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Ideal strength of bcc molybdenum and niobium
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The behavior of bcc Mo and Nb under large strain was investigated using theab initio pseudopotential
density-functional method. We calculated the ideal shear strength for the$211%^111& and $011%^111& slip
systems and the ideal tensile strength in the^100& direction, which are believed to provide the minimum shear
and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free
tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to
this tetragonal ‘‘saddle-point’’ structure sets the ideal shear strength. When either material is strained in tension
along^100&, it initially follows the tetragonal, ‘‘Bain,’’ path toward a stress-free fcc structure. However, before
the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it
evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs
after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc
extremum as in W. However, a Nb crystal strained in^100& becomes orthorhombic at tensile stress below the
ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by
failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (t*
5tm /G11150.12,s* 5sm /E10050.078) are essentially identical to those previously calculated for W. Nb is
anomalous. Its dimensionless shear strength is unusually high,t* 50.15, even though the saddle-point struc-
ture that causes it is similar to that in Mo and W, while its dimensionless tensile strength,s* 50.079, is almost
the same as that of Mo and W, even though the saddle-point structure is quite different.

DOI: 10.1103/PhysRevB.66.094110 PACS number~s!: 62.20.Fe
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I. INTRODUCTION

The ideal strength is the stress required to yield or brea
perfect crystal.1,2 The most important feature of the ide
strength is that it sets an upper bound on the attainable st
Mobile dislocations, grain boundaries, cracks, and other
crostructural features may significantly change the stren
of a real crystal, but they can never raise it above its id
value.

The upper limit of strength is of obvious interest in m
terials science, and theorists have attempted to compu
from atomic models since at least the 1920s.1,3,4 These early
models assumed simple analytic forms for the stress-st
relation at large strains that made it possible to express
ideal strength in terms of experimental values of the ela
moduli. Later, in the 1970s and 1980s, semiempirical p
potential and embedded atom models were used to study
large strain behavior of bcc and fcc materials.5–7 These stud-
ies helped to clarify the generic behavior of materials un
large strain, but because the models used are based on
small strain behavior~e.g., the elastic constants!, their quan-
titative accuracy at large strains is uncertain. Recently,ab
initio methods have been used to calculate large strain
havior. These methods are not based on experimental m
surements. They are equally valid at all strains and h
proven successful in computing the ideal strength.8–15

The more sophisticated computations of the ideal stren
have been accompanied by~and have contributed to! a
clearer understanding of the meaning of the term.16 When an
infinite, perfect crystal is subjected to an increasing stres
responds elastically until the stress becomes so great tha
0163-1829/2002/66~9!/094110~7!/$20.00 66 0941
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lattice becomes unstable. This stress is the ideal strength
its ideal strength the crystal necessarily fails, either by bre
ing ~fracture!, shearing into a deformed replica of itself~plas-
tic deformation!, or shearing into some new crystal structu
~martensitic transformation!. The specific mode of failure is
a complex problem in molecular dynamics, since it depe
on precisely how the lattice atoms move once the instab
has set them free. However, assuming that we can ign
phonon-induced instabilities, the elastic stability limit is
problem in lattice statics that can be attacked with availa
theoretical tools.

Even in the quasistatic case the meaning of the id
strength has subtle features.16 Three are particularly impor-
tant. The first concerns the boundary condition assumed
the problem. As Hill has pointed out,17,18 the conditions of
elastic stability for a material under load are sensitive to
behavior of the loading mechanism. This problem can
avoided by controlling the displacement, rather than the lo
and defining the ideal strength as the load that produces
critical displacement at which the crystal becomes unsta
with respect to internal displacements. The second conc
the direction of the instability. It sometimes happens tha
given displacement~for example, an uniaxial tension! trig-
gers elastic instability with respect to a very different d
placement~for example, a orthogonal shear!. It follows that
all possible responses must be considered to identify
limit of strength. Third, the ideal strength is a highly anis
tropic function of the displacement. It is significantly diffe
ent for tension and shear and, ordinarily, depends strongly
the particular direction of tension or plane and direction
shear.
©2002 The American Physical Society10-1
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Many of the salient features of the ideal strength, inclu
ing its anisotropy, can be understood from symmetry con
erations. Finite strain can transform a crystal structure i
itself or into an alternate symmetric structure. In bcc,
example, a homogeneous shear in the system$011%^100&
periodically regenerates bcc, while a homogeneous strai
relaxed tension alonĝ100& creates a tetragonal structure th
may eventually become face-centered cubic~fcc!, then te-
tragonal again. It follows that the plot of energy as a funct
of the six-dimensional strain is corrugated and punctua
with minima. The most favorable strain path that conne
the starting structure to a nearby minimum necessarily pa
through a state of maximum energy at a saddle point~moun-
tain pass! on the energy surface. The relaxed, minimu
energy structure sits in a valley on the energy surface tha
connected to other valleys by paths that pass through sa
points of this type.

The structures of the states at the saddle points~the
‘‘saddle-point structures’’! are particularly instructive in un
derstanding the ideal strength for simple load configurati
such as uniaxial tension or shear.2,5,10,19When a perfect crys-
tal is loaded in uniaxial tension or balanced shear under
placement control, one strain is controlled while the oth
five independent strains adjust to minimize the energy. T
strain path naturally evolves toward a saddle point in
energy surface. The stress that is associated with a partic
strain is proportional to the derivative of the energy w
strain. It follows that as a crystal is deformed from its eq
librium structure toward a saddle-point in the energy surf
the stress increases, passes through a maximum, and re
to zero when the saddle-point structure is reached. The m
mum stress is the ideal strength, and is associated with
inflection point in the curve of energy as a function of stra
along the strain path toward the saddle point.2

Note that, unless the crystal is artificially constrained,
saddle-point structure is never reached. The crystal beco
elastically unstable and fails at its ideal strength, at roug
one-half the saddle-point strain. However, the saddle-p
structure strongly affects the strain path and strongly in
ences the ideal strength. In fact, in most of the cases stu
to date,2,15,20 the ideal shear and or tensile strength can
approximated rather well by assuming a sinusoidal stre
strain relation that has the initial slope set by the appropr
elastic constant and returns to zero at the appropriate sa
point strain.

In general, there are very few stress-free structures
can serve as saddle points, and most of these are determ
by symmetry. Examples include the cubic structures, wh
are stress-free in simple crystals. Also, there is ordinarily
stress-free body-centered~or, equivalently, face-centered! te-
tragonal structure.19 Because there are so few stress-fr
structures, the deformation paths generated by geometric
different stress states often pass through the same sa
point. Thus, an understanding of the few available stress-
states can provide a very general picture of the sources o
ideal strength.

In the present paper, we use theab initio pseudopotentia
density-functional method to calculate the ideal tensile a
shear strengths of Mo and Nb in tension and shear, and
09411
-
-

o
r

in
t

n
d
s
es

-
is
dle

s

s-
r
e
e
lar

-
e
rns

xi-
he

e
es

ly
nt
-
ed
e
s-
te
le-

at
ned
h
e

e
lly
dle
e

he

d
n-

vestigate the saddle-point structures that are responsible
the elastic instabilities that set the ideal strength. This
search on Mo and Nb continues our exploration of the id
strengths of bcc metals such as the prior work on W~Ref. 15!
and concurrent work on Fe~Ref. 20!. Both Mo and Nb have
the bcc crystal structure and are similar in many of th
physical properties, but there are intriguing differences
their elastic properties. In particular, the ratio of the sh
and bulk moduli in Nb is much smaller than in Mo. Th
difference suggests that Nb is more likely than Mo to fail
shear rather than cleavage when stressed to the limit o
strength21 ~in fact, qualitative models suggest that Nb m
have the best inherent ductility of all the bcc transition m
als!. It follows that Nb and Mo may have very differen
failure modes at large strain.

As we shall show below, there are only two releva
saddle-point structures in Nb and Mo~and, by inference, in
other bcc structures!: the face-centered cubic structure, and
body-centered tetragonal~bct! structure. The ideal shea
strengths for the slip systems commonly found in bcc met
$211%^111& and$011%^111&, are nearly the same and are d
to shear instabilities associated with the bct saddle-p
structure. The ideal tensile strength for the weak direct
^100& in bcc is the result of a competition between the
stabilities associated with the bct and fcc saddle-point str
tures, both of which lie on thê100& tensile path. The fcc
saddle-point governs the tensile strength of Mo, as it does
other common bcc metals such as W~Ref. 15! and Fe~Ref.
20! and appears to be the source of the$100% cleavage that is
common in bcc. However, the bct saddle point governs
^100& tensile strength of Nb. The associated failure mode
an elastic instability with respect to shear on the syst
$211%^111&. This result suggests that Nb, unlike other co
mon bcc metals, is inherently ductile when pulled in uniax
stress.

II. METHOD

In the present paper, we use theab initio pseudopotential
density-functional method as employed in Refs. 11 and
The ideal strength is calculated by straining the crystal inc
mentally. At each step, the crystal is relaxed until all of t
stresses orthogonal to the applied stress~for both shear and
tensile stress! are reduced to zero. This produces a curve
energy versus strain, and a related curve of stress ve
strain. The first maximum in the stress-strain curve is
ideal strength for this strain path provided no other instab
ties occur before reaching it. The first zero reached along
stress-strain curve is the first maximum in the energy-str
relation along the relaxed~minimum-energy! path, and is,
hence, a saddle point in the hypersurface of energy a
function of strain. The associated structure is the ‘‘sadd
point structure’’ that governs the ideal strength.

The total energy is computed as a function of strain us
the local-density approximation~LDA ! pseudopotential
total-energy scheme with a plane-wave basis set.22–25 We
relax the structures using a quasi-Newton method26 to mini-
mize the energy. A plane-wave energy cutoff of 60 Ry
chosen, with ak grid of 16316316 points in the full Bril-
0-2
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IDEAL STRENGTH OF bcc MOLYBDENUM AND NIOBIUM PHYSICAL REVIEW B66, 094110 ~2002!
louin zone. Using these parameters, we obtain equilibr
lattice constants for Mo and Nb of 3.17 and 3.30 Å, whi
are within 1% of the experimental values. The calcula
bulk moduli are 283 and 195 GPa, respectively, which
around 10% greater than the experimental values of 264
170 GPa.27 This result is typical of the LDA, which tends t
overbind. For the Young’s modulus in thê100& direction
and the shear modulus relevant to shear in the^111& direc-
tion, we obtain agreement with experiment better than 8
with the exception of the shear modulus of Nb. Our calcu
tion of the shear modulus of Nb is 30% lower than the e
perimental value, so we use the experimental modulus w
calculating the dimensionless shear strength of Nb, as i
cated in Table I.

For finite deformation, there is some ambiguity in t
definition of the strain. For the tensile strain, we find it co
venient to use the engineering straine, for which the tensile
stresss is

s tensile5
11e

V~e!

dE

de
, ~1!

where E is the strain energy andV(e) is the volume at a
given engineering strain. For the shear strain, it is conven
to use the true strain, as defined in Ref. 11. This strain
numerically very similar to the engineering strain, but h
the advantage that one can calculate the shear stresst from
the energy versus strain curve via the equation

tshear5
1

V~g!

dE

dg
, ~2!

whereg now represents the true shear strain, while the ot
symbols are as defined above.

III. RESULTS

A. Ideal shear strength

The $211%^111& shear is shown in Fig. 1. Figure 1~a! is a
drawing of the cubic cell in the bcc structure with the (110̄)
and (1̄1̄2) planes shown. The initial~unsheared! atomic con-
figurations in these planes are given by the solid symbol
Figs. 1~b! and 1~c!, respectively. The circles give the ato
positions in the plane while the diamonds label positio
above the plane. The@111# direction of shear is to the right
When the atom represented by the solid diamond moves
third of the edge length to the position of the gray diamo
the structure returns to bcc. The intermediate structure i

TABLE I. The calculated ideal shear strength of Mo and N
The values for$211%^111& shear strength and$011%^111& shear
strength are similar.

Mo Nb

tm$211%(GPa) 15.8 6.4
tm$011%(GPa) 16.1 7.6
G111(GPa) 136 42.5~expt.!27

tm /G111 0.116, 0.118 0.15, 0.18
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cated by the hollow symbols has the same symmetric rela
to the initial and final bcc structures. It follows that the she
stress vanishes for this state. If all other stresses are
relaxed, this is the configuration of the saddle point for^111&
shear. If there were no relaxation, the shear strain to
saddle point would beg t5A2/4'0.35 ~as discussed previ
ously in Refs. 21 and 15, on the basis of a slightly differe
geometric argument!. The stress-free saddle-point structure
bct.

To fix the actual configuration of the saddle-point stru
ture, note that the intermediate tetragonal structure has
degrees of freedom; it can differ from the bcc parent in b
volume and tetragonality~as given by the axial ratio,c/a).
These parameters have values that minimize the energy.
calculations show that the volume change is about 2%
both materials: 2.1% for Mo and 1.9% for Nb. The tetrag
nalities (c/a) with respect to the bcc ground state are,
spectively, 1.73 for Mo and 1.81 for Nb.

The $011%^111& shear differs from the$211%^111& shear
in that the lattice relaxes significantly during shear. This
laxation is necessary in order to return to the bcc structur
a strain of g;0.60. It also has the consequence that
$011% shear path passes through the same tetragonal sa
point structure that is reached by shear on$211%. The evolu-
tion of the structure during shear is illustrated in Figs. 2~a!
and 2~b!. The initial configuration is indicated by the soli
black symbols. The gray symbols show the configuration
ter the shear has carried the crystal into a rotated bcc st
ture, a process that is accompanied by a substantial re
ation in the slip plane. The saddle-point structure is mark
by the hollow symbols. This structure is tetragonal, and
identical to that shown for the$211%^111& shear in Fig. 1.
Note that the$011% plane shown in Fig. 2 is also a$011%

.

FIG. 1. The$211%^111& shear in the bcc structure:~a! the bcc

cubic cell showing the (110̄) plane~dotted line! and (1̄1̄2) plane

~dot-dashed line!; ~b! the atomic configuration in the (110̄) plane;

and ~c! the atomic configuration in the (11̄̄2) plane. The circles
mark atom positions within the plane and the diamonds show p
tions above the plane. The solid black symbols and solid lines
the initial atom positions and cell edges. The solid gray symbols
the atom positions after shear has returned the structure to bcc
hollow symbols and dashed lines show the tetragonal saddle-p
structure.
0-3
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plane in the bct saddle-point structure. However, the^111&
direction in the parent bcc is â100& direction in the bct cell.

Figure 3 shows the energy as a function of strain for
$211%^111& and$011%^111& shears in the two materials. Th
maximum energy for both slip systems is the energy of
tetragonal saddle-point structure and is, therefore, the s
for both slip systems: 0.35 eV for Mo and 0.15 eV for N
However, the shear straing t required to reach the saddle
point is somewhat different for the two systems because
their different relaxations. For$211% slip, the saddle-point
strain is very close to the unrelaxed value 0.35, but for$011%
slip the saddle point is reached sooner, atg t;0.30 for both
Mo and Nb.

Figure 4 shows the shear stress-strain curves, which
obtained by differentiating the energy strain curves accord

FIG. 2. The$011%^111& shear in the bcc structure:~a! the atomic

configuration in to the (112)̄ plane and~b! the atomic configuration

in to the (1̄10) plane. The circles label atom positions within t
plane and the diamonds show the positions above the plane.
solid black symbols and solid lines are the initial atom positions
cell edges. The solid gray symbols are the atom positions after s
has returned the structure to bcc. The hollow symbols and da
lines show the tetragonal saddle-point structure.

FIG. 3. The energy as a function of shear strain for Mo and N
The diamonds refer to shear on the$011% plane, the circles refer to
shear on$211%. Since the structure returns to bcc at large strain,
curves are symmetric with respect to their maximum energy poi
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to Eq. ~2!. The maximum in the shear stress-strain curve
the ideal shear strength provided no other instabilities oc
before reaching it; a perfect crystal is unstable with respec
deformation in shear when this stress is exceeded. The
culated values of the shear strength are tabulated in Tab

The stress-strain curves for the two slip systems coinc
in the small strain limit, since their slopes are determined
the shear modulus, which can be expressed in terms of e
tic constantsCi j

G$011%^111&5G$211%^111&5
3C44~C112C12!

C112C1214C44
. ~3!

However, they differ at larger strains, and between materi
The stress-strain curve for$211% shear in Mo is almost a
perfect sinusoid, with a critical straingc near 0.17(5g t/2).
The ideal shear strengthtm515.8 GPa50.12 G111. The
stress-strain curve for$011% shear in Mo deviates from the
sinusoidal form, but the deviation only becomes significa
after the shear instability has been passed. The ideal s
strength for this system istm516.1 GPa, which is almos
identical to that on$211%. The Nb stress-strain curves are le
simple. In the $211%^111& system, the shear stress-stra
curve of Nb is skewed from the sinusoidal shape tow
higher strain, and does not reach its peak untilgc;0.2. The
shear strengthtm56.4 GPa50.15 G111; Nb has a higher di-
mensionless shear strength than Mo, though its ac
strength is lower. Also, the stress-strain behavior of Nb
$011% is more obviously different from that on$211% than was
the case for Mo. In Nb, the shear stress-strain curve for
$011% plane begins to deviate from the$211% curve before the
peak stress is reached, and rises to a higher strengthtm
57.6 GPa50.18 G111 at a slightly higher instability strain
gc;0.22.

B. Ideal tensile strength

By symmetry and prior calculation15 the ideal tensile
strength of a bcc metal is expected to have its minim
value for tension in thê100& direction. We therefore calcu
lated the strength of Mo and Nb for this case. The results
shown in Figs. 5 and 6, which are plots of the energy a

he
d
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FIG. 4. Shear stress as a function of strain for Mo and Nb. T
diamonds indicate the results for shear on the$011% plane, and the
circles indicate the results for shear on the$211% plane.
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IDEAL STRENGTH OF bcc MOLYBDENUM AND NIOBIUM PHYSICAL REVIEW B66, 094110 ~2002!
stress as functions of relaxed tensile strain~uniaxial stress!
along@001#. The ideal tensile strengths are tabulated in Ta
II.

The response to tensile stress is also governed by
stress-free structures that provide saddle points in the st
energy surface. If we maintain tetragonal symmetry by fo
ing homogeneous deformation in thex-y lattice plane as we
pull in the @001# z direction ~the Bain path!, then the saddle
point is the fcc structure for both materials. Along this pa
the lattice is body-centered tetragonal~bct!. As shown in Fig.
7~a!, the unit cell can be drawn equally well as face-cente
tetragonal ~fct!. Assuming constant volume, the strain
which the bcc cell assumes the fcc structure~the Bain strain!
is eB5A3 22150.260. When the cell is constrained to b
tetragonal, our calculations show that the volume chang
less than 5% for Mo and less than 6% for Nb along this pa
The strains at which bcc Mo and Nb assume the fcc struc
are, respectively, 0.267 and 0.274, which are remarka
close to the value ofeB for the volume-conserving Bain path

If the @001# strain is continued past the fcc saddle poi
while preserving tetragonal symmetry, it eventually reache
stress-free tetragonal structure. This is the same bct struc

FIG. 5. Energy as a function of relaxed^100& tensile strain for
Mo and Nb. The diamonds indicate the orthorhombic path, and
circles indicate the tetragonal path. The maximum of the ort
rhombic path has the same energy as the local minimum of
tetragonal path, since they correspond to the same tetrag
saddle-point structure.

FIG. 6. Stress-strain curves for relaxed tension as a functio
strain for relaxed tension in â100& direction. The diamonds indi-
cate the orthorhombic path, and the circles indicate the tetrag
path.
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that fixed the saddle point in shear. But we are now
proaching it from states of higher energy, so it provides
minimum in the energy along the tensile path. With resp
to the ground bcc state, the tensile strains at which this s
cial tetragonal structure appears in Mo and Nb are 0.454
0.493, and the perpendicular strains in Mo and Nb are -0.
and -0.173, respectively.

The tetragonal Bain path is the path that was assume
prior work on the ideal tensile strength of bcc crystals.10,15,21

In the present study, we relaxed that constraint, and found
qualitative change in high strain behavior that appears
Figs. 5 and 6. The path taken during a relaxed tensile st
in the ^100& direction branches away from the Bain pa
before the fcc structure is reached. The low-energy bra
follows an ‘‘orthorhombic’’ path on which the strained crys
tal has a face-centered orthorhombic structure of the t
shown in Fig. 7~c!. The energy maximum along the ortho
rhombic path is the saddle point that is reached when
face-centered orthorhombic structure is strained into a str
free tetragonal structure. This structure is the same tetrag
saddle-point structure that governs the ideal strength in s
and also appears at large strain along the tetragonal pat

After the strained crystal passes through the tetrago
structure on the orthorhombic path, its energy decrea
monotonically with increasing tensile strain, reaching a mi
mum at a strain ofe5A22150.414. At this strain, the
structure has returned to bcc.

FIG. 7. Configurations along the tetragonal~Bain! and ortho-
rhombic strain paths for a bcc crystal strained in relaxed tensio
the @001# direction. ~a! The strained configuration shown as a f
structure with a bct cell embedded in it.~b! and ~c! The atom con-
figuration in the basal~001! plane when the strain is tetragonal~b!
or orthorhombic~c!.

TABLE II. The calculated ideal tensile strength and Young
moduli of Mo and Nb. For Nb, the ideal strength of the orthorho
bic path is significantly smaller than that of the tetragonal path.

Mo Nb
Orthorhombic Tetragonal

sm~GPa! 28.8 13.1 18.8
E100~GPa! 370 165 165
sm /E100 0.078 0.079 0.114
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-
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The orthorhombic path can be described as follows.
the height of the orthorhombic cell, along the tensile axis,
h5a0(11e), wherea0 is the edge length of the original bc
cell, and let the edge lengths of its base bel 1 and l 2, as in
Fig. 7. The stress-free states along the orthorhombic path

h5a0 , l 15 l 25A2a0 bcc,

a0,h5 l 2, l 1 tetragonal saddle point,

h5 l 15A2a0 , l 25a0 bcc.

While the Bain path is a tensile stretch, the orthorhom
path can be understood as a shear deformation on
$211%^111& slip system. This point is illustrated in Fig. 8
which shows the initial structure, the structure at the sad
point, and the regenerated bcc structure along the orthorh
bic path generated by a relaxed tension on^100&. In each of
these three configurations, the axis perpendicular to the p
of the figure is essentially unstrained. Also, by orthorhom
symmetry, there are no shears perpendicular to the plan
the figure. It follows that the the strain corresponds to
simple shear on the (11̄2) plane, which is oriented at 45° t
the @001# direction in the saddle-point structure. Thus, if fa
ure occurs on the orthorhombic branch it is not, strictly
tensile failure along@001#, but a shear failure on the (11̄2)
3@111# system at 45° to@001#.

A relaxed tension in â100& direction always takes the
tetragonal path in the limit of small strain; the two perpe
dicular ^100& directions are equivalent by symmetry an
hence, have the same elastic modulus. However, the te
onal path (l 15 l 2) is simply a special case of the orthorhom
bic path (l 15 l 2 or l 1Þ l 2). Since the orthorhombic path pro
vides an additional degree of freedom, it is not surpris
that is preferred at larger strains. As Fig. 5 shows, in both
and Nb the deformation starts along the tetragonal Bain p
but branches away onto an orthorhombic path before re
ing the fcc saddle point.

Whether the branch away from the tetragonal path affe
the ideal tensile strength depends on when that branc

FIG. 8. The orthorhombic distortion under^001& tension,~a! the
atomic configuration in the~110! plane, showing the initial bcc stat
in solid black, the bct saddle-point structure in dashed black,
the final bcc state in solid gray, and~b! the same picture in a per
spective view, showing only the initial bcc structure and the
saddle-point structure.
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occurs. As shown in Fig. 6, in Mo the deformation adheres
the tetragonal path until after the ideal strength has b
reached. It follows that the orthorhombic distortion does n
influence the ideal strength, and that Mo will fail in tensio
when pulled in thê 100& direction, at an ideal strength,sm
528.8 GPa50.078 E100, where

E1005
~C1112C12!~C112C12!

C111C12
~4!

is the tensile modulus for a fully relaxed stretch along^100&.
In Nb, on the other hand, the branch occurs before

inflection point of the tetragonal deformation curve, a
causes a significant decrease in the ideal tensile stren
from sm518.8 GPa50.114 E100, the value predicted from
the tetragonal path, tosm513.1 GPa50.079E100. At the
same time, the failure mode changes from a tensile stretc
a shear on$211%^111&. Significantly, the resolved shea
stress on the most favorably oriented$211%^111& slip system
when Nb fails in tension is very near 6.4 GPa, the ideal sh
strength for this slip system, reinforcing the conclusion th
the failure mode is not a stretch but a shear. Since the id
shear strength is affected by the presence of other stresse
a degree we have not yet explored for this system, we wo
not expect the resolved shear stress at failure to be exa
equal to the ideal shear strength.

IV. DISCUSSION AND CONCLUSION

The ideal shear and tensile strengths of Mo and Nb
presented in Tables I and II as well as the dimensionl
strengthss* 5sm /E100 andt* 5tm /G111. While we know
of no other calculations of the tensile strengths of Mo or
~other than our own preliminary results mentioned in Ref.!,
the ideal shear strengths for the$211%^111& system were
computed by Paxtonet al.12 and by So¨derlind and
Moriarty.28 Their calculations neglected relaxation, and ga
the resultstm(Mo)517.8 GPa,12 20.9 GPa,28 and tm(Nb)
57.52 GPa.12 Because these calculations neglected rel
ation, the associated paths do not include the stress-
saddle points. They are therefore expected to predict so
what higher ideal strengths, as they do.

In dimensionless terms, the tensile and shear strength
Mo are almost identical to those of W~Ref. 15!: s*
50.078 (Mo), 0.071~W!; t* 50.12 ~W and Mo!. Both
these numbers are close to the strengths that are infe
from simple models that assume a sinusoidal stress-s
relation from the bcc starting structure to the appropri
stress-free state.2 We expect, therefore, that these results
typical for bcc metals.

While we know of no experimental data on the ideal te
sile strength of Mo, the ideal shear strength may have b
measured in nanoindentation experiments by Lilleodden
Nix.29–31 Indentation on a sample surface produces a sh
stress that has its maximum value some distance beneat
surface that is being indented. In nanoindentation the
denter is so small~50–1000 nm! that the subvolume tha
experiences high shear is likely to be defect free. The ma
mum shear stress at the onset of plastic deformation ca
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IDEAL STRENGTH OF bcc MOLYBDENUM AND NIOBIUM PHYSICAL REVIEW B66, 094110 ~2002!
computed from the indentation data and, in the case of
~and W!, this shear stress is very close to the computed v
of the ideal shear strength.31

While Mo behaves as expected, the behavior of Nb
anomalous. Its dimensionless shear strength,t* 50.15 is sig-
nificantly higher than that of W or Mo, even though it
determined by the same stress-free state. Its dimensio
tensile strengths* 50.079 is almost the same as that of
and Mo, even though it is determined by a very differe
saddle point. Its strength would be much higher if it follow
the tetragonal path rather than branching off. Moreover,
stress-strain relations that govern shear and tension alon
tetragonal path show clear deviations from sinusoidal sh
in both cases, the maxima in the stress occur at much hi
strain than a sinusoidal form would predict.

As we mentioned at the beginning of this paper, one
petus for studying Nb was the small value of its shear mo
lus G111 relative to its tensile modulusE100. The small value
of this ratio suggests that an infinite perfect crystal of
would deform in shear before breaking in tension, even w
pulled alonĝ 100&. This is the behavior we actually find. I
contrast to Mo, which fails in tension under the influence
the fcc saddle point, Nb branches to the orthorhombic p
before failure, and thus fails in shear. Since our solution
appropriate forT50 K, this result suggests that Nb may n
in

s

t

09411
o
e

s

ss

t

e
he
e;
er

-
-

n

f
h
s

show the clean ductile-brittle transition via$100% cleavage
that is common to the bcc transition metals. However, it
found experimentally that Nb does fail by$100% cleavage in
fracture tests at low temperature.32 The source of this cleav-
age is uncertain, but it may reflect the influence of the t
axial crack-tip stress state on the relative stresses for fail
in ^100& tension and$211% shear. This issue is under inves
tigation.
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28P. Söderlind and J.A. Moriarty, Phys. Rev. B57, 10 340~1998!.
29E.T. Lilleodden and W.D. Nix~private communication!.
30C. R. Krenn, Ph.D. thesis, Department of Materials Science a

Engineering, University of California, Berkeley, CA, 2001.
31C.R. Krenn, D. Roundy, M.L. Cohen, D.C. Chrzan, and J.W

Morris, Jr., Phys. Rev. B65, 134111~2002!.
32C. Gandhi and M.F. Ashby, Acta Metall.27, 1565~1979!.
0-7


