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Abstract This paper examines the role of mathematical idealization in describing
and explaining various features of the world. It examines two cases: first, briefly, the
modeling of shock formation using the idealization of the continuum. Second, and in
more detail, the breaking of droplets from the points of view of both analytic fluid
mechanics and molecular dynamical simulations at the nano-level. It argues that the
continuum idealizations are explanatorily ineliminable and that a full understanding
of certain physical phenomena cannot be obtained through completely detailed, non-
idealized representations.
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1 Introduction

Physical applied mathematics is in the business of constructing and investigating mod-
els of physical phenomena. Typically these mathematical models take the form of an
equation or set of equations which are then manipulated in various ways. Fowler (1997)
discusses the nature of this art:

Applied mathematicians have a procedure, almost a philosophy, that they apply
when building models. First, there is a phenomenon of interest that one wants to
describe or, more importantly, explain. Observations of the phenomenon lead,
sometimes after a great deal of effort, to a hypothetical mechanism that can
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explain the phenomenon. The purpose of a model is then to formulate a descrip-
tion of the mechanism in quantitative terms, and the analysis of the resulting
model leads to results that can be tested against the observations. Ideally, the
model also leads to predictions which, if verified, lend authenticity to the model.
It is important to realize that all models are idealizations and are limited in their
applicability. In fact, one usually aims to oversimplify; the idea is that if a model is
basically right, then it can subsequently be made more complicated, but the analy-
sis of it is facilitated by having treated a simpler version first. (Fowler 1997, p. 3)

I think that this is an accurate statement of a fairly widespread view about mathe-
matical modeling and, while I agree with the overall sentiment, I also believe that in
several ways it potentially misleads. For instance, I agree with Fowler that all mod-
els are or involve idealizations; although I disagree that this necessarily means that
they are limited in their applicability. I agree that mathematical modelers usually aim
to over-simplify; although I will argue that sometimes (often, in fact) if one tries to
make the model more complicated, one fails to realize the stated goal of providing an
explanation of the phenomenon. Finally (though I will not consider this here), I think
that in many instances the search for a mechanism—at least if this is understood rather
narrowly in causal terms—is not an important feature of the explanation provided by
the mathematical model.

In what follows I would like to discuss these features of mathematical modeling. In
particular, I will concentrate on the explanatory goals of modeling. In order to do so
we must examine more closely the role of idealization and the proper understanding of
that role in describing and explaining various features of the world. However, in order
to do this we need to grasp what counts as the physical phenomenon to be modeled.
I believe that most discussions of modeling simply take it for granted that we have
an appropriate understanding of “the physical phenomenon”. But, I think a proper
investigation of this concept will help us (at least) to make some distinctions between
different views about modeling. Thus, in the next section I try to say something about
the nature of the phenomena that are often investigated, and how certain important
features of those phenomena demand a particular way of thinking about the role of
idealizations in the model—a way that is largely at odds with some of the things Fowler
mentions. Following that in Sect. 3 I discuss, qualitatively, an example of the modeling
of shocks. In Sects. 4 and 5 I consider in much more detail, first, the analytical modeling
of the behavior of breaking droplets and, second, molecular dynamical simulations
of the formation of droplets at the nano-level. These two problems are intimately
related to one another and serve as good exemplars of the different roles played by
idealizations in mathematical modeling. I conclude by arguing that some idealizations
are explanatorily ineliminable. That is to say, I argue that the full understanding of
certain phenomena cannot be obtained through a completely detailed, nonidealized
representation.

2 Idealization and the phenomena

There are (at least) two views about the nature and role idealizations play in modeling
and representing physical phenomena. There is what one might call a traditional view,
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according to which one aims for the most exact and detailed representation of the
phenomenon of interest. On this view, the use of idealizations is, in effect, justified
pragmatically: We need to introduce idealizations into our equations in order to sim-
plify them so as to make them tractable or solvable. (As the passage above indicates,
Fowler appears to endorse something like this traditional view.) A second view finds
virtue where the traditional view sees vice; namely, in the particular kinds of simplifi-
cation that idealizations typically provide. This other view, which for lack of a better
term I will call “nontraditional,” maintains that in some cases (and actually in many
cases) idealized “overly simple” model equations can better explain and characterize
the dominant features of the physical phenomenon of interest. That is to say, these
idealized models better explain than more detailed, less idealized models.

Let us consider the traditional view in a bit more detail. As noted this approach to
modeling holds that one should try to find the most accurate and detailed mathematical
representation of the problem at hand.1 This fits nicely with Fowler’s “philosophy” of
modeling. If the model fails to capture adequately those features of the phenomenon
one is interested in, then there are a couple of things one can do. For instance, one
can try to add more detail to the mathematical representation,2 or one might try to
adjust the parameters already appearing in the model so as to better reflect what is
going on. Most crucially, on this view, the aim is to try to effect a kind of convergence
between model and reality. Ultimately, the goal is to arrive at a complete (or true)
description of the phenomenon of interest. Thus, on this view, a model is better the
more details of the real phenomenon it is actually able to represent mathematically. In
effect, idealizations are introduced only to be removed later through further work on
those details. This, too, fits nicely with Fowler’s “philosophy” of modeling.

Before considering the contrasting approach, we need to get clear about the nature
of the so-called “phenomenon of interest.” As I noted, I think there is virtually no
discussion of this in the literature on modeling and idealization. However, a proper
understanding of the kinds of phenomena that are most often of interest will enable
us to appreciate better the second, nontraditional, role of idealization in mathematical
modeling.

It is an incontrovertible fact that nature presents us with patterns and regularities.
And, much of scientific theorizing involves trying to understand how these regularities
arise. This is not to say that every pattern we observe reflects a genuine lawful feature
of the world. Humans are all too ready to see patterns in just about anything.3 Neither
is it to say that we are interested only in investigating “real” regularities and patterns.
Sui generis phenomena are, of course, also worthy of investigation. As an example of
the latter one might think of studying the nature of the transient behavior in a particular
electrical circuit before it settles down to a steady state.

1 I consider the work of Ronald Laymon as representative of this approach to idealization. See for instance,
Laymon (1980).
2 By this I mean, one might include mathematical representations of additional factors that may be relevant
for the phenomenon under investigation.
3 Fine, in his excellent discussion of computational complexity, randomness, and probability, puts the point
as follows: “Too keen an eye for pattern will find it anywhere” (Fine 1973, p. 120).
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Nevertheless, most often it seems that our attention is captured by regularities—
by repeatable phenomena. It is, in part, the repeatability of phenomena that makes it
dominant and captures our interest. That is to say, the repeatability itself is a salient
feature that leads us to ask about what is responsible for that very repeatability. When
we couple this feature—the salience of the phenomenon—with the fact that for all
but the simplest empirical generalizations we need to idealize so as to find an ade-
quate mathematical representation, we gain a fuller understanding of the meaning of
“dominant feature.”

One goal of mathematical modeling is, surely, to capture these salient features of
the regularity in a mathematical formula. The repeatability of the phenomenon places
a constraint on the nature of the mathematical model: The model must be sufficiently
robust or stable under certain kinds of changes to reflect the fact that the phenomenon
is repeatable in various situations where many details have changed. The world is con-
stantly changing in myriads of ways; yet despite this, we see the same patterns over and
over again in different situations. Idealizing is a means for focusing on exactly those
features that are constitutive of the regularity—those features that we see repeated at
different times and in different places. Equivalently, the process of idealization, un-
derstood in this way, is most broadly seen as a means for removing details that distract
from such a focus—those details that can change without affecting the dominant, re-
peatable behavior of interest. The mathematical operation that represents the removal
of such irrelevant details involves the taking of limits.

Let me now return to the discussion of what I have called the “nontraditional view”
of the nature and role of mathematical modeling. Recall that the traditional view aims,
ultimately, to “de-idealize” by adding more details so as to bring about a convergence
to a complete and accurate descriptions. The nontraditional view, to the contrary, holds
that a good model does not let these details get in the way. In many cases the full details
will not be needed to characterize the phenomenon of interest, and those details may, in
fact, actually detract from an understanding of that phenomenon. This nontraditional
approach requires that one find a minimal model—a model “which most economically
caricatures the essential physics” (Goldenfeld 1992, p. 33). The adding of details with
the goal of “improving” the minimal model is self-defeating—such improvements are
illusory.4

Once one arrives at a representative equation, there is, to some extent, a set of
procedures the modeler typically follows in order to gain insight from the model.
(These procedures are largely independent of ones view of the nature of modeling;
though, as will become evident, I believe they best fit the nontraditional conception.)
In effect, these procedures characterize the modeler’s methods of simplification. Two
features of this recipe stand out. First, one typically nondimensionalizes the equation or
system of equations. This enables one to compare parameters appearing in the equation
as to their importance or “size” even though they have been expressed in different units.
Second, one takes limits thereby reducing the equation. Typically these limits involve
letting a “small” nondimensionalized parameter approach the limiting value of zero or
a “large” nondimensionalized parameter is taken to infinity. The aim is to simplify by

4 See Batterman (2002) for a detailed discussion.
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idealizing in this fashion. This is not by any means solely an exercise in pragmatics:
It is not simply a means for finding exactly solvable solutions. In today’s world of
extraordinary computing capabilities, this analytical practice continues to play a major
role in the investigation of physical phenomena. If all we cared about were correct
and accurate numerical predictions, then we would not bother with these analytic
investigations. (As Fowler puts it, sounding here as if he endorses the nontraditional
conception of modeling, “computation can limit insight, because of an inability to
pose questions properly” (Fowler 1997, p. 6).)

The hope is that if done correctly, one will end up with a model which exhibits
the dominant features of the system. It will be a limiting model that displays the
essential physics. As a qualitative example, consider the case of shocks. (A more
detailed example is discussed in Sect. 4.)

3 Modeling shocks

Let us say we are interested in understanding the behavior of a gas as it moves through
a tube. See Fig. 1. If a collection of the molecules are given a push (say by blowing
into the tube at one end), then they will begin to catch up to those in front resulting in
a more densely populated region separating two regions of relatively less molecular
density. Across this region, molecules will exchange momentum with one another
as if some kind of permeable membrane were present. The region occupied by this
“membrane” is a shock. Of course it is very difficult to track the behavior of the indi-
vidual molecules as they move through the tube and undergo the collisions in the shock
region. (This is not to say that computational simulations cannot approximately track
such behavior. I will have more to say about molecular dynamical simulation and this
notion of approximation below.) But, often the applied mathematician will approach
the problem by taking a continuum limit. This is a model in which the collection of
molecules in the tube is treated as a continuous fluid. Such a limit will shrink the
shock region onto a two-dimensional boundary. Upon either side of the boundary, the
behavior of the fluid will be governed by the relevant (partial) differential equations
of fluid mechanics. However, the behavior across the boundary is not governed by

Fig. 1 Modeling shocks
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any differential equation at all, but rather by algebraic “jump conditions”—singular
behavior across the boundary.

One might think (if you held the more traditional approach to modeling) that the
idealization of the collection of molecules to a continuous fluid would be to make the
boundary region unimportant to the physics. After all, the boundary shrinks to two
dimensions and is not “law governed.” (All those ignored molecular details ought to
be put back in!) In fact, traditional (covering law) accounts of explanation hold that
laws do the essential explanatory work, and initial conditions and boundary conditions
are given a sort of secondary status. Further, as the boundary is a place where the laws
apparently break down, how can the boundary function in a covering law explanation?

Mark Wilson has argued that this view—the view that the boundary becomes unim-
portant to the physics—is mistaken. In fact, the boundary is the most important feature
when it come to understanding the behavior of interest. As Wilson notes “the allegedly
‘suppressed details’ have become crushed into a singular (hence not law-governed)
factor that still dominates the overall behavior through the way in which it constrains
the manner in which the ‘law governed regions’ piece together” Wilson (2003, personal
communication).5 The idea is that such boundaries dominate the physics and that often
the mathematical modeler’s search focuses on those features to explain what is going
on. The limits often yield boundaries that shape or constrain the phenomena. And, it
is the elucidation of these shapes that is important for understanding.

Thus, the continuum limit provides a means for ignoring details about molecular
interactions in the development of shocks. Most importantly, the taking of limits in
this way often imposes mathematical constraints on the equations or formulas that rep-
resent the phenomenon of interest. In particular, it requires our models to exhibit the
appropriate kind of stability under perturbation of various details—those details that
are effectively eliminated by the taking of the limit. Our attempt to represent the dom-
inant features of the phenomenon—genuine features of the world—dictates to some
extent the nature of the appropriate mathematical representation. That representation,
in turn, leads us to investigate in detail the nature of the imposed constraints. It turns
out that in many instances such investigations lead to the discovery of singularities—
places where the governing laws “breakdown.” The example of shocks is just one such
instance. In the next section I consider another example in considerably more detail.

4 Modeling drops and jets

As water drips from a faucet it undergoes a topological change—a single mass of
water changes into two or more droplets. This is the most common example of a
hydrodynamic discontinuity that arises in a finite period of time. In Victorian times
Lord Rayleigh recognized that drops form as a result of a competition between
gravitational force and surface tension. He was able to determine the typical size
of a droplet and was able to set the time scale upon which a drop would form (Eggers
1997, p. 866).

5 See Wilson (2006) for much more detailed discussions of these and related issues.
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Fig. 2 Geometry of a falling
drop
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Recent work on the problem has focused on characterizing the shape of the fluid
interface at and near the time of breakup. One needs to examine the nonlinear
Navier–Stokes equations for free surface flows. These problems are considerably more
difficult to solve than those where the fluid is constrained (say by the walls of a pipe).6

The Navier–Stokes equations must develop a singularity in finite time that is charac-
terized by divergences both in the fluid velocity and in the curvature of the interface
at the point of snap-off.

To begin we assume that the typical geometry of a dripping drop is exhibits axial
symmetry about the z-axis. Figure 2 provides the relevant details. Assuming axial
symmetry, the velocity field inside the fluid is given by a function v(z, r). One can
define a time dependent radius function, h(z, t), describing the shape of the drop at any
given time. R1 and R2 are the principal radii of curvature of the axisymmetric surface
�. In this geometry, using cylindrical coordinates, the Navier–Stokes equations are
given by
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6 In such cases (at least for laminar flows) one can conquer by dividing the problem into two asymptotically
related regimes—one near the wall (the boundary layer where viscous effects will dominate), and the other,
far from the wall, where such effects are subdominant.
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The acceleration due to gravity (g) is in the negative z-direction; vz and vr are,
respectively, the velocities in the axial and radial directions; p is the pressure; ρ

is the fluid density; and ν is the kinematic viscosity. Equation 3 expresses the conti-
nuity of the fluid. Equations 1 and 2 express the force balance. The accelerations on
the left-hand-sides are due to a pressure gradient (from surrounding the air), viscous
stresses, and to gravity (in the z-direction).

These equations are subject to two boundary conditions. The first comes from a
balance of normal forces

nσn = −γ

(
1

R1
+ 1

R2

)
, (4)

and the second from a balance of tangential forces

nσ t = 0. (5)

Here σ is the stress tensor and γ is the surface tension and Eq. 4, called the “Young-
Laplace equation,” says that the stress within the fluid normal to the interface and near
the surface must be balanced by a stress that acts normal to the surface due to surface
tension. The formula “(1/R1 + 1/R2)” appearing here is equal to twice the mean
curvature of the surface � at the point of evaluation. Equation 5 expresses the fact that
sheer stresses vanishes at the interface. It is possible to express the mean curvature in
terms of the radial “shape” function h(z, t).7 This allows us to write the equation of
motion for h(z, t) as follows:

∂h

∂t
+ vz

∂h

∂z
= vr |r=h . (6)

This says that the surface must move with the fluid at the boundary.
These equations define a difficult and complex moving boundary value problem.

We are interested in what happens near the point at which the fluid breaks—at the
singularity. Prima facie, that should make the problem even more difficult, as nonlinear
effects will dominate. Nevertheless, by focusing on the behavior of the fluid near
the singularity, it is possible to simplify the problem dramatically and provide exact
solutions to these equations. (This is the modeling recipe mentioned above.) There are
two aspects of the problem that allow this to happen.

The first (Eggers 1995, p. 942) derives from the fact that, near breakup, the axial
extension of the fluid is much greater than its radial extension. This allows us to make
the simplifying assumption that the singularity is line-like. In turn this allows us to
find a one-dimensional solution to the full Navier–Stokes equations by introducing a
characteristic axial length scale lz that is related to a radial length scale lr according
to the following scheme:

lr = εlz, (7)

7 See Eggers (1995).
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where ε is a small parameter. If, in addition, we introduce a characteristic time scale
tz we can nondimensionalize the quantities appearing in above equations. The charac-
teristic scales lz, lr , and tz are, of course, constants and so have zero time derivatives.
Nevertheless, as the singularity forms, these characteristic scales will be different at
different stages of the singularity formation (Eggers 1995, p. 942).

The second feature of the moving boundary problem that allows for simplification
is the fact that near the singularity, surface tension, viscous forces, and inertial forces
all become equally important (Eggers 1995, p. 942). Surface tension is related to the
radius of curvature which diverges at the singularity, viscous forces are also impor-
tant, and inertial forces must also be considered as the fluid velocity is increasing
with greater pressure gradients due to the increasing curvature. Given this, the fluid
acceleration diverges leaving the constant acceleration of gravity out of the picture
near the singularity.

Furthermore, and this is extremely important, close to the singularity, all of the
length scales become arbitrarily small in comparison with any external length scale
such as the nozzle size of the faucet. This is an indication that one should expect the
singular solutions of the one-dimensional Navier–Stokes problem to possess similarity
or scaling properties. To a large extent and for a wide range of fluids, this turns out to
be the case.

It is worth stressing the importance of discovering a similarity solution to a physical
problem. This discovery will mean that one can expect essentially identical behavior
in the system when “viewed” at different (appropriately chosen) scales. Such solutions
are crucial in standard cases of modeling in which one builds a model, experiments
with it, and then argues that the same observed properties will hold at different scales.
For instance, consider the investigation of the aerodynamic properties of wings through
experimentation on model wings in a wind tunnel.8 In addition, however, the existence
of similarity solutions and their corresponding scaling laws play essential roles in our
understanding of why different systems exhibit identical or nearly identical behavior
when described in the appropriate (dimensionless) variables. Another way of putting
this is to say that the existence of a similarity solution is an indication of a kind of
robustness or stability of the phenomenon under perturbation of various details. This,
will become clear as the argument below progresses.

Returning to the process of drop formation, recall the following fact. “External”
length and time scales that are determined by the initial conditions and the boundary
conditions become irrelevant in the description of the singularity. This is critical for
our understanding of the nature of the singularity. It means, for example, that it is
possible to describe the flow near the breakup using only “internal” length and time
scales, defined in terms of the fluid parameters. One introduces the so-called viscous
length scale and the viscous time scale as follows:

lν = ρν2

γ
(8)

8 An excellent discussion of dimensional analysis, similarity solutions, scaling laws can be found in
Barenblatt (2003).
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Fig. 3 Water droplet at breakup
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tν = ρ2ν3

γ 3 (9)

These scales imply that when the viscosity ν is doubled, the breakup will look the
same at length scales four times as large and at time scales eight times as large. This
is an instance of scaling.

On the supposition that the breakup occurs at a single point z0, and at an instant
t0, we can measure spatial and temporal distance from the singularity in terms of the
dimensionless variables:

z′ = z − z0

lν
(10)

t ′ = t − t0

tν
. (11)

See Fig. 3.9

In effect, the scales lν and tν characterize the width of the critical region around the
singularity. For a specific fluid, they are fixed constants and do not change with time
as do the characteristic scales mentioned above (lz, lr , lt ).

9 The pictures of water drops in Figs. 3–6 are courtesy of Sidney R. Nagel and appear in Nagel (2001).
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It is possible now to demonstrate that a scaling or similarity solution in the variables
z′, t ′ exists that describes the drop radius or shape function

h(z′, t ′) = |(t ′)|α	(ξ), (12)

where the similarity variable ξ is defined as follows.

ξ = z′

|t ′|β . (13)

One can determine the values of the scaling exponents α and β from dimensional
analysis. Eggers then shows, both analytically and numerically, that the similarity
solution (12) does hold for the problem. One finds the function 	 by inserting the
similarity solution into a nondimensionalized version of the fundamental differential
Eq. 6.10 Furthermore, such a solution is in excellent agreement with the full solutions
for the (one-dimensional) Navier–Stokes equations at low viscosities.11

The existence of such a similarity solution in the variable ξ indicates that the shape
of breaking drops is universal. One can see evidence of this by examining the shapes
in Figs. 4 and 5.

Notice the cone-to-sphere shape in Fig. 4 and note the identical shape at the top
of the about-to-break satellite drop in Fig. 5. This demonstrates that how the drop
is formed (whether, for instance, it drips solely under the influence of gravity or is
sprayed in the air by a crashing wave) is irrelevant for the shape it takes on as it
breaks.12

In fact, this similarity solution characterizes an entire class—a universality class—
of fluids at breakup. This class is, in part, determined by the ratio of the viscosity of the
fluid to the viscosity of the surrounding medium. For example, the shape of water drops
dripping from a faucet surrounded by air (Figs. 4, 5) in which νint � νext is different
than that of a drop forming in a fluid surrounded by another fluid of approximately
the same viscosity (Fig. 6) where νint ≈ νext .13

That these shapes are to be expected is completely accounted for by the nature of
the similarity solution (12) just prior to breakup. Furthermore, Eggers has shown that
for scales sufficiently larger than the microscopic, it is actually possible to continue,
uniquely, the similarity solution before breakup to one that holds beyond the singu-
larity, after breakup. At breakup some molecular mechanism must come into play,
but the uniqueness of this continuation is an indication of the self-consistency of the
hydrodynamic description. The striking conclusion is that the evolution of the fluid
both before and after breakup is independent of the molecular microscopic details.

10 This equation is nondimensionalized using Eqs. 10 and 11.
11 Shi et al. (1994) argue that Eggers’ and Dupont’s solution needs to be corrected as there are perturbations
(noise) that play an essential role in determining the character of the fluid shape near breakup.
12 See Nagel (2001).
13 Interestingly, Doshi et al. (2003) have recently demonstrated a third regime, characterized by νint � νext

that fails to exhibit universal behavior. The breakup profiles in this latter regime are nonuniversal and depend
upon initial and boundary conditions in a way that the other two regimes do not.
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Fig. 4 Water droplet at breakup

So the existence of the scaling solutions to the one-dimensional Navier–Stokes
equations provide evidence for the universality of the phenomenon. And, as a result,
it is possible to explain why different fluids, of different viscosities, dripping from
different nozzles, etc., will exhibit the same shape upon breakup.

5 Molecular dynamics and simulations

Let me now describe the drop breakup problem from the point of view of state-of-
the-art simulations in molecular dynamics. (After all, as just noted, some molecular
mechanism must be involved near breakup.) Moseler and Landman (2000) investigate
the formation, stability, and breakup of jets at the nanolevel.They model propane as it is
injected into a vacuum through a nozzle of diameter 6 nm. The simulation involves fol-
lowing approximately 200,000 propane molecules as they are pushed through a nozzle
composed of gold molecules at various pressures. The molecules interact according
to the Lennard-Jones 12-6 potential:

φLJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (14)

where ε and σ are, respectively, energy and length scales appropriate to the materials.
The term proportional to ( 1

r12 ) dominates at short distances and represents the repulsion
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Fig. 5 Water droplet after
breakup

between molecules in very close proximity to one another. The ( 1
r6 ) term dominates

at large distances and represents the attractive forces between the molecules. Thus the
potential has an attractive tail at large r , reaches a minimum near r = 1.122σ , and is
strongly repulsive for r < σ .14

The nanojets in Fig. 7 were simulated by pressurizing the nozzle downstream at
500 MPa and with a controlled temperature at the nozzle of 150 K.15 This results in
a 200 m/s flow velocity for the jet. For t < 1 nanosecond following the initial exit
of the fluid, the flow exhibits transient behavior. One can see the beginnings of the
formation of fast moving droplets and molecular clusters in this initial period, and
after that one sees the formation of necking instabilities resulting in breakup and the
formation of drops. Moseler and Landman note that for t ≥ 1ns, a steady state is

14 The use of the Lennard-Jones potential is justified in investigation of this sort (interactions between
closed-shell atoms) for the following reasons. It exhibits long-range van der Waals attraction, extremely
strong short-range repulsion and has a potential well. Given these features, along with its relative ease
of computational implementation, it is the potential of choice for investigations into generic properties of
many molecular dynamical interactions. For a detailed discussion of molecular dynamical simulations see
Ercolessi (1997).
15 Figures 7 and 8 are courtesy of Uzi Landman and appear in Moseler and Landman (2000, p. 1166 and
p. 1168, respectively).
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Fig. 6 Two fluid breakup:
νint ≈ νext

Fig. 7 Formation of nanojets

achieved with an average breakup length of 170 nm. They report that, upon repeated
simulations, the typical shape at breakup resembles a double cone as shown in Fig. 8b
and the upper image in Fig. 8d. Occasionally, however, they witness the formation of
nonaxisymmetric necks as in Fig. 8a and an elongated neck configuration as in Fig. 8c
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Fig. 8 Molecular dynamical configurations of nanojets

which was accompanied by the formation of small “split-off” molecular clusters or
“satellite drops”.

If we suppose that the hydrodynamic equations discussed in the last section could
apply to the nanoscale drop formation problem, then we would expect the propane (at
the nanoscale) to be quite viscous. (Even though, at larger scales, propane is surely
not very viscous.)16 Viscous fluids such as glycerol or honey exhibit long necks prior
to breakup. (Just think about the honey that you drip into your cup of tea, or the
maple syrup you pour over your pancakes.) In fact, Moseler and Landman apply the
hydrodynamic equations (particularly, Eq. 6) and show that as expected for a viscous
fluid, the propane jet should develop long necks prior to breakup. This is shown in
Fig. 8d and is the simulation labelled “LE” for “lubrication equations.”

The discrepancy between the double cone shape of the the molecular dynamical
simulation and the hydrodynamic description of the same process is a direct indication
that continuum deterministic hydrodynamics fails to apply at the nanoscale. Large
hydrodynamic fluctuations become important at the nanolevel signaling a break down
of the deterministic continuum description. As Moseler and Landman note,

…the continuum description of such small systems requires the use of exceed-
ingly small volumes, each containing a very limited number of particles, and
consequently, continuum variables associated with such small volume elements,
which represent (local) averages over properties of the microscopic constituents
are expected to exhibit large fluctuations. (Moseler and Landman 2000, p. 1168)

16 The reason for this depends upon the scale of observation. For “macroscopic” observation, the scale
(lobs ) is on the order of one micron (10−6 m), and at this level of observation the ratio lobs /lν � 1. This
ratio is what we expect for low viscosity fluids such as water that yield the asymmetric cone-to-cap shape
at breakup. However, at the nanolevel—at the level of molecular dynamics—lobs is on the order of a few
nanometers (10−9 m). At this level, lobs/lν � 1. This ratio holds of viscous fluids such as glycerol and
leads to an expectation of thin neck formation prior to breakup (Moseler and Landman 2000, p. 1167).
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Moseler and Landman introduce a stochastic term (Gaussian noise) into the hydro-
dynamic equations and solve the stochastic continuum equations. They demonstrate
remarkable agreement with the dominant double cone shape of the molecular dynam-
ical simulations. This agreement is displayed in Fig. 8d. Compare the top molecular
dynamical run with the stochastic continuum equations labelled SLE. This agreement
“strongly suggests that in [nanojets] the very nature of the dynamical evolution is influ-
enced strongly by hydrodynamic fluctuations, deviating in a substantial way from the
behavior predicted through the analysis of the deterministic [continuum equations]”
(Moseler and Landman 2000, p. 1168). Further analysis shows that it is possible to
see the failure of the deterministic continuum equations as a consequence of a new
length scale becoming important at the nanolevel. Moseler and Landman introduce
this so-called “thermal capillary length” that for most materials is on the order of
interatomic distances.

The fact that a new length scale becomes important at the nanolevel is, according
to Moseler and Landman, further indication that the universality described above
(provided by the scaling solutions to the Navier–Stokes equations) breaks down. As
they say,

The appearance of an additional length scale in the [stochastic continuum] sim-
ulations …is a direct consequence of the extension to include temperature-
dependent stress fluctuations, and its magnitude determines the nature of the
jet evolution, including the appearance of solutions other than the universal
ones predicted through the deterministic [continuum equations]. (Moseler and
Landman 2000, p. 1168, My emphasis.)

Let me make a few observations and pose a couple of questions concerning the
molecular dynamical simulations and their potential for providing explanations for
certain aspects of very small-scale drop phenomena. First of all, notice that every
molecular dynamical simulation of nanojet formation is different.17 The images in
Fig. 8a–c attest to this. While Moseler and Landman assert that “[t]he most frequently
observed breakup process [exhibits] close to pinch-off formation of an axisymmetric
double cone shape of the neck …,” this amounts to a statistical claim based solely
upon generalizations from different simulation runs (Moseler and Landman 2000,
p. 1168). And, while it is sometimes appropriate to say that the explanatory buck must
stop somewhere, one might, in this situation, ask for an explanation of why this is the
statistically dominant shape for nanojet breakup.

As we have seen, one important virtue of the scaling solutions to the Navier–Stokes
equations discussed in Sect. 4 is that they allow for exactly such an answer to the
analogous explanatory why-question on larger scales. We can explain and understand
(for large scales) why a given drop shape at breakup occurs and why it is to be
expected. The answer depends essentially upon an appeal to the existence of a genuine
singularity developing in the equations of motion in a finite time. It is because of this

17 One might think that this is merely an artifact of simulation and that it counts against treating the
molecular dynamical simulations as genuinely providing theoretical information about the formation of
nanojets. This would be a mistake. The differences in simulations can be attributed to difference in initial
conditions, and, as a result, are to be expected.
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singularity that there is a decoupling of the breakup behavior (characterized by the
scaling solution) from the larger length scales such as those of the faucet diameter.
Without a singularity, there is no scaling or similarity solution. Thus, the virtue of
the hydrodynamic singularity is that it allows for the explanation of such universal
behavior. The very break-down of the continuum equations enables us to provide an
explanation of universality. This is completely analogous to the renormalization group
explanation of the universality of critical phenomena.18

No such explanation—one that appeals to a singularity to explain the statistically
universal double cone structure, is available from the “fundamental” theory employed
in the molecular dynamical simulations. If one looks, for example, at any of the results
presented in Fig. 8a, b, or c, one cannot locate the actual breakup location in either
time or space. There is no well-defined singularity in the equations. And, of course,
one would not expect there to be, since the Newtonian molecular dynamical equations
do not develop singularities in finite times.

6 Analytical modeling versus simulation: a reconciliation?

So the question is whether it is possible to provide some kind of theoretical answer
to the question of why the double cone structure is to be expected in nanojet breakup.
Moseler and Landman show that if one introduces fluctuations into the continuum
hydrodynamic equations, and solves those equations, the shape is similar to that typical
of many molecular dynamical simulations. But the challenge is to understand the
qualitative change in the breakup shape that occurs in the regime in which fluctuations
apparently make a leading contribution to the shape function. To put this another
way, we would like to have an account of the statistical universality of the double
cone structure—one that provides the kind of understanding that the scaling solutions
provide for the breakup profile at larger scales by demonstrating that most of the details
of the evolution are by and large irrelevant.

In a paper entitled “Dynamics of Liquid Nanojets” Eggers (2002) provides the
desired explanation. Eggers notes that Moseler’s and Landman’s stochastic continuum
equations suggests that “hydrodynamics, at least when suitably generalized to include
fluctuations, is fully capable of describing free surface flows down to the scale of
nanometers” (Eggers 2002, p. 084502-1). There is a simple physical argument to
understand what goes on at the nanolevel. One can think of the random noise introduced
into the continuum equations as representing a kind of effective force that is generated
by the fluctuations.

[A] random fluctuation which increases the thread radius also increases its
effective mass, slowing down the motion. Any fluctuation towards a smaller
neck radius, on the other hand, accelerates the motion. On average, the fluctua-
tions thus drive the thread towards breakup, in fact more effectively than surface
tension …(Eggers 2002, p. 084502-2)

18 See Batterman (2005) for a discussion.
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As Eggers notes, however, conventional perturbative analysis around the deter-
ministic continuum solution cannot describe this mechanism. This is because the
fluctuations—the noise—makes the dominant contribution. The idea that one can
average about a fixed time

no longer makes sense for this problem, because there is a finite probability for
pinchoff to have occurred, so the original formulation ceases to be valid. Thus a
valid description has to be conditioned on the event of breakup to take place at a
fixed time t0. It is then natural to ask for the most probable sequence of profiles
that brings one from the initial condition to a “typical” breakup event. (Eggers
2002, p. 084502-2)

Eggers develops an ingenious and difficult argument involving path integrals to deter-
mine probability of the “optimal” path to breakup. For our purposes here, the interesting
feature is that to solve this problem he needs to assume, for a fixed breakup time t0,
that the solution is self-similar. He finds that the unique solution, on this assumption,
is the symmetric profile of a double cone unlike the asymmetric long-neck similarity
profile for the deterministic equations. The crucial feature is that the similarity solution
is only possible on the assumption that there is a singularity at t0 in the (stochastic)
hydrodynamical equations. The result is an explanation for why such a symmetric
profile seen in the molecular dynamical simulations is to be expected—one that is
grounded in the “less fundamental” continuum theory of hydrodynamics.

A further consequence of this explanation is that we can understand why so few
satellite drops are formed in nanojets and why there is a very narrow distribution in
the size of the droplets that are formed. If one looks back at Fig. 5, one sees that a
satellite drop is about to detach itself from the nozzle at the upper end of the picture.
This is a consequence of the asymmetric, long-neck nature of the dripping process.
That smaller satellite molecular clusters, such as that in Fig. 8c, are unlikely to form
is a direct consequence of the universality of the double cone profile for nanojets.
They occur only for large fluctuations in the neck region; and such fluctuations are
statistically rare.

So, surface tension driven pinching at larger scales essentially determines the
breakup time. Nevertheless, at times very close to that, a different process dominated
by fluctuations takes over, speeding up the breakup at the nanoscale. The transition
between these different scaling regimes can be understood in terms of the emergence,
as one approaches the nanolevel, of a new length scale—the thermal capillary length.
Most importantly, however, our understanding of this transition and of the universality
of the different profiles, depends essentially upon the development of finite time sin-
gularities in the continuum hydrodynamical equations. These singularities entail that
the breakup behavior at small length and time scales decouples from larger length and
time scales. The details of the molecular dynamics drops out of our explanation of the
origin of the different universality classes. Thus, the very breakdown of the continuum
equations enables us to provide an explanation of the universal shapes.

However, from the point of view of pure molecular dynamical simulation, we can
have no explanation of the universal shape of breaking drops and jets. The molecular
dynamical equations do not exhibit any singularities—there are no blow-ups allowing
for the scaling solutions that is required for this sort of understanding.
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7 Conclusion

Fowler’s characterization of the nature of idealization in mathematical modeling
conforms well with what I have called the traditional conception. Recall that from
that point of view, idealizations are pragmatically justified and (paradoxically) receive
their ultimate warrant from the “fact” that they are to be (can in principle be) eliminated
by further work on the details. In the context of our discussion of the nanojet simula-
tions, one can think of the simulations as attempts to provide all of those details—to
fully de-idealized a continuum description by tracking all of the molecular motions.
Such simulations do surely provide significant and interesting information about the
nature of those dynamical systems.

However, one lesson to be learned from this discussion is that, sometimes at least,
such simulations do not tell us the whole story. The understanding of the process that
they provide is only partial. They cannot, I have argued, provide an explanation for
the universality of the shapes that appear in the jets at breakup. The gaps in the full
story can, as I have tried to show, be filled in by employing (limiting) idealizations—
idealizations that are ubiquitous in the mathematical analysts’ approach to modeling.
In particular, by appealing to the idealized continuum theory of hydrodynamics. Fur-
thermore, it seems that these idealizations are in many instances explanatorily ine-
liminable. That is to say, they play an essential role in the proper explanation of the
phenomenon of interest. They are not, as the traditional view of the use of idealization
in modeling suggests, put in only to be subsequently removed by more detailed work.
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