
J. Cryptology (1996) 9:233-250 
Journal of 

CRYPTOLOGY 
~) 1996 International Association for 
Cryptologic Research 

Ideal Secret Sharing Schemes with Multiple Secrets* 

Wen-Ai  Jackson,  Keith M. Martin,  and Christ ine M. O ' K e e f e  

Department of Pure Mathematics, The University of Adelaide, 
Adelaide, SA 5005, Australia 

Communicated by Douglas R. Stinson 

Received 14 November 1994 and revised 22 March 1995 

Abstract. We consider secret sharing schemes which, through an initial issuing of 
shares to a group of participants, permit a number of different secrets to be protected. 
Each secret is associated with a (potentially different) access structure and a particu- 
lar secret can be reconstructed by any group of participants from its associated access 
structure without the need for further broadcast information. We consider ideal secret 
sharing schemes in this more general environment. In particular, we classify the collec- 
tions of access structures that can be combined in such an ideal secret sharing scheme 
and we provide a general method of construction for such schemes. We also explore the 
extent to which the results that connect ideal secret sharing schemes to matroids can be 
appropriately generalized. 
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1. Introduction 

The basic idea behind secret  sharing schemes  and their  re levance to c rypto logy is well  

documented  (see [25]). Informal ly  a secret sharing scheme permits  a group of  partici- 
pants to jo in t ly  protect  a secret through the issue o f  a related share of  the secret  to each 

participant.  The  scheme is des igned so that i f  a set o f  participants pool  their  shares, then 

only those sets that are specified to be in the access structure of  the scheme wil l  be able 

to use their  shares to reconstruct  the secret. 

Many  secret  sharing applicat ions,  part icularly those associated with key -managemen t  

and key-distr ibution problems,  require the protect ion o f  more  than one secret,  possibly  

with different  access  structures associated with each secret. The  precise general izat ion 

o f  a secret  sharing scheme to include the opt ion o f  protect ing more  than one secret is 

not  immedia te ly  apparent. For  instance: 

�9 Should  all the secrets be available for potential  reconstruct ion during the l i fe t ime 

o f  the scheme,  or  should the access o f  secrets be further control led  by enabl ing the 

* The work of the second and third authors was supported by the Australian Research Council. 
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reconstruction of  a particular secret only after extra information has been broadcast 
to the participants? 

�9 Should a scheme be used just once, to reconstruct one or all of  the secrets, or should 
the scheme be designed to enable multiple use? 

�9 If a scheme is to be used more than once: in the event that a particular secret has been 
"reconstructed" by a group of  participants, does the exact value of  the secret remain 
undisclosed or is it known by the participants who enabled its reconstruction, or, 
indeed, is it known by all of  the participants? 

The desirable properties of  a particular scheme depend on both the requirements of  the 
application and also on the implementation. We consider here perhaps the most straight- 
forward definition of  a secret sharing scheme with multiple secrets. In this model all 
of  the secrets are available for reconstruction without the need for additional broadcast 
information and the schemes are designed for one-time use only (of course, if an im- 
plementation is done in such a way that the value of  the secret is not revealed to any 
of the participants, then such a scheme can be used repeatedly). Schemes of  this type 
which have the same threshold access structures (see later) for each secret have been 
studied in [11], [16], and [21]. Schemes of  this type which permit different threshold 
access structures for each secret have been studied in [3], [7], [14], [15], and [20] (we 
note that the schemes in [3], [7], and [20] can be used repeatedly as the threshold access 
structures are trivial). Schemes of this type which have more general monotone access 
structures fo r  each secret were discussed in [6] and [23]. Schemes that allow repeated 
usage (a class of  schemes with multiple secrets) and assume that reconstructed secrets 
become public knowledge have been studied in [5], [8], [13], [17], and [26]. Finally, 
secret sharing schemes with multiple secrets that require broadcast information have 
been studied in [2], [4], [5], and [19] (in particular, [2] and [19] dealt with the problem 
of disenrolling participants from a scheme). 

All of  the access structures under consideration in this paper are monotone. An access 
structure F defined on a participant set 7 9 is monotone if for all A c B c P ,  if A ~ F, then 
B ~ F. We can describe I" uniquely by the collection F -  of  minimal sets of F, that is, the 
setsA _c_ 79 such that A ~ F b u t A \ a  r F foral la  ~ A.Weletcore(F)  = {p ~ 79: p 6 A 
for some A ~ F-}  and say that I" is connected if core(F) = P .  If  J79[ = n, then, for 
1 < k < n, the (k, n)-threshold access structure F is such that F = {A _c 79: [A[ >_ k}. 
If k = 1, then we say that the threshold access structure is trivial. 

A single secret sharing scheme is said to be ideal if the size of  each share is the same 
as the size of  the secret. We extend this definition and describe a secret sharing scheme 
with multiple secrets to be ideal if all of  the secrets and all of  the shares are the same size 
(this definition will be formalized later). Ideal single secret sharing schemes have been 
extensively studied (see, for example, [9] and [10]). In particular, the close relationship 
between ideal secret sharing schemes and matroids has been investigated in [1], [ 10], 
[12], [24], and [27]. 

In Section 2 we review the information-theoretic model of  a single secret sharing 
scheme and recall the relationship between ideal schemes and matroids. In Section 3 
we generalize the definition of  a secret sharing scheme to permit more than one secret. 
Section 4 discusses separators of matroids and separators of  probability measures. These 
concepts are fundamental to the establishment of  our main result, which is described in 
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Section 5. This is a classification of  ideal secret sharing schemes with multiple secrets. In 
particular we discuss which sets of  access structures can "co-exist" in an ideal scheme. 
Finally, in Section 6 we examine the extent to which the relationship between ideal 
schemes and matroids can be extended to the multiple secret environment. 

2. Single Secret Sharing Schemes 

In this section we recall some basic results concerning (ideal) single secret sharing 
schemes. First, we review some notation and the definition of  entropy, noting that all 
logarithms used in this paper have base 2. For finite sets A and B we write AB for 
A U B, and we write x for the set {x}. Let X be a finite set and let (X) be a finite 
collection of  tuples, such that the entries of  each Jr �9 (X) are indexed by the elements 
of  X. For zr = (zrx)x~X �9 (X) and for A _ X, let zra denote the tuple (Zrx)xea and 
let (A) = {Zra: Jr �9 (X)}. Let p be a probability measure on (X), and let O(A) be 
the random variable defined by the projection (X) --~ (A). The measure p induces a 
probability mass function PA of O(A) on (A), such that, for each a �9 (A), we have 
pA(ct) = ~l~eIX/: ~=~1 p(zr). Let [A]p = {a �9 (A): pa(Ot) > 0}. The entropy Hp(A) 
of 0(A) is 

Hp(A) = -  Z pA(Ot)IOgPA(~ 
aE[A]p 

When there is no ambiguity, we write [A] for [A]p and H(A) for Hp(A). For A, B _ X, 
ct �9 [A], and/5 �9 [B], let PA,B(a,/5) = ~{~[X]:  ~A=~,~B=~J p(zr). The measure p 
induces the conditional probability mass function PAIB such that, for each ot �9 [A] and 
fl �9 [B], PAlS(a, r)  = Pa.B(a, ~)/Ps(fl).  The conditional entropy H(AIB = r )  of  
O(A) given that O(B) = fl is H(AIB = r)  = - Y~-~[A] PAlS(a, r)  IogPalB(tX, fl), and 
the conditional entropy H(AIB) of 0(A) given O(B) is 

H(AIB) = Z pB(fl)H(AIB) = fl). 
#e[B] 

We note, in particular, the following elementary properties of  entropy: 

Result  1 [28]. Let p be a probability measure on (X) and let A, B, C ___ X. Then: 

(1) H(AB)  > H(A). 
(2) H(AIB) > H(AIBC). 
(3) H(AB) < H(A) + H(B), with equality if and only if A and B are independent 

random variables, which is if and only ifpA.B (a, fl) = PA (vt)pn (/5) for all vt �9 [A] 
and fl �9 [B]. 

(4) H(AIB) = H(AB)  - H(B). 

Let 7 9 be a (finite) set of  participants, let F denote a monotone access structure on 79, 
and let s (s r 7 9) denote the secret variable. Further, let p be a probability measure on 
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(s79). Then M = (79, s, p) is a secret sharing scheme for F if, for A c_ 79: 

(1) I f A  e F, then H(sIA) = O. 
(2) I f A  r F, then H(slA)  = H(s). 

If  F is connected, then we say that M is connected. Using Result 1, it is straightforward 
to show that if p ~ core(F), then H(p)  > H(s). Since it is desirable to minimize the 
size H (p) of the share of  each participant p in a secret sharing scheme, we say that M is 
ideal if H(p)  = H(s)  for every p ~ core(F). We refer to H(s) as the size of the secret 
s and call an access structure F ideal if there is an ideal secret sharing scheme M for F. 

To implement a secret sharing scheme, a trusted dealer selects a tuple rr ~ [sT'] with 
probability p(rr). Participant p E 79 is given share rrp and the secret value is rr~. Any 
subset A ~ F is able to determine the value of  s since the probability that the secret is 
rrs, given the pooled shares rra, is 1. Further, if any subset A r F pools their shares to 
form rra, then the probability that any a ~ [s] is the secret is exactly the same as for 
someone outside the scheme who knows M but not the value of  any shares. 

2.1. Ideal Secret Sharing Schemes and Matroids 

First we review the definition and some properties of  matroids, as found in [22]. A 
matroid T = (s 27) comprises a finite set s and a collection 27 of  subsets of s such that: 

(1) 0E27.  
(2) I f A ~ 2 - a n d B _ A ,  t h e n B E 2 - .  
(3) If A, B e 2" and IAI < IBI, then an element b ~ B \ A  with Ab ~ 2- exists. 

An element of 2- is an independent set and a subset of  s not in 2- is a dependent set. 
A minimal dependent set of  T is a circuit. A matroid is connected if, for each pair of  
distinct elements x, y ~ s there is a circuit containing both x and y. Given any set 
A c s the size of  a maximal independent set B c_C_ A is a constant, and this constant is 
the rank of A and is denoted by rankr A. The rank of set T is the rank of s denoted by 
rankr T. When there is no confusion, rankr is denoted by rank. 

Let T = (s be a m a t r o i d a n d l e t  A ___ s Let27[A = {I c_ ~ \ A :  I E 2-}. 
Then TIA = (CkA, 271A) is a matroid, called the restriction of T at A. We note that if 
B c_ s  then rankrla(B) = rankr(B).  Further, let2-. A = {I _ s  CI  ~ 2- for all 
C _ A such that C E 2-}. Then T .  A = (E\A,  2-. A) is a matroid, called the contraction 
of T at A. We note that if B c_ s  then rankr.a(B) = rankr(AB) - rankr(A) [22, 
Proposition 3.1.6]. 

The following result first appeared in [10], and this version appeared in [1 2]. 

Result  2. Let M = (7 9, s, p) be an ideal secret sharing scheme for F. If  F is connected, 
then associated with M there is a connected matroid T(M)  = (s79, 27) satisfying: 

(1) If  A c s79, then rank(A) = H ( A ) / H ( s ) .  
(2) The dependent sets of T(M)  are precisely the sets A c s79 such that a E A 

satisfying H (a I A \a )  = 0 exists. 
(3) The circuits of  T(M)  containing s are precisely the sets sA for A E F - .  

We say that T ( M) is the matroid associated with M. 
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Resul t  3 [ 1 2, Theorem 6]. Let F be an ideal access structure. Then the matroid T (M) 

associated with an ideal secret sharing scheme M = (79, s, p)  for F depends only on F. 

Thus, for any ideal secret sharing scheme M for F,  we may refer to the matroid associated 
with M as the matroid associated with F. 

Conversely, let T = (s79, 2-) be a matroid with distinguished point s, and let F -  = 
{A c_ 79: sAisac ircui to fT} .Nowle tF(T)  = {B c_ 79: B ~ A f o r s o m e A  e F - } . T h e n  
F ( T )  is a monotone access structure, called the monotone access structure associated 
with T. Given a matroid T, it is an open problem as to when F ( T )  is ideal. It was shown 
in [10] that if  T is representable then F (T)  is ideal, however, in [24] it was shown that 
the access structure associated with the (nonrepresentable) Vamos matroid is not ideal. 

We need the following slight extension of  the idea of  the matroid associated with an 
ideal secret sharing scheme to the case of  a finite set with a probabili ty measure. Let Z 
be a finite set and let p be a probabili ty measure on (Z), such that Hp(a) is a constant 
h for all a ~ Z. Suppose that for all A _ Z and for all a e Z we have H(alA) = 0 or 
H(a) (and hence for any A c Z, Hp(A) is a multiple of  h). Then, by a similar proof to 
that of  Result 2, the pair (Z,  p)  has an associated matroid T = (Z,  2-) satisfying: 

(1) I f A  ___ Z, then rank(A) = H(A) /h .  
(2) The dependent sets of  T are precisely the sets A _ Z such that a e A satisfying 

H(alA\a)  = 0 exists. 

2.2. Restrictions and Contractions 

We now recall the definition and some properties of  restrictions and contractions of  
an access structure from Martin [18]. We consider, in particular, the case in which the 
underlying access structure is ideal. Let F be a monotone access structure on a participant 
set 79, and let A c_ 79. The restriction F IA of  F at A is the access structure defined on 
79\A as FIA = {B __c 79\A: B e F}. The contraction F .  A of F at A is the access 
structure defined on 79\A as F �9 A = {B c 79\A: AB ~ F}. Note that if A 6 F, then 
( F .  A ) -  = {~}. 

Resul t  4 [18]. Let M = (79, s, p) be a secret sharing scheme for F. Let A ___ 79 and 
let Q = 79\A. Then there is a secret sharing scheme MIA = (Q, s, ~) for FIA, with 
tt = PsQ. Further, if M is ideal, then MIA is ideal. 

Resul t  5 [18]. Let M = (79, s, p)  be a secret sharing scheme for F. Let A ___ 79 satisfy 
A ff F and let Q = 79\A. Then there is a secret sharing scheme M �9 A = (Q, s, # )  for 
F �9 A, where for a given o t e  [A] we have #(~o) = PsQIa(to, a) ,  for each to e (sQ). (If 
A e F, then (F  �9 A ) -  ----- {0}, so we need not consider this case.) Further, if M is ideal, 
then M �9 A is ideal. 

Let M = (79, s, p)  be an ideal secret sharing scheme for F,  with associated matroid T. 
We remark that for A _ 7 9 it holds that MIA has associated matroid TIA and if  A ~ F, 
then M �9 A has associated matroid T �9 A. 
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3. Secret Sharing Schemes with One or More Secrets 

In this section we generalize the idea of  a single secret sharing scheme to that of  a secret 
sharing scheme with one or more secrets. Let 79 be a finite set of  participants, and let 
S be a finite set of secrets. Let r = (F~)ses be a tuple of  monotone access structures 
on 79. Note that F will continue to represent an access structure associated with a single 
secret. Let p be a probabili ty measure on ($79). Then M = (79, S ,  p) is a secret sharing 
scheme for r if, for each s c S ,  the scheme M~ = (79, s, psT,) is a secret sharing scheme 
for F~. For s E S ,  let 79s = core(Fs),  and note that (79~, s, psv~) is a connected secret 
sharing scheme for Fs. 

Note that this model is a slight generalization of  the model proposed in [6]. In the 
model in [6] it was further required that if  T c_ S and A r Fs for each s 6 T, then 
H ( T I A )  = H(T) .  Note also that in both models it follows that for s, s' c S ,  if  F~ -r Fs,, 

then the secrets s and s '  are necessarily independent. 
We call Ms a component scheme of M, and we remark that Ms is not necessarily 

connected. We say that M is connected if79 = ~Js~s 79s, that is, each participant is in the 
core of  some access structure Fs. Further, M is ideal if a constant h > 0 exists such that 
H (x ) = h for every x ~ S U (Uses  79s) (or, equivalently, if each component scheme is 
ideal and all the components schemes have the same secret size). 

E x a m p l e  6. Let 79 = {a, b, c}, S = {s, t}, F~ = {abc}, and F 7 = {ab}. Let ($79) 
be the collection of  5-tuples given by the columns of the matrix [ALIA2], where the 
following two matrices are A1 and A2, respectively: s(o 2330 2230230230032130 2210!1 

t 0 1 2 3 3 0 1 2 2 3 0 1 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 1 2 3  
a 0 0 0 0 1  1 1  1 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1  1 2 2 2 2 3 3 3  , 
b 0 1 2 3 0 1 2 3 0  1 2 3 0  1 2 3 0  1 2 3 0 1 2 3 0 1 2 3 0  1 2  
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  1 I 1 1 1  1 1  1 1  1 1 1 1 1 1  

sE23023o0233023o22o3230o32il 
t 0 1 2 3 3 0 1 2 2 3 0 1  1 2 3 0 0 1 2 3 3 0  1 2 2 3 0  1 1 2 3  
a 0 0 0 0  1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 1 1  1 1 2 2 2 2 3 3 3  . 
b 0 1 2 3 0  1 2 3 0  1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2  
c 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  

Let p be the u n i ~  probabili ty measure on ($79). It is s t r a i g h t ~ a r d  to v e r i ~  that 
M = (79, S ,  p) is a connected ideal secret sharing scheme ~ r  r = (F~, Ft). 

We now extend the definitions of  restriction and contradiction of  a single secret sharing 
scheme to the case of  a secret sharing scheme with one or more secrets. In particular, 
we sometimes wish to restrict or contract at a subset of $7 9, not just  at a subset of 
7 9. Let r = (Fs)s~s be a collection of  access structures on a participant set 79, and 
let A c_ $79. Let ~ = S \ A .  The restriction r l A  of  F at A is the access structure 
F IA  = (Fs I(A f 3 7 9 ) ) ~  defined on 79\A. The contraction r .  A of r at A is the access 
structure F -  A = (F~ �9 (A ('/79))seTz defined on 79\A. 
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Theorem 7. Let M = (7 9, S,  p) be a secret sharing scheme for  I" = (l-'~)se,s. Let 
A c_ $79 and let Q = 79\A and T~ = S \ A .  Then there is a secret sharing scheme 
MIA = (Q, T~, #) for  FIA, with # = PTzQ. Further, i f  M is ideal, then MIA is ideal. 

Proof.  Since M is a secret sharing scheme for I ' ,  then for each s 6 7?. we have Ms = 
(79, s, psT,) is a secret sharing scheme for Fs. By Result 4, M~I(A n 79) = (Q, s, #s) ,  
with #s = psQ, is a secret sharing scheme for F~I(A n 79). Thus MIA = (Q, 7~, pT~Q) 
is a secret sharing scheme for I"IA. For x ~ R Q ,  we have H p ~  (x) = Hp(x);  so if  M 
is ideal, then MIA is ideal. [] 

Theorem 8. Let M = (79, S,  p) be a secret sharing scheme for  I" = (Fs)ses .  Let 
A c_ $79 and let Q = 79\A and ~ = S \ A .  Then there is a secret sharing scheme 
M . A  = ( Q , R , # ) f o r F .  A, where for a given a ~ [AN79] we have /z(w) = 
pT~Ql(an-p)(o), Ol),for each w ~ (T~Q). Further, i f  M is ideal, then M �9 A is ideal. 

Proof.  Since M is a secret sharing scheme for F ,  then for each s ~ R ,  we have 

Ms = (7 9, s, PsT,) is a secret sharing scheme for l 's. Let ot 6 [A n 79]. By Result 5, 
Ms �9 (A n 79) = (Q, s , / z  s) is a secret sharing scheme for F~ �9 ( A n  79), where/z~ (to) = 
P~QlCanT,)(~o, or), f o rw  ~ {sQ). Thus M .  A = (Q, R , / z )  is a secret sharing scheme for 
1". A, with #(w)  = P~QltanT~)(w, or) for ~o E (RQ) .  If  M is ideal, then, for s 6 S and 
x ~ core(Fs �9 ( A n  79)), we have Ho(x) = Hus(x ), so M .  A is ideal. [] 

We note that if  M = (P, S,  p) is a secret sharing scheme for I" = (Fs)s ~s, then MIX,  
with X = (S\s)(79\79s), is a connected secret sharing scheme for Fs. 

4. Separators of Matroids and Probability Measures 

In this section we discuss the concept of  separators, both of  matroids and of  probabili ty 
measures. The results shown here are later used to establish our main result. Let T = 
(,f, 2") be a matroid, and let A _ ~c. The set A is a separator of T if  rank A + rank C \ A  = 

rank C. We note that A is a separator of T if and only if each circuit of  T lies either in 
A or in E \ A  (see Proposition 4.2.1 of  [22]). The next two results are needed to prove 
Theorem 11. We write F = A I A  2 to mean that F = {Al, A2: AI ~ AI,  A2 E A2]. 

Resul t  9 [22, 3.1.1 1]. Let T = (,f, 2 )  be a matroid, and let X ___ s Then the circuits 
of  T .  X are the minimal nonempty members of  the set {C\X: where C is a circuit of  T}. 

Resul t  10 [22, 1.4.1 1]. Let T be a matroid and let C and D be two circuits in T with 
C M D # 0. Then, for any x E C \ D  and y ~ C n D, there is a circuit in ( C D ) \ y  
containing x. 

Theorem 11. LetT  = (sAB, 2-)beaconnectedmatroid, where A, B ~ O a n d A n B  = 
0. The following three conditions are equivalent: 

(a) A and B are separators of Tts. 
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(b) For any Al, A2 c_ A and BI,.B2 ~ B such that sAlBi  and sA2B2 are circuits of 
T, then s A l B2 and s A2 Bl are also circuits of T. 

(c) I f  the monotone access structure F is associated with T, then F = A IA2, where 
A I and Az are monotone access structures on A and B, respectively. 

Proof. It is clear that conditions (b) and (c) are equivalent, so it is enough to show that 
(a) is equivalent to (b). 

Suppose (b) holds. We show that each circuit in T not containing s is contained in 
either A or B, implying that A and B are separators of TIs. First, let the set of circuits 
in T through s be C = {sAiBj: Ai C A, nj C B, 1 < i < a, 1 < j < b}. By 4.3.2 of 
[22], the circuits of T n6t containing s are the minimal sets of the form 

Di,j,k,t = s A i B j A k B I -  N sAcBd 
sAcBdC_sAiAkBjBt 

=(aiak n ac) n 
Ac CAi Ak BctCC_Bi Bt 

where sAiBj and sAkBt are distinct members of C. If Bj = Bt, then we have 

Di.j,k.j = AiAk - A Ac. (2) 
A,, C Ai Ak 

Thus if Bj r Bt, then (1) does not represent a minimal set, sinc e Di,j,k,j C__ Di,j,k.l. Hence 
the only circuits not through s are of the form of (2) (or the equivalent for A i = Ak) , 
that is, contained in either A or B. Hence A and B are separators of TIs, and (a) holds. 

For the converse, suppose that (a) holds. First we prove that 

i f sA iB l  andsA2B2 are any two circuits of T, then A1 s A2 and Bi • B2. (3) 

Suppose, on the contrary, that A1 C A2, and let p c A2\A~. Applying Result 10 using 
circuits sA2B2 and sAiBl ,  a circuit psA2B2 c_ BIA2B2 exists. Since A is a separator 
of TIs and p 6 A, it follows that psA2B2 c A and hence psA2B2 c_ A2. However, A2 
is an independent set (as it is a proper subset of the circuit sA2B2), so cannot contain 
a circuit. This contradiction proves that A~ ~ A2, and a similar argument shows that 
Bl r B2, hence (3) holds. 

For X c_ AB, we have rankr(X) = rankrls(X). Also, since T is connected, 
rankr(sAB) = rankr(AB) so 

rankr (s A B) = rankr (A B) = rankr (A) + rankr (B). (4) 

Let  sAI  Bl be a circuit of T, where A1 ~ A and Bl ~ B. In the contraction T .  Bl, SAl 
is a circuit (by (3) and Result 9), so rankr.B, (sAl) = rankr.B, (Al) and hence 

rankr.B, (sA) = rankT-n, (A). 

For X c_ s AB \ B I ,  

(5) 

rankr.B, (X) = rankr(XBl) - rankr (B0. (6) 
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Substituting X = A, and noting that s ~ AB and A is a separator of  TIs, we have 
rankT.n, (A) = rankr (A BI ) - r a n k r  (BI) = rankrl~ (A B1 ) - rankr l~  (Bl) = rankrls (A) = 
rankr  (A). Combining with (5) gives 

rankr.B, (sA) = rankr(A).  (7) 

Also from (6) 

rankr.B, (B \BI )  = rankr  (B) - rankr (Bl), 

rankr.s, ( sAB\BI )  = rankr(sAB) - rankr(B1).  

(8) 
(9) 

So 

rankr.B, (sA) + rankr.s, (B \B l )  
= rankr(A)  + ( rankr(B)  - r a n k r ( B 0 )  by (7) and (8) 
= rankr.B, ( s AB \ BI )  by (4) and (9), 

that is, sA is a separator of  T �9 BI. Now let sA2B2 be another circuit in T. By Result 9, 
sA2B2\Bt contains a circuit in T �9 Bl. As B2 is an independent set, and as sA is a 
separator of  T �9 Bl, there is a circuit sA' 2 in T �9 B~ for some A~ _ A2. By Result 9, 
sA'2B' l is a circuit in T for some B' l ___ Bl. Applying (3) twice, we see that A~ = A2 and 
B' l = B1. Thus s A2 B l is a circuit in T, and, similarly, s A l B2 is a circuit in T. Hence (b) 
holds, as required. [] 

We now define separators of  probability measures. We then show the relationship 
between separators of  probability measures and separators of  their associated matroid, 
and then prove some properties of  separators. Let p be a probability measure on a finite set 
(Z), and let A _ B _ Z. We say that A is a separator of (B, p) if H ( A I B \ A )  = H(A) ,  
which holds if and only if H ( B \ A I A )  = H ( B \ A )  which is if and only if H(B)  = 
H(A)  + H ( B \ A ) .  So A is a separator of  B if and only if B \ A  is a separator of  B, which 
is if and only if O(A) and O(B\A)  are independent random variables. Note that A is a 
separator of  (B, p) if and only if A is a separator of  (B, Pc). 

L e m m a  12. Let p be a probability measure on a finite set (Z) for which an associated 
matroid T = ( Z, Z) exists. Then the separators of  (Z, p) are precisely the separators 
ofT. 

Proof.  By definition of  (Z, p) being associated with the matroid T, there is a constant 
h > 0 with H(A)  = h x rankT(A) for all A _ Z. Let A _ Z and B = Z \ A .  Then A 
is a separator of  (Z, p)  if and only if H(Z)  = H(A)  + H(B).  Dividing by h, this holds 
if and only if rankr (Z) = rankT(A) + rankT(B), hence if and only if A is a separator 
of  T. [] 

We now give some properties of  separators of  probability measures. Note that although 
what follows could be stated in terms of independent random variables (in particular, 
Lemma 13), we find the language of separators convenient in this context. 
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L e m m a  13. Let p be a probability measure on a finite set (Z), and let A,  B c Z.  I f  
A and B are both separators o f  (Z, p), then so are A B  and A A B. Further, suppose 

A c B. I f  A is a separator o f  (Z,  p), then A is a separator o f  (B, p),  and i f  B is a 

separator o f ( Z ,  p), then A is a separator o f  ( A ( Z \ B ) ,  p). 

Proof. First, note that for any three disjoint subsets W, X, Y of Z we have (by Result 1) 

H ( W X )  + H ( W Y )  - H ( W X Y )  = H ( W Y )  - H ( Y I W X )  

= H ( W )  + H ( Y I W )  - H ( Y I W X )  

> n ( w ) .  (10) 

Now let X = A fq B, Y = Z k ( A B ) ,  Al  = A \ B ,  and BI = B \ A ,  so that Z is the disjoint 
union of  X, Y, A l, B 1. Since A = X A l and B = X B l are separators of (Z, p), it follow s 
that 

Thus 

H ( A I B t X Y )  = H ( A I X )  + H ( B I Y )  (11) 

= H ( B ~ X )  + H(A~Y) .  (12) 

H ( X ) +  H ( Y )  > H ( X I A ~ B ~ Y ) +  H(YIA~B~X)  

= H ( A I B I X Y )  - H ( A I B I Y )  + H ( A I B I X Y )  - H ( A 1 B I X )  

= H ( A I X )  + H ( B t Y )  - H ( A I B I Y )  + H ( B I X )  

+ H ( A t Y ) - H ( A i B 1 X )  by (11) and (12) 

= ( H ( A I X )  + H ( B ~ X )  - H ( A 1 B I X ) )  

+ ( H ( A I Y )  + H ( B I Y )  - H ( A I B I Y ) )  

> H ( X )  + H ( Y )  by applying (10) twice. 

Hence equality holds throughout, and in particular H ( X I A I B I Y )  = H ( X )  and 
H ( Y ] A I B I X )  = H ( Y ) .  Thus X = A fq B and Y = Z k ( A B )  are separators of  (Z, p), 
implying that A B  is also a separator of  (Z, p). 

Now suppose that A c B. We have H ( A )  > H ( A I B k A )  > H ( A I Z k A )  = H ( A ) ,  
since A is a separator of  (Z, p). Thus equality holds throughout, and, in particular, A is 
a separator of  (B, p). If  B is a separator of  (Z, p), then Z \ B  is a separator of  (Z, p), 
so, by the previous part of  this lemma, Z \ B  is a separator of  ( A ( Z \ B ) ,  p). Hence A is 
a separator of  ( A ( Z \ B ) ,  p), as required. [] 

L e m m a  14. Let p be a probability measure on a finite set (Z), let A c_ B c__ Z and 
a E Z. Suppose that A is a separator o f ( B ,  p) and that H ( a l A )  = O. Then f o r  A' c A 
we have H ( a l A ' ( B \ A ) )  = H(a lA ' ) .  Further, aA  is a separator o f  (aB,  p). 

Proof. Let B'  = B \ A .  First note that since A is a separator of  (B = AB' ,  p), then A' 
is a separator of  (A 'B ' ,  p), by Lemma 13. Also, aA'  is a separator of  (aA 'B ' ,  p), as we 
now show, using H ( a A )  = H ( A ) .  H ( B ' )  = H(B ' IA ' )  > H ( B ' I a A )  = H ( a A B ' )  - 
H ( a A )  > H ( A B ' )  - H ( A )  = H ( A )  + H(B ' )  - H ( A )  = H(B ' ) ;  so equality holds 
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throughout, implying that B', and hence also aA', is a separator of  (aA'B',  p) (choosing 
A' = A shows that aA is a separator of  (aB, p)). Thus, H(alA')  > H(aIA'B')  = 
H(aA 'B ' )  - H(A 'B ' )  = H(aA')  + H(B ' )  - H(A')  - H(B ' )  = H(aIA').  Equality 
holds throughout, hence H (a I A' B') = H (a I A'), as required. [] 

5. Construction and Classification of Ideal Secret Sharing Schemes 

In this section we give a complete classification of  the collections of  secret sharing 
schemes which occur as the components of  an ideal secret sharing scheme. In doing so, 
we show explicitly how to construct a secret sharing scheme from such a collection of  
components. 

Lemma 15. Let M = (79, s, p) be an ideal secret sharing scheme for F, let 79~ = 
core(F) and let A c 79\79~. Then FIA = F �9 A and H(BIA)  = H(B)  for any B c 79~. 

Proof. L e t A  c 79\79~.ForB ___ 79s we have B E F if and only if AB E F. Thus 
FIA = F - A. 

In particular, if Q = 79\79~, then F IQ = F .  Q (=  F', say). Hence 79~ = core(FIQ) = 
core(F �9 Q). By Results 4 and 5 MIQ = (79s, s, r )  and M �9 Q = (79~, s , /z)  are ideal 
secret sharing schemes for F', where r = p ~ ,  and for some fixed a E [Q], and any 
w E (S79s), #(w) = psp, iQ(w, a) .  As MIQ and M .  Q are connected ideal schemes for 
the same access structure F', they are associated with the same matroid T = (s79~, 2"). 
Further, H~(s) = Hu(s) (=  h, say). So for B _c 79~, H~(B) = h x rankr(B)  and 
Hu(B) = h x rankr(B).  However, H~(B) = Hp(B) and Hu(B) = Hp(BIQ = a). 
Hence Hp(B) = Hp(BIQ). So B is a separator of  (BQ, p) and by Lemma 13, for any 
A c Q, B is a separator of  (AB, p) and so Hp(BIA) = Hp(B). [] 

For the remainder of  this section, let M = (79, S,  p) be a connected, ideal secret 
sharing scheme for 1-' = (Fs )~s ,  and let 79, = core(Fs) (for s E S). For each X c S, 
let 

That is, 79x is the set of  participants which are in ~ for all s E X and not in 79~ for 
any s ~' X. We note that the nonempty sets 79x, for X c S, partition 79 and that the 
nonempty sets 79x, for s E X c_ $ ,  partition 79~. 

Lemma 16. For any X cc_ S, 79x is a separator of (7 9, p) and of  (79s, PT~,) for each 
s e X .  

Proof. Let s E S and let A = 79\79s. By Lemma 15, H(79slA) = H(79~) so that 79~ is 
a separator of  A79~ = 79. Thus 79\79~ is also a separator of  (79, p), and the result follows 
from Lemma 13. [] 
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The next result gives necessary and sufficient conditions on a collection of  ideal single 
secret sharing schemes in order that it can occur as the collection of components of  an 
ideal secret sharing scheme with multiple secrets. These conditions are that each access 
structure is a product of  access structures on the subsets 79x of  participants, and that 
the respective probability mass functions agree on the subsets 79x. Our theorem shows 
explicitly the construction of  an ideal secret sharing scheme from its component schemes. 

Theorem 17. Let h > 0. Let r = ( rs)ses  be a collection o f  ideal access structures 
on a participant set 79, with set S o f  secrets. For s E S ,  let 79s = core(rs)  and let 
Ts = (s79s, Zs) be the matroid associated with rs. Suppose that 7 9 = Uses  79s. There is 
a connected ideal secret sharing scheme M = (79, ,_q, p ) f o r  F with H(s)  = h for  s E S 
if and only if the following conditions hold: 

(a) For each s E S and each X c S with s E X, 7 9x is a separator o f  Ts Is (equiva- 
lently, for  each s E S we have rs = I-Isaxc_s AXs where each A x is a (possibly 

empty) access structure on 79x). 
( b ) For each s E S there are secret sharing schemes Ms = (79s, s, p" ) for  r s satisfying 

lip, (s ) = h and such that fo r  each s, t with s, t E S and each X c S with s, t E X 
we have (pS)7:,x = (pt)7:,x. 

Proof. Suppose there is a connected ideal secret sharing scheme M = (79, S,  p) for 
r with H(s)  = h for s E S. For s E S let Ms be the ideal single secret sharing 
scheme Ms = (Ps, s, pS = Psv,) for rs,  and note that Ms has associated matroid T~. 
Let s E S. By Lemma 16, 79x is a separator of  (79, p) and of  (79s, p~,). By Lemma 12, 
79x is a separator of  Ts Is and the first part of  (a) holds. Since 79s = U{x: sEx_ca} 79x, 
the equivalent statement follows from repeated applications of  Theorem 1 1. Further, 
lip, (s) = HR, v, (s) = Hp(s) = h and for each s, t E S with s # t and each X _c S with 
s, t E X, then 79x c_ 79s n 79t so that (pS)px = pT~x = (pt)px and (b) holds. 

Conversely, suppose (a) and (b) hold. For X __ S, let pX denote (pS).px for any s ~ X. 
Property (b) ensures that pX is well defined. For s ~ S and X c_ S with s ~ X, 79x is 
a separator of  Ts Is (by (a)) and 79x is a separator of  (79,, pS), by (b) and Lemma 12. By 
Result 1(3), this means p~(zr )  = I-I{xc_s: ~ x l  PX(zrp x) forzr E (PA. For w E [S79s]p,, 
since Hp,(s179s) = O, 

s [ /)  s s p#(w) -- PT:',( P,)P,l 'p,(w#lw~,) = PT:',(wP,) = I - [  pX(wpx ) '  
{XC_S: seX} 

(13) 

Let (ST') be the collection of  tuples zr E ( x seS [s]p,) x ( x xc_s [79x ]px ) such that zrsp, E 
[s79s]p, for each s E S. For each Jr E ($79), let 

p(~r) = l--I Px(zrt:'x) 
XC_S 

(14) 

(so ($79) = [$79]p). We now show that M = (7 9, ,S, p) is an ideal secret sharing 
scheme for I '  (which is necessarily connected, by hypothesis). We first show that p is a 
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probability measure. We have 

Z p ( r r ) =  Z l-I  PX(zrT:'x) by(14)  
7r ~($7:') 7r ~(S'P) X C_s 

=l-I E 
X C_S ~r'~['Plox 

ThUS p is a probability measure on ($79). By (14) and Result 1(3), for any X ___ S, 79x 
is a separator of  (79, p),  hence 

H(79x179\79 x) = H(79x). (15) 

We now show that M~ = (79, s, PsT~) is a secret sharing scheme for Fs. Since we already 
know that M~ = (79s, s, p~) is a secret sharing scheme for Fs, it is enough to show that 
the following two conditions are satisfied: 

that is, p~p, = p~, (16) 

B c_ 79\79s, wehave  Hp(sIAB) = np(slm). (17) 

MS ! = M~ 1(79\79~), 

for all AC79s  and 

Let w ~ [s79~]p. Then 

ps~,~ (vo) = y ~  p(zr) = Z H Px(zrT:'x) by (14) 
{Jr~[S79]p: zr,7,,=wl {Tr~[,SP]p: ~rs~,=wl XC_S 

= I-I pX(wT~) = pS(w) by (13). 
[xc_s: seX} 

Hence (16) holds. We now prove (17). Let A _ 79~ and B c 79\79s. As 79~ = 
~lx_cs: .~xl 79x and each 79x is a separator of  (7 9, p) (by (15)), it follows by Lemma 13 
that 79s is a separator of  (7 9, p). Since Hp(slP~) = 0, by definition of p and Lemma 14, 
sP~ is a separator of  (sT', p).  Again by Lemma 13, sA is a separator of  (sA(79\79s), p). 
By Lemma 14, Hp(slA) = Hp(slAB) as required. It follows that M is an ideal secret 
sharing scheme for 1-'. [] 

E x ample  18. We verify conditions (a) and (b) of  Theorem 1 7 in the case of  Example 6. 
The participant set 79 = {a, b, c} is partitioned by 79s = {c} and 79~t = {a, b}. 

(a) F~ = {abc} on 79s, so Fs = AsSASt where AsS = {c} and A~ t = {ab}. Similarly, 
F, = {ab} on 79t, so I" t = AttAStt where Att = 0 and A~ t = {ab}. 

(b) Note that Ms = (abc, s, Psabc) is an ideal secret sharing scheme for l's, with 
Hpso~c(s) = Hp(s). Similarly, Mt = (ab, t, Pt~b) is an ideal secret sharing scheme 
for F,, with Hp, ab(t) = Hp(t). Since M is ideal, Hp(s) = Hp(t) = h, say. Further, 

(Psabc)ab -~- Pab = (Ptab)ab. 

E x ample  19. L e t s  = {s,t} and 7 9 = {a, b, c, d}. Let F 7 = {ab, acd, bcd} and 
F t = {ab, cd}. So 79s = 79, = 7:' and hence 79s = 79t = ~ and 79st = 79. We have 
Fs = A~A~/, where AsS = 0 and A~' = Fs. Also Ft = AttAt t, where A'  t = 0 and 
A ~  t = F t .  An ideal secret sharing scheme for (Fs, I " t )  is given by the set of  tuples 

{ ( s , t , a , b , c , d )  = (~ , /~ ,a  + f l ,  cr + 2 / L  fl + y, V)I~, /L y ~ GF(3)},  

with each tuple occurring with probability 1/27. 
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6. Ideal Secret Sharing Schemes and Matroids 

As mentioned in Section 2.1, the matroid associated with an ideal single secret sharing 
scheme has proved to be an extremely important tool in the attempt to characterize such 
schemes. It is natural to ask whether an ideal secret sharing scheme (with more than one 
secret) determines a matroid in the same way. To be precise, let M = (7 9, S, p) be an 
ideal secret sharing scheme for r = (l-'s),es, and let A(M) = {A __. $79: there is a �9 A 
such that H (a I A \a )  = 0} (see Section 2.1). If A (M) is the collection of  dependent sets 
of a matroid T = ($79, Z), then we say that T is the matroid associated with M. 

We first show by counterexample that, in contrast to the single secret case, not every 
connected ideal secret sharing scheme has an associated matroid. Motivated by this 
example, we investigate which sets X c_ $79 are always associated with a matroid. In 
Theorem 20 we show that there is always an associated matroid when X = s79 for some 
s �9 S. In Theorem 2 1 and its corollary we consider the special case where the cores of  
a subset of  the access structures are pairwise disjoint. 

We then view the matroid association from a different viewpoint. By Theorem 20 we 
can find a matroid on sT' for any s �9 S, and, by the counterexample below, there is not 
necessarily a matroid on st79 for two secrets s and t. If there is not a matroid on st79, this 
means that there is A _c 79 with either 0 < H (s It A) < H (s) or 0 < H (t Is A) < H (t). In 
Theorem 24 we investigate how this affects the relationship between the access structures 

Fs and Ft. 
The final theorem in this section remarks that if $79 is associated with a representable 

matroid T, then an ideal secret sharing scheme for r = (F,)s~s can be easily obtained 
using known methods (where, for s �9 S,  Fs is the access structure associated with 

Tl(S\s)). 
Suppose that the secret sharing scheme M = (79, S,  p) has associated matroid T = 

($79, Z). It then follows that H (a I A) = H (a) or 0 for all a �9 ST',  and A __ ST'  (since the 
rank function is integer-valued, and so every H (alA) is a multiple of  H (a)). However, 
for the ideal secret sharing scheme M given in Section 3, we have 0 < H(slct) = 
H(stc) - H(ct) < H(s) since, for example, 000 �9 [stc] occurs with probability 1/16 
and 121,123 �9 [stc] each occur with probability 1/32. Thus an ideal secret sharing 
scheme does not necessarily have an associated matroid defined on S79, associated in 
the same way as in the single secret case. 

We now investigate to what extent we can guarantee an associated matroid. 
First we recall the following definition. Let T1 = (s and T2 = (s Z2) be 

matroids, satisfying s N s = 0. The direct sum of Tl and T2 is the matroid Tl �9 T2 = 
(s163 ~') where Z = {Ili2: Ii �9 Zl, 12 �9 Z2}. Since for each 1l �9 2"1, 12 �9 ~-2 we have 
Ill 121 = I111 + 1121, it follows that rank(gig2) = rank(g1) + rank(g2); hence s and s 
are separators of  Tl @ T2. Further, Tlgl = T2 and T1s = T1. In a similar way, we can 
define the direct sum of a finite number of  matroids, provided they are defined on disjoint 
sets. Conversely, given any matroid T = (s 2") with a separator A, and B = s  we 
have T = (TIA) ~ (TIB). Finally, we note that in the case of  matroids TI = (s Zl) 
and T2 = (s 2-2) satisfying s 71 s ~: 0, it is not always possible to find a matroid 
T = (s163  ".Z-) such that Tlgl = T2 and TIs  2 = Tl. 

We note the following useful observation, which is the basis of  Theorems 20 and 
2 1. Let M = (79, S, p) be an ideal secret sharing scheme for r .  Suppose there are 
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X c_ $79 and separators Xi . . . . .  X~ of  (X, px) which partition X. Suppose there are 

matroids Tt . . . . .  Tr associated with X l . . . . .  X~. Then M' = M I S P \ X  has an associated 
matroid, which is T = TI ~9 . . -  �9 T~, defined on the set X. We use this observation, 
together with Lemmas 14 and 16, to show there is a matroid associated with the union 
of  the set of  participants with the set containing any one secret. 

T h e o r e m  20. Let M = (79, S, p) be a connected ideal secret sharing scheme for 
1" = (Fs)seS, and consider the secret sharing scheme MI(S \s )  = (7 9, s, Ps7') for Fs. 
Then a matroid defined on the set s79 and associated with M I(S\s) exists. 

Proof.  For each s e S let T~ = (S79s, Z~) be the matroid associated with the (connected 
ideal) secret sharing scheme Ms = (79~, s, Psp~). By Lemmas 12 and 16, for each X _ S ,  
79x is a separator of  Tsls. Let X c S .  For s, t ~ X, 79x c_ 79s M 79t, so Ts1($79\79 x) ~- 
Ttl(S79\79x). Hence we can define Tx = Ts1($79\79 x) = (79x zx ) ,  for any s ~ X. 

Since s79 = (s79~) t_/(UIx: scx_cs) 79x), the required matroid is (~xc_s\~ Tx) ~ T~. [] 

Now consider again Example 6. We showed that there is a matroid Tl = (sabc, 2") 
with circuit set {abcs} associated with the secret sharing scheme MI = (abc, s, Pl) for 
F~. There is a second secret sharing scheme M2 = (ab, t, P2) for Ft with associated 
matroid T2 = (tab, 2"2) with circuit set {abt}. The example shows that the secret t and 
the circuit abt cannot be adjoined to the matroid Tl to form a new matroid associated with 

the secret sharing scheme M whose component parts are Ml and M2. In the next theorem 
we show conditions under which the matroid associated with one of the components of  a 
secret sharing scheme can be extended in this way to include other component schemes. 

T h e o r e m  21. Let M = (79, S, p) be a connected ideal secret sharing scheme for 
1" = (F~)ses. Suppose X c_ S exists such that for each s E X there is a set Xs c_ S 
with s E X~ and H(s179 x~) = O. Then there.is a matroid defined on the set X79 and 
associated with M I ( S \ X )  = (79, X, pxp)  for ( F s ) ~ x .  

Proof.  We show that 79x, = p~ for each s ~ X. For s ~ X, as 7 9x' is a separator 
of  (79~, Pvs) (Lemma 16), and H(s lP  xs) = 0, then s79 xs is a separator of  (sP~, p~v,) 
by Lemma 14. Let Ts = (sPs, Z~) be the matroid associated with Ms = (79~, s, Psps) 
for Fs. By Lemma 12, s79 x~ is a separator of  Ts, so each circuit sC of T~ lies in s79 x~ 
(Section 4); hence 79s = 79x~ (Result 2(3)), as we claimed. Note that the existence of  
the sets X and X~ (s ~ X) is equivalent to the existence of X _ S with the properties: 
(a) 79~ A 79t = 0 for each s, t E X with s -71: t, and (b) for each s c X and each 
u ~ S \ X  either 79~ M 79u = 0 or 79~ c 79u. This follows by the equality 79s = 79xs. As 

X79 = ( U ~ x  sT's) u (Urc_s\x 79r), the associated matroid is 

where Tr is as defined in Theorem 20. [] 
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As a corollary, we obtain the (unsurprising) result that if an ideal secret sharing scheme 
has component schemes defined on pairwise disjoint sets of  participants, then the secret 
sharing scheme has an associated matroid, which is the direct sum of the matroids 
associated with the component schemes. 

Coro l l a ry  22. Let M = (79, ,9, p) be a connected ideal secret sharing scheme for  
1-' = (Fs)~es. l f  for  each s, t ~ ,9, s ~ t, we have ~ M 7"t = 0, then there is a matroid 
defined on the set ,97" and associated with M. 

Since not every ideal secret sharing scheme has an associated matroid, and as suggested 
by the idea of direct sums of  matroids, we now ask: given an ideal secret sharing scheme 
M = (7", ,9, p) for r ,  does a matroid T = (87", 2-) exist such that TI,97"\(sT~D = T~ 
for each s c ,9? Our next example shows that such a matroid T can sometimes be found. 
Note that we are not asking that the matroid be associated with M, and indeed in this 
example it is not, as argued above. 

E x a m p l e  23. Recall the ideal secret sharing scheme M = (abc, st, p) for 1TM = (Fs, Ft) 

where Fj- = {abc} and F 7 = {ab} discussed in Example 6. Let TI = (sabc, Z1) 
and T2 = (tab, 272) denote the matroids associated with Fs and Ft, respectively. Let 
T = (stabc, 2-) be the matroid with the set of  circuits {abcs, abt, cst}, so that the 
dependent sets of T are 

A = {abcs, abcst ,  abt, abct,  abst,  cst, acst,  bcst} 

and each other subset of  stabc is independent. It is straightforward to verify that Tit = Tl 
and TIsc = ~ .  

As discussed at the beginning of this section we now consider the case when two 
secrets s, t E ,9 cannot be adjoined to 7" in such a way that there is an associated matroid 

on (stT', Pstp). By Theorem 20, for a E sT" and A c sT" we have either H(a lA)  = H(a)  
or 0. Similarly for t7". So if there is no matroid associated with stT', then A ___ P with 
0 < H(s l tA)  < H(s)  exists. 

T h eo rem 24. Let M = (7', 8,  p) be a secret sharing scheme for  r = ( F s ) ~ s .  Suppose 
there is A c_ 79for which H(s i tA )  < H(s)  for  some s 56 t, s, t E ,9. Then AFt c_ I's, 
where A F t  = {ABIB E I't}.  

Proof.  SupposeB E F t , s o t h a t H ( t l B ) = O . N o w  H ( s A B ) =  H ( s t A B ) =  H ( s l t A B )  
+ H ( t A B )  < H(s l tA)  + H ( A B )  < H(s)  + H ( A B ) .  Hence H ( s I A B )  < H(s)  so 
A B  E Fs. [] 

Coro l l a ry  25. Let M = (7", 8 ,  p) be a secret sharing scheme for  1" = (F~)~8.  
Suppose H(sl t )  < H ( s ) f o r  some s 56 t, s, t ~ S.  Then I'~ = Ft. 

Proof.  We apply Theorem 24 and A = 0. So I ' t  c F~ .NowH( t l s )  = H ( s l t ) + H ( t ) -  
H(s )  < H( t ) ,  so applying Theorem 24 again we obtain F~ _c Ft. Hence l 't = F~. [] 
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Illustrating Theorem 24 with Example 6, where A = {c}, we have 0 < H(slAt)  < H(s) ,  
and so cFs c Ft. Actually, in this case F.~{abc} and F / =  {ab}, so cFs = F,. 

We now complete this section by remarking that, as in the single secret sharing case 
[10], if there is an appropriate representable matroid, then we can find an ideal secret 
sharing scheme. 

Theorem 26. Let T = ($79, 2") be a representable matroid. For each s E S suppose 
that T I(S\s)  has associated access structure Fs, and let 79s = core Fs. If7 ~ = Uses  79s, 
then there is a connected ideal secret sharing scheme M = (7:', ,S, p) for r = (Fs)s~S. 

Proof.  To obtain the tuples [SY']p with a uniform probability measure p is a straight- 
forward generalization of  the technique in [ 10]. [] 

7. Concluding Remark 

We have classified ideal secret sharing schemes with more than one secret in terms of  
the ideal single secret sharing schemes that must exist for such a scheme to be formed. 
These schemes thus allow a group of  participants to share more than one secret, while 
holding a share whose size is the same as that of  each of  the secrets. We have also shown 
that the link between matroids and ideal secret sharing schemes does extend to these 
more complex schemes, but have shown that the relationship is less straightforward in 
this case. 
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