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IDEAL TYPES IN A POLYNOMIAL HALFRING

LOUIS DALE

Abstract. Ideal types are used to classify ideals in a polynomial halfring

and to determine when an ideal behaves like a fc-ideal. In particular, these

results are used to classify all ideals in the ring of polynomials over the

integers.

1. Introduction. The type of a A:-ideal K in a halfring H has been defined to

be the set of all A>ideals / in the ring of differences H such that / n H = K.

Using r(K) to denote the ideal type of K, an ideal is said to be monotypic if

t(K) consists of a single ideal. While the concept of ideal type is applicable to

A>ideals in any half ring, it is of interest to consider ideal types in polynomial

halfrings. The purpose of this paper is to consider a special ideal type found

only in polynomial halfrings. The general concept of ideal type is extended to

include all ideals in a halfring and an attempt is made at relating ideal types

in a halfring H to ideal types in H[x].

2. Ideal types in H and H[x]. A semiring is a set S together with two binary

operations called addition ( + ) and multiplication (•) such that (S, + ) is an

abelian semigroup with a zero, (S, • ) is a semigroup and multiplication

distributes over addition from both the left and the right. If (S, + ) is also

cancellative, then S is called a halfring. A halfring 5 is said to be strict if

a, b E S and a + b = 0 imply a = b = 0. An ideal / in a semiring S is called

a Â>ideal if a E I, b E S and a + b E I imply b E I. The subtractive ideals

mentioned in [4] and fc-ideals have the same jneaning. Now every ideal A in a

semiring S is contained in a unique fc-ideal AK, called the ^-closure of A. This

fact allows one to extend the definition of ideal type as follows:

2.1. Definition. Let H be a half ring and A an ideal in H. The ideal type of

A, denoted r(A), is the set of all ideals / in the ring of differences H such that

I C\ H =_ÄK.

Since AK is a &-ideal in H, it is clear that t(A) = r(AK) for any A in H.

Stone [4] used the type of an ideal to relate halfring ideals to ideals in the

ring of differences. Thus it is easy to see why the type of an ideal is totally

dependent on ideals in the ring of differences and is defined only for fc-ideals.

Now every ideal in a halfring is not a fc-ideal. However, some ideals behave
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more like ¿-ideals than others. To investigate such ideals it seems natural to

consider ideals in a polynomial halfring, since the degree of a polynomial

could possibly aid in the investigation. The fact that these ideals are not

¿-ideals suggests that the concept of ideal type in the usual sense would be of

no help. Consequently, it appears that an ideal type is needed that is

independent of ideals in the ring of differences and defined for all ideals in

the halfring.

Throughout this paper, unless otherwise stated, H will be a commutative

half ring with an identity and H[x] will be the half ring of polynomials over H

in the indeterminate x. An ideal A in H[x] is called a weak ¿-ideal if there

exists an integer zz such that A is a zc-ideal with respect to all polynomials

f E A with degree / < n. The largest such integer if it exists is called the

zc-degree of A. If no such integer exists, then A is said to have ¿-degree oo.

2.2. Definition. Let A be an ideal in H[x]. The ideal type of A in H[x],

denoted t0(A), is the set of all weak ¿-ideals / in H[x] such that A c I C AK.

It is easy to see that t0(A) is closed under unions of chains and arbitrary

intersections, and contains AK as a maximal element. Thus, r0(A) is never

empty.

Now there are associated_two ideal types with each ideal A in H[x], t(A)

and r0(A), a set of ideals in H[x] and a set of ideals in H[x] respectively. The

importance of the ideal type t(K) of a ¿-ideal K in a halfring H lies in its

relation to the collection of homomorphic images of H having K as kernel.

The ideal type t0(A) is important because ideals in r0(A) can be used to

investigate ideals in H[x] that behave like ¿-ideals.

Let A be an ideal in H [x], n a fixed integer and

Afn = {/|/ G A and degree/ < n).

The ideal A^ = (\{B\B is a weak ¿-ideal with ¿-degree at least n and

Af c B) is called the weak ¿-closure of A.

It is clear that A^ has ¿-degree at least zz and Aj C A c AK. Also, if

m < n, then it follows that A c A^. Consequently, with each ideal A in

H_[x] there is associated an ascending chain of weak ¿-ideals {A^} such that

AKn c AK for_each nonnegative integer zz. Now if H is a strict half ring and

W¡ = A + A^, then {W¡) is an ascending chain of ideals in i0(A) such that

the ¿-degree of W¡ is at least z. To see that W¡ E i0(A), observe that A¡ c A^

and AK is a weak ¿-ideal with ¿-degree at least z. Since H is strict, it follows

that / E W¡ and deg/ < i imply f E A^. Consequently, W¡ = A + A^ is a

zc-ideal with respect to all polynomials of degree less than or equal to z and it

follows that W¡ is a weak ¿-ideal with ¿-degree at least z. Now suppose

/ G t0(A). If the ¿-degree of / is «5, then I = AK and it follows that W¡ c I

for all z. If / has finite ¿-degree, say t, then it is clear that A^E I and

consequently, W, = A + AK c /. This proves the following:

2.3. Lemma. If H is a strict halfring, A is an ideal in H[x], and I E r0(A),

then there exists i such that W¡ c I.
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This lemma establishes that the ideals {W¡] serve as sort of a basis for

t0(A). Consequently, with each nonzero ideal A in H[x] there can be

associated a unique number w = |{ W¡)\.

2.4. Definition. An ideal A in H [x] will be called a quasi-¿-ideal if w is

finite.

Since W¡ = A + A^, it is clear that the number w associated with A is

really the number of distinct weak ¿-closures of A. Consequently, u> tells us

the mimmum number of steps required to construct AK using weak ¿-ideals.

Thus the ¿-closures of quasi ¿-ideals are easier to construct than for others.

It is clear that if H[x] is a Noetherian halfring, then every ideal in H[x] is

a quasi-¿-ideal. However, requiring that H[x] be Noetherian is a strong

condition to impose. This can be weakened somewhat by requiring that H be

Noetherian. It was shown in [1] that H is Noetherian if and only if every

ascending chain of monic ideals in H[x] is finite. An ideal M in H[x] is

called monic if 2 a¡x' E M implies that a¡x' E M for each /' G

{0, 1,2,..., n).

2.5. Theorem. If H is a Noetherian halfring, then every monic ideal in H[x]

is a quasi-k-ideal.

Proof. Let A be a monic ideal and Wn E t0(A). Then it follows that AK is a

monic ideal. To see this, note that the ¿-boundary of A is

A' = [g E H[x]\ there is/ E A such that/ + g E A).

It was shown in [1] that AK = A'. Let g = 2 b¡x' E AK. Then there exists a

polynomial/ = 2 a¡x' E A such that

f+g = Z(ai + bi)xi EA.

It could happen that/ = 0. Since A is monic, (a¡ + b¡)x' = a¡x' + b¡x' E A

for each i. Now a¡x' E A and it follows that b¡x' E AK and AK is monic. Now

let 9H be the set of all polynomials in A^ with degree at most n. By a proof

similar to the above, it follows that A^ is a monic ideal with respect to

polynomials in 9H. If M = (91t) is the ideal generated by 911, then M is a

monic ideal,

and the ¿-degree of M is at least n. Consequently, M = A and A is a

monic ideal. Hence, Wn = A + A is a. monic ideal. Therefore {W¡) is an

ascending chain of monic ideals in H[x] and must necessarily be finite.

Consequently, <o is finite and A is a quasi ¿-ideal.

Since Z+ is a Noetherian halfring, it is clear that every monic ideal in

Z +[x] is a quasi-¿-ideal. However, there are quasi-¿-ideals in Z+[x] that are

not monic, as the following example will show.

2.6. Examples, (i) Consider the ideal A = (a, x" + a) in Z+[x], where

a > 1 and n > 1. Now A is neither a monic ideal nor a ¿-ideal since x" £ A.
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Any polynomial of degree m < n in A is of the form 2 c¡(ax') and it follows

that A is a ¿-ideal with respect to these polynomials since each c¡(ax') E A.

Consequently, A is a weak ¿-ideal of degree n — 1. From this it follows that

-71„     —   Jl„     —    ...     —   ft„ ^   /\
K\ Kl Kn-\

and hence Wx = W2 = ■ • • = W„_x. Now any ¿-ideal containing a and

x" + a must contain x". Since (a, x") is a ¿-ideal, it is clear that A^ =

(a, x"). This gives W„ = A and consequently, Wn = Wn+X = • • • . There-

fore |{ W¡)\ = « = 2 and A is a quasi-¿-ideal.

(ii) Consider the ideal B = (x + 1) in Z+[jc]. Any ¿-ideal, say K,

containing x + 1 must also contain x3 + 1. For

(x + 1)3= x3+ 1 +3x(x + 1) G K

and 3x(jt + 1) G K imply that x3 + 1 G K. By induction, any ¿-ideal

containing x + 1 must also contain x2n+x + 1 for each n G Z+. Let B0 = (x

+ 1), B„ = L*2"""1 + 1) + B„_x if n > 1, and £ = U 5„. Then {ÄJ is an
ascending chain of ideals in Z +[x] and £ is an ideal such that E c BK. Now

let r/: Z +[;c] -» Z be defined by tj(/(jc)) = /(- 1). It can be shown directly

that tj is a semiring homomorphism and ker tj = E. Consequently, £ is a

¿-ideal containing B and it follows that BK c E. This shows that E = BK.

Since E is a ¿-ideal it follows that for any positive integer n the set Ef of all

polynomials in E with degree at most n generates a weak ¿-ideal whose

¿-degreejs at least zz. Hence E^ c (Ej)- Now Ef c E^ and it follows that

(Ejj) c £Kn. Consequently, E = (£}), i.e., the weak ¿-closure of degree zz of a

¿-ideal is generated by £¿. Now note that the set [x2n+x + l\n E Z + ) is a

basis for E. Clearly Ef¡ c B0 = (x + 1) and it follows that EK¡ = B0. Also,

Ef2E B0 since the basis elements in the set {x2n+' + 1| n > 0} cannot

generate polynomials of degree 2. Consequently, EK = B0 = ü^ and it

follows that Wx = W2. Now £/3, EfiC Bx = BQ + (x3 + 1) since the basis

elements in the set [x2n+x + \\n > 1} cannot generate polynomials of degree

less than 5. Consequently, EK} = .E^ = B_x and it follows that W3 = W4.

From B0 ¥= Bx it follows that EK2 =£ EK} and consequently W2 ̂  W3.

Continuing in this manner, one obtains the sequence of ideals {W¡) with the

property that for each z" = 2zz + 1, W¡ = Wi+X but W¡ ̂  Wi+2. Therefore

|{ W¡)\ = co = oo and B is not a quasi-¿-ideal.

These two examples illustrate the difference in the construction of the

¿-closure of a quasi-¿-ideal and the ¿-closure of an ideal that is not a

quasi-¿-ideal.

3. Ideal classes in H [x]. It is of interest to find some relation between ideal

types in H and ideal types in H[x\. For the collection of ideals in H[x] of the

form E [x], E an ideal in H, this is an easy matter. For if / is an ideal in H,

then / n H = E if and only if I[x] n H[x] = E[x]. Consequently, / G

r(E) if and only if I[x] G r(E[x]) and it follows that the map I—> I[x] is a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



IDEAL TYPES IN A POLYNOMIAL HALFRING 193

lattice isomorphism between t(E) and a subset of t(E[x]). Now with each

nonzero ideal A in H[x] there is associated an ascending chain of ideals {A¡)

in H, where

A¡ = [a E H\ there is an/ E A such that ax' is a term of/}.

These ideals are called coefficient ideals, and it is clear that \J A¡ = A' is an

ideal in H. Consequently, each ideal A in H[x] can be associated with a

unique ideal in H, namely A'. If % is the collection of all ideals in H and §

the collection of all ideals in H[x], then the map \i: § -> % given by

¡i(A) = ,4' is surjective. Define a relation "~" in § as follows; A ~ 5 if and

only if ^' = 5', or equivalently, A ~ fi if and only if v4, B G u_1(C) for

some C G DC. It is clear that this is an equivalence relation and consequently

partitions % into equivalence classes. Note that if a is an equivalence class of

§ and A E a, then a = \i~x(A'). Thus the equivalence classes are induced by

u. If ê* is the set of equivalence classes of §, then the map u*: % -» §*

given by n*(A') = a, where a is the equivalence class containing A, is

bijective. For if a G §* and A E a, then a = fi~x(A') and it follows that

H*(A') = a. If u*04') = u*(5'), then

a = ti-x(A') = li-x(B') = ß

and it follows that A ~ B. Consequently, A' = B' and u* is bijective. This

proves the following.

3.1. Theorem. Let H be a halfring with an identity, % the collection of all

ideals in H and § the collection of all ideals in H[x]. The map u: § -*% given

by fi(A) = A' induces an equivalence relation on §. Moreover, there is a

one-to-one correspondence between % and the set of equivalence classes of §.

It is clear that this result can be extended from the halfring H to its rings of

differences H.

3.2. Corollary. Let H be a halfring with an identity and H its ring of

differences. If % is the collection of all ideals in H and § the collection of all

ideals in H[x], then the_ map \L: § -* % given by jii(A) = A' induces an

equivalence relation on §. Moreover, there is a one-to-one correspondence

between % and the set of equivalence classes of §.

The preceding theorem establishes a correspondence between the ideals in

H and certain classes of ideals in H[x]. Now to establish a relation between

ideals in H and H as well as H[x] and H[x].

3.3. Lemma. If A is an ideal in H[x], then ¡i(A) = n(A).

Proof. SmceJi(A) = (A)' and fi(A)=A' it suffices to show that (A)' =A'.

Suppose c G (A)'. Then c G (A), for some t and it follows that ex' is a term

of/ — g, where/ = 2 a¡x', g = 2 b¡x' G A. Thus

ex' = (a, — b,)x'
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and consequently, c = a, — b, E A, cA'. On the other hand, if c E A', then

c = a - b, where a, b E A' — U A¡. Thus a E Ap b E Ak for some integers

j and ¿. Since {A¡) is an ascending chain either Aj c Ak or Ak c Ay, say

Ak c y4-. There exists polynomials/, g E A such that axJ and ox7' is a term of

/ and g respectively. Consequently, cxJ = axj — bxJ is a term of / - g E A

and it follows that c E (A}j C (A)'. Therefore (A)' =A~!. _

If A is an ideal in H[x], then A is an ideal in H[x]. Consequently,

p(A) = A' is an ideal in # and p(A) = (/I)' is an ideal in H. Since /l G

jir'L-í') = a, Je j¡r'(i)' and L4)' =^47, let ä = p-l£F). Then it is clear
that B E a implies B E ä.

3.4. Definition. The ideal type of the class a = p~x(A') E G*, denoted

t(cx), is the set of all classes ß such that ß = ¡i~ l(B') for some B' G r(Ar).

Note that in order for the above definition to make sense, it is necessary

that t(A') be defined for all ideals in H. Consequently, we made use here of

the extended definition of ideal type.

Let a = p~x(A') E G* and consider the ideal A' in H. Now A'f\ H = £ is

a ¿-ideal in H containing A'. If we denote the ¿-closure of A' by K, then it is

clear that K c £. If x G £, then x E H and x G A' and it follows that

x = a — b for some a, b E A'. Thus a = b + x and x E K. Consequently,

£ c K and it follows that £ = K. Therefore, A~'c\H = K and 17Et(A').

This proves that /7~ X(A') = ä E r(a) and T(a) =£0.

A halfring // will be called monotypic if every nonzero ideal in H is

monotypic while H[x] will be called class monotypic if every class in G* is

monotypic.

3.5. Theorem. If H is a halfring, then H is monotypic if and only if H[x] is

class monotypic.

Proof. Suppose H is monotypic, a G S * and ß G r(a). Then ß = p~ X(B')

for some B' E r(A') = (Ä'}. Hence B' =A'= (Ä)' and it follows that

ß = p-x(B') = p-x(Ä)' = cx.

Consequently, a is monotypic. Conversely, suppose H[x] is class monotypic,

A' is an ideal in H and p~x(A') = a E §*. If B' E r(A'), then p'\B') E

t(cx) = [a] and it follows that

p-i(B') = ä = ii-x('T).

Consequently, B' =A' and A' is monotypic.

A halfring H is called semisubtractive if for every a, b E H at least one of

the equations a-r-x = ¿>ora = ¿>-l-x has a solution x G H. It was shown in

[4] that if H is semisubtractive, then /f is monotypic.

3.6. Corollary. If H is a semisubtractive halfring, then H[x] is class

monotypic.

Theorem 3.5 illustrates how a condition imposed on H can influence § *.
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Conditions imposed on H can also influence the characterization of each

class in § *. For example, suppose H is Noetherian and A is an ideal in H[x\.

Since [A¡) is an ascending chain in H, it follows that there exists t such that

A¡ = A, for all / > t. Consequently, all the coefficients of terms of degree

/' > t of a polynomial / G A lie in a fixed ideal At. This condition character-

izes the class a = ¡i~x(A'), i.e. / G a if and only if there exists q such that

Ij = A, for ally > q. This proves the following.

3.7. Theorem. Let H be a Noetherian halfring and fi~x(A') = a G § *. Then

I G a if and only if there exists t G Z + such that Ij = A' for all j > t.

3.8. Example. Consider the half ring Z + . Any nonzero ¿-ideal in Z+ is of

the form K = (a). Since Z is a principal ideal ring, it is easy to see that Z + is

monotypic. Consequently, Theorem 3.5 assures that Z+[x] is class monoty-

pic. Now Z is Noetherian and Theorem 3.7 assures that if B' = (b) is an ideal

in Z, then an ideal I E ß = u"'(fi') if and only if there is a / such that

Ij = B' for ally > t. This implies that b is the greatest common divisor of the

set of all coefficients of polynomials in /. Consequently, each positive integer

n determines a class of ideals in Z[x] and it follows that the number of

classes in Z [x] is equal to the cardinality of Z.

The above example may be extended to any halfring H whose ring of

differences H is a principal ideal ring.
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