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Abstract

In this paper, we study some results on the ideal theory of commuta-
tive Γ− semirings analogues to commutative semirings . In particular,
Q-ideals , maximal ideals, primary ideals and radical ideals of commu-
tative Γ− semiring are investigated . Furthermore we make an intensive
examination of the notions of maximal ideal and local Γ− semirings. It
is shown that the notion of primary ideals in Γ− semirings inherits most
of essential properties of primary ideals of commutative semirings.
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1 Introduction

The notion of Γ− semirings was introduced by M. Murali Krishna Rao [14] as
a generalization of Γ− rings ([3], [11]) , as well as semirings.Many mathemati-
cians obtained interesting results on Γ− semiring (see for example [14], [15],
[9] and [16]). The commutative Γ− semirings and sub Γ− semirings identi-
fied in [14]. Since ideals play a fundamental role in semiring theory (see for
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example [8], [1], [2] and [10]), it is natural to consider them in the context of
Γ− semirings theory. Some of topics related to ideals of semirings have been
generalized and investigated for Γ− semirings. T. K. Dutta and S. K. Sardar
established the notions of prime ideals and prime radicals of a Γ− semiring and
studied them via its operator semiring [5]. Noetherian Γ− semirings, Cohen’s
theorem for a special class of Γ− semiring and weak primary decomposition
theorem for a particular type of Γ− semirings were obtained by them [6]. S.
K. Sardar and U. Dasgupta reviewed the notions of primitive Γ− semiring
and primitive ideals of a Γ− semiring and studied them via operator semir-
ing and obtained some results analogous to those of semiring theory [20]. S.
K. Sardar introduced the notions of Jacobson radical of a Γ− semiring and
semisimple Γ− semiring and characterize them via operator semirings [19]. In
[9] the authors considered the congruences and ideals of a Γ− semiring, then
constructed a new Γ− semiring and discussed the formation of ideals on this
Γ− semiring. A study about the notion of k-ideal, m-k ideal, prime ideal,
maximal ideal, irreducible ideal and strongly irreducible ideal in ordered Γ−
semiring was introduced, also the properties of ideals in ordered Γ− semiring
and the relations between them are studied [17].

In this paper we study some primitive operations of ideals in Γ− semiring
we will use these properties in the paper, we introduce the notion of Q-ideal
and maximal ideal in Γ− semiring. We obtain a number of results investigating
maximal ideal and Q-ideal of a Γ− semiring. Similar to commutative semiring,
we prove that any proper ideal (proper Q-ideal) I of a Γ− semiring, there exists
a maximal ideal (k- ideal) M of S with I ⊆M , and every prime k-ideal is a k-
maximal ideal in the Artinian cancellative Γ− semiring. Moreover we study
radical ideals and primary ideals of Γ− semiring and their properties. Finally,
we show the uniqueness of reduced primary decomposition of k-ideals of a Γ−
semiring as it was shown in commutative semiring [22].

2 Preliminaries

In this section we recall some of the fundamental concepts and definitions
which are necessary for this paper.

Definition 2.1. Let S and Γ be two additive commutative semigroups. Then
S is called a Γ−semiring if there exists a mapping S × Γ× S 7→ S (images to
be denoted by aγb for a, b ∈ S and γ ∈ Γ satisfying the following conditions:

1. aα(b+ c) = aαb+ aαc

2. (a+ b)αc = aαc+ bαc

3. a(α + β)b = aαb+ aβb
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4. aα(bβc) = (aαb)βc

for all a, b, c ∈ S and for all α, β ∈ Γ.

Examples of Γ− semiring are plenty. For example a semiring S can be
considered as a Γ− semiring if we choose Γ = S and the ternary operation xγy
is the usual semiring multiplication.

Example 2.1. Let S = (Z+,+) be the semigroup of positive integers and
let Γ = (2Z+,+) be the semigroup of even positive integers. Then S is a
Γ−semiring.

Example 2.2. Let Q+ denote the set of all positive rational numbers. Let Γ
be the set of all positive integers. Then with respect to usual addition Q+ and
Γ are semigroups. Let a ∈ Q+, γ ∈ Γ and b ∈ Q+ is defined by (aγb) 7→ aγb
(usual multiplication). Then Q+ is a Γ−semiring.

Definition 2.2. Let S be a Γ− semiring and a, b ∈ S, α ∈ Γ. If aαb = bαa
then we say a,b are α−commutative. S is called multiplicatively commutative
if aαb = bαa for all a, b ∈ S, α ∈ Γ S is called a commutative Γ− semiring if
aαb = bαa and a+ b = b+ a for all a, b ∈ S, α ∈ Γ.

Example 2.3. Let S be the set of all even positive integers and Γ be set of all
positive integers divisible by 3.
Then with usual addition and multiplication of integers, S is a commutative
Γ-semiring.

Definition 2.3. We say S is a Γ− semiring with zero if there exists a 0 ∈ S
such that 0 + a = a+ 0 = a and 0αa = aα0 = 0 for all α ∈ Γ, a ∈ S.

Definition 2.4. Let S be a Γ− semiring. An element 1 ∈ S is said to be unity
if for each x ∈ S there exists α ∈ Γ such that xα1 = 1αx = x.

Definition 2.5. In a Γ− semiring S with unity 1, an element a ∈ S is said
to be left invertible (right invertible) if there exist b ∈ S, α ∈ Γ such that
bαa = 1(aαb = 1).

Definition 2.6. A non-empty subset A of Γ− semiring S is called

(i) a Γ− subsemiring of S if (A,+) is a subsemigroup of (S,+) and AΓA ⊆
A.

(ii) a left (right) ideal of S if A is a Γ− subsemiring of S and SΓA ⊆
A(AΓS ⊆ A).

(iii) an ideal if A is a Γ− subsemiring of S, AΓS ⊆ A and SΓA ⊆ A.
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(iv) a k-ideal if A is a Γ− subsemiring of S, AΓS ⊆ A, SΓA ⊆ A and x ∈
S, x+ y ∈ A, y ∈ A then x ∈ A.

Definition 2.7. An ideal I of a Γ− semiring S is called a proper ideal of the
Γ− semiring S if I 6= S.

Definition 2.8. For each element a of a Γ− semiring S, the smallest right ideal
containing a is called the principal right ideal generated by a and is denoted
by |a >. Similarly we define < a|, < a >, respectively the principal left and
principal two-sided ideals generated by a. In fact,

< a| =

{
ma+

n∑
i=1

xiαia : m,n ∈ Z+ ∪ {0}, xi ∈ S, αi ∈ Γ

}

|a >=

{
ma+

n∑
j=1

aβjyj : m,n ∈ Z+ ∪ {0}, yj ∈ S, βj ∈ Γ

}
and

< a >=

{
na+

p∑
k=1

aγkzk +
s∑
t=1

wtδta+

q∑
j=1

ujλjaµjvj : n, p, s, q ∈ Z+ ∪ {0}

, zk, wt, uj, vj ∈ S, γk, δt, λj, µj ∈ Γ

}
Definition 2.9. Let S be a Γ− semiring. An element e ∈ S is said to be an
idempotent S if there exists an α ∈ Γ such that e = eαe. In this case we say
that e is an idempotent.

Definition 2.10. let S be a Γ− semiring. If every element of S is an idempo-
tent of S, then S is said to be idempotent Γ− semiring S.

Definition 2.11. A proper ideal I of a Γ− semiring S is said to be irreducible
if for ideals H and K of S, I = H ∩K implies that I = H or I = K .

Definition 2.12. A proper ideal I of a Γ− semiring S is said to be strongly
irreducible ideal if for ideals J and K of S, J ∩K ⊆ I then J ∩ I or K ∩ I.

Definition 2.13. A Γ− semiring S is said to be right (k-Noetherian ) Noethe-
rian if for any ascending chain A1 ⊂ A2 ⊂ A3 . . . . . . of right(k- ideals) ideals
of S there exists a positive integer n such that Ai = An for all i ≥ n. Similarly
we define left (k-Noetherian) Noetherian and (k-Noetherian) Noetherian Γ−
semiring.
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Definition 2.14. A Γ− semiring is said to be Artinian (k-Artinian) if for
every descending chain A1 ⊇ A2 ⊇ A3 ⊇ . . . . . . of ideals (respectively k-ideals)
in S there exists a positive integer n such that Ai = An for all i ≥ n.

Definition 2.15. Let S be a Γ− semiring and I be any ideal of S. Then the
k-closure of I is denoted by cl(I) and dened by cl(I) = {x ∈ S : x + i ∈ I, for
some i ∈ I}.

Note that cl(I) is the smallest k-ideal containing I. and If A and B are two
ideals of the Γ− semiring S with A ⊂ B, then cl(A) ⊂ cl(B) [21]

Definition 2.16. A Γ− semiring S is said to be right (left) multiplicatively
cancellable if xγy = zγy ; ( resp.xγy = xγz) for all x, y, z ∈ S and for all
γ ∈ Γ implies that x = z ( resp. y = z).

Definition 2.17. Let S be a Γ− semiring. A proper ideal P of S is said to
be prime if for any two ideals H and K of S, HΓK ⊆ P implies that either
H ⊆ P or K ⊆ P .

The set of all prime ideals of a semiring S is called the spectrum of S and
will be denoted by spec(S) .

Throughout this paper the Γ− semiring S is assumed to be commutative
and have a zero .

3 Operations on ideals of Γ− semiring

First, we investigate ideal theoretic basic results of semiring for ideals of a Γ−
semiring.

Proposition 3.1. Let S be a commutative Γ− semiring with unity 1 and zero
element 0 . Let I, T and D be ideals of S. If we define the addition and
multiplications as follows :

I + T : = {a+ b : a ∈ I, b ∈ T}and

I.T : =

{∑
i≤m

aiγibi : a ∈ I, b ∈ T, γi ∈ Γ and m ∈ N

}
,

then the following statements hold :

1. The set I + T and I.T are ideals of S.

2. I + (T +D) = (I + T ) +D and I(TD) = (IT )D.
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3. I + T = T + I and IT = TI.

4. I(T +D) = IT + ID.

5. I + I = I, I + (0) = I, IΓS = I and IΓ(0) = (0).

6. If I + T = (0) then I = T = (0).

7. IT ⊆ I ∩ T and if I + T = S, then IT = I ∩ T.

8. (I + T )(I ∩ T ) ⊆ IT.

Proof. We only prove numbers 2, 4 , 7 and 8 and the proofs of the other results
is routine and we hence omit the proofs :

2- a) Let a + b ∈ I + (T + D) ,where a ∈ I, b ∈ (T + D), thus b = x + y such
that x ∈ T and y ∈ D.
⇔ a+ (x+ y) ∈ I + (T +D).
⇔ (a+ x) + y ∈ (I + T ) +D, where (a+ x) ∈ I + T and y ∈ D.
⇔ I + (T +D) = (I + T ) +D.

2- b) Let x ∈ I(TD). So we can write x =
∑

i≤m1
aiγibi , where ai ∈

I, γi ∈ Γ, bi ∈ TD and m1 ∈ N, since bi ∈ TD then bi =
∑

i≤m2
xiαiyi , where

xi ∈ T, αi ∈ Γ, yi ∈ D and m2 ∈ N, thus :

x =
∑
i≤m1

aiγi
∑
i≤m2

xiαiyi

=
∑
i≤m1

aiγi(x1α1y1 + x2α2y2 + . . . . . . . . .+ xm1αm1ym1)

=
∑
i≤m1

aiγi(x1α1y1) + aiγi(x2α2y2) + . . . . . . . . .+ aiγi(xm1αm1ym1)

=
∑
i≤m1

∑
j≤m2

aiγi(xjαjyj)

=
∑
i≤m1

∑
j≤m2

(aiγixj)αjyj ,

since aiγjxj ∈ I.T and yj ∈ D , then x ∈ (IT )D, it follows that I(TD) ⊆
(IT )D, simillarlly we get (IT )D ⊆ I(TD) .Hence, I(TD) = (IT )D.

4- Let z =
∑

i≤m aiαibi ∈ I(T + D) ,where ai ∈ I, bi ∈ (T + D) and
αi ∈ Γ, then

∑
i≤m aiαi(xi + yi) ∈ I(T + D) ,where xi ∈ T and yi ∈ D. So∑

i≤m aiαixi +
∑

i≤m aiαiyi ∈ IT + ID, it follows that I(T + D) ⊆ IT + ID.
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Conversely, let z =
∑

i≤m1
aiαibi +

∑
i≤m2

xiγiyi ∈ IT + ID , where ai, xi ∈
I, αi, γi ∈ Γ, bi ∈ T and yi ∈ D. then :

z =
∑
i≤m1

(aiαibi) + (xiγiyi) =
∑

i≤m1,j≤2m1

cjβj(bi + yi)

where cj =

{
ai if 1 ≤ i ≤ m1,

xi if m1 < i ≤ 2m1.
βj =

{
αi if 1 ≤ i ≤ m1,

γi if m1 < i ≤ 2m1.

It follows that IT + ID ⊆ I(T +D). Hence I(T +D) = IT + ID.

7- Let x ∈ IT .Then we can write x =
∑

i≤m aiγibi where ai ∈ I, γi ∈ Γ
and bi ∈ T. Since I and T are ideals ,then

∑
i≤m aiγibi ∈ I ∩ T . It follows

that IT ⊂ I ∩ T . Now we will prove if I + T = S then IT = I ∩ T. Let
x ∈ I ∩ T ⇒ x ∈ I and x ∈ T
⇒ x = xα1 = xα(x1 + y1) where x1 ∈ I, y1 ∈ T since I + T = S.
⇒ x = xαx1 + xαy1,
⇒ x = x1αx+ xαy1 ∈ IT,
⇒ I ∩ T = I + T.

8- Let x ∈ (I + T )(I ∩ T ) then :

x =
∑
i≤m

(ai + bi)γizi ,where ai + bi ∈ I + Tand zi ∈ I ∩ T

=
∑
i≤m

aiγizi + biγizi

=
∑
i≤m

aiγizi + ziγibi,

then x ∈ IT , it follows that (I + T )(I ∩ T ) ⊆ IT.

Proposition 3.2. Let S be a Γ− semiring where S and Γ are additive abelian
semigroups with identity elements 0 and {0}′ respectively . If we denote the set
of all ideals of S by Id(S), then the following statement holds : (Id(S),+, .) is
an additively-idempotent Γ− semiring.

Proof. Let Id(S) = {Iλi}i , then there exist a map : Id(S) × Γ × Id(S) 7−→
Id(S), since IiγiIi = Ii ∈ Id(S)∀i ∈ N, and it satisfies the following axioms
for all Iλ1 , Iλ2 , Iλ3 ∈ Id(S) and γ, β ∈ Γ :

1- Iλ1γ(Iλ2 + Iλ3) = Iλ1γIλ2 + Iλ1γIλ3 :
xγy ∈ Iλ1γ(Iλ2 + Iλ3) where x ∈ Iλ1 , y ∈ Iλ2 + Iλ3 and γ ∈ Γ,



84 Wafaa M. Fakieh and Fatimah A. Alhawiti

⇔ xγ(a+ b) ∈ Iλ1γ(Iλ2 + Iλ3) where a+ b = y, a ∈ Iλ2 and b ∈ Iλ3 .
⇔ (xγa) + (xγb) ∈ Iλ1γIλ2 + Iλ1γIλ3 .

2- we can prove that (Iλ1 + Iλ2)γIλ3 = Iλ1γIλ3 + Iλ2γIλ3 simillarly.

3- Iλ1(γ + β)Iλ2 = Iλ1γIλ2 + Iλ1βIλ2 :
x(γ + β)y ∈ Iλ1(γ + β)Iλ2 where x ∈ Iλ1 , y ∈ Iλ2 and γ, β ∈ Γ.
⇔ xγy + xβy ∈ Iλ1γIλ2 + Iλ1βIλ2 .

4- (Iλ1γIλ2)βIλ3 = Iλ1γ(Iλ2βIλ3) :
xβy ∈ (Iλ1γIλ2)βIλ3 where x ∈ Iλ1γIλ2 , y ∈ Iλ3 and x = aγb where a ∈ Iλ1 , b ∈
Iλ2 and γ ∈ Γ
⇔ (aγb)βy ∈ (Iλ1γIλ2)βIλ3
⇔ aγ(bβy) ∈ (Iλ1γIλ2)βIλ3
⇔ aγ(bβy) ∈ Iλ1γ(Iλ2βIλ3).

Finally, since Iλ = Iλ + Iλ by proposition 3.1(5), Id(S) is additively idem-
potent.

Next, we present the following definition corresponding to the definition in
semiring see [10]

Definition 3.1. For ideals I and T of a Γ− semiring S, it is defined that
[I : T ] = {s ∈ S, γ ∈ Γ : sγT ⊆ I}.

Let us define a new notation: For each ideal I of S and any element x ∈ S,
we define [I : x] := {s ∈ S, γ ∈ Γ : sγx ∈ I}.

Proposition 3.3. Let I, T,D, Iαand Tαbe ideals of a commutative Γ− semir-
ings S with a zero element 0 ∈ S . The following statements hold:

1. I ⊆ [I : T ].

2. [I : T ]T ⊆ I.

3. [[I : T ] : D] = [I : TΓD] = [[I : D] : T ].

4. [
⋂
α Iα : T ] =

⋂
α[Iα : T ].

5. [I :
∑

α Tα] =
⋂
α[I : Tα].

6. [I : T ] = [I : I + T ].

Proof.
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1- Obvious.

2- Let z ∈ [I : T ]T .So we can write z =
∑

i≤m xiδiyi where xi ∈ [I : T ] and
yi ∈ T , since xi ∈ [I : T ] we have xiγT ⊆ I, for all γ ∈ Γ , then xiδiyi ∈ I
implies that z ∈ I.Therefore, [I : T ]T ⊆ I.

3- a)

Let x ∈ [[I : T ] : D]⇔xγD ⊆ [I : T ]

⇔(xγD)αT ⊆ I

⇔xγ(DαT ) ⊆ I

⇔xγ(TαD) ⊆ I

⇔x ∈ [I : TΓD].

It follows that [[I : T ] : D] = [I : TΓD].

3- b)

Let x ∈ [I : TΓD]⇔ xγ(TΓD) ⊆ I

⇔ xγ
∑
i≤m

tiαidi ∈ I ,where ti ∈ Ti and di ∈ Di

⇔
∑
i≤m

(xγti)αidi ∈ I

⇔ (xγTi) ∈ [I : D]

⇔ x ∈ [[I : D] : T ].

It follows that [I : TΓD] = [[I : D] : T ] .Moreover from (a) and (b) we
conclude that [[I : T ] : D] = [[I : D] : T ].

4-

Let x ∈

[⋂
α

Iα : T

]
⇔ xγT ∈

⋂
α

Iα , since xγT ⊆
⋂
α

Iα,

⇔ xγT ∈ Iα , for all α

⇔ x ∈ [Iα : T ] , for all α

⇔ x ∈ ∩α[Iα : T ] , for all α.

It follows that [
⋂
α Iα : T ] =

⋂
α[Iα : T ].
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5-

Let x ∈ [I :
∑
α

Tα]⇔ xγ
∑
α

Tα ⊆ I

⇔ xγ
∑
α

tα ∈ I, for all ti ∈ Ti

⇔ xγtα = xγ(tα + 0 + 0 . . . · · ·+ 0) ∈ Iα , for all α

⇔ x ∈ [I : Tα] , for all α

⇔ x ∈ ∩[I : Tα] , for all α.

Hence, [I :
∑

α Tα] =
⋂
α[I : Tα].

6- Let x ∈ [I : T ] then we have xγT ⊆ I ,thus xγa ⊆ I where a ∈ T.

Let b ∈ I ⇒ xγb ∈ I
⇒ xγb+ xγa ∈ I
⇒ xγ(b+ a) ∈ I and (b+ a) ∈ I + T

⇒ x ∈ [I : I + T ]

⇒ [I : T ] ⊆ [I : I + T ].

Conversely,

let x ∈ [I : I + T ]⇒ xγ(a+ b) ∈ I
⇒ xγa+ xγb ∈ I,∀a ∈ I, b ∈ T, when a = 0, then xγ0 = 0

⇒ xγb ∈ I,∀b ∈ T
⇒ x ∈ [I : T ]

⇒ [I : I + T ] ⊆ [I : T ].

Therefore [I : T ] = [I : I + T ].

Proposition 3.4. Let S be a Γ−semiring and I be a nonzero ideal of S. Then
the following statements are equivalent:

1. I is a cancellation ideal of S,

2. [IΓJ : I] = J for any ideal J of S,

3. IΓJ ⊆ IΓK implies J ⊆ K for all ideals J and K of S.
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Proof. (1) =⇒ (2) :
Let [IΓJ : I] = {s ∈ S, γ ∈ Γ : sγI ⊆ IΓJ}, since Γ− semiring is

commutative then [IΓJ : I] = {s ∈ S, γ ∈ Γ : Iγs ⊆ IΓJ} [IΓJ : I] = {s ∈ S :
s ∈ J} = J since I is cancellation ideal of S .
(2) =⇒ (3) :

Let IΓJ ⊆ IΓK, so [IΓJ : I] ⊆ [IΓK : I] , it follows that J ⊆ K from (2).
(3) =⇒ (1):

Obvious.

Next, we introduce the notion of a quotient Γ− semiring and study the
properties of ideals of quotient Γ− semiring. For more details see [9]

Definition 3.2. An ideal I of Γ−semiring S is called a partitioning ideal (=Q-
ideal) if there exist a subset Q of S such that:

1. S = ∪{a+ I : a ∈ Q}

2. if a1, a2 ∈ Q ,then (a1 + I) ∩ (a2 + I) 6= φ⇔ a1 = a2.

Let I be a Q-ideal of Γ− semiring S and let S/I = {a + I : a ∈ Q} ,then
S/I form a Γ−semiring under the binary operations ⊕,� define as follows:
(a1 + I)⊕ (a2 + I) = a3 + I,
where a3 ∈ Q is the unique element such that a1 + a2 + I ⊆ a3 + I.
(a1 + I)� γ � (a2 + I) = a4 + I,
where a4 ∈ Q is the unique element such that a1γa2 + I ⊆ a4 + I ∀γ ∈ Γ. This
Γ−semiring S/I is called the quotient Γ− semiring of S by I. By definition
of Q-ideal, there exists a unique a0 ∈ Q such that 0 + I ⊆ a0 + I. Then a0 + I
is a zero element of S/I.

The following results can easily be proved for a Γ− semiring as proved in
the case of a semiring in [7] .

lemma 3.1. Let S be a Γ− semiring with zero and commutative addition, and
let P be a Q-ideal in S. If a ∈ Q and a+P is the zero in S/P , then a+P = P .

Theorem 3.2. let I be a Q-ideal of a Γ−semiring S .If L is a k-ideal of S/I.
Then L = J/I for some k-ideal J of S.

lemma 3.3. Assume that I is a Q-ideal of Γ− semiring S and let J,L be
k-ideals of S. Then the following holds:

If I ⊆ J and I ⊆ L, then
J

I
=
L

I
if and only if J = L.
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lemma 3.4. Let I be a Q-ideal of a Γ− semiring S. If J,K and L are k-ideals

of S containing I, then

(
J

I

)
∩
(
K

I

)
=
L

I
if and only if J ∩K = L.

Proof. Assume that (J
I
)∩ (K

I
) = L

I
, we show that J ∩K = L . Let z ∈ J ∩K.

Then z = q + i, for some q ∈ Q and i ∈ I, so q ∈ Q ∩ J and q ∈ Q ∩ K ,
since J and K are k-ideals , hence q + I ∈ (J

I
) ∩ (K

I
) = L

I
by theorem 3.2 .

Therefore q ∈ L , thus z ∈ L since L is a k-ideal. So J ∩K ⊆ L. Conversely,
assume that z ∈ L. Then z = q̀ + ì for some q̀ ∈ Q and ì ∈ I. It follows that
q̀ + I ∈ L

I
= (J

I
) ∩ (K

I
), so q̀ ∈ K ∩ J, hence z ∈ K ∩ J. Thus L = J ∩K. The

other implication is similar.

4 Maximal ideals of a Γ− semiring S and local

Γ− semirings .

In this section we study maximal ideals of Γ− semiring and local Γ− semirings.
We obtain some results .These results should be compared with [10] and [8] .

Definition 4.1. [13] A proper ideal I of S is said to be maximal (resp-k-
maximal )if J is an ideal (resp-k-ideal) in S such that I ⊂ J then J = S. We
denote the set of all maximal ideals of S by Max(S)

Theorem 4.1. Any proper ideal of S is a subset of a maximal ideal of S.

Proof. let {Ii} be all proper ideals of S that containing I. Since {Ii} are sub-
semigroups of S containing I .Then {Ii} has an upper bound (the union of all
those ideals) . Zorn’s lemma implies that the proper ideals containing I have
at least one maximal element that is, in fact, a maximal ideal of S. This means
that any proper ideal I of S is a subset of a maximal ideal of S.

lemma 4.2. Let S be a Γ−semiring with 1 6= 0 . Then S has at least one
k-maximal ideal.

Proof. Since {0} is a proper k-ideal of S then we can proof this lemma easily.

Theorem 4.3. Let S be a Γ− semiring, I be a Q-ideal of S and J be a k-ideal of
S with I ⊆ J. Then J is a k-maximal ideal of S if and only if J/Iis a k-maximal
ideal of S/I.

Proof. This follows from Theorem 3.2 and lemma 3.4 .

Theorem 4.4. Let I be a proper Q-ideal of a Γ− semiring S. Then there exists
a maximal k-ideal M of S with I ⊆M.
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Proof. Since S/I is non-trivial, and so by Lemma 4.2 has a k-maximal ideal L
which, by Theorem 3.2 will have to have the form M/I for some k-ideal M of
S with I ⊂M . It now follows from Theorem 4.3 that M is a k-maximal ideal
of S.

An element u ∈ S is said to be unit if there exist a ∈ S and α ∈ Γ such
that aαu = 1 = uαa. The set of all invertible elements of S is denoted by
U(S). It is obvious that U(S) is an abelian multiplicative group and is called
the group of units of S because it satisfied the following axioms :

• closure : Let u, v ∈ U(S) and β ∈ Γ , then we well prove uβv ∈ U(S):
Since u ∈ U(S) then there exist s1 ∈ S and β1 ∈ Γ such that

uβ1s1 = 1 (1)

and v ∈ U(S) then there exist s2 ∈ S and β2 ∈ Γ such that

vβ2s2 = 1 (2)

So by (2) we get :

u = uα1 = uα(vβ2s2) (3)

Then from (1) and (3):

1 = uβ1s1

= uα(vβ2s2)β1s1

= (uαv)β2s2β1s1

it follows 1 = (uαv)β2s2β1s1 .Hence uαv ∈ U(S).

• Associative : Let u, v and w ∈ U(S) and β ∈ Γ , since U(S) ⊆ S then
(uβv)βw = uβ(vβw) since this is one of the axioms for the Γ− semiring
S .

• Identity : Since S has an identity element 1 , we have 1αx = x for every
x 6= 0 and in particular 1αu = u for every unit element u , thus the set
of units has an identity element under multiplication .

• Inverse : Let u be a unit ,thus u−1 is also a unit , and uαu−1 = 1. Thus
every unit has a multiplicative inverse in the set of unit .
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Thus , the four properties above show that the set of units is a group under
multiplication.

Obviously , I is a proper ideal of S if and only if it contains no invertible
element of S. Since I is a proper ideal of S then 1 /∈ I then contains no invertible
element of S. On the other hand I contains no invertible element of S then 1 /∈ I
,then I is a proper ideal of S.

Proposition 4.1. Let S be a Γ− semiring. Then

U(S) = S −
(
∪m∈Max(S) m

)
,

where by
(
∪m∈Max(S) m

)
we mean the union of all maximal ideals of S.

Proof. The proof of this proposition is similar to the proof of proposition 3.12
in [10].

Now , we will introduce the following definitions.

Definition 4.2. Let S be a Γ−semiring with non-zero identity. A non zero
element a of S is said to be semi unit in S if there exist r, s ∈ S such that
1 + rγa = sβa where γ, β ∈ Γ.

Definition 4.3. (S,m) is a local Γ− semiring if S is a Γ−semiring and m is
its unique maximal ideal. A Γ− semiring S is semi-local if it possesses a finite
number of maximal ideals, i.e., |Max(S)| <∞.

lemma 4.5. Let I be a k-ideal of a Γ− semiring S .Then the following hold :

i. If a is a semi-unit element of S with a ∈ I , then I = S.

ii. If x ∈ S and γ ∈ Γ , then cl(Sγx) is a k-ideal of S.

Proof.

i- Clearly I ⊆ S. Now we well prove that S ⊆ I . Since a is a semi-unit then
1 + rαa = sβa where r, s ∈ S and α, β ∈ Γ , then 1 ∈ I since I is k-ideal , then
x = xγ1 ∈ SΓI ⊂ I , it follows that S ⊆ I .Therefor I = S.

ii- Let x and x + y ∈ cl(Sγx) , then we will show that y ∈ cl(Sγx). Let
a, b ∈ Sγx then

x+ y + a = b (4)

Now , let a′, b′ ∈ Sγx where
x+ a′ = b′ (5)

then by adding a′ to (4) we get:

x+ a′ + y + a = b+ a′ (6)
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but from (5)
x+ a′ + y + a = b′ + y + a (7)

so ,
b+ a′ = b′ + a+ y. (8)

Since b + a′ ∈ Sγx and b′ + a ∈ Sγx ,it follows y ∈ cl(Sγx) , this implies
cl(Sγx) is a k-ideal.

Theorem 4.6. Let S be an Artinian cancellative Γ− semiring. Then every
prime k-ideal of S is k-maximal.

Proof. Assume that I is a prime k-ideal of S and let I $ J for some k-ideal J
of S ; we will show that J = S. There is an element x ∈ J with x /∈ I. Then
by Lemma 4.5 (ii) it follows that cl(SΓx) ⊇ cl(SΓxβx) ⊇ cl(SΓxβxβx) =
cl(SΓ(xβ)2x) ⊇ cl(SΓ(xβ)3x) ⊇ . . . . . . is a descending chain of k-ideals of S ,
since S be an Artinian so cl(SΓ(xβ)nx) = cl(SΓ(xβ)n+1)x for some n ; hence
(xβ)nx + rγ(xβ)n+1x = sγ′(xβ)n+1x for some r, s ∈ S, γ, β and γ′ ∈ Γ. Then
we have :

x(βx)n + rγx(βx)n+1 = sγ′x(βx)n+1

x(βx)n + rγ(x(βx)nβx) = sγ′x(βx)n+1

x(βx)n + (rγx(βx)n)βx = sγ′x(βx)n+1

x(βx)n + (x(βx)nγr)βx = sγ′x(βx)n+1

x(βx)nγ1 + x(βx)nγ(rβx) = sγ′x(βx)n+1

x(βx)nγ(1 + rβx) = sγ′x(βx)nβx

x(βx)nγ(1 + rβx) = x(βx)nγ′sβx.

Since S is a cancellative and (xβ)x 6= 0, it follows that we may cancel x(βx)n

, hence 1 + rβx = sβx. Hence x is a semi-unit in J , and therefore J = S by
Lemma 4.5 .

The proofs of theorem 4.7 and theorem 4.8 are similar to the proofs of
theorem 6 and theorem 2.12 in [8] and [6] respectively.

Theorem 4.7. An Artinian cancellative Γ− semiring has only a finite number
of maximal k-ideals.

Theorem 4.8. Let S be a Γ− semiring such that S = (b1, ..., bn) is a finitely
generated ideal of S. Then each proper k-ideal B of S is contained in a maximal
k-ideal of S.

Let S be a Γ− semiring with identity (1), then each proper k-ideal of S is
contained in maximal k-ideal of S.
The proof is immediate by S = (1).
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lemma 4.9. Let S be a Γ−semiring and let a ∈ S. Then a is a semi-unit of
S if and only if a lies outside each k-maximal ideal of S.

Proof. By lemma 4.5 (ii), if a ∈ S then cl(Sγa) is k-ideal of S. Then from
lemma 4.5 (i) a is a semi-unit of S if and only if S = cl(SΓa). First, suppose
that a is a semi-unite of S and let a ∈ M for some maximal k-ideal M of S.
Since Sγa is k-ideal then Sγa = cl(Sγa). Then we should have Sγa ⊆M $ S,
so that a could not be a semi-unit of S. Conversely, if a were not a semi-unit
of S, then 1 + rαa = sβa holds for no r, s ∈ S, α, β ∈ Γ. Hence, 1 /∈ cl(Sγa)
yields that cl(Sγa) is a proper k-ideal of S by Lemma 4.5 (ii). By Corollary 4
, cl(Sγa) ⊆ J for some maximal k-ideal J of S; but this would contradict the
fact that a lies outside each maximal k-ideal of S.

Theorem 4.10. Let S be a Γ− semiring. Then S is a local Γ−semiring if and
only if the set of non-semi-unit elements of S is k-ideal.

Proof. Assume that S is a local Γ− semiring with unique maximal k-ideal P. By
Lemma 4.9, P is precisely the set of non-semi-unit elements of S. Conversely,
assume that the set of non-semi-units of S is a k-ideal I of S (so I 6= S since 1
is a semi-unit of S). Since S is not trivial, it has at least one maximal k-ideal:
let J be one such. By Lemma 4.9, J consists of non-semi-units of S, and so J
⊆ I ⊂ S. Thus I = J since J is k-maximal. We have thus shown that S has
at least one maximal k-ideal, and for any maximal k-ideal of S must be equal
to I.

Definition 4.4. In a Γ− semiring . Two ideals I and T of S are called
comaximal if I + T = S. The ideals {Ik}nk=1 of S are said to be pairwise
comaximal if Ik + Ij = S for any 1 ≤ k < j ≤ n.

The following two results can be easily proved for a Γ− semiring as proved
in the case of a semiring [10] .

Proposition 4.2. Let S be a Γ−semiring. Then the following statements hold:

1. If the ideals I,T of S are comaximal, then I ∩ T = IT.

2. If the ideals {Ik}nk=1 of S are pairwise comaximal, then ∩nk=1Ik =
∏n

k=1 Ik.

3. If {Wk}nk=1 is a set of n distinct maximal ideals of S, then they are pair-
wise comaximal and ∩nk=1Wk =

∏n
k=1Wk..

Theorem 4.11. If S is an Artinian Γ− semiring, then S is semi-local.

Now , in the next proposition we can represented each k-ideal in a Γ−semiring
as an intersection of a finite number of irreducible k-ideals
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Proposition 4.3. Let S be a Noetherian Γ−semiring. Then every k-ideal of S
can be represented as an intersection of a finite number of irreducible k-ideals
of S.

Proof. Let M be the set of all k-ideals of S which are not a finite intersection of
irreducible k-ideals of S. We claim that M = φ. On the contrary, assume that
M 6= φ. Since S is Noetherian, M has a maximal element N. Since N ∈ M,
it is not a finite intersection of irreducible k-ideals of S. Especially it is not
irreducible, which means that there are k-ideals A and B properly containing N
with N = A∩B. Since N is a maximal element of M, A,B /∈M . Therefore A
and B are a finite intersection of irreducible k-ideals of S. But, then N = A∩B
is a finite intersection of irreducible k-ideals of S, a contradiction.

5 Decomposition of ideals

In this section we introduced the notion of radical ideal , primary ideal and
discuss their properties and study the relations between them.

Radical Ideals

First we recall the following definition from [18] .

Definition 5.1. Let I be an ideal of a Γ− semiring S. Then radical of I is
defined as the set of all elements x ∈ S such that (xα)nx ∈ I for some n ∈ Z+

for all α ∈ Γ and it is denoted by
√
I.

Proposition 5.1. Let S be a Γ− semiring and I, J be ideals of S. Then the
following statements hold:

1. I ⊆ J implies that
√
I ⊆
√
J .

2. I ⊆
√
I and

√
I =

√√
I.

3.
√
IΓJ =

√
I ∩ J =

√
I ∩
√
J.

4.
√
I = S ⇐⇒ I = S.

5.
√
I + J =

√√
I +
√
J.

Proof. 1- Straightforward.

2- let x ∈ I then xΓx ∈ I, so for all α ∈ Γ and n=1 xαx ∈ I ,so x ∈
√
I.

Hence I ⊆
√
I.

Next we well prove that
√
I =

√√
I . Take x ∈

√√
I this implies
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(xβ)nx ∈
√
I

⇒ (((xβ)nx) β)m (xβ)nx ∈ I,
⇒ (xβxβxβ . . . . . . x)β)m(xβ)nx ∈ I,
⇒ (xβ(xβxβ . . . . . . xβ))m(xβ)nx ∈ I,
⇒ ((xβ)n+1)m(xβ)nx ∈ I,
⇒ (xβ)m(n+1)(xβ)nx ∈ I,
⇒ (xβ)mn+m+nx ∈ I,
⇒ x ∈

√
I,

⇒
√√

I ⊆
√
I and from(2)

√
I ⊆

√√
I,

⇒
√√

I =
√
I.

3- since IΓJ ⊆ I ∩ J ⊆ I and J, then from (1) we have:

√
IΓJ ⊆

√
I ∩ J, (9)

since I ∩ J ⊆ I and I ∩ J ⊆ J , then
√
I ∩ J ⊆

√
I and

√
I ∩ J ⊆

√
J ,

it follows that
√
I ∩ J ⊆

√
I ∩
√
J . Conversely , let x ∈

√
I ∩
√
J then

x ∈
√
I and x ∈

√
J , then for each α ∈ Γ, there exist positive integers n

and m satisfying: (xα)nx ∈ I and (xα)mx ∈ J

⇒ ((xα)nx)α((xα)mx) ∈ IΓJ

⇒ (xαxαxαxα . . . . . . xα)xα((xα)mx) ∈ IΓJ

⇒ xα(xαxαxα . . . . . . xα)((xα)mx) ∈ IΓJ

⇒ (xα)n+1((xα)mx) ∈ IΓJ

⇒ (xα)n+m+1x ∈ IΓJ

⇒ x ∈
√
IΓJ

⇒
√
I ∩
√
J ⊆

√
IΓJ

⇒
√
I ∩
√
J ⊆
√
IΓJ ⊆

√
I ∩ J from (1).

Hence,
√
IΓJ =

√
I ∩ J =

√
I ∩
√
J.

4- If
√
I = S then we will prove I = S . Suppose that I ( S ,so

√
I (√

S = S from (1), which is a contradiction with assumption. Hence
I = S

If I = S then we will prove
√
I = S. Since I ⊆

√
I and I = S then ,

S ⊆
√
I (10)

since I ⊆ S then by (1)
√
I ⊆
√
S , but

√
S = S then

√
I ⊆ S (11)
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Therefore from (10) and (11) ,
√
I = S.

A nonempty subset W of a Γ− semiring S is said to be a multiplicatively
closed set (for short an MC− set) if 1 ∈ W and for all w1, w2 ∈ W, γ ∈ Γ
we have w1γw2 ∈ W .In other words, W is an MC−set if and only if it is a
submonoid of (S, .).It is clear that an ideal P of S is a prime ideal of S if and
only if S − P is an MC−set.

Theorem 5.1. Let S be a Γ− semiring and I an ideal of S. Then the following
statements hold:

1.
√
I = ∩p∈V (I)P , where V (I) = {P ∈ space(S): I ⊂ P}.

2.
√
I is an ideal of S.

Proof. 1- let x ∈
√
I , then for each β ∈ Γ there exists positive integer n such

that (xβ)nx ∈ I , but I ⊆ P then (xβ)nx ∈ P , this implies (xβ)nx ∈ ∩P
.Hence

√
I ⊆ ∩p∈V (I)P . Now let a ∈ ∩p∈V (I)P but a /∈

√
I. It is clear that

Wa = {(aβ)na : n > 0} is anMC− set of S disjoint from I. since a /∈
√
I then

(aβ)na /∈ I and by proposition 5.1 (aβ)na /∈
√
I , it follows

√
I disjoint from

Wa .Hence
√
I is prime ideal containing I and not containing a , which is a

contradiction with assumption . So ∩p∈V (I)P ⊆
√
I. Therefore

√
I = ∩p∈V (I)P

2- Since
√
I is an intersection of some ideals, it is an ideal and this completes

the proof.

Primary ideals

In this section , we introduce primary ideals and D-primary ideal , then we
prove the uniqueness of the reduced primary decomposition of k-ideal of a
Γ−semiring.

Definition 5.2. [6] An ideal P of Γ− semiring S is said to be primary ideal
of S if xαy ∈ P, α ∈ Γ, x, y ∈ S then x ∈ P or (yβ)ny ∈ P , for all β ∈ Γ for a
positive integer n.

Theorem 5.2. Let S be a Noetherian Γ− semiring and I a k- ideal of S. If I
is irreducible, then it is primary.

Proof. Let I be a non-primary ideal of S. This means that there are s, t ∈ S ,
γ ∈ Γ such that sγt ∈ I but t /∈ I and (sβ)ns /∈ I for all n ∈ N. Since sγt ∈ I,
t ∈ [I : s] . Now by proposition 3.3, we have that [I : s] and [I : (sβ)n] ⊂
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[[I : (sβ)n] : s] ⊂ [I : (sβ)n+1], which gives us the following ascending chain of
ideals: I ⊂ [I : s] ⊂ [I : sβs] ⊂ [I : sβsβs] ⊂ [I : sβsβsβs] ⊂ ......[I : (sβ)ns].
Since S is Noetherian, this chain must stop somewhere, which means that there
is some m ∈ N such that [I : (sβ)ms] = [I : (sβ)m+is] for any i ≥ 0. Our claim
is that I = [I : (sβ)ms]∩(I+((sβms)). Obviously,[I : (sβ)ms] and [I+((sβ)ms)
contain I.

Now let x ∈ [I : (sβ)ms] ∩ (I + ((sβms)). Since x ∈ I + (sβ)ms, there are
some y ∈ I, z ∈ S such that x = y + zβ(sβ)ms. But x ∈ [I : (sβ)ms], which
means that yβ(sβ)ms+zβ(sβ)msβ(sβ)ms = xβ(sβ)ms ∈ I. Since I is a k-ideal
of S, we have zβ(sβ)2m+1s ∈ I, which means that z ∈ [I : (sβ)2m+1s].But
[I : (sβ)2m+1s] = [I : (sβ)ms] , so zβ(sβ)ms ∈ I and this finally causes x ∈ I.
This means that I is reducible, the thing it was required to have shown.

Theorem 5.3. If S is a Noetherian Γ− semiring, then every proper k-ideal is
a finite intersection of primary k-ideals.

Proof. This follows from theorem 3.2 and theorem 5.2.

Now, we define the concept of cyclic ideals in a Γ− semiring as the following
:

Definition 5.3. A proper ideals SΓa and SΓb of a Γ− semiring S is said to
be cyclic ideals if SΓa ∩ SΓb ⊆ I, then either a ∈ I or b ∈ I.

Proposition 5.2. Let I be an ideal of Γ− semiring S. Then the following
holds:
I is a strongly irreducible ideal , then SΓa and SΓb are cyclic ideals of S.

Proof. Let J and K be ideals of S such that J ∩K ⊆ I; we show that either
J ⊆ I or K ⊆ I. Suppose J * I. Then there exists a ∈ J such that a /∈ I.
if a ∈ J then SΓJ ⊆ J ⇒ SΓa ⊆ J . and if b ∈ K then SΓb ⊆ K. ⇒
SΓa ∩ SΓb ⊆ J ∩K Then for all b ∈ K,SΓa ∩ SΓb ⊆ J ∩K ⊆ I, so b ∈ I, as
required.

Definition 5.4. If P is a primary ideal of S and
√
P = D, then P is said to

be D-primary.

Proposition 5.3. If P is an ideal of a Γ− semiring S such that
√
P ∈Max(S),

then P is a primary ideal of S. In particular, any power of a maximal ideal is
a primary ideal.

Proof. Let P be an ideal of a Γ− semiring S and
√
P = m such that m ∈

Max(S). Take xαy ∈ P, α ∈ Γ such that (yβ)ny /∈ P , then y /∈ P . Since
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√
P = m is a maximal ideal of S,

√
P+ < y >= S. This implies that

√
P +
√
< y > = S

⇒
√√

P +
√
< y > = S

⇒
√
P+ < y > = S

⇒ P+ < y > = S , by proposition 5.1

which means that there are a ∈ P and c ∈ S such that a+ cβy = 1. From this,
we get that

aαx+ cβyαx = 1αx.

aαx+ cβxαy = x.

Since a, xαy ∈ P, we get that x ∈ P and this finishes the proof.

Theorem 5.4. Let P1, P2, P3, . . . . . . , Pn. be primary ideals in an Γ− semir-
ing S. If

√
Pi = P for each i = 1, 2, . . . . . . , n, then ∩ni=1Pi is primary and√

∩ni=1Pi = P .

Proof. Let aαb ∈ ∩ni=1Pi where a, b ∈ S and α ∈ Γ.If a /∈ ∩ni=1Pi then there
exist Ps ∈ ∩ni=1Pi such that a /∈ Ps where 1 ≤ s ≤ n ,then (bβ)nb ∈ Ps for
some n ≥ 1. So b ∈

√
Ps = P, hence (bβ)sb ∈ Piwhere 1 ≤ i ≤ n − 1 , since

Pi is P-Primary . Let K = max(n, s) then (bβ)kb ∈ ∩ni=1Pi . Now z ∈ P
implies (zβ)tz ∈ ∩ni=1Pi, t ≥ 1 .Hence P ⊆

√
∩ni=1Pi . Conversely, Proposition

5.1 implies that
√
∩ni=1Pi ⊂

√
Pi = P . Thus√
∩ni=1Pi = P.

The following argument will show that ∩ni=1Pi is primary. Let a, b ∈ S and
α ∈ Γ such that aαb ∈ ∩ni=1Pi and b /∈ P . Since each Pi is primary, aαb ∈ Pi,
and b /∈ P =

√
Pi , then (bα)nb /∈ Pi for each i, it follows that a ∈ Pi for each

i = 1, 2, . . . , n. Thus, a ∈ ∩ni=1Pi.

The following proposition will be used to prove the uniqueness of reduced
primary decomposition of k-ideals in Γ− semirings.

Proposition 5.4. Let S be a Γ− semiring, x an element of S and P be a
D-primary ideal.The following statements hold:

1. If x ∈ P , then [P : x] = S.

2. If x /∈ P, then [P : x] is a D-Primary and
√

[P : x] = D.
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3. If x /∈ D , then [P : x] = P

Proof. The proof of the statements (1) and (3) is straightforward. We only
prove (2) : it is obvious that P ⊆ [P : x] .Now take y ∈ [P : x] .So yαx ∈ P,
since x /∈ P ,then (yβ)ny ∈ P , hence y ∈

√
P = D. This means that P ⊆ [P :

x] ⊆ D and therefore by taking radical, we get
√
P ⊆

√
[P : x] ⊆

√√
P =

√
P

implies that
√

[P : x] =
√
P = D. Now, we show that [P : x] is a primary

ideal of S. Assume that for each α ∈ Γ, aαb ∈ [P : x] and b /∈
√

[P : x], then
aαbβx ∈ P and P is D-Primary ideal of S which implies that either aαx ∈ Por
(bβ)nb ∈ P ,so b ∈

√
P = D ,then b ∈

√
[P : x] , thus a ∈ [P : x].

The following theorem is an immediate consequence of definition 5.1.

Theorem 5.5. If P is a proper ideal in a Γ− semiring S, then the following
statements are equivalent:

1. P is Primary ;

2. if a, b ∈ S, α ∈ Γ such that a /∈ P and aαb ∈ P , then b ∈
√
P ;

3. if a, b ∈ S, α ∈ Γ such that aαb ∈ P and b /∈
√
P , then a ∈ P .

We now present the notion of primary decomposition of k-ideals as follows:

Definition 5.5. Let I be a k-ideal of a Γ− semiring S. Then I is said to have
a primary decomposition if I can be expressed as I = ∩ni=1Pi , where each Pi is
a primary ideal of S.

A primary decomposition of the type I = ∩ni=1Pi , with
√
Pi = Qi is called

a reduced primary decomposition of I, if Qi’s are distinct and I cannot
be expressed as an intersection of a proper subset of ideals Pi in the primary
decomposition of I. A reduced primary decomposition can be obtained from
any primary decomposition by deleting those Pj that contains ∩ni=1i 6=jPi and

grouping together all distinct
√
Pi’s.

Now , we prove the uniqueness of the reduced primary decomposition of a
k-ideals of a Γ−semiring as follows:

Theorem 5.6. [Uniqueness of Primary Decomposition] Let S be a commuta-
tive Noetherian Γ− semiring and I a k-ideal of S. If I = ∩ni=1Pi is a reduced pri-
mary decomposition of I with

√
Pi = Qi for i = 1, 2....n, then {Q1, Q2, . . . . . . Qn} =

{Prime ideals Q|∃x ∈ S such that Q =
√

[I : x]}. The set {Q1, Q2, . . . . . . Qn}
is independent of the particular reduced primary decomposition chosen for I.
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Proof. Let x ∈ S. Then
√

[I : x] =
√

(∩ni=1Pi : x) = ∩ni=1

√
(Pi : x) = ∩ni=1,x/∈Pi

by proposition 5.4 (2) and therefore,
√

[I : x] ⊆ Qi for all i = 1, 2 . . . . . . , n.

Also, if
√

[I : x] is prime, then
∏n

i=1Qi ⊆ ∩ni=1,x 6=Pi
Qi =

√
[I : x] implies that

Qi ⊆
√

[I : x] for some i = 1, 2 . . . . . . , n . Thus, we have { Prime ideals

Q|∃x ∈ S such that Q =
√

[I : x]} ⊆ {Q1, Q2, . . . . . . Qn}.
On the other hand, for i ∈ {1, 2 . . . . . . , n}, we have ∩ni=1,j 6=iPj * Pi, as

the primary decomposition is reduced. So there exists some xi ∈ ∩nj=1,j 6=iPj
and xi /∈ Pi. If y ∈ [Pi : xi], then for each α ∈ Γ , yαxi ∈ Pi, and yαxi ∈
(∩nj=1,j 6=iPj) ∩ Pi = I which implies that y ∈ [I : xi]. Thus, [Pi : xi] ⊆ [I :

xi] ⊆ [Pi : xi] ,as I ⊆ Pi. So [Pi : xi] = [I : xi] implies that
√

[Pi : xi] =√
[I : xi] = Qi by proposition 5.4 (2). Hence {Q1, Q2, . . . . . . Qn} = {Prime

ideals Q|∃x ∈ S such that Q =
√

[I : xi]}
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