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Abstract
In the first half of this paper, we complement the theory on discrete polyma-

troids. More precisely, (i) we prove that a discrete polymatroid satisfying the strong
exchange property is, up to an affinity, of Veronese type; (ii) we classify all uniform
matroids which are level; (iii) we introduce the concept of ideals of fiber type and
show that all polymatroidal ideals are of fiber type. On the other hand, in the latter
half of this paper, we generalize the result proved by Stefan Blum that the defining
ideal of the Rees ring of a base sortable matroid possesses a quadratic Gr̈obner ba-
sis. For this purpose we introduce the concept of “ -exchange property” and show
that a Gr̈obner basis of the defining ideal of the Rees ring of an ideal can be de-
termined and that is of fiber type if satisfies the -exchange property. Ideals sat-
isfying the -exchange property include strongly stable ideals, polymatroid ideals of
base sortable discrete polymatroids, ideals of Segre-Veronese type and certain ideals
related to classical root systems.

Introduction

In the present paper we will continue our study on combinatorics and algebra of
discrete polymatroids developed in the previous paper [9].In the first half of this pa-
per, consisting of Sections 1–3, we complement [9]. In the latter half of this paper,
consisting of Sections 4 and 5, we try to generalize as far as possible the fact by
Stefan Blum [1] (and [2]) that the defining ideal of the Rees ring of the matroidal
ideal of a base sortable matroid possesses a quadratic Gröbner basis.

This paper will be organized as follows. First of all, in Section 1 we show that
the set of bases of a discrete polymatroid satisfying the strong exchange property is,
up to an affinity, of Veronese type (Theorem 1.1) . This characterization allows us to
give another interesting description for this kind of polymatroids. It turns out, see The-
orem 1.4, that these polymatroids are ‘locally’ nothing butuniform matroids. Second,
in Section 2 we determine in Theorem 2.1 all uniform matroidswhich are level. (Re-
call that a level ring is a graded Cohen-Macaulay -algebra such that all of the
generators of the canonical module of have the same degree.)This classification
partially completes DeNegri and Hibi [6], where all Gorenstein algebras of Veronese
type are classified.

During the preparation of this work the third author was partially supported by a grant of the
Alexander von Humboldt foundation.
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A highlight of this paper is Section 3, where we introduce theconcept of ideals
of fiber type and show that all polymatroidal ideals are of fiber type.

Let be a field and = [1 ] be an equigenerated graded ideal
in the polynomial ring . Then both the symmetric algebra ( ) aswell as the Rees
ring ( ) are bigraded -algebras with generators of degree (1 0) and (0 1), and the
canonical map : ( ) ( ) is a homomorphism of bigraded -algebras. The ideal

is called of linear type if is an isomorphism. We say is offiber typeif Ker( )
is generated by elements of degree (0 ), N. The terminology is explained as
follows: let m = ( 1 ) be the graded maximal ideal of . The ideal is of fiber
type if and only if the relations of the fiber ( )m ( ) ( ) m ( ), called the
fiber relations, together with the relations of the symmetric algebra generate all the
relations of ( ). Therefore, in a sense, an ideal of fiber type is the next ‘best’ to an
ideal of linear type. Note that if = (1 ), then the kernel of the fiber map is
isomorphic to the defining ideal of the -algebra [1 ].

An important class of ideals of fiber type are polymatroidal ideals, see Theo-
rem 3.3. They are generated by the set of monomials =(1)

1
( ) :

where is the set of bases of a discrete polymatroid. Note thatfor a polymatroidal
ideal the fiber ( )m ( ) is isomorphic to the base ring [ ] of the discrete poly-
matroid whose set of bases is . Thus the relations of the Rees algebra of a poly-
matroidal ideal consist of the relations of the symmetric algebra ( ) which arise
from the relations of the ideal (as an -module) as well as of the toric relations of
the base ring.

On other hand, the purpose of Sections 4 and 5 is, as we said, togeneralize [1,
Theorem 4.3.9] which guarantees that the defining ideal of the Rees ring of a base
sortable matroid possesses a quadratic Gröbner basis. Reading the proof of [1, The-
orem 4.3.9] as carefully as possible naturally enables us tointroduce the concept of
“ -exchange property” (Definition 4.1). We show in Section 5 that a Gr̈obner basis
of the ideal of relations of ( ) can be determined and that is offiber type if
satisfies the -exchange property. We present several classes of ideals satisfying the -
exchange property, namely strongly stable ideals, polymatroid ideals of base sortable
discrete polymatroids, ideals of Segre-Veronese type or ideals related to classical root
systems.

1. Polymatroids with strong exchange property

Fix an integer 0 and set [ ] = 1 2 . The canonical basis vec-
tors of R will be denoted by 1 . Let R+ denote the set of those vectors

= ( (1) ( )) R with each ( ) 0, andZ+ = R+ Z . For a vector
= ( (1) ( )) R+ and for a subset [ ], we set

( ) = ( )
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Thus in particular ( ) is the th component ( ) of . Themodulusof is

= ([ ]) =
=1

( )

The set of all Z+ of modulus will be denoted by ( ).
A discrete polymatroidon the ground set [ ] is a non-empty finite subset Z+

satisfying
(1) if and Z+ with , then ;
(2) if = ( 1 ) and = ( 1 ) with , then there is

[ ] with such that + .
A baseof is a vector such that for no . We denote the set of
bases by ( ). Every base of has the same modulus rank( ), therank of .

A set of bases of a polymatroid can be characterized by the following interesting
exchange property: a subset ( ) is the set of bases of a discrete polymatroid if
and only if for all such that ( ) ( ) for some , there exists [ ] with
( ) ( ) such that + .

Moreover, the symmetric exchange theorem [9, Theorem 4.1] guarantees that the
set of bases ( ) of a discrete polymatroid possesses thesymmetric exchange prop-
erty: for all ( ) such that ( ) ( ) for some , there exists [ ] with
( ) ( ) such that both + and + belong to ( ).

We say that a discrete polymatroid satisfies thestrong exchange property, if for
all ( ) with ( ) ( ) and ( ) ( ) for some and , one has that

+ ( ).
Examples of discrete polymatroids satisfying the strong exchange property are

polymatroids of Veronese type, that is, discrete polymatroids whose set of bases
( ) is given as follows: for = 1 there exist integers 1 such that ( )

belongs to if and only if ( ) for = 1 .
One aim of this section is to show discrete polymatroids satisfying the strong ex-

change property are essentially of Veronese type. To be precise, we say that two sets
R are isomorphic, if there exists an affinity :R R such that ( ) = .

The main result of this section will be the following

Theorem 1.1. Let be a discrete polymatroid with the strong exchange prop-
erty. Then ( ) is isomorphic to the bases of a polymatroid of Veronese type.

For the proof of the theorem we need the characterization of discrete polymatroids
in terms of rank functions. Let be a discrete polymatroid. The ground set rank func-
tion of is the function : 2[ ] Z+ defined by setting

( ) = max ( ) :
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for all = [ ] together with ( ) = 0.
This function isnondecreasing, i.e., if [ ], then ( ) ( ), and is

submodular, i.e.,

( ) + ( ) ( ) + ( )

for all [ ].
Conversely, given a nondecreasing and submodular function: 2[ ] Z+, then

the set Z+ satisfying

(1) ( ) ( ) for all 2[ ]

is a discrete polymatroid.
It follows from (1) that a discrete polymatroid is the set of integer points of an

integral convex polytope. In fact this polytope is the convex hull conv( ) of .
We say that = [ ] is -closed if any subset [ ] properly containing

satisfies ( ) ( ), and that = [ ] is -separableif there exist two
nonempty subsets 1 and 2 of with 1 2 = and 1 2 = such that

( ) = ( 1) + ( 2). A set = [ ] is -inseparableif is not -separable.
A theorem of Edmonds [7] says that the supporting hyperplanes of conv( ) are

the hyperplanes = R : = ( ) , where ranges over all -closed and
-inseparable subsets on [ ].

Proof of Theorem 1.1. Let [ ] be the ground set of and its rank. We denote
the rank function of by .

Suppose that for some with = 1, say for = 1 1 , we have =
( ) ([ ]). Then for any ( ) it follows that ( ) . Let :R R

be the translation with ( ) = ( ) for all R . Then obviously = ( ( ))
is the set of bases of a discrete polymatroid of rank on the ground set [ ] whose
rank function satisfies ([ ]) = ( ).

Since ( ) is affinely isomorphic to ( ) we may assume from the beginning
that

(2) ( ) = ([ ]) for all [ ] with = 1

Next we claim that there is no -closed and -inseparable set with 2 2.
This will imply our assertion, because then the only hyperplanes defining the facets of

, besides the hyperplanes = 0 and ([ ]) = , are hyperplanes of the form =
for certain . Such a discrete polymatroid is of Veronese type.

In order to prove the claim we may assume that = [ ] with 2 2. For
we set 1( ) = ( (1) ( )) and 2( ) = ( ( + 1) ( )).

We first show
(a) There are elements ( ) with ( ) = ( ) but1( ) = 1( ).
In fact by [9, Lemma 3.2], there exists for each = 1 an element such
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that

( ) = ( ) ( ) = ( ) and ([ ]) = ([ ])

The last equation says that ( ).
Suppose that 1( 1) = 1( 2) = = 1( ). Then ( ) = =1 ( ), a contra-

diction since is -inseparable.
Next we claim

(b) There are elements ( ) with ( ) = ( ) but2( ) = 2( ).
Again by [9, Lemma 3.2] there exists for each = + 1 an element

with

( ) = ( ) ([ ] ) = ([ ] ) and ([ ]) = ([ ])

The last equation implies that all ( ), while by assumption (2) and the second
equation it follows that ( ) = 0 for = + 1 . Suppose that2( +1) = =

2( ). Then ( ) = ([ ]), a contradiction since is -closed.
Now let = ( ) : ( ) = ( ) . We consider two cases.
CASE 1. 1( ) = 1( ) =⇒ 2( ) = 2( ) for all .
By (b) there exist with 2( ) = 2( ). Thus in this case 1( ) = 1( ),

too.
CASE 2. There exist with 1( ) = 1( ) and 2( ) = 2( ).
By (a) there exists with 1( ) = 1( )(= 1( )). Then either 2( ) = 2( )

or 2( ) = 2( ).
Hence our discussion shows that in both cases we can find such that

1( ) = 1( ) and 2( ) = 2( )

Since 1( ) = 1( ) there exists [ ] with ( ) ( ). Since it follows
that ([ + 1 ]) = ([ + 1 ]). Hence since 2( ) = 2( ) it follows that there exists

[ + 1 ] such that ( ) ( ). The strong exchange property implies that =
+ ( ). This is a contradiction since ( ) = ( ) + 1.

Let ( ). Then the set

[ ] = ( ) : min ( ) ( ) ( ) max ( ) ( ) for all

is called theinterval between and . The following characterization of discrete poly-
matroids satisfying the strong exchange property will be used later.

Lemma 1.2. Suppose that is a set of integer vectors inR with 0 and
([ ]) = . Then is the set of bases of a discrete polymatroid which satisfies the

strong exchange property if and only if = [ ].
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Proof. Suppose that = [ ], and let1 2 such that 1( ) 2( )
and 1( ) 2( ). Since 1 + [ 1 2] it follows that 1 + . So
satisfies the strong exchange property.

Conversely, suppose that is the set of bases of a discrete polymatroid which
satisfies the strong exchange property. We recall the definition of the distance between
bases and :

dis( ) =
1

2
=1

( ) ( )

In order to prove that [ ] we use induction on = dis( ). In the case = 1
we have 2 = =1 ( ) ( ) . Because ([ ]) = ([ ]) we must have two different
indices and such that ( ) = ( ) + 1 and ( ) = ( ) + 1 and ( ) = ( ) for all the
others [ ]. It follows then = + , [ ] = and hence [ ] .

Now let with dis( ) = 1. Without loss of generality we may
assume that there exists integers and with 1 such that ( ) ( )
for 1 and ( ) ( ) for + 1 , and ( ) = ( ) for . If we
denote by := + , then we claim that

[ ] =
1

+1

[ ]

This implies our assertion because dis( ) = 1.
It is clear that the union of the sets on the right side is contained in [ ]. Con-

versely, let [ ]. We may assume that = . Then, because dis( ) 1,
there exist and with 1 and + 1 such that ( ) ( ) 1 and

( ) ( ) 1. Since

( ) =

( ) for =

( ) 1 for =

( ) + 1 for =

we have ( ) ( ) and ( ) ( ), and hence we see that [ ]. This
completes the proof.

REMARK 1.3. An easy consequence of 1.2 is that the smallest set of bases of a
discrete polymatroid with strong exchange property which contains a finite set 1 :=

1 2 of integer vectors of the same modulus can be obtained as follows:
Let 2 := 1 [ ]. If 2 = 1, then the previous lemma implies that1 is
the set we want. If 2 = 1 then we take 3 :=

2
[ ]. Assuming that we

have defined and = 1, then we consider +1 := [ ]. If +1 =
then is the set we want, otherwise we continue this procedure. Because we have
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+1 and ( ) for any and ( ) is finite, then surely after a finite
number of steps we obtain the desired set of bases.

Let 1 . Recall that theuniform matroid on the ground set [ ]
is the discrete polymatroid on [ ] whose set of bases ( ) consists of those (0 1)-
vectors 1 + 2 + + with 1 1 2 .

Theorem 1.4. Let = ( (1) (2) ( )) be a given point inR Z with
([ ]) N, and such that 0, and let = [ ] : ( ) Z . Then, with respect to

inclusion, there exists a unique smallest discrete polymatroid of rank= ([ ])
with conv( ( )) satisfying the strong exchange property. Moreover the set of
bases ( ) of is isomorphic to the set of bases of the uniform matroid where

= ( ( ) ( ) ) and = .

Proof. First we fix some notation. Let

= Z : ( ) ( ) ( ) for each [ ] and ([ ]) = ([ ])

where is the biggest integer and is the smallest integer .
Then is the base of a discrete polymatroid which satisfies thestrong ex-

change property and conv( ). Indeed, if1 2 and [ ] such that

1( ) 2( ), 1( ) 2( ), it follows from the definition of that and

1( ) = ( ) , 1( ) = ( ) . So 1 + and therefore satisfies the strong
exchange property.

The subsetQ of R defined by

( ) ( ) ( ) for each [ ] and ([ ]) = ([ ])

is an integral convex polytope whose set of vertices is . It follows that Q =
conv( ), and since Q we conclude that conv( ), as desired.

In order to prove the uniqueness we show that for each discrete polymatroid of
rank with strong exchange property such that conv( ( )) we have ( ).
Let ( ) := 1 . Then, conv( ( )) implies that ( ) = =1 ( ), for
each with 1 , and for some non-negative real numbers1 such that

=1 = 1.
We claim that for each [ ] there exist some 1 such that ( )

( ) and ( ) ( ) . Indeed, if for all [ ] we would have ( ) ( )
for any 1 , then ( ) ( ) + 1, which is a contradiction. A similar
argument shows us that there exists 1 such that ( ) ( ) .

Consider now the affine translation :R R defined by

( ) =
=1

min
=1

( )
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Replacing by := ( ), ( ) by ( ( )) and by ( ) we may assume
by Theorem 1.1 that ( ) is of Veronese type defined by

( ) = : ( ) is an integer with 0 ( ) and =

where

= max
=1

( )

and

=
=1

min
=1

( )

Now let . Then ( ) = ( ) or ( ) = ( ) . Therefore 0 ( ) for
all , and hence ( ).

Therefore we have proved the existence and uniqueness of thesmallest discrete
polymatroid satisfying the strong exchange property and containing , and whose
set of bases ( ) = . Consider now the affine translation :R R defined by

( ) =
=1

( ( ) )

It is easy to see that ( ) = ( ) with and as in the theorem.

Corollary 1.5. Let ( ) be the set of bases of a discrete polymatroid. Then
the following conditions are equivalent:
(a) satisfies the strong exchange property,
(b) For all conv( ( )) we have .

Proof. (a)=⇒ (b) follows from Theorem 1.4. For the converse let1 2 ( ).
Without loss of generality we may assume that there exist integers and with 1

such that 1( ) 2( ) for 1 and 1( ) 2( ) for + 1 ,
and 1( ) = 2( ) for . Now if we consider to be a real number such that

max
1

+1

1
1

1( ) 2( )
1

1

2( ) 1( )
1

then := 1 + (1 ) 2 has the following properties:1( ) 1 ( ) 1( ) for
1 , 1( ) ( ) 1( ) + 1 for + 1 and ( ) = 1( ) for .
But belongs to the line segment between1 and 2 and conv( ( )), so that

conv( ( )). Therefore by our hypothesis we have . Now it is easyto see
that 1 + for all , such that 1 and + 1 . Hence the
conclusion.
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Corollary 1.6. Let P be a set of discrete polymatroids all of the same rank, sat-
isfying the strong exchange property. Then the following conditions are equivalent:
(a)

P
( ) = ,

(b)
P

conv( ( )) = .

Proof. (a)=⇒ (b) is trivial. For the converse, let
P

conv( ( )). Then,
by Theorem 1.4, ( ) ( ) for all P. Hence the conclusion.

Corollary 1.7. Let P be a set of discrete polymatroids all of the same rank, sat-
isfying the strong exchange property and the equivalent conditions of Corollary 1.6,
then

P

( ) =
P

and conv
P

( ) =
P

conv( ( ))

Proof. The first equality follows from the fact (Corollary 1.6) that
P

( ) =
. The inclusion conv

P
( )

P
conv( ( )) is trivial. Conversely, let

P
conv( ( )). Then by Theorem 1.4 we have ( ) ( ) for all P.

Therefore conv( ( )) conv
P

( ) .

The next examples show that all the hypotheses in Corollary 1.6 are needed.

EXAMPLES 1.8. (a) The intersection of discrete polymatroids is in general not a
discrete polymatroid, even if they have the same rank and theintersection of their set
of bases is non-empty. Consider the discrete polymatroids1 and 2, whose sets of
bases are:

( 1) = (1 0 1 0) (1 1 0 0) (0 1 0 1) (0 0 1 1)

( 2) = (1 0 1 0) (0 1 1 0) (0 1 0 1) (1 0 0 1)

Then ( 1) ( 2) = (1 0 1 0) (0 1 0 1) does not satisfy the exchange property,
so it is not the set of bases of a discrete polymatroid.
(b) The condition

P
( ) = is essential, even if all P satisfy the strong

exchange property. Let 1, 2, 3 be the discrete polymatroids, whose sets of bases
are:

( 1) = (2 0 2) (3 0 1) (2 1 1)

( 2) = (2 1 1) (1 1 2) (1 2 1)

( 3) = (0 2 2) (0 3 1) (1 2 1)
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Then 1, 2 and 3 satisfy the strong exchange property but

1 2 3

= (1 1 1) (1 1 0) (1 0 1) (0 1 1) (0 0 2) (1 0 0) (0 1 0) (0 0 1) (0 0 0)

is not a discrete polymatroid.

2. Level rings

Let be a field. Recall that a standard graded Cohen-Macaulay -algebra is
called a level ring, if all generators of the canonical module have the same de-
gree. For example all Veronese subrings of the polynomial ring are level. More gen-
erally if is level, then any Veronese subring( ) is level, too. This follows eas-
ily from the fact that for a standard graded Cohen-Macaulay -algebra one has

( ) = ( )id, see [3, Exercise 3.6.21 (c)]. Actually this formula even shows that
( ) is level for all greater than or equal to the highest degree ofa generator of .

The question arises which rings of Veronese type are level. At present we can give
a complete answer only in the case of squarefree Veronese rings, that is, the base rings
of uniform matroids. For the proof we use the characterization of the canonical module
of a normal semigroup ring, given by Danilov and Stanley (cf.[3, Theorem 6.3.5]):

Let be a normal semigroup. Then the ideal generated by the monomials
with relint( ) is the canonical module of [ ].

Now let [ ] be the base ring of the discrete polymatroid of rankon the
ground set [ ] with rank function . In [9] it is shown that [ ] is anormal semi-
group ring. Let be the semigroup generated by , and let = relint( ). Then a
vector belongs to if and only if ( ) 0 for [ ], and for some integer

we have = and ( ) ( ) for all [ ]. For each integer we set
= ( ), and call the elements of the inner points of .
Let be the smallest integer such that = . It follows from the theorem of

Danilov and Stanley that [ ] is level, if and only if for all andall
there exists such that ( ) .

In the particular case, that the rank function depends only on the cardinality of
, we call the polymatroid uniform. Let = ( (1) ( )) be a vector, and a

permutation of the elements in [ ]. Then we set ( ) = ( ( (1)) ( ( ))). It is
clear that if is uniform, then if and only if ( ) , and if and
only if ( ) . In the orbit of each under the action of the symmetric group is
a uniquedescendingvector, that is, a vector with (1) (2) ( ). Thus
for a uniform polymatroid it suffices to check the level condition only for descending
vectors.

Theorem 2.1. Let be a field and = [ ( )] the base ring of the uniform
matroid . Then is level if and only if = 1, = 1, or 2 and = 2 1,
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= 2 or = 2 + 1.

Proof. If = 1 or = 1, then is a polynomial ring. Also note that
[ ( )] = [ ( )]. Thus we may assume from now on that 2 2 .

We set = ( ) and denote by the smallest positive integer such that
has inner points. Note that = ( (1) ( )) is an inner point of if and only if

= and 0 ( ) for [ ]. We consider two cases.
CASE 1. .
In this case we have = and has only one inner point, namely (1 1).

If , then ( + 1 1 1) is an inner point of ( + 1) and ( + 1 1 1)
(1 1) = ( 0 0) , because 2. Therefore, for , is not level.

If , then ( + 1) has an inner point with (1) = . Indeed, + ( 1)
( + 1) and ( + 1).

If 3, we have ( (2) ( )) (1 1) = ( 1 (2) 1 ( ) 1)
and hence is not a level ring.

If = 2, then = 2 . We will show that is level in this case. For 3 let
be an inner point which is a descending vector. Then (1 1) ( 2) ,

and therefore is level.
CASE 2. does not divide .
Now we have = and = with 0 . Note also that 3.
If , then has the inner point0 = ( +1 1 1). Note that for any other

inner point we have (1) + 1. The vector = ( + 1 + 1 1 1) is an
inner point of ( + 1) and 0 = ( 0 0).

If 2 or 2, then is not level.
Suppose now that = 1 and = 2. Then = 2 1 and (2 1 1) is the only

descending vector which is an inner point of . If 4, then ( + 1) contains the
inner point (4 1 1) and hence is not level. If = 3, then = 5 and we have a
level ring as we shall see below.

If = , then = 2 with 0 .
If + 1 , then ( + 1 1 1) is an inner point with the largest first

coordinate, ( + 1) has the inner point ( + 2 1 1), and ( + 2 1 1)
( + 1 1 1) = ( 1 + 1 0 0) . Therefore is not level.

If +1 = and = 2, we have = 3 and then is the polynomial ring. If 2,
then contains ( 1 2 1 1), ( +1) has the inner point ( 2 1 1) and
( 2 1 1) ( 1 2 1 1) = (1 2 1 0 0). Therefore if 4, then

is not level. If = 3, then = 7 and is level as we shall see below.
Assume now that . Let be the largest integer such that ( 1)+( ) .

Then = ( 2) and .
If 1, then has an inner point such that (1) = = ( ) = 1,
1 ( + 1) ( ) 1 and ( 1) + ( + 1) + + ( ) = . Since

+ ( ( + 1) + 2) + ( + 2) + + ( ) = + + 2, it follows that for the case + 2
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the set ( +1) has an inner point such that (1) = = ( ) = , ( +1) = ( +1)+2
and ( ) ( ) for + 2. Therefore is not level.

If 4, then 2 and + 2 , and is not level.
So it remains to study the case = 3. Then = , and is not level if + 2.

If is even, then and have the same parity and therefore + 2 . If is odd,
then except in the case = 1 we have + 2 . If = 1, then = 2 + 1
and we will show that is level. We may assume that 2: This will include the
cases = 2, = 5 and = 3, = 7. The descending inner point of 3 satisfies
(1) = = ( 1) = 2 and ( ) = = ( ) = 1. Let be an inner point in

with 4 and 1 (1) ( ) 1. We want to show that ( 3) .
First we shall see that . Indeed, if we suppose that ( 1) = 1, then
( 2)( 1) + + 3 , a contradiction. So ( 1) 2, and hence we are done.
Now we want to prove that ( ) ( ) 3 for all [ ]. This is obvious for

1. Assume now that ( ) 1 = 2. This implies that (1) = = ( ) = 1,
and hence ( 1) + + 1 , which is a contradiction. Therefore is a level
ring.

If = 0, then we have 2. Let be the maximal integer such that there
exists a descending inner point in with (1) = . Then let be the maximal
number for which there exists a descending inner point in with (1) = (2) =

= ( ) = . Hence we have = ( 1) and . Also = 0 implies that
2. Then in the same manner as in the case 1 we show that there exists

an inner point in ( + 1) such that (1) = = ( ) = + 1, ( + 1) = ( + 1) + 2
and ( ) ( ) for all + 2. Because + 2 + 2 , it follows as in the
case 1 that is not level.

3. Ideals of fiber type

Let be a field, = [1 ] the polynomial ring, an equigener-
ated graded ideal, that is, a graded ideal whose generators1 are all of same
degree. Then the Rees ring

( ) =
0

= [ 1 ] [ ]

is naturally bigraded with deg( ) = (1 0) for = 1 and deg( ) = (0 1)for
= 1 .

Let = [ 1 ] be the polynomial ring over in the variables1 .
We define a bigrading on by setting deg( ) = (1 0) for = 1 , and deg() =
(0 1) for = 1 . Then there is a natural surjective homomorphismof bigraded

-algebras : ( ) with ( ) = for = 1 and ( ) = for =
1 .

If is a bihomogeneous element of bidegree ( ). Then we call the-degree,
and the -degree of .
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Let = ( ) =1
=1

be the relation matrix of . Then for = 1 , the bihomo-

geneous polynomials = =1 belong to Ker( ), and

with = ( 1 )

is isomorphic to the symmetric algebra ( ) of . The generatorsof are all linear
in the variables .

Let m = ( 1 ) be the graded maximal ideal of . The -algebra
( ) m ( ) is called the fiber ring of .

Note that the standard graded subalgebra ( )(0 ) = 0 ( )(0 ) of ( ) is iso-
morphic to [ 1 ] , and that the composition of the natural -algebra
homomorphisms ( )(0 ) ( ) ( ) m ( ) is an isomorphism. Therefore the
fiber ring of is isomorphic to [1 ].

The homomorphism : ( ) induces a surjective -algebra homomorphism

: [ 1 ] = m ( ) m ( ) = [ 1 ]

The elements in Ker( ) are called thefiber relations. We note that

= (0 ) : (0 ) = [ 1 ] ( )(0 ) = [ 1 ]

Therefore Ker( ) Ker( ). We set = [1 ] and = Ker( ). Then
[ 1 ] = .

The natural map : ( ) ( ) is a surjective homomorphism of bigraded
-algebras. Recall that is called oflinear type, if is an isomorphism, that is, if

Ker( ) = . The next best situation is given by

DEFINITION 3.1. The ideal is called offiber type, if Ker( ) = ( ).

Note that is of fiber type if and only if Ker( ) is generated by elements of
-degree 0.

We begin with an example which is due to Villareal ([17, Theorem 8.2.1]). Let
be monomials. We denote by [ ] the least common multiple of and.

Let 1 . If = ( 1 ) with 1 1 2 we set
= 1 2 .

Theorem 3.2 (Villareal). Suppose = ( 1 ) is an equigenerated mono-
mial ideal satisfying:
( ) for all non-decreasing sequences= ( 1 ) and = ( 1 ) with
[ ] for = 1 for which = , there exist integers and such that

( ) divides [ ].
Then is of fiber type.
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Moreover, condition ( ) is satisfied if is generated by quadratic monomials.

Here is another class of monomial ideals of fiber type.

Theorem 3.3. Let be a polymatroidal ideal. Then is of fiber type.

Proof. There exists a discrete polymatroid with set of basessuch that is
generated by the monomials with . We denote the variable in which is
mapped onto ( ) by .

Since is a monomial ideal, the Rees algebra ( ) is a toric ring,and hence
Ker( ) is generated by bihomogeneous binomials

= 1 2 1 2(3)

such that the first and second term in the binomial have no factor in common.
We show that can be reduced modulo ( ) to a binomial which is bihomo-

geneous of degree (0 ), that is, contains no factors .
We have deg( ) 2. If deg( ) = 2, then there is nothing to prove. Suppose now

that deg( ) 2. We may assume max = 0 for some , because otherwisethere
is nothing to show. Let = max : max = 0 . Then 2, since = . We
may assume that 0 and = 0.

Let = 1+ 2+ + and = 1+ 2+ + . Then ( ) ( ) and ( ) = ( ) for
. Since and belong to the set of bases of the discrete polymatroid , there

exists such that + is again a base of . That is, we find1

such that

1 1 Ker( )(4)

Modulo this relation can be rewritten as

1 1 2

with = ( ) .
We will show that can be reduced to zero modulo relations of type (4). Note

that = 1. If 0, we use a similar reduction, so that after a finitenumber of
steps we may assume that satisfies max : max = 0 .

If min = 0 for all , then by induction on we may assume that
can be reduced to zero modulo relations of type (4).

Suppose for some we have 0 and 0 (which after these re-
ductions may of course happen). Then = with = ( )1 2

( ) 1 2 . Since ( ) is a domain, and since Ker( ) we conclude that
Ker( ). Therefore by induction on the degree we see that can bereduced to

zero modulo relations of type (4).
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Thus it remains to show that the relations of type (4) can be reduced to zero mod-
ulo ( ). In other words we may assume that

= 1 2 1 2

and that the two terms in have no common factor. We denote by dis( ) =

=1 dis( ) and show by induction on deg( ) and dis( ) that can be reduced
to zero modulo ( ).

Since + 1 + 2 + + = + 1 + 2 + + , there exists such that
( ) ( ), and hence by the exchange property there exists an index such that
( ) ( ) and such that = + . Thus modulo the

relation can be rewritten as

= 1 1 2

If = , then = with , and we are done. If = for some , then =
with a relation of type (4) and deg( ) deg( ), and we are done by induction

on deg( ). Otherwise the new has no common factor. However since dis( )
dis( ) it follows that dis( ) has dropped, and again inductionconcludes the proof.

In the next proposition we want to describe a condition whichimplies that an
ideal is of fiber type.

Proposition 3.4. Let be an equigenerated ideal. Assume that for some
m

(1) is of linear type;
(2) (0 : ( ) ) m ( ) = 0.
Then is of fiber type, and Ker( ) = (0 : ( ) ) = (0 : ( ) m ( )). In other words,

= : m .

Proof. We first show that Ker( ) = (0 :( ) ). Let (0 : ( ) ), then = 0,
and hence ( ) = ( ) = 0. Since ( ) is a domain, it follows that ( ) = 0,
and hence Ker( ). Conversely, suppose that Ker( ). Since is oflinear
type it follows that Ker( ) = 0. Therefore = 0 for some integer .If = 1, then

(0 : ( ) ), as desired. Otherwise, 1 and (1 ) = 0, so that 1 (0 : ( )

) m ( ). Since this intersection is 0, by assumption, it follows that 1 = 0.
Backwards induction yields that (0 :( ) ).

Finally, since Ker( ) = (0 :( ) ) and since (0 :( ) ) m ( ) = 0, we see that
Ker( ) contains no elements of positive -degree. Therefore is of fiber type.

Let be the finitely generated [1 ]-module ( )(1 ). Then is gen-
erated by 1 , and (0 : ( ) m ( ))(0 ) = Ann ( ). Under the assumptions of
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Proposition 3.4 we have

Ker( ) = (0 : ( ) m ( ))

Since Ker( )(0 ) = , we conclude that

= Ann ( )(5)

Let be the matrix of linear relations of = (1 ). If has lin-
ear relations, then is an -matrix whose coefficients are linear forms in =

[ 1 ]. There is a unique -matrix whose coefficients are linear forms in
= [ 1 ] such that

=

Here is the transpose of (1 ) and the transpose of (1 ). This ma-
trix is the relation matrix of the -module .

Note that the annihilator of equals the radical of the ideal () of -minors of
, where ( ) = 0 if . Therefore, since is a prime ideal, it followsfrom (5).

Corollary 3.5. Let be an equigenerated ideal withKer( ) = (0 : ( ) m ( )).
Then

= ( )

In particular, the degree of the fiber relations is bounded by.

Quite generally one has (0 :( ) ) Ker( ). Hence if Ker( ) = (0 :( ) m ( )),
then (0 : ( ) ) = (0 : ( ) m ( )) = Ker( ) for all . This case seems to be rather
rare. On the other hand, since =1(0 : ( ) ) Ker( ), it is more likely that in some
cases =1(0 : ( ) ) = Ker( ).

Conjecture 3.6. Let be a polymatroidal ideal. Then

Ker( ) =
=1

(0 : ( ) )

Equivalently, is the ideal generated by : for some .

REMARK 3.7. The conjecture is true if the fiber ideal is generated by symmet-
ric exchange relations. Indeed, let = + + be such a relation. Then

= ( + ) + + ( + )

is an element of .
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4. l-exchange property

In this section we introduce the -exchange property for setsof integer vectors of
modulus , and give classes of such sets having this property.We will then see in
the next section that the monomial ideals corresponding to sets with the -exchange
property are of fiber type.

Let ( ) Z+ denote the set of vectors Z+ of modulus . Let be a field
and = [ 1 ] the polynomial ring in variables over . Given a nonempty
subset ( ), we write [ ] for the -subalgebra of generated by those mono-
mials x = =1

( ) with = ( (1) ( )) .
Let = [ ] denote the polynomial ring over with the standard grading,

i.e., each deg = 1. Thetoric ideal of [ ] is the ideal [ ] which is the
kernel of the surjective homomorphism : [ ] defined by setting( ) = x
for all . If a = ( ) is a vector with each 0 Z, then we writeya for
the monomial belonging to .

Let be a monomial order on and in ([ ] ) the initial ideal of [ ] with re-
spect to . Recall that astandard monomialof [ ] with respect to is a monomial
ya with ya in ( [ ] ).

DEFINITION 4.1. We say that a nonempty subset ( ) satisfies the -exchange
property with respect to a monomial order on if possesses the following prop-
erty: If =1 and =1 are standard monomials of [ ] of degree with re-
spect to such that
(i) =1 ( ) = =1 ( ) for = 1 2 1 (with 1);

(ii) =1 ( ) =1 ( ),
then there exist 1 and with + .

One of the most fundamental examples is

EXAMPLE 4.2. A nonempty subset ( ) is called strongly stableif
and ( ) 0, then + for all . A strongly stable subset ( )

satisfies the -exchange property with respect to any monomial order on . In fact,
if =1 ( ) = =1 ( ) for = 1 2 1 and =1 ( ) =1 ( ), then
there is 1 and such that ( ) 0. Hence + .

A class of finite sets ( ) satisfying the -exchange property naturally arises
from the theory of discrete polymatroids.

Let ( ). Let , and writex x = 1 2 2 with 1 2

2 . Set x = =1 2 1 and x = =1 2 , and we define the map

sort : ( ) ( ) ( ) ( )
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We call ( ) sortable if Im(sort) . It is known ([16, Theorem 14.2],
[5]) that if ( ) is sortable, then the toric ideal [ ] possesses a Gröbner basis
consisting of the sorting relations with and ( ) = sort( )
with respect to the “sorting order” sort. It is shown in [9] that the set of bases of a
discrete polymatroid with the strong exchange property is sortable.

Theorem 4.3. If is sortable and is the set of bases of a discrete polymatroid,
then satisfies the -exchange property with respect tosort.

Proof. Let =1 and =1 are standard monomials of [ ] of degree
with respect to sort and suppose that sort( ) = ( ) and sort( ) =

( ) for all 1 . If =1 ( ) = =1 ( ) for = 1 2 1,
then ( ) = ( ) for all 1 and for all 1 . If, in addition,

=1 ( ) =1 ( ), then there is 1 such that ( ) ( ). Since
( ) = ( ) for all 1 , the symmetric exchange property of guarantees that

there is with + , as desired.

Another natural class of finite sets ( ) satisfying the -exchange property
comes from algebras of Segre-Veronese type ([12]).

Fix nonnegative integers 1 and0 1 with 0 = 0 1

1 = . Let 1 1 and 1 be sets of nonnegative
integers. Write

= =1 =1 =1

for the subset of ( ) consisting of all vectors = ( (1) ( )) ( ) such that
(i) ( ) for each 1 ;
(ii) = 1+1 ( ) for each 1 .

Theorem 4.4. If = ( =1 =1 =1) is nonempty, then ( ) is
sortable and satisfies the -exchange property with respect to sort.

Proof. In [12] it is noticed that is sortable. Thus, except for the last sentence
with using the symmetric exchange property, the proof of Theorem 4.3 is valid in the
present situation. What we must prove is that, for and belonging to with ( ) =
( ) for all 1 and with ( ) ( ), there is such that +
.

Let 1 . Since ( ) , if and if there is with
( ) 0, then + .
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Let either (i) = or (ii) 1 with ( + 1) = = ( ) = 0. Since

= 1+1

( ) =
= 1+1

( )
= 1+1

( )
= 1+1

( )

there is with

= 1+1

( )
= 1+1

( )

If 1 with ( ) 0, then + , as required.

We now turn to the discussion of a class of finite sets ( ) satisfying the
-exchange property related with classical root systems.

Let 3. Let A(+)
1 denote the set of positive roots of the root systemA 1, i.e.,

A(+)
1 = : 1 . Set = 1 + + , = + ( ) with

1 , and

(A 1) = : 1 ( )

Using the notation instead of and instead of , we writerev for the re-
verse lexicographic order rev on the polynomial ring = [ 1 ] in 2 +1
variables over induced by the ordering of the variables

1 1 1 1 3 1 2 2 2 3

2 2 1 1

It is known ([8], [13]) that the reduced Gröbner basis of [ ] with respect to rev

consists of the binomials with 1 and of
with 1 .

Since sort((2 0 1 1) (1 1 2 0)) = ((2 0 2 0) (1 1 1 1)) and (2 0 2 0)
(A3), it follows that (A 1) is not sortable for 4.

It follows from [14, Theorem 2.1] that

Lemma 4.5. Let be a subset of (A 1) with and with the property

( ) if 1 and if then

and fix a monomial order on = [ ] satisfying the conditions

if 1 and if then ;( )

if 1 and if then( )
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Then the reduced Gröbner basis of the toric ideal [ ] with respect to consists of
all binomials [ ] with 1 and of all binomials

[ ] with 1 .

Theorem 4.6. Let be a subset of (A 1) with and with the prop-
erty ( ) and fix a monomial order on = [ ] satisfying the conditions
( ) and ( ). Then ( ) satisfies the -exchange property with respect to.

Proof. Let 1 1 and
1 1

be standard monomials of the

toric ideal [ ] of degree + (= + ) with respect to . Let = + =1( +
( )) and = + =1( + ( )), and suppose that ( ) = ( ) for

= 1 2 1 (with 1) and ( ) ( ).
(i) If for some 1 and if 1 for all 1 1 , then there
is 1 with = . If = and, say, , then there is 1 2

with 2 = . Since , in case of 2 , the monomial 1 1

cannot be a standard monomial. Hence2 = , and the variable appears in both

1 1 and
1 1

. Thus by using induction on + the desired
result arises. Let for all 1 .
(ii) If , then ( + ( )) + . Let for all 1 .
(iii) If = , then ( + ( )) + +1 . Let = for all 1 . Thus
by (i) for all 1 .
(iv) Now, since ( ) ( ) and since for all 1 , there is 1
with = . If 0, then + = . Let = 0.

Now, by (ii), (iii) and (iv), one has (1) + + ( ) = ( + 1) = ( + 1)( + ).
However, (1)+ + ( ) ( + )+ (1)+ + ( ). This contradicts ( ) = ( )
for = 1 2 1 and ( ) ( ).

Corollary 4.7. With keeping the notation as above, (A 1) ( ) satisfies the
-exchange property with respect torev.

5. Rees algebras

Let, as before, be a nonempty subset of( ) and = [ 1 ] the poly-
nomial ring in variables over . Write for the monomial ideal of generated by
those monomialsx = =1

( ) with = ( (1) ( )) .
Let = [ 1 ] be the polynomial ring over with the stan-

dard grading, i.e., each deg = 1 and each deg = 1. Ifa = ( 1 ) and
b = ( ) are vectors with each 0 Z, then we writexayb for the mono-
mial ( 1

1 ) belonging to .
The toric ideal of the Rees algebra ( ) is the ideal( ) which is the

kernel of the surjective homomorphism : ( ) defined by setting( ) =
for all 1 and ( ) = for all .
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Let ( ) be an arbitrary monomial order on = [y], and lex the lexicographic
order on induced by 1 . We introduce the new monomial order( )

lex on
as follows: For monomialsxayb and xa yb belonging to , one hasxayb ( )

lex xa yb

if and only if either (i) xa
lex xa or (ii) xa = xa and yb ( ) yb .

We are now in the position to state the main result of this section.

Theorem 5.1. Let be a nonempty subset of( ) and ( ) a monomial order
on = [y]. Let G ( ) ( [ ] ) denote the reduced Gröbner basis of the toric ideal

[ ] of [ ] with respect to ( ). Suppose that satisfies the -exchange prop-
erty with respect to ( ). Let lex denote the lexicographic order on induced by

1 . Then the reduced Gröbner basis of the toric ideal ( ) with respect
to ( )

lex consists of all binomials belonging toG ( ) ( [ ] ) together with

(6)

where with + = + and where is the largest integer for which+
. In particular, is of fiber type.

Proof. Let G denote the finite set which consists of all binomials belonging to
G ( ) ( [ ] ) and all binomials of type (6). Our goal is to show thatG is a Gr̈obner
basis of ( ) with respect to ( )

lex. (Once we know thatG is a Gr̈obner basis of ( )

with respect to ( )
lex, an easy computation says thatG is the reduced Gröbner basis of

( ) with respect to ( )
lex.)

Let be an irreducible binomial belonging to ( ). If in ( )
lex

( ) , then

( ) = [ ] and in ( )
lex

( ) is divided by the initial monomial of a bi-

nomial belonging toG ( ) ( [ ] ). Let in ( )
lex

( ) and write = xa
=1

xa
=1 , where is the biggest variable appearing in and where .

We assume that =1 is a standard monomial of [ ] with respect to ( ). Our
work is to show that =1 is divided by the initial monomial of a binomial of
type (6).

Now, replacing =1 with its standard monomial of [ ] with respect to ( )

enables us to assume that both =1 and =1 are standard monomials of

[ ] with respect to ( ).
Since none of the variables with appears in , it follows that,for each

1 , the power of the variable appearing in the monomial =1

is equal to the power of the variable appearing in =1 . In other words,

=1 ( ) = =1 ( ) for = 1 2 1. Since the variable cannot appear

in xa , one has =1 ( ) =1 ( ).
The -exchange property of with respect to( ) guarantees the existence of 1

and such that = + . Thus ( ) and
its initial monomial divides =1 . Consequently, =1 is divided by the
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initial monomial of a binomial of type (6), as desired.
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