087), respectively. The spectra of re-
flection and group delay are shown in Figs. 3(a) and 3(b).
The spectra are ideal for weaker coupling coefficients

Fig. 1. (Color online) (a) Spectra of reflection and group delay
of an N � 6 reflecting Bessel CROW. (b) Schematic drawing of
a reflecting CROW. (c), (d) Reflecting CROWs based on ring
resonators and grating-defect resonators, respectively.
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when B � ωFSR · 0.003. For the case of B � ωFSR · 0.003,
there are oscillations in the group delay spectrum since
the coupling coefficient at the input is close to the max-
imal coupling coefficient of the ring resonators, ωFSR∕4.
Up to this point we have considered only lossless re-

sonators. For lossy resonators with constant loss rates,
the total loss is proportional to the group delay. Since the
group delay is flat, the loss is also flat within the band-
width, and the definition of ideal delay lines is still satis-
fied. Fig. 3(c) shows the spectra of the same microring
CROW in Fig. 3(a) with a propagation loss of 1 dB∕cm.
On the other hand, if the resonators are pumped with uni-
form gain, the amplification is proportional to the group
delay and is also flat, as shown in Fig. 3(d). The enhanced
reflection gain by slow light results in efficient and
dispersion-less amplifiers.
One important parameter of optical delay lines is the de-

lay–bandwidth product (DBP), Δf · τ, which represents
thenumberofbits that canbestored.TheDBPof reflecting
Bessel CROWs is approximately 0.5 per resonator, as can
be evaluated in Figs. 1(a), 2(a), and 3(a). The upper bound
of DBP per resonator of CROWs in the transmissionmode
is 0.5, resulting from a total phase shift of π provided by a
pole. Because each resonator in a reflecting CROWcontri-
butes both a pole and a zero to the transfer function, the
upper bound is 1. Therefore, the DBP per resonator of re-
flecting Bessel CROWs is larger than that of any kind of
transmitting CROW.
Although the delay capability of reflecting CROWs is

larger, reflecting CROWs are more sensitive to fabrica-
tion disorder of coupling coefficients and resonant
frequencies. Any imperfection in a reflecting CROW

scatters light twice as it takes a round trip. The cavity
between the imperfection and the end of the CROW
causes Fabry—Perot-type oscillations, as shown in
Fig. 3(e). Fig. 3(f) shows the spectra of 10 different
N � 10 reflecting Bessel CROWs under disorder of
coupling coefficients. The modified coupling coefficients
are given by κ0i � riκi, where γi is a Gaussian-distributed
random variable with a standard deviation of 0.03. The
effect of disorder in resonant frequencies is similar. Un-
der disorder, the average of the delay spectra is still op-
timally flat among all kinds of reflecting CROWs.
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Fig. 2. (Color online) (a) (left) CROW propagation band as a
function of distance of an N � 20 reflecting Bessel CROW. Red
lines: Propagation distance for Δω∕B � 0, 1.4, and 2. (right)
Group delay spectrum. (b) Field distribution along the CROW
for Δω∕B � 0, 1.4, and 2.

Fig. 3. (Color online) (a–d) Spectra of reflection and group
delay of N � 6 reflecting Bessel CROWs based on ring resona-
tors. (a) B � ωFSR · 0.003. (b) B � ωFSR · 0.003. (c), (d) B �
ωFSR · 0.003 with a uniform loss and gain of 1 dB∕cm respec-
tively. (e),(f) N � 10 reflecting Bessel CROWs with disorder
of coupling coefficients. (e) κ04 � 1.05κ4. (f) κ0i � γiκi for all i.
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