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IDEALS ASSOCIATED TO DEFORMATIONS
OF SINGULAR PLANE CURVES

STEVEN DIAZ AND JOE HARRIS

ABSTRACT. We consider in this paper the geometry of certain loci in defor-
mation spaces of plane curve singularities. These loci are the equisingular locus
ES which parametrizes equisingular or topologically trivial deformations, the
equigeneric locus EG which parametrizes deformations of constant geometric
genus, and the equiclassical locus EC which parametrizes deformations of con-
stant geometric genus and class. (The class of a reduced plane curve is the
degree of its dual.)

It was previously known that the tangent space to ES corresponds to an
ideal called the equisingular ideal and that the support of the tangent cone
to EG corresponds to the conductor ideal. We show that the support of the
tangent cone to EC corresponds to an ideal which we call the equiclassical
ideal. By studying these ideals we are able to obtain information about the
geometry and dimensions of ES, EC, and EG. This allows us to prove some
theorems about the dimensions of families of plane curves with certain specified
singularities.

1. Introduction. We consider in this paper the geometry of certain loci in
deformation spaces of plane curve singularities. Specificially, if p is a singular point
of a reduced plane curve D, then we have an etale versal deformation of (D,p)
(defined precisely in §3, see [Al]).
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i        i
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In the deformation space B we introduce three loci:
(1) the equisingular locus ES C B which parametrizes equisingular deformations

(the condition of equisingularity may be thought of as "topologically trivial"; a
precise definition is given in §3);

(2) the equigeneric or 6-constant locus EG C B which parametrizes deformations
of (D,p) of constant geometric genus;

(3) the equiclassical locus EC C B which parametrizes deformations of (D,p) of
constant geometric genus and class (the class of a reduced plane curve is the degree
of its dual).

For example, if (D,p) is an ordinary cusp with equation D = {y2 — x3 = 0},
p = (0,0), then we may take for B the affine plane with coordinates a and b, and
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434 STEVEN DIAZ AND JOE HARRIS

for X the deformation

X = {y2 - x3 - ax - b = 0} C A»i|r x A2a<b.

The equisingular locus ES and the equiclassical locus EC are both equal to
the origin (0,0) E B, and the equigeneric locus EG is the discriminant curve
{4a3 + 27b2 =0}cB.

b

eg\

N. ES = EC
-x -^a

The simplest example in which ES is positive dimensional is that of an ordinary
four fold point, say D = {x4 + y4 = 0}, p = (0,0). Here B may be taken to be a
9-plane with coordinates a,b,... ,i and X the deformation

X = {a + bx + cy + dx2 + exy + fy2 + gx2y + hxy2 + ix2y2 + x4 + y4 = 0}

*- ■"■!,!/ X ™-a,...,f

In this case ES is the coordinate axis a = ■ ■ ■ = h = 0 which corresponds to
motions of the four lines of D around the origin, p, changing the cross-ratio of their
slopes. EG and EC on the other hand are both equal to the more complicated
locus corresponding to motions of the four lines of D not necessarily around the
origin. Observe that while the equations of EG = EC are messy, we can see without
difficulty that, in a neighborhood of (0,..., 0) E B, EG = EC is three dimensional
and smooth with tangent space a = ■•■ = / = 0.

A case where these three loci are all different from each other is a ramphoid
cusp, say D = {y2 + x5 = 0}, p = (0,0). Here B may be taken to be a 4-plane with
coordinates a, b, c, d and X the deformation

X = {y2 + x5 + ax3 + bx2 + ex + d = 0} C A2xy x A%    d.

With fairly straightforward calculations one may show the following. ES is the
origin. EC is one dimensional with parametric equations a = —^t2, b = —jt3,
c = ^-t4, d = ft5. A general point of EC corresponds to a curve with one ordinary
node and one ordinary cusp. EG is two dimensional with parametric equations
a = -3s2 - Ast - Zt2, b = -2s3 - 8s2t - 8st2 - 2t3, c = -4s3t - 7s2t2 - 1st3,
d = —2s3t2 - 2s2t3. A general point of EG corresponds to a curve with two
ordinary nodes.

Here is a brief summary of what is known about the spaces B, ES, EC, and
EG.
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IDEALS OF SINGULAR PLANE CURVES 435

(i) B is smooth, with tangent space TqB at 0 naturally identified with the quo-
tient cfo,p/J where cfu,P is the local ring of D at p and J C cfo,p is the Jacobian
ideal. (If D is given locally by D = {/ — 0}, then J is the ideal generated by the
partial derivatives df/dx, df/dy.) See [A2, Sl, S2].

(ii) ES is also smooth at 0, with tangent space corresponding via the identifi-
cation TqB = cf£>tP/J to an ideal I C cfo,P called the equisingular ideal. See [T2,
W].

(iii) EG may be singular at 0 (as the example we gave for the cusp shows) though
it is always locally irreducible at 0. (This follows from results of [AC] and will be
explained in §4.) The support of the tangent cone to EG at 0 is always a linear
space. Specifically, in terms of the identification TqB = cfo,p/J, we have that the
support of the tangent cone to EG at 0 is identified with A/J, where A C cfo,P
is the conductor ideal of cfo,P. (That is, A is the annihilator of the t^^p-module
@D,p/tfD,p where @d,p is the integral closure of cfo,P in its total quotient ring.)
See [Tl]. We give essentially the same proof as Tessier in §4. In particular we note
that _

codim(£G c B) = length(cfDtP/cfDiP) = 6

where 6 is the number of adjoint conditions imposed by the singularity.
(iv) EC may be singular at 0, as the example we gave for a ramphoid cusp shows.

The support of the tangent cone to EC at 0 is always a linear space. Specifically, in
terms of the identification TqB = cfo,p/J, we have that the support of the tangent
cone to EC at 0 is identified with H/J, where Bf C cf^.p is an ideal which we call
the equiclassical ideal. Bf may be described as follows. Let cfD,p,@D,p, and J be as
in (i) and (iii). Then Bf is the contraction to cfo,p of the extension to cfo,P of J.
EC = EG if and only if all the analytic branches of the singularity of D at p are
nonsingular. These results will be proven in §5.

We see from this that we have a sequence of four ideals in cfo,p, J C I C H C
A C @D,p, that reflect the geometry of deformations of (D,p). (J, H, and A of
course have other simpler definitions while / is defined solely by its relation to
deformations.)

We also show that the only singularities for which EC is equal to ES are the
ordinary node and cusp. This allows us to obtain the following two results.

(1.1) THEOREM. Any reduced plane curve singularity may be deformed to or-
dinary nodes and cusps in a flat family in which the genus and class of the fibers
remain constant.

(1.2) THEOREM. Let PN be the projective space that parametrizes curves in
P2 of degree d. Let Z C PN be the locally closed subset of reduced and irreducible
curves of geometric genus g and class c. Assume that c>2g — l. Let D be a general
element of any component of Z. Then any singularity of D is either an ordinary
node or an ordinary cusp.

These two theorems resulted from questions posed to the authors by William
Fulton, to whom they are grateful.

In the last section of this paper, we obtain some estimates on the relative size of
these ideals (e.g. dime (A//) > b—2, where 6 is the number of analytic branches of D
at p). In particular we classify all singularities for which dime (A/1) (equivalently,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



436 STEVEN DIAZ AND JOE HARRIS

the codimension of ES in EG) is one or two. This in turn yields statements about
singularities occurring in families of plane curves, which was the original motivation
for this work. Specifically, let P^ be the space of all plane curves of degree d, and
V C PN the locally closed subset of reduced and irreducible curves of geometric
genus g. We already know

(1.3) THEOREM [AC, Zl, H]. V is irreducible and the general member
D EV is a curve with exactly n = \(d— l)(d — 2) — g nodes as its only singularities.

We would like to say something about the codimension in which curves with
various other singularities occur. The final result of this paper is the following
theorem.

(1.4) THEOREM. IfW CV is any subvariety of codimension 1, and D EW a
general point, then the singularities of D are either

(i) n nodes,
(ii) n—1 nodes and one cusp (y2 — x3),
(iii) n — 2 nodes and one tacnode (y(y — x2)), or
(iv) n — 3 nodes and one ordinary triple point (x3 — y3).

Throughout this paper the ground field is the field of complex numbers.
The authors would like to thank the following people for helpful discussions

during the investigations which led to this paper: Michael Artin, David Eisenbud,
Gert-Martin Greuel, and Rennie Mirollo.

2. Geometric genus in flat families. For a reduced projective curve D we
define the geometric genus of D to be the arithmetic genus of the normalization of
D.

(2.1) In what follows we let
X C Pm x Y

Y
be a flat family of projective curves with all fibers reduced. Also assume that X
and Y are reduced separated schemes of finite type over C. Define the function <f>v
on Y by letting (f>^(y) be the geometric genus of the fiber of -k over y G Y.

(2.2) LEMMA. Assume that Y is a nonsingular curve. Let f: X' —► X be the
normalization map. Then n o /: X' —► Y is a flat family of projective curves with
all fibers reduced.

PROOF. For flatness, [Ha], Proposition III.9.7] says that every component of A
dominates Y. This says that every component of X' dominates Y. Applying [Ha,
Proposition III.9.7] again we conclude that rr o / is flat.

X must be nonsingular at any nonsingular point of any fiber of ir. Therefore
a fiber of tt o / cannot have any multiple components. We must eliminate the
possibility of isolated nonreduced points. Each component of X' is an irreducible
normal variety and it is sufficient to check reducedness on each component of X'.
The base of the family is a nonsingular curve, so we may assume that the ideal
of the fiber is principal. Since in a normal Noetherian domain principal ideals are
unmixed we are done.    D
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(2.3) COROLLARY. Under the assumptions of (2.2), <f>v is lower semicontinu-
ous in the Zariski topology.

PROOF. We have two functions on Y, <f>v and <pnof. From (2.2) we see that
all fibers of 7r o / are either normalizations or partial normalizations of the corre-
sponding fibers of tt. We conclude that (pnof = (j)n. Since X' is normal it has at
most finitely many singular points. Applying the theorem of generic smoothness
we conclude that all but finitely many fibers of rr o / are nonsingular. Since flatness
implies that the arithmetic genus of the fibers remains constant we conclude that
(j>Trof is constant on the Zariski open set where all fibers are nonsingular. Finally,
for a reduced singular curve the geometric genus is strictly less than the arithmetic
genus so 4>nof decreases at singular fibers.    □

(2.4) PROPOSITION. Under the general assumptions in (2.1) <f>v is lower semi-
continuous in the Zariski topology.

PROOF. Claim 1. There exists a dense Zariski open subset U C Y on which 4>v
is equal to a constant g.

PROOF OF CLAIM. Let Uy = the nonsingular points of Y. Let V be the
normalization of rc~1(Uy) and /: V —> Uy the induced family of curves. Since V is
normal its singularities form a closed set A of codimension at least 2 in V. Since /
is proper Uy — f(A) is a dense Zariski open set of Uy. By generic smoothness we
obtain a dense Zariski open U C Uy— f(A) on which the morphism /: f~x(U) —► U
is smooth. The fibers of / are just the normalizations of the corresponding fibers
of 7r. Thus 4>v is constant on U.

Claim 2. If y E Y - U then <pn(y) < g.
PROOF OF CLAIM. Let Z be a curve on Y through y whose generic point lies

in U. Let Z' be the normalization of Z. Via base change the family over Y gives a
family over Z'. Corollary (2.3) applied to the family over Z' proves the claim.

For n E Z set B(n) = {y EY: <p„(y) < n). We wish to show that B(n) is Zariski
closed. Fix n. If B(n) = Y we are done. If not applying Claims 1 and 2 we obtain
a Zariski closed set Yy £ Y, (Yy = Y - U) such that B(n) C Yy. If B(n) = Yy
we are done. If not apply the claims to the family tt: 7r-1(K1) —* Yy and obtain a
Zariski closed Y2 J Yy with B(n) C Y2. Since Y is assumed to be of finite type over
C and hence Noetherian this process must terminate, so eventually B(n) = Yk-    □

(2.5) THEOREM [Tl, p. 80]. Under the general assumptions of (2.1) assume
further that Y is normal and tf>n is constant. Let f: X' —► X be the normalization
map. Then tt o /: X' —> Y is a smooth family of curves. Each fiber of tt o f is the
normalization of the corresponding fiber ofir.

(2.6) EXAMPLE. This example shows that if the base of a flat family of reduced
curves is not normal, then even if the geometric genus of the fibers is constant there
may fail to exist a smooth family of curves over the same base that simultaneously
normalizes all the fibers of the original family.

Consider the family

Spec C[t2, t3] xP2xyzDW = {y2z - x3 - 3t2xz2 - 2t3z3 = 0}

SpecC[«V3]
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It is easy to check that the geometric genus is constant, equal to zero, in this family.
Let us focus our attention near the nonnormal point of SpecCfr2,*3] and near the
singular point of the fiber over that point. We do this by taking completions.

Spec C[[t2, t3]] x Spec C[[x, y]] D&' = {y2 - x3 - 3t2x - 2t3 = 0}

Sy->ecC[[t2,t3]]

We wish to show that there does not exist a commutative diagram

SpecC[[s]] x SpecC[[i2,i3]] - W

SpecC[[i2,*3]]

simultaneously normalizing all the fibers of tt. The existence of such a family implies
the existence of power series

X = a0(t2,t3) + ay (t2,t3)s + a2(t2, t3)s2 + ■■■ ,

Y = b0(t2,t3)+by(t2,t3)s + b2(t2,t3)s2 + ---

such that

(2.7) Y2 - X3 - Zt2X - 2t3 = 0.

By change of coordinates on C[[s]] we may assume that when t = 0, X = s2,
Y = s3. This means that ao and bo have no constant term. Looking at the s° term
in (2.7) we get fr2, - a3, — 3i2an — 2t3 = 0. This is impossible because fr2,, a3,, and
3t2aQ have no t3 terms.    □

Suppose one has a family as in (2.1) in which <pn is constant, equal to g, and all
fibers are irreducible. Under such circumstances one will sometimes hear someone
say, "Consider the natural morphism from Y to J£g, the moduli space of curves of
genus a." In view of (2.6) one may see that this morphism does not exist in general.
Theorem (2.5) says that there is a natural morphism from the normalization of Y
to J£g.

(2.8) This example was suggested by Bernard Teissier. In it we show that in a
family such as (2.1) when the geometric genus is not constant and V has dimension
greater than one, normalizing X may fail to yield a flat family of reduced curves even
when Y is nonsingular. We work locally. Let X C CN, N > 5, be a normal variety
of dimension 3 which is not Cohen-Macaulay at the origin. Let /: X —► C4 be a
generic projection, h: f(X) —» C2 another generic projection, and g the composition
of / and h. Assume origins always map to origins. Because f(X) is a hypersurface
it is easy to check that, for sufficiently general choices of / and h, h: f(X) —► C2
will be a flat family of reduced plane curves near the origin and the map / is
the normalization map. The family g: X —► C2 cannot be a flat family of reduced
curves. Flatness would say the regular sequence defining the origin in C2 pulls back
to give a regular sequence defining g~l (0,0) in X. If a-1 (0,0) was reduced then this
regular sequence of length two would extend to a regular sequence of length three
everywhere along o_1(0,0) contradicting the fact that X is not Cohen-Macaulay at
the origin.

3. Deformation spaces. Let D = {f(x,y) = 0} be a reduced curve in A2.
Assume that p = (0,0) is a point of D. Let J be the Jacobian ideal of /, that is the
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ideal in C[x, y] generated by /, df/dx, and df'/dy. Choose gy(x, y),..., gm(x, y) E
C[x, y] so that their images in C[x, y]/ J form a basis for this vector space. Consider
the following family of curves

SvecC[x,y]xSpecC[ty,...,tm]Dff=:{f + Zti9i=0}
(3.1) J. projection       „/ tt

SpecC[fi,...,tm] =: B

From [Al, p. 165; Sl and S2] one may conclude that this family satisfies (3.2)
through (3.6).

(3.2) VERSALITY. Given the following data: a flat family of reduced curves
/: X —» Y where X and Y are of finite type over C, a closed point y E Y, a
finite number of closed points xy,..., xn E /_1 (y), and an isomorphism of an etale
neighborhood of {xy,..., xn} in f~~x(y) with an etale neighborhood of a finite set
of points pi,..., pn in D, then there exist etale neighborhoods V of (0,..., 0) in B,
V of y in Y, W of {py,... ,pn} in V xB %, and W of {xy,...,xn} in V xY X, a
morphism g: V —► V, and an isomorphism <j>: W —► W Xy V such that diagram
(3.3) commutes.

W Xy  V'

(3.3) ^   «-    W \^W    -»   X
I I P2\       I i
B    <-    V    <-   XV    -»    Y

9

(3.4) MlNIVERSALITY. If p: W —* &~ is any other family of curves which is an
etale versal deformation for D (that is p: % —► SF can take the place oi tt: S? —► B
in (3.2)) then the dimension of 9~ is greater than or equal to the dimension of B.

(3.5) OPENNESS OF VERSALITY. Furthermore, there exists a Zariski open subset
U of B containing (0,..., 0) such that n: W —► B is an etale versal deformation
space for all fibers over closed points of U.

(3.6) Let y be a closed point of the set U of (3.5) and let xy,... ,xn E rr~1(y)
be a finite set of singular points of Tr~1(y). Suppose we can find reduced curves
Dy,..., Dn in A2 such that (0,0) is the unique singular point of each Di and an
etale neighborhood of (0,0) in Di is isomorphic to an etale neighborhood of x,
in n~1(y). (Later in this section we shall see that we can always do this.) Let
7Tj: %i —> Bi be the etale versal deformation for Di constructed as in (3.1). Using
(3.2) and (3.5) we get etale neighborhoods Vf of (0,..., 0) in B and Vi of (0,..., 0)
in Bi and morphisms gi: Vf —► Vj making a diagram like (3.3) commute. This gives
a morphism g from the intersection of the V/'s to the product of the Ws. The
morphism g (after possibly shrinking the etale neighborhoods) is surjective.

When we speak of the etale versal deformation space of a reduced plane curve
we mean the family of (3.1). When we speak of an etale versal (or miniversal)
deformation space of a reduced plane curve we mean any flat family satisfying (3.2)
(or (3.2) and (3.4)).

Many authors have preferred to work with the formal versal deformation of the
singularity of D at p rather than the etale versal deformation of D. To construct
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the formal versal deformation simply go to (3.1) and replace polynomial rings with
power series rings wherever you see them. Call the resulting family of algebroid
plane curves n': (<o' —► B'. It has the following properties. See [Sl, S2, and A2,
§4]-

Let Y be a scheme which is the spectrum of either an Artin local ring, a power
series ring (over C), or the quotient of a power series ring by an ideal. Let y be the
unique closed point of Y. Given any flat family /: X —► Y of reduced algebroid
plane curves together with an isomorphism c: 7r'_1(0,..., 0) —► f~x(y), then there
exists a morphism g: Y —> B' and an isomorphism ip: X —► Y xB* <&' making
diagram (3.7) commute. It is even possible to write down the map g explicitly, see
[KS].

,  Fxff?'

(3.7) 8" )\^A
I                                        \ I

B'   +_   Y
9

(3.8) If furthermore Y = Spec C[e]/(e2) then there is a unique g such that p2oi/joc
is the identity map on 7r'_1(0,... ,0). This says that ir': W —> B' is a universal
first order deformation.

Clearly these two deformation spaces are closely related. In this section we will
study certain subschemes of B and B' that parametrize deformations that preserve
certain properties of the singularity of D at p. To get started we must recall several
definitions.

Let D containing the point p and E containing the point q be two reduced curves
on a smooth surface S.

(3.9) DEFINITION. We say that the singularity of D at p is analytically isomor-
phic to the singularity of E at q if the complete local ring of D at p is isomorphic
to the complete local ring of E at q.

Zariski [Z2, p. 508] defines an algebroid plane curve to be a local ring of the
form C[[x,y]]/(f), where / = f(x,y) is a nonunit element of C[[i, j/]] free from
multiple factors. The branches of this curve are just the algebroid plane curves
corresponding to irreducible factors of /. It is sometimes more convenient to think
of Spec C[[x, y]]/(f) as the algebroid plane curve.

Returning to the curves D and £ona smooth surface S note that the complete
local ring of S at p is isomorphic to C[[x, y]]. Let f(x,y) be a local equation for
D near p. Then C[[x,y]]/(f) is called the algebroid plane curve associated to D
at p; proceed similarly for E at q. Zariski [Z2, pp. 510-514] gives three equivalent
definitions for what it means for two plane algebroid curves to have equivalent
singularities. We repeat one of them here. We will then say that two singularities
of reduced curves on smooth surfaces are equivalent if their associated algebroid
plane curves (obtained as just described) have equivalent singularities in the sense
of Zariski.

Let D = C[[x,y]]/(f) with branches 7i,..., 7h and E with branches 6y,... ,6n
be two algebroid plane curves.
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(3.10) DEFINITION [Z2, p. 510]. A (1,1) mapping ir of the set of branches of D
onto the set of branches of E is said to be a tangentially stable pairing ir: D —» E
between the branches of D and those of E, if the following condition is satisfied:
given any two branches 7, and 7,' of D, the corresponding branches ir(^i) and 7t(tj)
of E have the same tangent if and only if 7, and 7., have the same tangent.

If we blow up the origin in Spec C[[x, y]] the proper transform of Spec C[[x, y]]/(f)
may have several connected components. Each of them can be considered to be an
algebroid plane curve; call them D'v, v = 1,2,_  Similarly one can obtain E'v,
v = 1,2,_  Given a tangentially stable pairing ir: D —> E one may choose the
numbering v so that ir induces pairings ir'v of the branches of D'v and E'v. One
may now define equivalence of algebroid plane curves by induction on the number
of blowups required to resolve the singularity. When this number is zero we say an
equivalence is a pairing of the unique branch of D with the unique branch of E.
Both branches are of course nonsingular.

(3.11) DEFINITION [Z2, p. 511]. An equivalence ir: D -* E is a pairing ir
between the branches of D and the branches of E having the following properties:

(1) 7t is tangentially stable.
(2) If 6j = 7r(7i) (z = 1,2,..., h), then multp(7j) = multg(^).
(3) The pairing ir': D'u —> E'v (v = 1,2,...) is an equivalence.
(3.12) DEFINITION. Let D be a reduced plane algebroid curve and p the closed

point of D. Let /:£>'—> D be the normalization map, cf the local ring of D at p,
A the conductor ideal of D at p (as defined in the introduction), k the residue field
of D at p (fc = C), and D'y,..., D'n the irreducible components of £>'. Define

n

6(p) = dimk(cf/A),    m(p) = £(multp(/(DO) - 1),
t=i

k(p) = 2S(p) + m(p).

(Notice that m(p) is the degree of the first Fitting ideal of the sheaf of relative
differentials of D' over D.) For any reduced curve Dona smooth surface and p a
closed point of D define 6(p), m(p), and k(p) to be the corresponding numbers for
the algebroid plane curve associated to D at p. Finally define 6(D) to be the sum
over all closed points p of D of 6(p), similarly for m(D) and k(D). (These sums
are finite because terms of nonsingular points are zero.)

It is an easy-to-prove classical fact that if D is a reduced irreducible curve of
degree d in P2 then the geometric genus of D equals |(d — l)(d — 2) — 6(D) and
the class of D, that is the degree of the dual of D, equals d(d — 1) — n(D).

(3.13) DEFINITION. Consider a flat family of reduced curves in A2.

X cSr>ecC[x,y] xY
I p=projection

Y

We allow Y to be any separated scheme over C, not necessarily reduced or of finite
type.

(1) This family is trivial if given any closed point y EY there exists an isomor-
phism <j>: X —► Y x p_1(y) that makes the following diagram commute.
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X *> Yxp-X(y)
p \, y/ projection

Y
(2) We say the family is equisingular under these conditions.
(a) There exists a finite number of disjoint sections of the family, the union of

whose images contains the locus of singular points of fibers, and X is equimultiple
(i.e. normally flat) along these sections.

(b) If, in addition, all the singular points of fibers are ordinary double points we
say the family is equisingular. If not, blow up the sections.

(c) Now we require that in the family of reduced total transforms there exist sec-
tions lying over the former sections (at least one over each former section) satisfying
(a). Then return to (b).

(3) We say a family is locally trivial (equisingular) in the Zariski (etale) topology
if: (note that this is meant to read as four different definitions) for each closed
point y E Y and each closed point x E p~x(y) there exist Zariski (etale) open
neighborhoods U of y in Y and V of x in p~x{U) such that the induced family
V —+ U is trivial (equisingular).

(4) Let y E Y be a closed point, cf its local ring, and m its maximal ideal. For
each positive integer n set Yn = Spec^/m™. We then get a family pn: X Xy Yn —*
y„. We say that p: X —► Y is formally locally trivial (equisingular) at y if for all n
the family p„ is trivial (equisingular) in the Zariski topology. We say p: X —► Y is
formally locally trivial (equisingular) if it is at all closed points of Y.

(5) Assume that Y is reduced and the locus of singular points of fibers is proper
over Y. For any point y E Y closed or not the geometric fiber over y is the curve
Xy obtained by tensoring f_1(y) with the algebraic closure of the residue field of
y. Define 6(y), rt(y), and m(y) to be respectively 6(Xy), k(Xv), and m(Xy). We
say the family p: X —► Y is equigeneric if 6(y) is constant on Y and equiclassical if
6(y) and n(y) are constant on Y.

Notice that one could make these same definitions for a family of algebroid plane
curves, or one may replace SpecC[x,t/] with any nonsingular surface.

The definition of equisingular follows that of [W, pp. 143-144]. The definition
of formally locally trivial follows that given in [Ta, pp. 113-114].

We now investigate the relationship between formally locally trivial families and
families in which all fibers over closed points have analytically isomorphic singular-
ities. Much of this has already been done (cf. [T2, pp. 641-642]). We do it again
here by a different method because some of the intermediate lemmas will be needed
later in the paper.

(3.14) LEMMA. Let f(x,y) E C[[x,y]] be the equation of a reduced algebroid
plane curve. Then there exists an integer I (dependent on f) such that for all
g(x,y) in the ideal (x,y)1 the family of algebroid plane curves f(x y)+tg(x,y) over
SpecC[[£]] is a trivial deformation.

PROOF.   To show that f(x,y) + tg(x,y) is a trivial deformation we must find
power series A(x,y,t) = x + ay(x,y)t + a2(x,y)t2 -\-, B(x,y,t) = y + by(x,y)t
+b2(x,y)t2-\-, and C(x,y,t) = l + cy(x,y)t + c2(x,y)t2-\-such that f(A,B) +
tg(A, B) = Cf(x, y). First we write both sides of this equation as power series in t.
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f(x,y) + tl—(x,y)ay(x,y) + —(x,y)by(x,y) + g(x,y)\

+ t2 (—(x,y)a2(x,y) + —(x,y)b2(x,y) + -^(x,y)ay(x,y)2

d2f d2f+ 2-^-(x, y)ay (x, y)by (x, y) + -^ (x, y)by (x, y)2

+ g^(x,y)ay(x,y) + —(x,y)by(x,y)J

+ --- + tn (^(x,y)an(x,y) + j-(x,y)bn(x,y) + Tn\ + ■ ■ ■

= f(x,y) +tcy(x,y)f(x,y) + t2c2(x,y)f(x,y) + ■ ■ ■ +tncn(x,y)f(x,y) + ■ ■ ■ .

Here

Tn = —(x,y)an-y(x,y) + —(x,y)bn-y(x,y)

+ (terms which have no a^'s or ftj's with i > n,
and have at least two factors that are a,'s or b^s, i < n).

We know that there exists an integer fc such that the Jacobian ideal of / contains
all monomials of degree greater than or equal to fc. Choose I = 2fc. We now explain
inductively how to choose the aj, bi, and c;.

i = 1. Because g(x,y) E (x,y)2k we may find a relation

g(x,y) = a(x,y)— + b(x,y)— + c(x,y)f,
ox oy

with a,b,c E (x, y)k. (Use the fact that (x, y)k ■ (x, y)k = (x, y)2k and the Jacobian
contains all monomials of degree > fc.) Set ai = —a, by = —b, cy = c.

Having chosen up to n — 1 choose for n as follows. Recall that all the a^, bi, and
Ci for i < n — 1 are in (x, y)k. Thus, T„ E (x, y)2k and we may find a relation

Tn = a(x,y)^+0(x,y)^+1(x,y)f

with a, (3,7 € (x, y)k. Set a„ = -a, bn = -/?, c„ = 7.    □

(3.15) LEMMA.   Let f(x,y)+tmigmi(x,y)-\-be the equation of a flat family
of reduced algebroid plane curves over Spec C[[£mi,..., tmk]] =: Z. Via the inclu-
sion C[[£mi,... ,tmk]] C C[[t]] this is also the equation of a flat family of reduced
algebroid plane curves over SpecC[[t]] =: Y. The family over Z is trivial if and
only if the family over Y is trivial.

PROOF. Clearly if the family over Z is trivial then the family over Y is trivial.
Now suppose the family over Y is trivial. This means we have power series A(x, y, t),
B(x, y, t), C(x, y, t) as in the proof of (3.14) with

(3.16) f(A,B) + tm^gm,(A,B) + --- = Cf(x,y).
To show that this actually gives a trivialization over Z one must show that A, B,
and C do not contain any powers of t not allowed in Z. Expand both sides of (3.16)
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in powers of t. Using the fact that

dnj      Qfdnx     dfdny e ,    ,
-dF = TxW+Ty^+terms of the form

(some higher partial of /) I ( ~ j   ( -^ J   J     with ip + jq = n

one may deduce that no unwanted powers of t occur.    □
(3.17) REMARK. Notice that (3.15) remains true if we replace C[[t]] and

C[[*mi,..., tm*]] by C[[t]]/(tn) and C[[tm>,..., tm*]]/(tn).

(3.18) PROPOSITION. Let f: X -» Y be a flat family of reduced algebroid
plane curves,where Y is as in the statement of the versal property of the formal
versal deformation. Assume the family is trivial. Then there is a unique morphism
from Y to B' (the base of the formal versal deformation) which induces f: X —> Y.
This morphism is the obvious one sending all ofY to the closed point of B'.

PROOF. Otherwise, using (3.15) and (3.17), one may deduce that there would
be a subscheme Z of B' larger than the reduced point (0,..., 0) over which the
versal family is trivial. This contradicts the fact that this versal family may be
taken to be a universal first order deformation.    D

(3.19) COROLLARY. Suppose that f(x,y) and g(x,y) in (3.14) are polynomi-
als. In this situation we may think of f + tg as a flat family of curves in A2y
parametrized by Aj. If g is chosen as in (3.14) then for all but finitely many values
of t the curve f + tg = 0 has a singularity analytically isomorphic to the singularity
of f at (0,0). In fact an etale neighborhood of this singularity is isomorphic to an
etale neighborhood of (0,0) in f = 0.

PROOF. An etale neighborhood of 0 € Aj maps to an etale neighborhood of the
origin (0,..., 0) E B (the base of the etale versal deformation). There is an induced
morphism from the spectrum of the complete local ring of 0 E A\ to the spectrum
of the complete local ring of (0,..., 0) E B. This morphism must be a morphism
one gets by thinking of / + tg as a family of algebroid plane curves over Spec C[[t]]
and thereby obtaining from the versal property a morphism SpecC[[i]] —► B'. By
(3.14) and (3.18) the morphism SpecC[[<]] —► B' maps everything to the closed
point. Thus the original morphism on etale neighborhoods maps everything to
(0,...,0).    □

(3.20) COROLLARY. Let Dy,...,Dn be reduced curves in P2 and pi E Di
singular points. Then for any sufficiently large integer e there exists a reduced
irreducible curve E in P2 of degree e such that E has exactly n singular points
qy,..., qn and for each i an etale neighborhood of qi in E is isomorphic to an etale
neighborhood of pi in Di.

PROOF. We may assume that the Di have no common components and p, ^ D}
for i ^ j. Let di be the degree of Di and d the sum of the di. Assume that
Di = {Fi(X0, Xy, X2) = 0} and that pt £ {X0 = 0} for all i. For any integer e » 0
we may find a curve Ey = {G(X0, Xy,X2) = 0} of degree e > d with the following
properties.
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(1) One may choose affine coordinates Xi,yi on the affine patch Xq ^ 0 with
Pi = (0,0) such that if fi(xi,yt) E C[xi,yi] is the equation for Di and gt(xj,yi) E
C[xi,yi] is the equation for Ey in these coordinates then in (3.14) fi may replace
/ and gi will will satisfy the conditions placed on g.

(2) Ey is nonsingular away from \J*=1Pi, and irreducible.
Consider the pencil of plane curves pX^d n"=i R + ^G = 0> [r1,A] E P1. By

Bertini's theorem a general element of this pencil is nonsingular away from (J"=1 Pi
and irreducible. By (3.19) a general element of this pencil will have the desired
singularities at the p^'s.    □

(3.21) LEMMA. Let D = {f(x,y) = 0} be an affine plane curve whose only
singularity is at (0,0). Construct the etale versal deformation of D as at the be-
ginning of this section. Then there exists a Zariski open subset U of B containing
(0,..., 0) on which (0,..., 0) is the only point whose fiber has a singularity analyt-
ically isomorphic to the singularity of D at (0,0).

PROOF. Let Z be the set of points of B whose fibers have a singularity analyt-
ically isomorphic to the singularity of D at (0,0). We first show that Z is Zariski
constructible.

For any fixed values of ty,..., tm, f(x, y) + Y2 ti9i = 0 has a singularity analyt-
ically isomorphic to the singularity of D at (0,0) if and ony if there exist power
series

X=TTaijxiyl,       Y=J2b*Jxly3
i,j>0 i,j>0

with
rank["10    "011 =2

. PlO      001 .

and a constant c such that

(3.22) f(X, Y) + J2 Ugi(X, Y) = cf(x, y).
Expanding both sides of (3.22) as power series in x and y and comparing co-

efficients of terms of the same degree we at first appear to have infinitely many
constraints on the ij's. However, from (3.14) and (3.19) or equivalently the fact
that plane algebraic curve singularities are finitely determined we see that we need
only check that (3.22) holds up to a fixed finite power in x and y. This shows that
Z is Zariski constructible.

Because Z is Zariski constructible, if there did not exist a U as desired we
could find a curve through (0,..., 0) along which (3.22) was satisfied. At (0,..., 0)
the versal family restricted to this curve would be formally locally trivial. This
contradicts the fact that the formal versal deformation can be taken to be a universal
first order deformation.    □

(3.23) PROPOSITION.   Consider a flat family of reduced curves in A2.
X C Y x A2
I p= projection

Y
Assume that Y is reduced, separated, and of finite type over C. Let y be a

closed point of Y and x a singular point of p~l(y). Then the following statements
are equivalent.
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(1) There exists a Zariski open set U C X with x E U such that the restricted
family p: U —> p(U) is formally locally trivial at y.

(2) There exists a Zariski open set U C X with x E U such that the restricted
family p: U —> p(U) is formally locally trivial.

(3) For each Zariski open neighborhood U of x in X there exists a Zariski open
neighborhood U' C U of x in X such that for all closed points z E p(U'), p~l(z)C\U'
has only one singularity and it is analytically isomorphic to the singularity of f~x(y)
at x.

(4) There exist etale neighborhoods V of y in Y and W oi x in V xY X such
that the induced family p: W —* V is trivial.

PROOF. (4)=>(2) The image of W in X must contain a Zariski open neighbor-
hood U of x in X. This is the desired U.

(2) =► (1) Obvious.
(1) => (4) Reason as in the proof of (3.19).
(4) => (3) W may be chosen small enough so that W C\p~1(y) has x as its only

singular point. The image of YV in X must contain a Zariski open neighborhood U
of x in X. This is the desired U.

(3) => (4) Using (3.20) we know there is a plane curve D whose only singularity
has an etale neighborhood isomorphic to an etale neighborhood of x in f_1(y).
Using this D construct the etale versal deformation ir: W —► B. An etale neigh-
borhood V of y in V maps to an etale neighborhood of (0,... ,0) E B. Since we
are assuming (3), (3.21) says that all of V maps to (0,... ,0). This says the family
V xy X —► V is trivial.    □

(3.24) REMARKS, (a) In the statement of (3.23) one could replace A2 with any
nonsingular surface of finite type over C and the proposition would remain true. To
see this let D be any reduced separated curve of finite type over C and p a singular
point of D. Assume that D may be embedded in a nonsingular surface of finite type
over C. An open neighborhood of p in D embeds in some affine space A". Since
D embeds in a nonsingular surface the tangent space to D at p is two dimensional.
This says that a generic projection from An to A2 embeds a neighborhood of p in
D as a subscheme of A2.

(b) In the statement of (3.23) we cannot replace (3) with the simpler statement:
"There exists a Zariski open set U C X with x EU such that for all closed points
z E p(U), p_1(z) fl U has only one singularity and it is analytically isomorphic to
the singularity of f~x(y) at x." A counterexample may be constructed as follows.
Let /: X —► Y be a family of curves where the general fiber has one node but the
fiber over y E Y has two nodes. Call the node on f~x(y) that is not a limit of
nodes on general fibers x and call the node which is z. Find a divisor D on X
which meets f_1(y) at z and perhaps other points but not x and meets a general
fiber at nonsingular points. Set U = X - D. This family now satisfies the proposed
alternate for (3) but not any of (l)-(4).

We now investigate the relationship between equisingular families and families
in which all fibers over closed points have equivalent singularities. This has been
previously done when the base of the family is regular (cf. [T2, pp. 622-624]), but
we wish to consider families over any reduced separated finite type base.

(3.25) THEOREM [W, pp. 144, 158, 164]. (1) Let f E C[[x,y]] be the equation
of a reduced algebroid plane curve. Let C[e] = C[£]/(£2) be the ring of dual numbers.
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Set I = {g E C[[x, y]]: f + eg is the equation of an equisingular family of algebroid
plane curves over SpecC[e]}. Then I is an ideal and I contains the Jacobian ideal
of f. I is called the equisingular ideal of f.

(2) (Recall that we denote by B' the base of the formal versal deformation of
the singularity of /.) There exists a smooth closed subscheme ES of B' on which
the induced family of curves yields a formal versal equisingular deformation of the
singularity of f.

(3) Under the identification B' = C[[x,y]]/J the tangent space to ES at the
origin is identified with I/J.

(3.26) REMARK. As defined, / is an ideal in C[[a;,j/]]. We will also denote by
/ the ideals obtained from I by extension and/or contraction in other appropriate
rings such as C[i, y] or the local ring of the curve in question at the singular point
in question.

(3.27) THEOREM [T2, §3, 5]. LetD be a reduced curve in A2 whose unique
singularity is at (0,0). Construct the etale versal deformation ir:W^B for D as
at the beginning of this section. Define D^ = {p E B: n~1(p) is a reduced curve
with only one singularity and that singularity is equivalent to the singularity of D
at (0,0)}. Dfj, has the following properties. (Use the standard metric topology on
Cn.)

(1) In some open subset of B containing (0,..., 0) D^ is a closed analytic sub-
variety of B.

(2) Dp is smooth at (0, ...,0) and under the identification B = C[x,y]/J the
tangent space to D^ (at (0,..., 0)) is I/J.

(3) In some open subset of B containing (0,... ,0) the family ir~1(Dli) —► D^ is
equisingular.

(3.28) LEMMA. Let D = {f(x,y) = 0} be a reduced curve in A2. Assume
that (0,0) is the only singular point of D. Let B = SpecC[ii,... ,tm] and B' =
SpecC[[<i,... ,tm]] be the bases of the etale and formal versal deformation spaces
of the singularity of D at p as constructed at the beginning of this section. The
natural inclusion C[ty,... ,tm] —+ C[[£i,... ,tm]] induces a dominant morphism
ip: SpecC[[ii,... ,tm]] —► SpecC[£i,... ,tm]. Let Z be the closure of tp(ES).

(1) There exists a Zariski open subset U of Z containing (0, ...,0) over which
the etale versal family is equisingular.

(2) Under the identification B = C[x,y]/J the tangent space to U at (0,... ,0)
is identified with I/J. In particular U is nonsingular at (0,... ,0).

PROOF. One would hope that this would follow easily from (3.25).
The equimultiple sections of the family over ES that show that family is equi-

singular give equimultiple sections over some Zariski neighborhood of (0,..., 0) in
Z of the family over Z. This proves (1).

From (3.25) (3) we see that the tangent space to U at (0,... ,0) is at least I/J.
Part (1) of this lemma implies that the formal versal family is equisingular over
tp~l(U). Together with (3.25) (3) this implies that the tangent space to U at
(0,..., 0) cannot be any larger than I/J.    □

(3.29) DEFINITION. We will call the open set U of (3.28) ES.
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(3.30) PROPOSITION.   Consider a flat family of reduced curves in A2.

X C Y x A2
I p=projection

Y
Assume that Y is reduced, separated, and of finite type over C. Let y be a closed
point of Y and x a singular point of p~x(y). Then the following statements are
equivalent.

(1) For each Zariski open neighborhood U of x in X there exists a Zariski open
neighborhood U'dUofx in X such that for all closed points z E p(U'), p~1(z)C\U'
has only one singularity and it is equivalent to the singularity of f~x(y) at x.

(2) There exist etale neighborhoods V of y in Y and W of x in V Xy X such
that the induced family p: W —► V is equisingular.

PROOF. (2) => (1) The fact that the family is equisingular implies the existence
of a sequence of blowups with certain properties. Restricted to each fiber this
provides a sequence of blowups to show that their singularities are equivalent. W
may be chosen small enough so that W (lp~1(y) has x as its only singular point.
The image of W in X must contain a Zariski open neighborhood U of x in X. This
is the desired U.

(1) => (2) Using (3.20) we know there is a plane curve D whose only singularity
has an etale neighborhood isomorphic to an etale neighborhood of x in f~l(y).
Using this D construct the etale versal deformation ir:^ —> B. An etale neigh-
borhood V of y in Y maps to an etale neighborhood of (0,..., 0) E B. Since we
are assuming (1), using (3.25), (3.27), and (3.28) we conclude that after possibly
shrinking V to V the image of V lies in ES. This says the family V xY X —> V
is equisingular.    □

The remarks in (3.24) also apply to (3.30).

(3.31) PROPOSITION. Consider a flat family of reduced curves on a nonsin-
gular surface S separated of finite type over C.

X CY xS
I p=projection
Y

Assume that Y is reduced, separated, and of finite type over C. Let y be a closed
point ofY and x a singular point of p~x(y). Then given any etale neighborhoods U
of y and V of x in p~x(U) after possibly shrinking U to U' and V to V one may
obtain a family V —► U' on which the function 6: U' —* Z of (3.13)(5) is upper
semicontinuous.

PROOF. It is enough to show that this is true in the etale versal deformation
of any reduced curve D with singular point p such that an etale neighborhood of
p in D is isomorphic to an etale neighborhood of x in p_1(y). By (3.20) we may
choose D = {f(x,y) = 0} C A2, p = (0,0), where / is the dehomogenization of a
form F(xq, xy,x2) where F = 0 is a reduced irreducible curve in P2 with only one
singular point. Furthermore we may choose / to be of sufficiently high degree so that
the g%(x,y) we choose to construct the etale versal deformation all have degree less
than or equal to /. Say gi(x,y) is the dehomogenization of Gi(xQ,xy,x2), zo = 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



IDEALS OF SINGULAR PLANE CURVES 449

is the line at infinity, and ki = degreed - degree Gi. Then F + J2tixoi(^i = 0
gives a family of projective plane curves over A™ t . Remove all points lying
below nonreduced curves and all points corresponding to curves with singularities
on xq = 0. Recall that the geometric genus of a reduced curve E of degree d in P2
is \(d— l)(d- 2) - 6(E). Since in this family all fibers have the same degree, (2.4)
completes the proof.    □

(3.32) PROPOSITION.   Let

X cYxS

y
be a flat family of reduced curves on a smooth surface S. Assume that X, Y, and S
are all reduced, separated, and of finite type over C. Let A be the locus of singular
points of fibers of p. Assume that A is proper over Y. Then the following two
conditions are equivalent.

(1) The family is locally equisingular in the etale topology.
(2) For each equivalence class of singularity all fibers over closed points of Y

have the same number of singularities of that equivalence class.

PROOF. (1) =► (2) follows easily from (3.30) and (3.24).
(2) => (1) The locus A is the locus where the sheaf of relative differentials fails

to be locally free; thus A is a closed subset of X. Since A is proper over Y we
see that every component of A either surjects onto Y or maps to a proper closed
subvariety of Y.

Suppose there is a proper closed subvariety R of Y over which there lies a
component of A whose image in Y is R. Pick a closed point r E R. On p~l(r)
we have two types of singular points: (a) those which are limits of nearby singular
points on fibers over Y — R, and (b) the other "new" singular points. Observe
that if s and t are equivalent singularities then 6(s) = 6(t). Using assumption (2)
we conclude that there exists an integer d such that 6(f_1(y)) = d for all closed
y E Y. Using (3.31) we conclude that the sum J2 ^(5)j where s runs over all singular
points of type (a) on p_1(r), is greater than or equal to d. This means there can
be no singularities of type (b)—a contradiction to the existence of R. Thus, every
component of A surjects onto Y.

Again using the assumptions of (2) we see that locally in the analytic topology
A consists of set theoretic sections of p. In order to keep the total number of
singularities of each equivalence type constant from fiber to fiber any change in the
equivalence type of singularity along one section would have to be compensated for
by changes on other sections. This is impossible because different equivalence types
of singularities cannot be simultaneously degenerations of each other. (Think about
what would have to happen in the etale versal deformation spaces.) We conclude
that the equivalence class of singularity is constant along each section.

Locally in the etale topology this family must be obtained via pull back from
the etale versal deformation. Using (3.27) we conclude that this family is locally
equisingular in the analytic topology and the local set theoretic sections are actually
local analytic sections. Finally since A is a closed algebraic subset of X we see
that the local analytic sections are local etale sections and the family is locally
equisingular in the etale topology.    □
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(3.33) DEFINITION. Let D = {f(x,y) = 0} c A2 be a reduced curve whose only
singularity is at (0,0). Construct the etale and formal versal deformation spaces
for D as at the beginning of this section. Recall the functions 6 and k of (3.12) and
(3.13) (5). Define

EG={PEB:6(p) = 6(0,...,0)},
EG' = {PEB':6(p)=6(0,...,0)},
EC = {pEB: 6(p) = 6(0,...,0) and «(p) = /c(0,...,0)},

EC = {pEB': 6(p) = 6(0,..., 0) and K(p) = k(0, ..., 0)}.

In the notation of (3.28) EG' = ip~l(EG) and EC = tp-^(EC). Proposition
(3.31) tells us that in some Zariski open neighborhood of (0,... ,0) EG is closed
and therefore EC is closed. The same will be shown for EC and EC in (4.18).

4. Tangent spaces and tangent cones. Let

X c Y x P2
I*

Y
be a flat equigeneric family of reduced projective plane curves. Assume that Y
is irreducible, nonsingular, separated, and of finite type over C. Let h: X' —> X
be the normalization map. By (2.5) ir o h: X' —> Y is a smooth family of reduced
projective curves. We shall define two ideal sheaves on X', first abstractly as Fitting
ideals and then in terms of local coordinates. Our Fitting ideals are numbered as
in [ACGH, p. 179].

(4.1) DEFINITION, f is defined to be the pull back to X' of the dimension
(Y + 2)th Fitting ideal of the sheaf of differentials on X. M is defined to be the
dimension (Y + l)th Fitting ideal of the sheaf of relative differentials of X' over X.

Choose an open subset U of Y x P2 on which we may choose x, y as local
coordinates on P2, ty,...,tm local coordinates on Y, and F(ty,... ,tm,x, y) the
local equation for X. Furthermore suppose that on the inverse image of U in X'
we may choose z to be a local coordinate along the fibers of ir o h so that on
X x = x(z, ty,... ,tm), y = y(z,ty,... ,tm). Then on the inverse image of U in
X' (or possibly some smaller open set) we have that the ideal ^ is generated by
(dF/dx,dF/dy) and the ideal M is generated by (dx/dz,dy/dz).

For any point y E Y let Xy and X'y denote the fibers of ir and ir oh over y. X'y
is a nonsingular curve. Denote by ,/y and 32y the effective divisors on X'y obtained
by restricting the ideals <f and 3$ to X'y. Also denote by s/y the effective divisor
on X'y given by the pull back of the conductor of Xy to X'y. From [P, p. 261] we
see that we have the relation

(4.2) sty=fy-my.
We are assuming that the family is equigeneric. This means that srfy must have

the same degree for all y. Together with (4.2) this implies that there exists a
(Cartier) divisor A' on X' such that A' restricts to stfy on X'y for all y.

Notice also that m(Xy) = degree(«^y) (see (3.12)). This shows that k(Xv) is
an upper semicontinuous function on Y. Also if we assume further that the family
it: X —» Y is equiclassical then M must describe a (Cartier) divisor R' on X'
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and by (4.2) ^ describes a (Cartier) divisor J' on X', and we have the relation
A' = J' - R'.

(4.3) DEFINITION. Assume that Y is a single point so that X is a single curve.
Let H be the ideal sheaf given by H(U) = {g E cf(U): h*g E f). If p is a
point of X then the ideal in the local ring of X at p obtained from H is called the
equiclassical ideal and is also denoted by Bf.

Continue to assume that Y is a single point. Notice that # = h*J (J is
the Jacobian ideal). For an open set U C X, H(U) = {g E cf(U): the divisor
(h*g) >A' + R' = J'}.

(4.4) Lemma. Let

XcSpecC[[*]] xSpecC[[x,y]]
I*
SpecC[[r]]

be an equigeneric flat family of reduced algebroid plane curves with equation

0 = F(t,x,y) = f(x,y) + tmfm(x,y) + tm+1fm+y(x,y) + ■■■.

Then fm(x,y) is in the conductor ideal of the singularity defined by f(x,y) = 0. If
furthermore the family is equiclassical then fm(x,y) is in the equiclassical ideal of
the singularity defined by f(x, y) = 0.

PROOF. First we recall one description of the conductor ideal. Let Xo be
a reduced plane curve. Let h: X0 —► Xo be the normalization map. Then the
conductor A of X0 is the ideal Hom^x (h*(fx' ,cfx0) (cf. [P, p. 261]). From this
description it is easy to see that g E A if and only if h*g E h*A.

Our family ir: X —> Spec C[[t]] can be obtained via base change from the formal
versal deformation, and the formal versal deformation is obtained via taking com-
pletions from the etale versal deformation which is a family of finite type. Therefore
what we have said from the beginning of §4 up to (4.4) also applies to this family.
Continue with the notation of that discussion.

What we need to show is that, restricted to the fiber t = 0 of iroh, (fm) > A'. It is
sufficient to show this separately on each branch, so let E = Spec C[[z]] x Spec C[[t]]
be some fixed family of normalized branches. Let ^f(A') be the ideal of A'. (4.2)
says

(4.5) S(A')Df.
On E the function F(t, x, y) is identically zero. This gives

0- — -——     — ^     —
( ' ' ~ dt ~ dx dt + dy dt+ dt

which means dF /dt E <f and (4.5) implies the following relation between divisors:

(4.7) (dF/dt) > A'.

Expand dF/dt in powers of t:

dF
— = mr-7m(x, y) + (m + l)tmfm+1(x,y) + ■■■ .
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This says (dF/dt) = (m - l)(t) + F', F' effective. Since A' does not have (t) as a
component (4.7) says F' > A'. In other words

(mfm(x, y) + (m + l)tfm+y(x, y) + ■■■)> A'.

Set t = 0 and conclude that on the fiber t = 0 of ir o h either fm vanishes identically
or (fm) > A', so fm E A.

Now assume further that the family is equiclassical. Now (4.6) says

(dF/dt) > J'.
Following the same reasoning as before we show that on the fiber t = 0 of ir o h
either fm vanishes identically or (fm) > J', so fm E Bf.    □

(4.8) DEFINITION. Suppose we have D c U = SpecR where D is either a
reduced algebroid plane curve and R = C[[x,y]] or D is a reduced curve on U =
an affine open subset of P2. Let / be an equation for D. Let

XcY xU

yEY
be a flat deformation of D as a subscheme of U, the fiber over y being the given em-
bedding of D in U. If h: Spec C[e]/(e2) -»Fisa morphism whose image contains
y then the pull back family over SpecC[e]/(e2) will have in U x SpecC[e]/(e2) an
equation of the form f + eg, where g E R. We say that g represents a tangent vector
to a flat deformation of D as a subscheme of U. To save space denote C[e]/(£2) by
C[e\.

(4.9) PROPOSITION. Continue with the notation of the preceding definition.
Assume D is singular at a point p. Let A,H, I, and J be the conductor, equiclas-
sical, equisingular, and Jacobian ideals of D at p, thought of as ideals in R. (By
this we mean the ideal in R obtained by contraction from the ideal in the local ring
of D at p.)

(1) If ir: X —> Y is formally locally trivial in a neighborhood ofyxp then g E J.
(2) If ir: X —> y is equisingular or formally locally equisingular in a neighborhood

of y xp then g E I.
(3) Assume Y is reduced. Ifir: X —♦ Y is equiclassical in a neighborhood ofyxp

and Y is regular at y then g E H. (Without the regularity assumption there are
cases where g £ H.)

(4) Assume Y is reduced. If it: X —► Y is equigeneric in a neighborhood ofyxp
and Y is regular at y then g E A. (Without the regularity assumption there are
cases where g £ A.)

PROOF. In any case the complete local ring of U at p is C[[x,y]]. The family

X'c-7 xSpecC[e]
I
SpecC[e]

with local equation f + eg gives a family of algebroid plane curves

X" c SpecC[[x,2/]] x SpecC[e]
I
SpecC[e]
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with equation f + eg, where now by / and g we mean their images in C[[x, y]]. Fur-
thermore if the original family was formally locally trivial, equisingular, or formally
locally equisingular in a neighborhood of y x p then the family X" —► SpecC[e]
will have the same property. The family X" —► SpecC[e] gives a morphism
q: Spec C[e] —> Spec C[[ty,..., tm]], where Spec C[[ty,..., tm]] is the base of the for-
mal versal deformation space. The corresponding homomorphism q': C[[ty,..., tm]]
—» C[e] may be defined as follows. Write g as h + YlaiQi where h E J, a^ E C,
and the gi are the chosen basis for C[[x, y]]/ J, and set ti —► a^e. Clearly the family
X" —► SpecCfe] is formally locally trivial if and only if it is trivial. By (3.18) the
family is trivial if and only if the homomorphism q' is the zero homomorphism,
that is if and only if g E J. Since the J in R comes by contraction from the J in
C[[x,y]] this completes (1). With these observations part (2) follows directly from
(3.25).

Parts (3) and (4) are straightforward consequences of (4.4). To see the necessity
of the regularity assumption in part (4) consider the family over SpecC[i2,t3] of
curves in C2 whose equation is

y2 - x3 + t2x + 2v/3«3/9        (= V2 ~{x + V3t/3)2(x - 2v/3*/3)).

This family is clearly equigeneric. The homomorphism C[i2,<3] —► C[e] given by
t2 —> 0, t3 —► e gives a family over Spec C[e] with equation y2 — x3 + 2\fZe/Sl. But
clearly 2^/9 ^ A. The necessity of the regularity assumption in part (3) follows
from a similar argument applied to the family over the locus EC in the deformation
space of the ramphoid cusp that was discussed in §1.    D

(4.10) PROPOSITION. Continue with the notation of (4.8) and (4.9). Assume
R = C[[x,y]] or C[x,y]. Assume D has only one singular point.

(1) Every element of J represents a tangent vector to a flat deformation of D as
a subscheme of U formally locally trivial in a neighborhood of y x p. Furthermore
Y may be taken to be regular at y, or even a nonsingular variety when R = C[x,y].

(2) Every element of I represents a tangent vector to a flat deformation of D as
a subscheme of U equisingular in a neighborhood of y xp. Furthermore Y may be
taken to be regular at y, or evtn a nonsingular variety when R = C[x,y].

(3) // y is restricted to be regular at y, then for some singularities there are
elements of H which do not represent a tangent vector to a flat deformation of D
as a subscheme of U equiclassical in a neighborhood of y xp.

(4) // y is restricted to be reduced and regular at y, then for some singularities
there are elements of A which do not represent a tangent vector to aflat deformation
of D as subscheme of U equigeneric in a neighborhood of y xp.

PROOF. For (1) we will do the case R = C[x,y); the case R = C]\x,y]] is very
similar. We may as well assume p = (0,0). Let g(x,y) E J, say

g(x, y) = qy (x, y)f(x, y) + q2(x, y)df(x, y)/dx + q3(x, y)df(x, y)/dy.

In Aj x A2    consider the locus

{0 = F(t,x,y) = (1 + tqy(x,y))f(x + tq2(x,y),y + tq3(x,y))}.

F(t, x, y) is a polynomial. Think of this as a family of curves over A}. Writing out
the Taylor expansion for F in powers of t one sees that the coefficient of t is g(x, y).
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When t = 0 the fiber is {/ = 0} = D. The family is formally locally trivial in some
Zariski open subset of 0 x (0,0) because we are just changing coordinates.

Again for (2) we will do the case R = C[x,y]. Let g(x,y) E I. Write g(x,y) =
h(x,y) + J2ai9i(xiV)i h E J, ai E C, {gi} the chosen basis for C[x,y]/J in the
construction of the etale versal deformation space. Write

h(x, y) = qy(x, y)f(x, y) + q2(x, y)df(x, y)/dx + q3(x, y)df(x, y)/dy.
As usual let B be the base of the etale versal deformation of the singularity of

D at p. By (3.28) we may find a smooth curve C through (0,..., 0) E B lying
in ES with tangent line at (0,..., 0) equal to the line spanned by (0,..., 0) and
(ay,...,am). Let t be a local parameter on C at (0,..., 0). Over some Zariski open
subset of C, call it C°, this gives a family

X c C° x A2iy
I

C°
with equation of the form F(t, x, y) = f(x, y) + t ^2 a,&, +t2 ■ ■ ■. Furthermore this
family is equisingular in a neighborhood of (0,..., 0) x (0,0) (after possibly more
etale base changes). The desired family then has equation

(1 + tqy (x, y))F(t, x + tq2(x, y),y + tq3(x, y)).

For (3) consider the ramphoid cusp y2 + x5. The etale versal deformation space
for this singularity was discussed in §1. The locus EC is one dimensional with a
unibranched singularity at (0,..., 0). Let

X C SpecC[[t]] x SpecC[[x,t/]]
I
SpecC[[t]]

be an equiclassical family with equation y2 + x5 + fy(x,y)t + f2(x,y)t2 + •••. Let
0: Spec C[[t]] —► B' be an induced map to the base of the formal versal deformation.
The singularity of EC at (0,..., 0) says that the differential of the map qb must
vanish at t = 0. In the proof of (4.9) we saw how to write down the map <p to first
order. Doing this we find that the vanishing of the differential of <f> implies that
fy E J. But it is easy to see by direct computation that H is strictly larger than
J. The proof of (4) involves a similar argument applied to the singularity y2 — x3
whose deformation space was also discussed in §1.    □

(4.11) COROLLARY.   J g I g H g A.
PROOF. J QI was stated in (3.25). For I Q H notice that by (4.10) any element

g of I comes from an equisingular deformation over a nonsingular base. Since an
equisingular deformation is clearly equiclassical (4.9) says g E H. H g A follows
easily from their definitions and the discussions at the beginning of §4.    □

(4.12) DEFINITION. Let D be a reduced projective curve in P2 and let pi,..., p„
be the singular points of D. Let S be a fixed subset of pi,..., pn.

(1) We define a sheaf of ideals J(D, S) on P2 as follows: for any open subset
U C P2, J(D, S)(U) = {/ € cf(U): Vp, E S the image of / in the complete local
ring of P2 at p» lies in the Jacobian ideal of D at px). J(D, S) will sometimes be
denoted by J(S). Similarly one can define I(D,S), H(D,S), and A(D,S).
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(2) Let
x c y x p2

Ip
VEY

be a flat family of reduced curves in P2 with p_1(y) equal to D with its given
embedding in P2.

(a) We say this family is trivial (equisingular) with respect to 5 at y in the
Zariski (etale) topology if for each closed point x E p~l(y) fl S there exist Zariski
(etale) open neighborhoods U of y in Y and V of x in p~l(U) such that the family
V —> U is trivial (equisingular).

(b) We say this family is formally locally trivial (formally locally equisingular)
with respect to S at y if for each positive integer n the family pn: X xY Yn —► Yn
of (3.13) (4) is trivial (equisingular) with respect to S at y in the Zariski topology.

(c) Now assume that Y is reduced at y. We say the family is equigeneric (equiclas-
sical) with respect to S at y in the Zariski (etale) topology if given any closed point
x E p~x(y) fl S and any open Zariski (etale) neighborhoods U of y in Y and V of
x in p_1({7) after possibly shrinking U and V to smaller neighborhoods U' and V
of x and y one may obtain a family V —> U' that is equigeneric (equiclassical).

The definition of formally locally trivial with respect to S is essentially that of
[Ta, p. 112].

Recall the following basic facts about curves of some fixed degree d in P2. Fix
homogeneous coordinates xq, xy, x2 on P2. A curve D of degree d in P2 is then
given by a homogeneous polynomial of degree d, F = J2ai,3,kXlQx{x2. All curves of
degree d in P2 are then parametrized by a projective space PN,

N = ±(d + 2)(d + l)-l

the correspondence being D = {F = 0} t-> [• ■ -a^j; ■■•]. This P^ is the Hilbert
scheme of curves of degree d in P^ and as such the tangent space to the point
of P^ corresponding to D is naturally identified with H°(D,cfr)(d)). One may
construct a universal curve over PN.

P2 x P" d W = {^2aij,kx0x{x^ = o}

I*
PN

Continue with the notation of (4.12). Let d be the degree of D. From results in
[Ta, pp. 109-113] and the universal mapping property of the Hilbert scheme one
may deduce the following.

(4.13) FACT. Suppose that H1(D,cfD(d) <g> J(S)) = 0. Then there exists a
subscheme Z of PN with the following properties.

(1) Z contains the point q corresponding to D.
(2) The restricted family ir: W —► Z is formally locally trivial with respect to S

at q in the Zariski topology.
(3) Z is reduced and smooth at q with tangent space naturally identified with

H°(D,cfD(d)®J(S)).
(4) If Z' is any other subscheme of PN satisfying (1) and (2) then, in some

Zariski neighborhood of q, Z' c Z.
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(4.14) LEMMA [AC, Zl]. Let Ud'g be the closure in PN of the locus of
points corresponding to reduced curves of degree d and geometric genus g. Then
every component of Ud'9 has dimension 3d + g — 1.

(4.15) THEOREM. The tangent cone to EG (EC) at (0, ...,0) is supported
on a linear subspace of B (B') which under the identification B = C[x, y]/J (B' =
C[[x, y]]/J) is identified with A/J.

PROOF. The proofs for EG and EC are essentially the same. We do EG. Let
T be the support of the tangent cone to EG at (0,... ,0). Lemma (4.4) says that
T C A/ J. Since Aj J is irreducible all we must do to prove equality is show that
their dimensions are equal. Since dimT = dim .EG this is the same as showing
dim EG = degree J — degree A.

Notice that in the statement of the proposition we did not mention explicitly
the curve and the singular point on it to which the deformation spaces we are
considering correspond. This is because for a local question like this we may choose
any curve and any singular point on it with an etale neighborhood isomorphic
to an etale neighborhood of the one we are interested in. From (3.20) we see
that we may choose a reduced projective curve D of degree d in P2 with only
one singular point p, with d sufficiently large so that H1(D,tfo(d) ® J) = 0 and
dimH°(D,cfD(d) ® J) = \(d + 2)(d + 1)-degree J-1. Let PN be the projective
space parametrizing curves of degree d in P2 and let q be the point corresponding to
D. By basic properties of the etale versal deformation we get etale neighborhoods
V of (0,..., 0) in B and U of q in PN and a morphism <p: U —> V.

By (4.13) the tangent space to <£_1(0,... ,0) at g is H°(D,cfD(d) ® J). Putting
this together with dimU— ^(d + 2)(d+l) — l, dim V = degree J, one concludes that
after possibly shrinking U and V we may assume that <p is surjective with smooth
fibers of dimension \(d + 2)(d+ 1) — degree J — 1. Notice that the geometric genus
of D is g = \(d - l)(d - 2)-degree A. Clearly 4>~HEG) = Ud<9, so

dim EG = dim Ud'9 - (\(d + 2)(d + 1) - degree J - l).

Using (4.14) this equals

Zd + g-1- \(d + 2)(d + 1) + degree J + 1
= 3d + ±(d- l)(d-2) -degree A- \(d + 2)(d+ 1) + degree J
= degree J — degree A.    □

The fact that the support of the tangent cone to EG at (0,..., 0) is irreducible
puts some restrictions on what type of singularity EG could have at (0, ...,0).
Using the following results of Arbarello and Cornalba we can say even more.

(4.16) FACT. [AC, pp. 486-488]. Let D be a reduced irreducible plane curve of
degree d in P2 of geometric genus g. Let q be the point in PN corresponding to D.
(Use the usual metric topology on Cn.)

(1) If all the singularities of D have only smooth branches then there exists a
neighborhood of q in which Ud'9 is nonsingular.

(2) Assume m(D) < 3d. If any of the singularities of D have any singular
branches then Ud'9 is singular and unibranched at q. Furthermore a neighborhood
of q in Ud'9 is the one-one image of a smooth variety.
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(4.17) PROPOSITION.   For a reduced plane curve singularity:
(1) EC is irreducible. There is a Zariski neighborhood of (0,..., 0) in which EG

is irreducible.
(2) EG (EC) is smooth at (0,..., 0) if and only if all the branches of the plane

curve singularity are smooth.
(3) The normalization of EG (EC) is smooth. There is a Zariski neighborhood

of (0,..., 0) in which the normalization map is one-one.

PROOF. Using the ideas in the proof of (4.15) one sees that for an appropriate
choice of D and p, Ud'9 is—locally in the analytic topology—the product of EG
and a smooth variety. We may also choose D to have sufficiently high degree d so
that m(D) < 3d. The results now follow immediately from (4.16).    □

(4.18) COROLLARY. In some Zariski open neighborhood of (0,... ,0) EC is a
Zariski closed subset of EG; hence EC is closed in B'.

PROOF. Let /: EG —► EG be the normalization map. Since by (4.17) EG is
nonsingular we may apply the discussion at the beginning of §4 to the family of
curves over EG obtained via pull back from the etale versal family. In particular
the paragraph before (4.3) says that f~l(EC) is a locally closed subset oi EG. But
by (4.16) (2) we may assume / is one-one, hence a Zariski homeomorphism.    □

To end this section we present a result on tangent spaces and tangent cones that
will be needed in the final section of this paper.

(4.19) PROPOSITION. Let D be a reduced curve of degree d in P2, S some
subset of its singularities, and q the point in PN corresponding to D. Let Z be a
subscheme ofPN which contains q.

(1) // the restriction of the universal family ir: W —> PN to it: it~1(Z) —» Z is
trivial or formally locally trivial with respect to S at q in either the Zariski or etale
topology, then the tangent space to Z at q is contained in H°(D,(f£)(d) <g> J(S)).
Also there is some such Z whose tangent space at q equals H°(D,cfo(d) ® J(S)).

(2) Same as (1) except replace trivial with equisingular, formally locally trivial
with formally locally equisingular, and J(S) with I(S).

(3) Assume that Z is reduced. If the restriction of the universal family it: W —>
PN to ir: tt~1(Z) —* Z is equigeneric with respect to S at q in either the Zariski
or etale topology, then the support of the tangent cone to Z at q is contained in
H°(D,cfD(d)®A(S)).

PROOF. Recall one of the ways of seeing that the tangent space to PN at
q is isomorphic to H°(D,cfD(d)). The tangent space to P^ at q is isomorphic to
equivalence classes of families of plane curves of degree d over Spec C[e] with central
fiber D. If F is the homogeneous equation of D such a family has an equation F+eG
where G is a homogeneous polynomial of degree d or the zero polynomial. F + eG
and F + eH are equivalent families if and only if G and H have the same image in
H°(D,cfD(d)).

Now suppose we have a Z satisfying the hypothesis of (1). F + eG represents a
tangent vector to Z at q =>■ the family F + eG is trivial with respect to S at q <$
for all p E S the induced family of algebroid plane curves near p is trivial •» for all
p E S the image of G in the complete local ring of P2 at p is in the Jacobian ideal
of D at p <r> G represents an element of H°(D,cfD(d) <S> J(S)).
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For the "also..." part of (1) let Gi,...,Gm be homogeneous polynomials of
degree d which give a basis for H°(D,cfD(d) ® J(S)). The family over

SpecC[ei,...,em]/(ei£j)

with equation F+J2 eiGi can be seen to be trivial with respect to 5 by the reasoning
in the previous paragraph. It is clear that one may embed SpecC[ei,...,em]/(£i£j)
in PN supported at q to give the desired Z.

Part (2) proceeds as in (1) with the obvious minor changes.
For part (3) notice that H°(D,cfo(d)) can also be thought of as the tangent

cone to PN at q. Consider families of plane curves of degree d over Spec C[[t]] with
central fiber D. Such a family has an equation of the form F + tFy + t2F2 + •■•
where F is a homogeneous equation for D and the Fi are either zero or homogeneous
polynomials of degree d. If i is the smallest integer for which Fi ^0 and Fi is not
a multiple of F (this can be arranged by reparametrizing the family if necessary)
then the image of Fi in H°(D,cfo(d)) spans a line through the origin which is the
line in the tangent cone to PN at q given by this family. Given a Z satisfying the
hypothesis of (3) then all lines in the support of the tangent cone to Z at q come
from such families that are equigeneric with respect to S. F + tFy + t2F2 + •••
is equigeneric with respect to S if and only if for all p E S the induced family of
algebroid plane curves near p is equigeneric. By (4.4) this is the case only if for
all p E S the image of the first nonzero Fi in the complete local ring of P2 at p
lies in the conductor ideal of D at p; this is true if and only if this first nonzero Fi
represents an element of H°(D,cfD{d) <g> A(s)).    □

5. Equiclassical deformations. In this section we study equiclassical families
in greater detail.

(5.1) LEMMA. Consider a family of curves as at the beginning of §4. Define
Mk = {y E Y: m(ir~1(y)) > fc}. See (3.12) for the definition of m. Then the
codimension of Mk in Y is at most fc.

PROOF. We continue with the notation of the discussion at the beginning of §4.
The paragraph before (4.3) tells us that Mk is a closed subset of Y. The family
ir o h: X' —> y is a family of nonsingular curves. One may construct a family
7Tfc: X'(fc) —+ y where the fiber over y E Y is the fcth symmetric product of the
curve (iroh)~1(y). We represent a point on X'^ by (D,y) where D is an effective
divisor on (iroh)^1(y). There also exist a family of curves f-.Z—* X'(fc' such that
f~l(D,y) = (it o h)~l(y) and a divisor A on Z such that the restriction of A to
f~x(D,y) is D. Recall the divisor 31 y of (4.2). Define T = {(D,y): My > D}.
Clearly irk(T) = Mk.

Locally T may be described as follows. Pick a point (Do,yo). Let z be a local
coordinate on (ir°h)~1(yo) in a neighborhood of Dq and let xy and x2 be local coor-
dinates on P2 in a neighborhood of Do- Then, near (D0,y0), T = {(D,y): dxy/dz
and dx2/dz both vanish on D}. Locally dxi/dz E cfz. Via the natural map
fttfz —► /A, dxi/dz gives locally a section of ft(f/\; this section vanishes exactly
on Ti = {(D,y): dxi/dz vanishes on D}. Since /.c^a is a vector bundle of rank
fc the set Ti if nonempty has codimension at most fc in X'^k\ so T = Ty n T2
if nonempty has codimension at most 2fc in X'^.   £%y is always a divisor on
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(it o h)~l(y).   Thus the map irk'- T —► Y has finite fibers, so the codimension of
Mk = irk(T), if nonempty, in Y is at most fc.    □

(5.2) COROLLARY. Let PN be the projective space that parametrizes curves of
degree d in P2. Let Vd'9'c be the locus of points of PN corresponding to reduced
irreducible curves of geometric genus g and class c. Assume that 2g — d — 2 < c.
Then ifVd,9'c is nonempty then every irreducible component ofVd'9'c has dimension
at least d + c — g+1.

PROOF. From the classical formulas g = ±(d-l)(d-2)-6, c = d(d-l)-26-m,
we see that 2g - d — 2 < c is equivalent to m < 3d. This says that (4.16) (2) applies
here. Applying an argument similar to the one in the proof of (4.18) one can show
that Vd'9'c is a locally closed subset of PN.

By definition each component of Vd,9,c is a subset of a component of Vd'9. By
(4.14) we know every component of Vd'9 has dimension 3d+g—l. We must calculate
the codimension of Vd'9'c in Vd'9. By (4.16) we know that the normalization of
Vd'g is nonsingular. This says that (5.1) holds on the pull back of the universal
curve over PN to the normalization of Vd'9. Since we have the classical formulas
g = \(d— l)(d- 2) — 6, c = d(d— 1) — 26 — m, simple algebra finishes the proof.    □

(5.3) LEMMA. Let D be a reduced plane curve whose only singularity is at
(0,0).  Then, for D, degree H = dime C[x,y]/H = 6 + m.

PROOF. The first equality is an elementary fact about ideals, so all we have to
prove is the second.

We may assume D is a curve in P2 with only one singularity. Let D' be the
normalization of D. Let A' and R' be the divisors on D' from the discussion at the
beginning of §4. We have the following commutative diagram for fc > 1.

H°(D,cfD(k)®A)    ^        H°(D',cfD,(k)-A')
(5.4) U U

H°(D,cfD(k)®H)    «-►    H°(D',cfD,(k)-A'-R')
From [ACGH, pp. 57-60] we see that the top inclusion is an isomorphism. Using
this one easily shows that the bottom inclusion is also an isomorphism.  One also
sees from [ACGH, pp. 57-60] that degree A' = 26.

For fc sufficiently large

dimH°(D,cfD(k) ® H) = \(k + 2)(fc + 1) - ±(fc - d + 2)(fc -d+l)-degH-l
and by Riemann-Roch

dim H°(D', tfD, (fc) - A' - R') = fcd - 26 - m - g + 1.
Equating these two expressions, putting in g = |(d — l)(d — 2) — 6, and simplifying
completes the proof.    □

(5.5) THEOREM. The tangent cone to EC (EC) at (0,... ,0) is supported on
a linear subspace of the tangent space T to B (B') at (0, ...,0) which under the
identification T = C[x,y]/J (C[[x,y]]/J) is identified with H/J.

PROOF. The proof is almost identical to the proof of (4.15) with EC taking the
place of EG, H taking the place of A, and (5.2) taking the place of (4.14). Also
use (5.3).    □
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(5.6) PROPOSITION [W, p. 160]. For the singularity yp + xq =0 (p < q),
the equisingular ideal I is the ideal generated by xq~l, yp~l, and the monomials
xly3, where pi + qj > pq.

(5.7) LEMMA. For the singularity yp + xq = 0 (p < q), p and q relatively
prime, the equiclassical ideal H is the ideal generated by the monomials xly3, where
pi + qj >pq-q-

PROOF. Since p and g are relatively prime this singularity is unibranched. This
curve is given parametrically by x = tp, y = tq, t a coordinate on the normalization.
The pull back of the Jacobian ideal to the normalization is the principal ideal
(tpq~q). A monomial xlyJ pulled back to the normalization becomes tp%tq] = tp%+qi,
so x%y3 E H if and only if pi + qj >pq — q.    0

(5.8) COROLLARY. For the singularity yp + xq = 0 (p < q), p and q relatively
prime, I%Bf except when p = 2, q = 3.

PROOF. This follows from (5.6), (5.7) and the elementary high school alge-
bra.    D

Let /: X —> y be a flat family of reduced plane curves with Y nonsingular
and of finite type over C. Let y EY he a closed point. Assume that the family
/: X —> y is versal in the etale topology for /-1(y) at y. Also assume for simplicity
that f~x(y) has only one singular point. Construct it: W —* B, the etale versal
deformation space for f~*(y), as at the beginning of §3. Then there exist etale open
neighborhoods V of (0,..., 0) in B and V of y in Y and a morphism g: V —> V
such that (3.3) is satisfied. By examining the differential of the map g at y and
using (3.4) and the fact that the formal versal deformation is a universal first
order deformation one may deduce that near y g is surjective with smooth fibers of
constant dimension. Of course the family f:X—*Y is locally trivial along these
fibers.

Near y define ECy = {z e Y: r^/"1^)) = ^/^(y)); 6(f'1(y)) = 6(f~1(z))}.
Using what we have just said one sees that:

(5.9) codimension of ECy in Y =  codimension of EC in B.

The same is true for any other subvariety defined by a reasonable geometric condi-
tion on the fibers, for instance ES and EG.

(5.10) PROPOSITION. For a singularity of a reduced plane curve, I ^ H if and
only if ES is a proper subvariety of EC. (By this we mean that ES is contained
in EC and is not equal to any irreducible component of EC.)

PROOF. It is clear that ES C EC. From (3.25), (3.28), and (5.5) we see that
the if part of the proposition is true.

Let D be a reduced plane curve whose only singularity is the one under consid-
eration. Using D construct the etale versal deformation it: W —* B for D; in B we
have ES and EC. The assumption I%Bf together with (3.25), (3.28), and (5.5)
tells us that through (0,..., 0) there is a component of EC of dimension strictly
greater than the dimension of ES. From (5.3) and (5.5) we see that the codimen-
sion of the equiclassical locus in the base of the etale versal deformation is the same
for equivalent singularities; (3.5) and (5.9) and the third sentence of this paragraph
tell us that through any point of ES near (0,..., 0) there is a component of EC
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of dimension strictly greater than the dimension of ES. This says that ES is a
proper subvariety of EC.    □

(5.11) FACT. Let D be a reduced plane algebroid curve and p the closed point
of D. Let /:D'-*Dbe the normalization map and D'y,... ,D'n the irreducible
components of D'. Then

n

6(D) = J2S(f(Di)) + ^[intersection multiplicity of /(£>■) and f(D'f) at p],
i=l i>j

m(D)=j^m(f(D'l)).
i=l

PROOF. The first equation is classical; cf. [Hi, p. 183]. The second equation is
obvious.    □

(5.12) THEOREM. Up to analytic isomorphism the only singularities of reduced
plane curves for which H = I are the ordinary node (local analytic equation xy = 0)
and the ordinary cusp (local analytic equation y2 — x3 =0). Equivalently, for these
two singularities ES = EC and for all others ES is a proper subvariety of EC.

PROOF. Proposition (5.10) says that the two statements in the theorem are
equivalent. It is a simple matter to check by direct computation that for an ordinary
node and an ordinary cusp H = I and EC = ES. We want to show that these are
the only such singularities.

Claim 1. A singularity other than an ordinary node for which ES is not a proper
subvariety of EC must have only one analytic branch.

First we exhibit for any singularity with two or more analytic branches, other
than an ordinary node, a deformation that is equiclassical but not equisingular.
Since we are free to take etale neighborhoods we may assume that the equation for
the singularity factors, say f(x, y)g(x, y) = 0. Let U be the etale open set of A2 on
which this factoring takes place. Choose a vector (a, b) E C2. Consider the family

X c Ua<y x A2it
I

A2AS,t

with equation f(x + as,y + bt)g(x, y) = 0. For a sufficiently general choice of (a, 6)
this family will not be equisingular because the singularity will have broken up into
more than one singularity. This family will be equiclassical near (0,0) because of
(5.11) and the fact that we have not changed the contribution to the class of each
branch nor the intersection multiplicities between the branches.

Using what we have just shown and (3.5) we see that in the etale versal defor-
mation space of any multibranched singularity other than an ordinary node in a
neighborhood of (0,... ,0) every point of ES is in the closure of EC - ES. This
proves Claim 1.

Claim 2. For any unibranched singularity that is not equivalent to yp + xp+1 = 0
for some integer p > 2 ES is a proper subvariety of a component of EC.

As in Claim 1 all we must do is show that any such singularity has deformations
that are equiclassical but not equisingular.
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Let D C A2 y be a reduced plane curve with a unibranched singularity at (0,0).
Let f:D' —► D be the normalization map. Near /_1(0,0) the map / may be
expressed as the composition of an embedding <p: D' —» Am and a projection
it: Am —> A2. Further we may assume that 0(/_1(0,0)) = (0,... ,0) and that if
t is a local coordinate on D' at /_1(0,0) <j> is given by <p(t) = (t,t2,... ,tm). Let
Zy,...,zm be coordinates on Am and let p be the multiplicity of (0,0) in D. Set
Pk = {zm = Zm-i = ••■ = zm-k+i = 0}- Pk is the unique m-k plane in Am with
contact of order m — k+l with <p(D') at (0,..., 0). Let P be the m — 3 plane from
which we project to obtain the map it (we may assume (0,... ,0) ^ P); let P' be
any other m — 3 plane and it' the resulting projection. Assume that P' does not
contain (0, ...,0) and that ir'(D') is unibranched at ir'(f~l(0,0)). The condition
on P' that makes ir'(D') have multiplicity p at 7r'(/_1(0,0)) is that it' collapse
Pm_p+i to a point. That is that dim(P' n Pm_p+i) = p - 2. Among all P' that
make ir'(D') have multiplicity p at 7r'(/~1(0,0)) a Zariski open set will correspond
to P' that meet all the Pk as transversally as possible subject to the conditions
(0,..., 0) ^ P', dim(P' n Pm_p+1) = p - 2. In particular, for a generic such P' we
have

dim(P' n Pm-p) = P - 2,    dim(P' n Pm-v-i) = p - 2.
P' is the common zeros of three linear equations. From the preceding conditions
we see that for a generic P' that makes ir'(D') have multiplicity p at 7r'(/_1(0,0))
the three equations for P' may be taken to be in the following form:

Fi has nonzero constant term.
F2 has no constant term and involves only zv, zp+l,... ,zm with the coefficient

of zp nonzero.
F3 has no constant term and involves only zp+y, ■ ■ ■ ,zm with the coefficient of

zp+1 nonzero.
Therefore the parametric representation of tt'(D') will be of the form

(aytp + a2tp+1 + ■■■ , bytP+1 + b2tp+2 + ■■■)

with ai ^ 0, by ^ 0. It is easy to check that such a singularity is unibranched
of multiplicity p and resolves after a single blowup. Thus it is equivalent to yp +
xp+1 = 0. Consequently among all possible P' that give a unibranched singularity
of multiplicity p those that give a singularity equivalent to yp + xp+1 = 0 are open
and dense.

If we move P in a way that continues to give a unibranched singularity of mul-
tiplicity p but is otherwise as general as possible the family of projections gives a
family of plane curves with a special fiber equal to D but each general fiber will
have a singularity equivalent to yp + xp+1 = 0 and possibly other singularities.
By construction this family has a simultaneous normalization; thus by [Tl, 1.3.2]
the family is equigeneric. Since k = 26 + m and 6 is constant and every fiber
has a unibranched singularity of multiplicity p we see that a general fiber has k
at least as large as the k for D. In §4 we saw that in any equigeneric family k is
upper semicontinuous, so in the present family k. must be constant and the family is
equiclassical. By assumption the singularity of D is not equivalent to yp + xp+1 = 0
so the family is not equisingular.

Claim 3. If (D,p) and (E,q) are equivalent unibranched singularities of reduced
plane curves, then in the analytic topology there exists a flat equisingular family
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,c: X —► y with y nonsingular and connected and two points yy,y2 EY such that
n~1(yi) is analytically isomorphic to (D,p) and ir~1(y2) is analytically isomorphic
to (E,q).

This follows easily from the theory of Puiseaux expansions (cf. [T2, pp. 621-
622] for information on Puiseaux expansions). Equivalent singularities will have
the same Puiseaux exponents; if the singularities are not analytically isomorphic
the coefficients will be different. The desired family can be constructed by holo-
morphically varying the Puiseaux coefficients for one singularity into those for the
other. (This proof was suggested by the referee and Bernard Teissier.)

Claim 4. If (D,p) and (E, q) are equivalent unibranched singularities of reduced
plane curves and for (D, p) ES is a proper subvariety of EC then for (E, q) ES is
a proper subvariety of EC.

We already know that ES and EC are locally closed algebraic subsets of B so
we may work in the analytic topology.

From Claim 3 we know that there exists a flat equisingular family it: X —► Y
with y nonsingular and connected and two points yy,y2 EY such that 7r_1(yi) is
analytically isomorphic to (D,p) and 7r_1(y2) is analytically isomorphic to (E,q).
Let 7: [0,1] —> y be a continuous map with 7(0) = yy, 7(1) = y2. Call Xt the
fiber over n(t). For each t E [0,1] there is an open subset Ut C Y such that the
family it: 7r-1(L7t) —► Ut is pulled back from the versal deformation space for Xt.
By compactness we may cover 7QO, 1]) with a finite number of these Ut, call them
Utr Since the Uti overlap we see that the fact that ES is a proper subvariety of
EC for (D,p) forces this to be true all along 7([0,1]) including at (E,q).

Claim 5. For the singularity yp + xp+l = 0 ES is a proper subvariety of EC.
This is a direct consequence of (5.8) and (5.10).
These five claims prove the theorem.    □

(5.13) COROLLARY. For a reduced plane curve singularity a general point of
EC corresponds to a curve all of whose singularities are either ordinary nodes or
ordinary cusps.

PROOF. This is an immediate consequence of (3.5), (3.6), and (5.12).    □
Corollary (5.13) implies (1.1). To prove (1.2) we need a few more results.

(5.14) LEMMA. Let D be a reduced and irreducible curve in P2 of degree
d, geometric genus g and class c. Let H be its equiclassical ideal. Assume that
c > 2g — 1. Then H imposes independent conditions on curves of degree d — 1 in
P2.

PROOF. Using the formulas g = \(d - l)(d - 2) - 6 and c = d(d - 1) - 26 - m
calculate that c > 2g - 1 says m < 2d — 1. Let D' be the normalization of D.
From (5.4) and the discussion surrounding it we see that we have an isomorphism
H°(D,(fD(d-l)®H) a H°(D',cfD,(d-T)-A'-R'). The inequality m < 2d- 1
tells us that cfo'(d — 1) — A' — R' is nonspecial for degree reasons, so by Riemann-
Roch

dimH°(D',tfD,(d-l)-A'~ R') = d(d - 1) - 26 - m - (\(d - l)(d -2)-6) + l.

The natural restriction map H°(P2,cfp2(d-l)®H) ->■ H°(D,cfD(d-l)®H) is
clearly injective. It is also surjective since H0(P2,cfpi(d— 1)) —* H°(D,cfD(d- 1))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



464 STEVEN DIAZ AND JOE HARRIS

is surjective and H is defined as an ideal in the local rings of the singular points of
D and becomes an ideal on P2 by contraction of ideals. This gives

dimH°(P2,cfP2 (d - 1) ® H) = dimH°(D, efD(d - 1) ® H)
= d(d-l)-26-m-\(d- T)(d -2)+ 6 + 1.

Using (5.3) this simplifies to

dimH°(P2,cfP2(d-l))-degH.    □

(5.15) THEOREM [Zl, pp. 213-215].   Let

x c y x p2
I   *

Y

be a flat family of reduced curves in P2. Then there exists a Zariski open subset U
of Y such that for each equivalence class of singularities all fibers over closed points
of U have the same number of singularities of that equivalence type. In fact these
singularities are all equisingular specializations of singularities on the generic fiber
of the family. By (3.22) we see that the family ir~l(U) —► U is locally equisingular
in the etale topology.

(5.16) FACT (MONOTONICITY OF HILBERT FUNCTIONS). Let Z be a sub-
scheme of P2 of dimension 0 and degree n. Let m be a positive integer less than
n. If Z imposes at least m conditions on curves of degree d in P2, then Z imposes
at least m + 1 conditions on curves of degree d + 1 in P2.

PROOF. Well known, cf. [DGM].    □
(5.17) PROOF OF (1.2). Let W be the component of Z on which D lies. We

may assume that D is a nonsingular point of W. Let S be the set of all singular
points of D. By (4.19) and (5.15) we may assume that the tangent space to W at
D is contained in H°(D,cfD(d) ® I(S)). By (5.14) and (5.16)

dimW < dimH°(D,cfD(d) ® I(S))
< |(d + 2)(d+ 1) - 1 - degH(S) - min{l, (deg I(S) - degH(S))}.

Using (5.3) and the formulas g = \(d — T)(d - 2) - 6, c = d(d — 1) — 26 — m this
expression simplifies to

d + c-g + 1- min{l, (deg 7(5) - degH(S))}.

From (5.12) we see that if any of the singularities of D are not ordinary nodes or
ordinary cusps then dimly < d + c — g + 1. This contradicts (5.2).    □

6. Bounds for codimensions. In this section we study the relative position
of I between J and A. In particular we give ways of estimating dime (A/1) and
give lists of singularities for which the number is 0, 1, or 2. This allows us to prove
statement (1.4) of the introduction.

From the previous section we know J C I C A, dim ES = dime (I/J), and
dim EG = dime (A/ J). This implies the following fact:

(6.1) dime (A/1) = the codimension of ES in EG.
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Of course the same is true for ES' and EG'. One way to estimate the codimension
of ES in EG is to look for sequences of subschemes

(6.2) ES = X0 % Xx § ... C xk-y %Xk = EG

in which we can estimate the codimension of Xi in Xi+y. Such subschemes corre-
spond to deformations that are equigeneric but not equisingular.

Let us fix some notation to be used until (6.9). D = {f(x,y) = 0} will be a
reduced curve in A2 whose only singularity is at (0,0). A, I, and J will stand for
the conductor, equisingular, and Jacobian ideals of D at (0,0). When other plane
curves arise we will distinguish their ideals with subscripts, Ah, Ig, etc.

(6.3) LEMMA. If D has n analytic branches at (0,0), n > 2, then dime (A/1)
> n — 2 with equality only if all the branches are smooth with distinct tangents.

PROOF. Since we are allowed to take etale neighborhoods we may assume that
/ factors / = fy ■ ■ ■ /„. In fact after etale base change we may consistently number
the branches 1,... ,n over all of ES. If there are any branches tangent to each
other assume that two of them correspond to n — 1 and n.

Given a singularity with n branches at the origin with equation gy (x, y) ■ ■ ■
9n (x, y) =0 one may construct the following family

A C Atl)   t. x Axy
I

which we call a family of type i, 1 < i < n — 2. Choose i general nonzero vectors
in C2, (ai,6i),..., (an,bn). The equation for X is

gy(x + ayty, y + byty) ■ ■ ■ gt(x + aiU, y + biti)gi+1(x, y)--- gn(x, y) = 0.

We now define a sequence of subschemes as in (6.2). Xo = ES, X„_i = EG. For
1 <i <n — 2, Xj = the closure in B of Xf = {q E B: for each equivalence class of
singularities ir~1(q) has the same number of singularities of that equivalence type
as a general fiber of a family of type i with central fiber D with branches numbered
as we have numbered those of D}. Xf is contained in EG because of (5.11) and the
fact that we have not changed the contribution to the conductor of each branch,
nor the total intersection multiplicities between the branches. By (5.15) we know
that Xf contains a Zariski open dense subset of Xj. Since (3.5) says the etale
versal deformation remains versal in an open set around (0,..., 0) we see that for
i < n — 2 Xi has codimension at least 1 in Xi+y. If any of the branches of D are
singular or tangent to each other a general point in X„_2 will have singularities
other than nodes. Since (1.3) and the argument in the proof of (4.15) allow us to
conclude that a general point in EG has only nodes as singularities, if any branches
of D are singular or tangent to each other Xn-2 has codimension at least 1 in
X„_! = EG.    D

(6.4) LEMMA. Suppose that at (0,0) D has exactly two analytic branches, both
smooth, meeting with contact of order n.  Then dime (A/1) = n — 1.

PROOF. We may assume f(x,y) = y2 — x2n. Notice that

dime (A/1) = degree I — degree A.
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Clearly degree A = n - 1. From (5.6) one may calculate that I = J and has degree
2rc - 2.    □

(6.5) It is also useful to see a sequence of subschemes as in (6.2) for this sin-
gularity. Take X0 = ES = (0,... ,0), X„_i = EG, and for 1 < i < n - 2 X% =
the closure in B oi Xf = (qE B: the singularities of ir~x(q) are one singularity
consisting of two smooth branches meeting with contact of order n — i and i nodes}.

(6.6) LEMMA. Assume D has only one analytic branch at (0,0) and D has
multiplicity m at (0,0). Blow up (0,0).

(1) If D' (the proper transform of D) is smooth then dime (A/1) > 2m - 3.
(2) If D' is singular then dimc(A/I) > m.

PROOF. (1) D' has contact of order m with the exceptional divisor E. One may
deform D' to a curve D'2 meeting E once with contact of order m — 1 and once
transversely, then to D'3 meeting E once with contact of order m — 2 and twice
transversely. Continue in this way until D'm meets E transversely in m points. Let
Di be the image of D[ in A2. Di will have one singular point with i branches; for
i < m one branch will have a cusp of some sort and the others will be smooth,
and when i = m all branches will be smooth. D% is an equigeneric deformation of
D because on the blowup we have kept intersection numbers with the exceptional
divisor constant.

We now define a sequence of subschemes ES = Xy ^ X2 ^ • ■ ■ ̂  X2m_3 ^
X2m-2 = EG. For 2 < i < m Xt is the closure in B of all points of B representing
curves whose singularity is equivalent to the singularity of Di. For m + 1 < i <
2m — 2 Xi is the closure in B of all points of B corresponding to curves whose
singularities are one m — (i — m) fold point with smooth branches with distinct
tangent directions and (i — m)m — ̂ (i — m + l)(i — m) ordinary nodes. Argue as
in the proof of (6.3) to complete the proof.

(2) D' may be translated slightly to get a curve D'2 meeting the exceptional
divisor m times transversely and having the same singularity as D'. Let D2 be the
image of D'2 in A2. The singularities of D2 will be a cusp like the one of D' and an
m-fold point with m smooth branches meeting transversely. D2 is an equigeneric
deformation of D because in the blowup we have not changed the singularity of the
proper transform nor the intersection number with the exceptional divisor.

We now define our sequence ES = Xy ^ X2 ^ • • • ^ Xm § Xm+i = EG. For
2 < i < m, Xi is the closure in B of all points of B corresponding to curves whose
singularities consist of a cusp equivalent to the cusp of D2, an m — (i — 2) fold point
with smooth branches with distinct tangent directions and (i — 2)m— \(i-2)(i- 1)
ordinary nodes. Argue as in the proof of (6.3) to complete the proof.    □

(6.7) REMARKS. The technique of blowing up a singularity then moving the
proper transform can be found in [AO].

In practice in (6.6) (2) if one knows something about the cusp of D' one can
do better than the bound of m. Between Xm and Xm+i one can put subschemes
corresponding to deformations of the cusp of D' that are equigeneric but not equi-
singular.

For complicated singularities one can often combine the techniques used in (6.3),
(6.5), and (6.6) to give better bounds on dime (A/1) than any one of them alone
gives.
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Using what we have just proven in this section one can compile the following list
of all the analytic isomorphism classes of singularities with dime (A/1) = 0, 1, or
2.

(6.8)    0       smooth, (simple) node xy = 0.

1 (simple) cusp y2 + x3, tacnode y2 + x4, (ordinary) triple point
x3 + y3.

2 (ordinary) quadruple point y(x — y)(x — 2y)(x — ay), a E C —
{1,2} (we have a one parameter family of analytic isomorphism
classes of these), oscnode y2 + x6, ramphoid cusp y2 + x5, cusp
with extra smooth branch x(y2 + x3), tacnode with extra smooth
branch x(y2 + x4).

(6.9) LEMMA. Let D be a reduced irreducible curve of degree d in P2 and let
S be any subset (not necessarily proper) of its singularities. Then the ideal sheaf
A(S) imposes independent conditions on curves of degree d — 3 in P2.

PROOF. This is a well-known classical result, cf. [ACGH, pp. 57-60].    D
(6.10) PROOF OF (1.4). We may assume that D is a nonsingular point of W.

Let S be all singular points of D. By (4.19) and (5.15) we may assume that the
tangent space to W at D is contained in H°(D,cfD(d) ®I(S)). By (6.9) and (5.16)
we have

dimH°(D,cfD(d)®I(S))
< i(d + 2)(d+l) - 1 - degree A(S) - min{3, (degree I(S) - degree A(S))}
= dim V - min{3, (degree I(S) - degree A(S))}.

A look at the list (6.8) finishes the proof.    □
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