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Abstract

The generators of the Temperley-Lieb algebra generate a monoid with
an appealing geometric representation. It has been much studied, notably
by Louis Kau¤man. Borisavljevíc, Do�en and Petríc gave a complete proof
of its abstract presentation by generators and relations, and suggested the
name �Kau¤man monoid�. We bring the theory of semigroups to the study
of a certain �nite homomorphic image of the Kau¤man monoid. We show
the homomorphic image (the Jones monoid) to be a combinatorial and
regular *-semigroup with linearly ordered ideals. The Kau¤man monoid
is explicitly described in terms of the Jones monoid and a purely combi-
natorial numerical function. We use this to describe the ideal structure of
the Kau¤man monoid and two other of its homomorphic images.
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1 Introduction

In discussing the relationships between problems of several types, including
combinatorial enumeration and lattice spin problems, Temperley and Lieb [7]
introduced operators here denoted hi which turned out to satisfy

h2i = chi = hic; (1a)

hihj = hjhi for ji� jj � 2; (1b)

hihjhi = hi for ji� jj = 1; (1c)

for a parameter c 2 C and i; j = 1 : : : n � 1: An algebra TLn generated (as an
algebra) by the hi subject to the relations (1) is thus called a Temperley-Lieb
algebra. The basis elements of a Temperley-Lieb algebra constitute a monoid
Kn generated by c; h1; : : : hn�1 and subject to the relations (1), so that the
Temperley-Lieb algebra is the semigroup algebra C[Kn] of Kn.
A representation of the monoid Kn by isotopy classes in point-set topology

was found and popularised, perhaps most notably by Jones, in section 4 of [4],
and by Kau¤man [5]. In fact it may be described as combinatorial, in that it
is almost entirely unnecessary to worry about isotopy, most proofs and compu-
tations needing only elementary ideas of planar graphs. In this representation,
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described in the next section, c is represented by a generator called the circle
element, and the hi by elements to be called hooks or (more formally) diapsides.
It was widely held that this representation was in fact an isomorphism,

but no complete proof of this was published until Borisavljevíc, Do�en and
Petríc [1]. They suggested the name Kau¤man monoid for Kn to honour the
contributions of L. H. Kau¤man to the theory of Kn and C [Kn]. More recently
still, Do�en and Petríc [2] discuss countable versions of this and related monoids,
giving several representations including by friezes, bracketings and relatively free
monogenic categories of a certain kind. We follow, where possible, the notation
and nomenclature of these two last-mentioned papers.
Despite this attention, there seems to have been little investigation of the

semigroup properties of Kn and its relatives. This is what we attempt here.
Our approach uses the quotient semigroup Jn = Kn= (c; 1)

] obtained by setting
c = 1 in relations (1), which we name here the Jones monoid (with thanks to
an anonymous referee for the suggestion. The corresponding algebra C [Jn] is a
quotient algebra of TLn; namely TLn= hc� 1i. We also discuss the nilpotent-
generated monoid Nn = Kn= (c; 0)

] obtained by setting c = 0 in relations (1).
These simple cases may help shed a little more light on algebras of greater
physical relevance. The key results in section 3 were obtained in the �rst author�s
2004 MAppSc project at the University of Tasmania.

2 Diagrams

Most of the descriptive material in this section is drawn from the sources above,
but we sketch the facts brie�y in a form which is convenient for our approach.
Let n 2 N+, and set n = f1; : : : ng : A diagram a is a (undirected, loop-free)
graph with the following speci�cations. The vertex set consists of the 2n points
of the plane, f(i; 0) (i; 1) : i = 1 : : : ng ; and the edges are drawn without inter-
section within the rectangle

[1; n]� [0; 1] = f(x; y) : 1 � x � n; 0 � y � 1g � R2

in such a way that each vertex has degree one (so the graph is a complete
matching). See Fig. 1. for examples.
The induced subgraph on the vertices f(i; 1)g is called the top of a and

denoted T (a) ; the induced subgraph on f(i; 0)g is the bottom of a; denoted
B (a) : Each of T (a) ; B (a) is a partial matching on n vertices, and (i; 1) may be
referred to simply as the vertex i in T (a) (and so on) without risking confusion.
Likewise, we may refer to an edge joining vertices (i; 1) and (j; 1) as the edge
fi; jg in T (a) ; etc. The edges in T (a) or B (a) are called arches and the edges
with one vertex in each of T (a) and B (a) are called transversals. A partial
matching will be called admissible if it occurs as the top or bottom of a diagram.

Recall that two diagrams are declared isotopic if there is a continuous map
�xing the vertices which carries one diagram to the other. The set of isotopy
classes of diagrams (for �xed n) may be endowed with a multiplication in several
ways, leading to the monoids treated here. The basic idea is to copy the left (or
upper) factor s into the rectangle [1; n]� [1; 2] = f(x; y) : 1 � x � n; 1 � y � 2g
by a translation (x; y) 7! (x; y + 1) ; glue it to the diagram of the right (or lower)
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Figure 1: Two diagrams (s above and t below), and their product st. The top
graph of s has just one edge, f1; 2g : The bottom graph of t has edges f2; 3g and
f4; 5g :

factor t, and then shrink vertically by the transformation (x; y) 7!
�
x; y2

�
. Fig.1

has an example.
This operation is respected by isotopy, and is associative on isotopy classes.

So we may simply work with diagrams which represent their respective isotopy
classes. Note that circles arise in such compositions of diagrams, when the same
pair of vertices are incident with edges in both B (s) and T (t). Variations on
the basic theme, concerned with how such circles are treated, now lead to some
of the monoids considered in [2]. In the multiplication for Kn; any part of a
diagram which is (isotopic with) a circle is allowed to pass through any transver-
sal or other circle. In the multiplication for Jn; all circles are erased. In the
multiplication for Ln; a circle is not allowed to pass through either a transversal
or another circle. In Nn; all diagrams containing a circle are identi�ed with a
zero element. In this paper we shall be chie�y concerned with Jn and Kn:

The Jones monoid Jn: As noted in the introduction, [1] de�nitively es-
tablished relations (1) as a presentation for Kn: A presentation for Jn is ob-
tained by adjoining c = 1 to the relations (1) and is equivalent to the monoid
presentation with generators hi for i = 1; : : : n� 1 and relations

h2i = hi; (2a)

hihj = hjhi for ji� jj � 2; (2b)

hihjhi = hi for ji� jj = 1: (2c)

The generator hi is represented by the diagram with arches f(i; 1) ; (i+ 1; 1)g
and f(i; 0) ; (i+ 1; 0)g in T (hi) andB (hi) respectively, and transversals f(j; 1) ; (j; 0)g
for j 6= i; i+ 1 � see Fig. 2.
The presentation above is apparently folklore, but a nice (Burnside-like)

proof is outlined in [2]. In that proof we see that Jn is �nite (in fact, that
the cardinality of Jn is the nth Catalan number). The presentation also makes
explicit that Jn �= Kn=�; where � is the congruence generated by the ordered
pair (c; 1) : We use the same notation for the generators hi in both Jn and Kn,
and likewise write multiplication in both monoids as juxtaposition, relying on
the context to distinguish them. We note here that with this convention, each

3



Figure 2: The generator h2 in H5:

element of Kn may be written in the form ckw for some k 2 N and w 2 Jn:
More formally,

Theorem 2.1 There is a bijection  : N�Jn ! Kn de�ned by  (k;w) = ckw
which becomes a homomorphism when multiplication in N�Jn is de�ned by

(k; u) (l; v) = (k + l +  (u; v) ; uv)

where  (u; v) is the number of new circles created in the product uv: �

In section 4 below, we study the function , which together with Jn pro-
vides all information about Kn and therefore TLn: First we must describe the
structure of Jn; which is carried out below.

More about the top and bottom graphs of a diagram. We will often
use the following lemma, sometimes without explicit reference.

Lemma 2.2 Let s; t 2 Jn:
(i) T (s) and B (s) have equal numbers of edges, and T (s) � T (st) :
(ii) For any admissible partial matchings P and Q on a vertex set n = f1; : : : ng
having equal numbers of edges, there exists a unique s 2 Jn such that T (s) = P
and B (s) = Q:

Proof. Part (i) is immediate from the de�nitions. Part (ii): clearly the un-
matched vertices of P and Q are equally numerous; we may represent them as
the point sets f(ai; 1)g and f(bi; 0)g with ai; bi 2 N for i = 1 : : : r and

1 � a1 < a2 : : : < ar � n; 1 � b1 < b2 : : : < br � n:

Any s as speci�ed in the statement must have edges joining (ai; 1) to (bi; 0) for
i = 1 : : : r; and there is at most one such s; since planarity ensures the ordering
is preserved. So it remains only to show, by construction, that this s exists.
Now the edges of P and Q may be drawn within the strips 2

3 � y � 1 and
0 � y � 1

3 respectively. Because P and Q are admissible it is possible to draw,
without crossings, edges joining (ai; 1) to

�
ai;

2
3

�
and (bi; 0) to

�
bi;

1
3

�
for each i;

and then to complete a diagram for s by drawing edges joining
�
ai;

2
3

�
to
�
bi;

1
3

�
in the strip 1

3 � y � 2
3 :

De�ne, for s 2 Jn; a diagram s� 2 Jn obtained by �turning s upside-down�;
more formally, by re�ection of the diagram for s in the line y = 1

2 :We note that
T (s�) = B (s) ; etc.
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Lemma 2.3 For s; t 2 Jn;
(i) s�� = s;
(ii) (st)� = t�s�;
(iii) ss�s = s;
(iv) s2 = s = s� if and only if T (s) = B (s) :

Proof. Parts (i) to (iii) are veri�ed by checking equality of the respective edge-
sets. For part (iv) we use Lemma 2.2 to identify s� as the unique element having
T (s�) = B (s) and B (s�) = T (s) ; and then note that T (s) = B (s) also implies
s2 = s:
In the language of semigroup theory, parts (i) to (iii) a¢ rm that Jn is

a regular *-semigroup [6]. We now state some useful facts about regular *-
semigroups. An element p satisfying p2 = p = p� is called a projection, and
projections (and more generally idempotents) may be partially ordered by

p � q i¤ pq = p = qp:

Proposition 2.4 In a regular *-semigroup S;
(i) xx� is a projection and every projection is of this form (trivially, since
p = pp�);
(ii) every idempotent in S is the product of two projections (in fact, e =
(ee�) (e�e));
(iii) for x; y 2 S; x 2 Sy if and only if x�x � y�y (in fact, x = xy�y ()
x�x = x�xy�y = y�yx�x). �

3 Ideal structure of Jn
The ideal structure of Jn will be described with the aid of Green�s relations.
What we need of these tools of semigroup theory is outlined in a couple of
paragraphs here; for more detail, the reader may consult e.g. Howie [3]. El-
ements a; b of a semigroup are said to be L-related if they generate the same
principal left ideal, that is, if fag [ Sa = fbg [ Sb: Dually, a; b are R-related if
fag [ aS = fbg [ bS: Generation of the same principal two-sided ideal de�nes
the relation J . In a monoid, (a; b) 2 L if and only if Sa = Sb; and dually for
R, while (a; b) 2 J if and only if SaS = SbS: De�ne D = L � R = R � L; it is
the �nest equivalence containing both L and R.
Each D-class in S is simultaneously a disjoint union of R-classes and of

L-classes, and if these are represented in rows and columns respectively, the D-
class has a rectangular structure� the so-called �egg-box�diagram. An R-class
and an L-class have a non-empty intersection if and only if they are contained in
the same D-class, and such an intersection is an H-class (that is, H = L \R).
The H-classes containing idempotents are precisely the maximal subgroups of
S.
On the way to determining these relations in Jn, we collect some more de-

tailed combinatorial information about the e¤ects of multiplication. For graphs
�;� on the vertices 1; : : : n, we construct a (multi-)graph � � � on the same
vertex set, which has edge set equal to the union of the edge sets of � and �: If
� and � are partial matchings, then each connected component of � �� is a
path or a cycle. If we imagine the edges of ��� to be coloured red or blue (or
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your favourite other colours) according as they came from � or �; we see that
colours alternate, and so each cycle is of even length.
Now let j�j denote the number of edges in �;  (���) be the number of

cycles in ���; !� (���) be the number of odd paths in ��� which begin
and end with �-edges, and ! (���) be the total number of odd paths in ���
(so ! (���) = !� (���) + !� (���)).
A function  was introduced in Theorem 2.1. Use of the same notation

is justi�ed�  (s; t) really depends only on � = B (s) and � = T (t) since
 (s; t) =  (B (s)� T (t)) : Similarly, we may choose for the sake of brevity to
write ! (s; t) for ! (B (s)� T (t)) ; and so on. We use these ideas to further
examine what happens in a product st:

Lemma 3.1 Let s; t 2 Jn: Then
(i) the edges of T (st)rT (s) are in 1:1 correspondence with the odd-length path
components in B (s)� T (t) which begin and end with T (t)-edges;
(ii) the edges of B (st)rB (t) are in 1:1 correspondence with the odd-length path
components in B (s)� T (t) which begin and end with B (s)-edges;
(iii) jT (st)j = jT (s)j+ !T (t) (s; t) and jB (st)j = jB (t)j+ !B(s) (s; t) ;
(iv) jT (st)j = 1

2 (jB (s)j+ jT (t)j+ ! (s; t)) :

Proof. (i) An edge from i to k within T (st)rT (s) is composed of a transversal
fi; j1g of s; a path component (j1 : : : j`) of B (s)� T (t) which begins and ends
with T (t)-edges, and a transversal (k; j`) of s: The stated correspondence is of
fi; kg with (j1 : : : j`). Part (ii) is similar and (iii) follows directly. Then (iv) is
obtained by adding the equations of part (iii).

Corollary 3.2 If T (t) � B (s) then T (st) = T (s).

Proof. The hypothesis ensures !T (t) (s; t) = 0 and so jT (st)j = jT (s)j : But
also T (st) � T (s) and so these sets are equal.

Corollary 3.3 If p; q 2 Jn are projections, then p � q if and only if T (p) �
T (q) :

Proof. If pq = qp = p then T (q) � T (p) by Lemma 2.2 (i). Conversely if
T (q) � T (p) = B (p) then by Corollary 3.2, T (pq) = T (p) : Similarly B (pq) =
B (p) ; and by Lemma 2.2 (ii), pq = p: Hence p = p� = q�p� = qp also, and
p � q:

Corollary 3.4 T (ss�) = T (s) and B (s�s) = B (s) :

Proof. Take t = s� in Lemma 3.1 and examine B (s)�T (s�) = B (s)�B (s) ;
it contains only cycles and so T (ss�) = T (s) ; etc.
We may now state and prove

Theorem 3.5 For s; t 2 Jn;
(i) s 2 Jnt if and only if B (s) � B (t) ;
(ii) s 2 tJn if and only if T (s) � T (t) ;
(iii) (s; t) 2 L if and only if B (s) = B (t) ;
(iv) (s; t) 2 R if and only if T (s) = T (t) ;
(v) (s; t) 2 H if and only if s = t;
(vi) (s; t) 2 D if and only if jT (s)j = jT (t)j ;
(vii) D = J ;
(viii) s 2 JntJn if and only if jT (s)j � jT (t)j :
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Proof. (i) The �only if� statement is Lemma 2.2 (i). So for the converse,
suppose that B (s) � B (t) : By Corollary 3.4 B (s�s) � B (t�t) and by 3.3
s�s � t�t: Then by 2.4 (iii) s 2 Jnt: Now (ii) is dual to (i) and (iii), (iv) are
deduced from (i) and (ii) respectively. Since H = L \R; (v) is a consequence
of (ii) and (iv) taken with Lemma 2.2.
(vi) Suppose (s; t) 2 D: Then there is u 2 Jn such that (s; u) 2 L and

(u; t) 2 R: By (iii) and (iv), B (s) = B (u) and T (u) = T (t) ; by Lemma 2.2
(i), jB (u)j = jT (u)j so jT (s)j = jB (s)j = jT (t)j : Conversely suppose s and t
are such that jT (s)j = jT (t)j ; thus jT (s)j = jB (t)j : By Lemma 2.2 (ii) there
exists u 2 Jn such that T (s) = T (u) and B (u) = B (t) ; which is to say that
(s; u) 2 R and (u; t) 2 L; whence (s; t) 2 D:
(vii) Since Jn is �nite, it is periodic and by Prop. 2.1.4 of [3], D = J :
(viii) If s = utv for u; v 2 Jn; then by (ii) T (s) � T (ut) : Also by (i)

B (ut) � B (t) and it follows that jT (s)j � jT (ut)j = jB (ut)j � jB (t)j = jT (t)j.
Conversely suppose that jT (s)j � jT (t)j : It is possible to remove edges from
T (ss�) = T (s) ; maintaining an admissible partial matching, until a graph �
with jT (t)j edges remains. Let p be the projection with T (p) = B (p) = �;
by construction, T (p) � T (ss�) : Then by Corollary 3.3, ss� = ss�p = pss�;
whence s = ps: But jT (p)j = j�j = jT (t)j and so (p; t) 2 D: In particular,
p = utv for some u; v 2 Jn and so s = ps = utvs 2 JntJn:
We �nd the following notation useful: let

Dk = fs 2 Jn : jT (s)j = kg ; for 0 � k � bn
2
c;

Dk is a J -class by parts (vi) and (vii) of Theorem 3.5. We may refer to k =
jT (s)j as the depth of the J -class Dk or of its elements.

Corollary 3.6 Jn is a �nite, combinatorial, projection-generated regular �-
monoid whose ideals form a chain.

Proof. In this context, �combinatorial�means that all subgroups are trivial
and this is a¢ rmed by Theorem 3.5, part (v). By part (viii), the principal ideals
of Jn are linearly ordered, and (since every ideal is a union of the principal ideals
it contains) the same is true for the set of all ideals. We have already remarked
on the remaining properties.

Remark 3.7 The ideal of Jn generated by Dd consists of all elements of depth
d or more and Dd+1 is a maximum proper ideal of Dd: The Rees quotient semi-
group Dd=Dd+1 (for 0 � d < bn2 c) is called the principal factor of Jn asso-
ciated with the J -class Dd and is completely 0-simple (see sections 3.1 and
3.2 of [3] for further details). Therefore it has a Rees matrix representation
Dd=Dd+1

�=M0 (f1g ; I;�;P ) ; where

I = � = fadmissible partial matchings with d edgesg

and for i 2 I and � 2 �;

P�i =

�
1 if ! (i� �) = 0;
0 otherwise.

When d = bn2 c; Dd
�=M (f1g ; I;�;P ) where P�i = 1 for all �; i:
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Lemma 2.3 determined the projections in Jn and showed that each element
is regular. We conclude this section by using Lemma 3.1 to determine all idem-
potents and pairs of mutually inverse elements.

Lemma 3.8 In Jn;
(i) s2 = s if and only if ! (s; s) = 0;
(ii) sts = s and tst = t if and only if ! (s; t) = ! (t; s) = 0:

Proof. (i) The following are equivalent: s2 = s; B
�
s2
�
= B (s) and T

�
s2
�
=

T (s) ; !T (s) (s; s) = 0 = !B(s) (s; s) = 0; ! (s; s) = 0:
(ii) The following are equivalent: sts = s; B (sts) = B (s) and T (sts) =

T (s) ; ! (st; s) = 0 and ! (s; ts) = 0; ! (s; t) = ! (t; s) = 0:

4 Detailed study of the functions  and ! in Jn
Further knowledge about the functions ; ! helps in establishing other charac-
teristics of Jn and the ideal structure of Kn:

Lemma 4.1 Given u; v 2 Jn; there exist u0; v0 2 Jn such that uv = u0v = uv0

and  (u0; v) =  (u; v0) = 0: If n is even and uv 62 Dn
2
; or if n is odd, then we

may choose u0Ru and v0Lv:

Proof. If  (u; v) = 0 there is nothing to prove. Otherwise take a cycle in
B (u) � T (v) and let its set of vertices be I: If I = n we have  (u; v) = 1 and
we also know that n is even and that there are no transversals in uv; so that
v 2 Dn

2
: We complete this case later on. If I 6= n there are vertices one unit

apart, say i 2 I and i+ 1 62 I: (The case i 2 I and i� 1 62 I is similar.)

i i +  1

Figure 3: Modifying a diagram to decrease the number of cycles.

We prove the statements about v0; duality (or a similar argument) proves
the statements about u0. Let the diagram be modi�ed, preserving planarity, as
follows. (See Fig.3.)
1. Draw an edge between i and i+ 1 (possible since they are adjacent);
2. �perturb�this edge away from the vertices i; i+ 1; thus making a new edge
from the mate of i to the mate of i + 1 (possible without crossings since there
is a neighbourhood of the edge (i; i+ 1) which does not intersect other edges);
3. restore the edge (i; i+ 1) :
At the end of steps 1�3, u is unchanged but we have replaced T (v) by an

admissible partial matching �1 with the same number of edges as T (v) : This
de�nes a v1 2 Jn such that

T (v1) = �1 and B (v1) = B (v) ;
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from which we have v1Lv: Moreover, the construction inserts all vertices in I
into the path or cycle including i+1, and so the set of transversals is unchanged.
Thus both uv = uv1; and  (u; v1) =  (u; v) � 1: Now repetition of this con-
struction while there are vertices not in a cycle ends with a v0 2 Jn such that
uv = uv1 = � � � = uv0 and v0Lv; and either (i)  (u; v0) = 0 in which case we
have �nished, or (ii)  (u; v0) = 1 and B (u) � T (v0) is a cycle on n; which is
the same as the case we deferred above. So now we continue with case (ii).

1

j

k

j

k

Figure 4: Removing the last cycle.

Let the vertex 1 2 T (v0) be adjacent to j in T (v0) and the vertex 1 2 B (v0)
be adjacent to k in B (v0). (See Fig. 4.) Delete these edges, leaving admissible
partial matchings on T (v0) and B (v0) ; since the original arches including the
1s were �exterior�arches. T (v0) and B (v0) have equal numbers of edges and
so de�ne a diagram v00 2 Jn; which includes transversals f1; 1g and fj; kg.
(Thus v00 has depth n

2 � 1:) The graph B(uv
00) contains an arch f1; kg arising

from the path (1; 1; : : : j; k) ; which now includes all vertices of the initial cycle.
Therefore B (uv00) = B (v0) = B (uv0) and T (uv00) = T (u) = T (uv0) ; so that
uv00 = uv0 = uv: Moreover  (u; v00) = (u; v0)� 1 = 0:
The method of proof also gives a result dealing with the range of the function

:

Corollary 4.2 For given u 2 Jn with jT (u)j = m; and each l with 0 � l � m;
there is ul 2 Jn such that  (u; ul) = l: If m < n

2 we may choose ul 2 Dm;
and if m = n

2 we may choose ul 2 Dm�1: Since  (u; v) � jT (u)j = m and
1 �  (u; v) for u; v 2 Dn

2
; these bounds are best possible.

Proof. In the Lemma, take v to be u�; and note that then  (u; u�) = jB (u)j =
jT (u)j = m: Then application of the lemma yields a sequence v0 = u�; v1; : : : vm
such that  (u; vm�l) = l and the vl have the stated depths.
Next we investigate the range of the function ! (s; t) in terms of the depths

of s and t:

Lemma 4.3 DkDl \ Dm 6= ; if and only if m is such that max fk; lg � m �
min

�
k + l; bn2 c

	
: That is, the products of elements are distributed over exactly

the J -classes which their depths allow.

Proof. �Only if�: clearly if w = st with s 2 Dk and t 2 Dl; and w has depth
m; then k; l � m � bn2 c by Theorem 3.5 part (viii). Also by 3.1 (iv),

m � 1

2
(k + l + ! (s; t)) � 1

2
(k + l + k + l) = k + l:
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�If�: suppose k; l � m � k + l; bn2 c: We must �nd s; t with the properties

jB (s)j = k; jT (t)j = l; ! (s; t) = 2m� k � l;

the last requirement ensuring that jT (st)j = m by 3.1 (iv). Inspection shows
that the choices

s = h1h3 : : : h2k�1;

t = h2m�2l+1 : : : h2m�1

have the desired properties.
For such a result as this lemma, we must be free to choose both factors: for

example, in J4; D1h2 \D2 = ; even though k = l = 1 and m = 2 satisfy the
inequalities.

Remark 4.4 These results could be framed alternatively in terms of the set-
valued functions which give the ranges of the functions  and ! : let

C (k; l) = f (s; t) : jT (s)j = k; jT (t)j = lg ;
O (k; l) = f! (s; t) : jT (s)j = k; jT (t)j = lg :

Then C (m;m) = f0; : : :mg for m 6= n
2 ; C

�
n
2 ;

n
2

�
=
�
1; : : : n2

	
and O (k; l) =

fjk � lj ; : : :min fn� k � l; k + lgg :

5 Ideal structure of Kn and two homomorphic
images

In this �nal section we bring information about the product-like structure of
Kn (Theorem 2.1) together with information about the local structure of Jn
(Theorem 3.5) to describe the ideal structure of Kn and the two homomorphic
images mentioned in the Introduction. We use Theorem 2.1 in the following
equivalent but more convenient form: in Kn;

(cms) (cnt) = c(m+n+(s;t))st:

Theorem 5.1 Let cks; clt 2 Kn with k; l 2 N; s; t 2 Jn: Then
(i) cks 2 Kn

�
clt
�
if and only if s 2 Jnt and k � l;

(ii) cks 2
�
clt
�
Kn if and only if s 2 tJn and k � l;

(iii) cks 2 Kn

�
clt
�
Kn if and only if s 2 JntJn and k � l:

Proof. (i) �Only if�: suppose cks =
�
cju
� �
clt
�
= cj+l+(u;t)ut: Then k =

j + l +  (u; t) � l and s 2 Jnt:
�If�: suppose conversely that k � l and s = ut for some u 2 Jn: By Lemma

4.1, there exists u0 2 Jn such that s = u0t and  (u0; t) = 0: Then�
ck�lu0

� �
clt
�
= cku0t = cks:

(ii) This is the lateral dual of (i).
(iii) �Only if�: suppose

cks =
�
cju
� �
clt
�
(cmv) = cj+l+m+(u;t)+(ut;v)utv:
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Then k � l and s 2 JntJn:
�If�: suppose conversely that k � l and s = utv for some u 2 Jn: By Lemma

4.1, there exist u0; v0 2 Jn such that s = u0tv0 and  (u0; t) =  (u0t; v0) = 0:
Then �

ck�lu0
� �
clt
� �
c0v0

�
= ck+(u

0;t)+(u0t;v0)u0tv0 = cks:

Corollary 5.2 The lattice of principal ideals of Kn is the product of a chain of
length bn2 c with a chain isomorphic to N: All ideals of Kn are �nitely generated.

Proof. The ordering of the principal ideals in theorem 5.1 is the product or-
dering. Every ideal is generated by an antichain (set of incomparable elements),
and every antichain in a product of chains with one factor �nite has a �nite
number of elements (by the pigeonhole principle).
We proceed to treat Kn= (c

r; 1)
] similarly. Here the multiplication may be

expressed as
(cms) (cnt) = c(m+n+(s;t))mod rst:

Theorem 5.3 Let cks; clt 2 Kn= (c
r; 1)

]
; with k; l 2 N; s; t 2 Jn: Then

(i) cks 2 Kn

�
clt
�
if and only if s 2 Jnt;

(ii) cks 2
�
clt
�
Kn if and only if s 2 tJn;

(iii) cks 2 Kn

�
clt
�
Kn if and only if s 2 JntJn:

Proof. The proof is the same as that of Theorem 5.1 except that cr = c0; and
congruences mod r such as k � j + l +  (u; t) are always solvable for j; given
the other variables.

Corollary 5.4 The lattice of ideals of Kn= (c
r; 1)

] is a chain of length bn2 c: Its
egg-box diagram is that of Jn; except that each H-class has r elements and each
maximal subgroup is cyclic of order r: The principal factor D0

d associated with
the J -class Dd has the Rees matrix form M0 (Zr; I;�;P ) ; (or M (Zr; I;�;P )
when d = bn2 c) with I;� and P as in Remark 4.3.

We now turn to the nilpotent-generated monoid Nn; in section 1, this was
introduced as the quotient Kn= (c; 0)

] obtained by setting c = 0 in relations (1),
but it is better dealt with as a modi�cation of Jn; easily seen to be equivalent
and described next. Take the base set of Jn (the set of diagrams as de�ned in
section 2), and adjoin an element 0: De�ne a multiplication � on Nn = J [ f0g
by setting, for s; t 2 Jn; 0 � 0 = s � 0 = 0 � s = 0 and

s � t =
�
0 if  (s; t) > 0;
st if  (s; t) = 0;

juxtaposition meaning multiplication in Jn as before. (Note that the abstract
property of  which ensures associativity of multiplication on N�Jn as described
in Theorem 2.1 also guarantees that � is associative on Nn.)

Theorem 5.5 Let s; t 2 Nn n f0g : Then
(i) s 2 Nn � t if and only if s 2 Jnt;
(ii) s 2 t �Nn if and only if s 2 tJn;
(iii) s 2 t �Nn � t if and only if s 2 tJnt:
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Proof. If s 2 Nn � t then 0 6= s = u � t = ut for some u 2 Jn whence s 2 Jnt:
Conversely, if s 2 Jnt then by Lemma 4.1, s = ut for some u 2 Jn such that
 (u; t) = 0: Then s = u � t 2 Nn � t: Similarly for the rest.

Corollary 5.6 The lattice of ideals of Nn is a chain of length bn2 c+1: Its egg-
box diagram is that of Jn with a zero adjoined. The principal factor associated
with Dd (d � bn2 c) has the formM0 (f1g ; I;�;P ) ; with I and � as before and

P�i =

�
1 if  (i� �) = 0;
0 otherwise.

�
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