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Abstract

In the first half of this paper, we complement the theory on rdigc polyma-
troids. More precisely, (i) we prove that a discrete polymadtigatisfying the strong
exchange property is, up to an affinity, of Veronese typé;we classify all uniform
matroids which are level; (iii) we introduce the concept ofaldeof fiber type and
show that all polymatroidal ideals are of fiber type. On theeothand, in the latter
half of this paper, we generalize the result proved by StefamBhat the defining
ideal of the Rees ring of a base sortable matroid possessaadaatic Gobner ba-
sis. For this purpose we introduce the concept of “ -exchangeepty” and show
that a Gbbner basis of the defining ideal of the Rees ring of an idealn b de-
termined and that is of fiber type if satisfies the -exchangpenty. Ideals sat-
isfying the ! -exchange property include strongly stableaisiepolymatroid ideals of
base sortable discrete polymatroids, ideals of Segrerné¢sm type and certain ideals
related to classical root systems.

Introduction

In the present paper we will continue our study on combiregoand algebra of
discrete polymatroids developed in the previous paperIf®the first half of this pa-
per, consisting of Sections 1-3, we complement [9]. In theedahalf of this paper,
consisting of Sections 4 and 5, we try to generalize as far assilple the fact by
Stefan Blum [1] (and [2]) that the defining ideal of the Reeasgriof the matroidal
ideal of a base sortable matroid possesses a quadratien@r basis.

This paper will be organized as follows. First of all, in Seot1 we show that
the set of bases of a discrete polymatroid satisfying thengtrexchange property is,
up to an affinity, of Veronese type (Theorem 1.1) . This ch@rézation allows us to
give another interesting description for this kind of pobtnoids. It turns out, see The-
orem 1.4, that these polymatroids are ‘locally’ nothing bmiform matroids. Second,
in Section 2 we determine in Theorem 2.1 all uniform matroidgch are level. (Re-
call that a level ring is a graded Cohen-Macaulky -algeRra h ghat all of the
generators of the canonical module  Bf have the same dedrkis.)classification
partially completes DeNegri and Hibi [6], where all Goreazistalgebras of Veronese
type are classified.

During the preparation of this work the third author was ipdyt supported by a grant of the
Alexander von Humboldt foundation.
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A highlight of this paper is Section 3, where we introduce tomcept of ideals
of fiber type and show that all polymatroidal ideals are of rfibype.

Let K be a field andl ¢ § =K Ai,...,x,] be an equigenerated graded ideal
in the polynomial ringS . Then both the symmetric algelstd ( )wadl as the Rees
ring R(I) are bigradedk -algebras with generators of degree)(anl (Q 1), and the
canonical mapy S [ ¥ R K ) is a homomorphism of bigrad€d -algebrag ideal
I is called oflinear typeif i is an isomorphism. We say is diber typeif Ker(y)
is generated by elements of degree«0 a)ec N. The terminology is explained as
follows: let m = (x4, ..., x,,) be the graded maximal ideal ¢f . The idgal is of fiber
type if and only if the relations of the fibes I (/;nS(I) — R(I)/mR(I), called the
fiber relations together with the relations of the symmetric algebra gateenll the
relations of R ( ). Therefore, in a sense, an ideal of fiber typéhe next ‘best’ to an
ideal of linear type. Note that if =f,..., f»), then the kernel of the fiber map is
isomorphic to the defining ideal  of thE -algebka f1,[..., fil-

An important class of ideals of fiber type are polymatroidéé¢dals, see Theo-
rem 3.3. They are generated by the set of monomjals D)y € B}
where B is the set of bases of a discrete polymatroid. Note fhrah polymatroidal
ideal I the fiberR [ JmR(I) is isomorphic to the base ring B[ ] of the discrete poly-
matroid whose set of bases # . Thus the relations of the Rigebra of a poly-
matroidal ideall consist of the relations of the symmetrigedta S ( ) which arise
from the relations of the ideal (as & -module) as well as efttiric relations of
the base ring.

On other hand, the purpose of Sections 4 and 5 is, as we sagknteralize [1,
Theorem 4.3.9] which guarantees that the defining ideal ef Rees ring of a base
sortable matroid possesses a quadratiob@er basis. Reading the proof of [1, The-
orem 4.3.9] as carefully as possible naturally enables umttoduce the concept of
“l-exchange property” (Definition 4.1). We show in Section Hatt a Gbbner basis
of the ideal of relations ofR I( ) can be determined and that idilwdr type if I
satisfies thd -exchange property. We present several sladsedeals satisfying thé -
exchange property, namely strongly stable ideals, polsoithtideals of base sortable
discrete polymatroids, ideals of Segre-Veronese type ealidrelated to classical root
systems.

1. Polymatroids with strong exchange property

Fix an integern > 0 and setn[ ] = ,1,2..,n} . The canonical basis vec-

tors of R” will be denoted byes,...,e,. Let R? denote the set of those vectors
u = w(@),...,u@)) € R* with eachu ()> 0, andzZ} = R} N Z". For a vector
u=w(@),...,u()) e R} and for a subsed C n[ ], we set

u(A) = " u(i).

i€eA
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Thus in particularu {{} ) is the th component; () of . Theodulusof u is

n

lul = u(n]) = > u(i).

i=1

The set of allu € Z of modulusd will be denoted by @.

A discrete polymatroicbn the ground sets] ] is a non-empty finite subgett Z%
satisfying
(1) if ue Pandv e Z! with v <u, thenve P;

) if u=(u,...,u,) € Pandv = @y,...,v,) € P with |u| < |v|, then there is

i €[n] with u; < v; such thatu +; € P .

A baseof P is a vectoru € P such that <v for no € P . We denote the set of
bases byB P ). Every base ¢f has the same modulus Pank( Yattieof P.

A set of bases of a polymatroid can be characterized by tHewfilg interesting
exchange property: a subsBtcC V@ is the set of bases of a discrete polymatroid if
and only if for allu, v € B such that: i( > v i( ) for some , there exists n [ ] hvit
u(j) < v(j) such thatu —¢; +; € B .

Moreover, the symmetric exchange theorem [9, Theorem 4.afagees that the
set of bases K ) of a discrete polymatrdtd  possessesytmnetric exchange prop-
erty. for all u,v € B(P) such thatu { )> v { ) for someé , there exisjse n [ ] with
u(j) < v(j) such that bothu —e; £; and —¢; & Dbelong ® P( ).

We say that a discrete polymatroid satisfies gteng exchange propertyf for
all u,v € B(P) with u(i) > v(i) andu(j) < v(j) for somei and , one has that
u—eg te;e B(P).

Examples of discrete polymatroids satisfying the strongherge property are
polymatroids of Veronese typ#hat is, discrete polymatroids whose set of baBes
V@ is given as follows: fori =1...,n there exist integars> 1 such that V@
belongs toB if and only ifu i{ ) a; fori =1..,n .

One aim of this section is to show discrete polymatroidssiatig the strong ex-
change property are essentially of Veronese type. To besgiewe say that two sets
A, B € R" areisomorphig if there exists an affinityp R" — R” such thaty A ) =B .

The main result of this section will be the following

Theorem 1.1. Let P be a discrete polymatroid with the strong exchange prop-
erty. Then B(P) is isomorphic to the bases of a polymatroid of Veronese.type

For the proof of the theorem we need the characterizatioriszirete polymatroids

in terms of rank functions. LeP  be a discrete polymatroide ground set rank func-
tion of P is the functionp : 21 — Z, defined by setting

p(A)=maXxv@A):v e P}
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for all @ # A C [n] together withp ¢ ) = 0.
This function isnondecreasingi.e., if A € B C [n], thenpA)< p(B), and is
submodulayi.e.,

p(A) +p(B) = p(AU B) +p(AN B)

for all A, B C [n].
Conversely, given a nondecreasing and submodular fungtiod”! — Z., then
the setu € Z satisfying

(1) u(A) < p(A) forall A e 2"

is a discrete polymatroid.

It follows from (1) that a discrete polymatroid is the set afeger points of an
integral convex polytope. In fact this polytope is the contmll conv(P) of P.

We say thatd /=A C # ] isp elosedif any subsetB c # ] properly containing
A satisfiesp A )< p B ), and thay /=A C n[ ] ip separableif there exist two
nonempty subsetgl; and A, of A with A; N A, = ¥ and A; U A, = A such that
p(A) = p(A1) + p(A2). A setd £A C ] is p-inseparableif A is not p-separable.

A theorem of Edmonds [7] says that the supporting hyperglasfeconv ) are
the hyperplanedi, Hx € R": |x| = p(A)}, where A ranges over app -closed and
p-inseparable subsets on [ ].

Proof of Theorem 1.1. Lety[ ] be the ground set®f ahd its rank. dgnote
the rank function ofP byp .

Suppose that for somg  witd| = 1,sayfar {5.1.,n— } 1, we have =
p(A) < p([n]). Then for anyu € B ) it follows thatu § > d —c . Let R" — R”
be the translation withr o ) ®— d—c ¢) for alb € R". Then obviouslyB’” == B P ))
is the set of bases of a discrete polymatrid of rank on thergteset f ] whose
rank functionp’ satisfiep’ £ 1) 4 ).

Since B (P’) is affinely isomorphic t@ R ) we may assume from theirbegg
that

) p(A) =p(ln]) forall AcC[n] with [A]=n—1.

Next we claim that there is np -closed apd -inseparabledsetth 2vk |A| <n— 2.
This will imply our assertion, because then the only hypanpk defining the facets of
P, besides the hyperplanas =0 andn ([ Y= , are hyperplaneseofdim x; =g;
for certaini . Such a discrete polymatroid is of Veronese .type

In order to prove the claim we may assume that k=[] witkk2 <n — 2. For
u e P we setmy(u) = (w(l),...,uk)) andmo(u) = (ulk +1),...,u@)).

We first show
(@) There are elemenis v e B P( ) with A( )=A( ) bat(u) # m1(v).
In fact by [9, Lemma 3.2], there exists for eath =1,k an elemgnt P uchs
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that

ui(i) = p({i}), wi(A)=p(A) and wu; (p])=p ().

The last equation says that € B P( ).

Suppose thatry(u1) = m1(u2) = -+ = w1(ux). Thenp @) :Zf.;l o({i}), a contra-
diction sinceA isp -inseparable.

Next we claim
(b) There are elements, v € B P( ) with A( )=A( ) bub(u) # m2(v).

Again by [9, Lemma 3.2] there exists for each k= +1,n an elemerd P
with

ui(A) = p(A),  ui([n] \ {i}) = o([n] \ (i) and u;([n]) = p([n]).

The last equation implies that all. € B P( ), while by assumptioh §8d the second
equation it follows that; i( ) = 0 foi =% +1..,n . Suppose that(u;+) = --- =
mo(u,). Thenp @) =p (k]), a contradiction sincd ig -closed.

Now let H ={u e B(P):u(A)=p(A)}. We consider two cases.

Case 1. m1(u) = m1(v) = mo(u) = mo(v) for all u,v € H.

By (b) there existu,v € H withmy(u) # m2(v). Thus in this casery(u) # m1(v),
too.

CASE 2. There existu,v € H withry () = m1(v) and ma(u) # m2(v).

By (a) there existaw € H withry(w) # m1(u)(= 71(v)). Then eitherry(w) # mo(u)
or mo(w) # ma(v).

Hence our discussion shows that in both cases we carufinde H bath t

mi(u) # ma(v) and ma(u) 7 72(v).

Since mr1(u) # m1(v) there existsi € K ] withu { )> v { ). Sincer,v € H it follows
thatu (k +1n]) =v(k +1 n]). Hence sincery(u) # m2(v) it follows that there exists
Jj € [k+1,n] such thatu § )< v { ). The strong exchange property impliest th =
v+e —e; € B(P). This is a contradiction since’ A( )7 A( )+ 1. ]

Let u,v € V. Then the set
[u, v] = {w e VO minfu(@), v(i)} < w@) < maxu¢)v¢) for alli}

is called theinterval betweenu and . The following characterization of discretlypo
matroids satisfying the strong exchange property will bedukater.

Lemma 1.2. Suppose thaB is a set of integer vectars Rh with « > 0 and
u([n]) = d. Then B is the set of bases of a discrete polymatroid which feztishe
strong exchange property if and only & =, ,5[u, v].
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Proof. Suppose thaB &), ,.; u[v 1, and lat, u> € B such thatu;(i) > ua(i)
andui1(j) < u(j). Sinceuy —¢; +¢; € [u, uy] it follows thatu; —¢; +¢; € B. SOB
satisfies the strong exchange property.

Conversely, suppose th& is the set of bases of a discreyenatsbid which
satisfies the strong exchange property. We recall the defindf the distance between
bases: and

dis(, v) = % i lu(@) — v(@)].
i=1

In order to prove thati, v £ B we use induction gnh =dis{¢ ). In theecps=1
we have 2 =", lu(i) — v(i)|. Becauseu ¢ ]) =v @ ]) we must have two different
indicesi andj suchthati()=i()+1landj ( u=j ()+1amdk (9% () for aktth
othersk € | ]. It follows themnv =u —¢; +4¢; ,4,v ]<u,v} and henceJv g B

Now let u,v € B with dis¢,v) =p > 1. Without loss of generality we may
assume that there exists integérs amd witkl<m <n suchthat> @)i )
forl<i<landu()<v()forl +1<j<m,andu ) K ) fok >m . If we
denote byu;; = —¢; +; , then we claim that

[u, v] = U [uij, v] U {u}.

e
This implies our assertion because dis(v = p= 1.

It is clear that the union of the sets on the right side is dapthin [u, v]. Con-
versely, letw € [, v]. We may assume that / i5v . Then, because:dis(> ) 1,
there existi andi with ki <! anfl +4j<m suchthat {wi &) 1 and
w(j) —u(j) = 1. Since

u(k), for k #1i, j,
M,‘j(k) = Lt(l) -1, for k = i,
u(j)+1, fork=j.

we havew { )< u;; {) andw { > u;; { ), and hence we see that u;;,p ]. This
completes the proof. L]

RemARk 1.3. An easy consequence of 1.2 is that the smallest set eshafsa
discrete polymatroid with strong exchange property whiohtains a finite setd; =
{u, uy, ..., uy} of integer vectors of the same modulds can be obtained asnll
Let A, = U1§i<j§k[ui,uj]. If A, = A, then the previous lemma implies thag is
the set we want. IfA; # Ay then we takeAs = [J, ,c4,[u, v]. Assuming that we
have definedA; andi; /4, 1, then we consideA;.; = U“_veA‘_ [u,v]. f Aj1 = A;
then A; is the set we want, otherwise we continue this procecﬁileeause we have
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|A;| < |Aiv1] and A; € V@ for any i and|V@] is finite, then surely after a finite
number of steps we obtain the desired set of bases.

Let 1 < k <m < n. Recall that theuniform matroid U, ,, on the ground setr[ ]
is the discrete polymatroid om[ ] whose set of based/, ,( ) csikthose (0 1)-
vectorse;, +e;, +---+g, With 1<ij <iz<--- <ip <m.

Theorem 1.4. Letu = (u(1),u(2),...,u@)) be a given point inR"” \ Z" with
u([n]) € N, and such thatt > 0, and let7 = {i € [n]: u(i) ¢ Z}. Then with respect to
inclusion there exists a unique smallest discrete polymatréjd of rdnk u([n])
with u € conv(B (P,)) satisfying the strong exchange propertyloreover the set of
basesB(P,) of P, is isomorphic to the set of bases of the uniform matidjg, revhe

k=3 @@)— u@)]) andm = |I].
Proof. First we fix some notation. Let

B'={veZ: v(i)e {lu@i)], u(i)]) for eachi € ] andv (& 1) =u (1),

where | x| is the biggest integer x  and] is the smallest integer

Then B’ is the base of a discrete polymatrafig which satisfiesstheng ex-
change property and € cor®( ). Indeed,wif,v, € B’ andi,j € ] such that
v1(i) > v2(i), v1(j) < wv2()), it follows from the definition of B’ thati, j € I and
v1(i) = Tu(@)1, va(j) = u(j)]. Sovi—¢; +¢; € B’ and thereforeB’ satisfies the strong
exchange property.

The subsetQ of R” defined by

lu(i)] < x(7) < [u(i)] for eachi € p] andx @ ])=u (b ])

is an integral convex polytope whose set of verticesBis . ltofes that Q@ =
conv(B’), and since: € Q@ we conclude that: ¢ con® ), as desired.

In order to prove the uniqueness we show that for each desqelfymatroidP of
rank d with strong exchange property such that cBnH () weehgivC B(P).
Let B(P) :={u1,...,ux}. Then,u € convB £ )) implies that i () {j’;zlajuj(i), for
eachi with 1<i < n , and for some non-negative real numchs.‘.,ak such that
Zl,{:l“j =1

We claim that for eachi € [ ] there exist somel € { ,.1.,k} such that <()
[u(@)] andu; ¢) > [u ¢) . Indeed, if for alli € #4 ] we would have; i (}» [ui()
forany j € {1...,k}, thenu { )> |u {) +1, which is a contradiction. A similar
argument shows us that there exists { ,..1, k} suchthat >y i1 () .

Consider now the affine translatian R” — R" defined by

n

o(w)=v— Z <j:r‘£1ink{uj(i)}> &i.

— \ j=1,...,
i=1
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Replacingu byu’ =0 4 ),B P ) byo B R )) andB’ by K ) we may assume
by Theorem 1.1 thaB K ) is of Veronese type defined by

B(P) ={v:v(i) is an integer with < v i( X a; andv| &'},
where

a; = max {u;(i)}

j=lk

and

Now let w € B’. Thenw () =[u {) orw {) =[u {) . Therefore & wi (¥ a; for
all i, and hencew € B B ).

Therefore we have proved the existence and uniqueness afntladlest discrete
polymatroid P, satisfying the strong exchange property andtaining z , and whose
set of basesB K, ) B’ . Consider now the affine translatiolR” :— R" defined by

() =v— Y (Lu(@))ei.

i=1

It is easy to see that B{ )B U,, ) with and as in the theorem. ]

Corollary 1.5. Let B(P) be the set of bases of a discrete polymatréid Then
the following conditions are equivalent
(a) P satisfies the strong exchange property
(b) For all u € conv(B (P))we haveP, C P.

Proof. (a)= (b) follows from Theorem 1.4. For the converse igf v, € B(P).
Without loss of generality we may assume that there exigigens! andn  with K
[ <m < n such thatvy(¢) > vo(i) for 1 <i <[ andvy(j) < ve(j) for I+1< j <m,
and vy (k) = vy(k) for k > m. Now if we considerr to be a real number such that

1 1
1@21( {l_ v1(i) — v2(i)’ t- v2(j) — Ul(j)} <=t

I+1<j<m

thenu :=Avy + (1 — A)v, has the following propertieso(i) — 1 < u(i) < vi(i) for
1<i<I,v(j)<u(j) <v()+1forl+1<j<m andu k) =vi(k) for k > m.
But u belongs to the line segmeit betweenand v, and S ¢ convB € )), so that
u € conv(B (P)). Therefore by our hypothesis we havgc P . Now it is efsgee
thatvy —¢; +e; € P, forall i, j such that I<i </ and +X j <m . Hence the
conclusion. O
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Corollary 1.6. LetP be a set of discrete polymatroids all of the same rasd¢t-
isfying the strong exchange properiyhen the following conditions are equivalent
@ Npep B(P) #0,

(b) NpepconvB(P)) #9.

Proof. (a)== (b) is trivial. For the converse, lat € ()., conv(B (P)). Then,
by Theorem 1.4B B, XX B B ) for allP € P. Hence the conclusion. [l

Corollary 1.7. LetP be a set of discrete polymatroids all of the same ras&t-
isfying the strong exchange property and the equivalentditioms of Corollary 1.6,
then

() B(P)=B (ﬂ P) and conv(ﬂ B(P)) = () conv(B (P))

PeP PeP PeP PeP

Proof. The first equality follows from the fact (Corollary6}.that(", ., B(P) #
@. The inclusion con\(ﬂp673 B(P)) C (NpepCOnV(B (P)) is trivial. Conversely, let
u € (\pep CONV(B (P)). Then by Theorem 1.4 we have P,( ©)B P ( ) for &le P.
Thereforeu € convg B, )c con{()pcp B(P)). O

The next examples show that all the hypotheses in Corolla8yate needed.

ExampLEs 1.8. (a) The intersection of discrete polymatroids is inegahnot a
discrete polymatroid, even if they have the same rank andntieesection of their set
of bases is non-empty. Consider the discrete polymatréidsand P,, whose sets of
bases are:

B(P)={(1,0210)(1100)(0101)(©.,0,1})
B(P)={(1,0100Q110((0101),001

Then B(@P;))N B(P2) ={(1,0,1, 0) (Q 1 0 1) does not satisfy the exchange property,
so it is not the set of bases of a discrete polymatroid.

(b) The condition(,.» B(P) # ¢ is essential, even if alP € P satisfy the strong
exchange property. LeP;, P,, P3 be the discrete polymatroids, whose sets of bases
are:

B(P)={(202 (301 (211
B(P)={(211) (112121
B(P)={(0.220(Q31 (121
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Then P, P, and P; satisfy the strong exchange property but

PN PN P3
={(111)(110@01)®11) (0,02 (1,000),01,0,@0,1),(0 0,0

is not a discrete polymatroid.

2. Level rings

Let K be a field. Recall that a standard graded Cohen-Macakilajgebi@ R is
called alevel ring if all generators of the canonical modude; have the same de-
gree. For example all Veronese subrings of the polynomiad are level. More gen-
erally if R is level, then any Veronese subrimg(?) is level, too. This follows eas-
ily from the fact that for a standard graded Cohen-Macautaylgetaa R one has
wﬁ?) = @P;(wr)id, see [3, Exercise 3.6.21 (c)]. Actually this formula evernvgs that
R is level for alld greater than or equal to the highest degrea génerator ofv; .

The question arises which rings of Veronese type are leveprésent we can give
a complete answer only in the case of squarefree Veronegs, ttinat is, the base rings
of uniform matroids. For the proof we use the characteiratf the canonical module
of a normal semigroup ring, given by Danilov and Stanley [8f. Theorem 6.3.5]):

Let C be a normal semigroup. Then the iddal generated by theomiats x*
with ¢ € relint(C) is the canonical module ok (T ].

Now let K [B] be the base ring of the discrete polymatradd  of rahlon the
ground set 4 ] with rank functiorp . In [9] it is shown th& B[ ] is rormal semi-
group ring. LetC be the semigroup generated By , andldet =t(€l)n Then a
vector ¢ belongs to2 if and only it i()> O fof € n[ ], and for some intege
r we havelc|] =rd andc 4 )< rp A ) for alld ¢ A ]. For each integer we set
Q, =N Vi) and call the elements g2, the inner pointsraf

Let £k be the smallest integer such th@; / #= . It follows from theottem of
Danilov and Stanley thak H ] is level, if and only if for al > £k aral v € Q,
there existsu € Q, such that—ue rk B) .

In the particular case, that the rank functiopn depends onlyhe cardinality of
A, we call the polymatroidP uniform Letc = (¢(1)...,c@)) be a vector, angd a
permutation of the elements im[ ]. Then we setc ()e&r( ( (1),cx A X ) is
clear that if P is uniform, therr € rB if and only iff ¢( § rB , ande @, if and
only if n(c) € ©,. In the orbit of eachc under the action of the symneegroup is
a uniquedescendingvector, that is, a vectov withh (1> v (2 --- > vn( ). Thus
for a uniform polymatroid it suffices to check the level camai only for descending
vectors.

Theorem 2.1. Let K be a field andR = K[B(U,,,)] the base ring of the uniform
matroid Uy ,. ThenR is level if and only il =1,d =n—1,0rd > 2 andn =2d — 1,
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n=2d orn=2d +1.

Proof. Ifd = 1 ord =n— 1, thenR is a polynomial ring. Also note that
K[B(Uy.,)] = K[B(U,—4.0)]- Thus we may assume from now on that2d < [n/ | 2 .

We setB =B (U;, ) and denote by the smallest positive integer suahkth
has inner points. Note that = ( (1).,u n( )) is an inner pointrdf idaonly if
lu| =rd and O< u ()< r fori € h]. We consider two cases.

CAse 1. d|n.

In this case we havé =/d andB has only one inner point, namely. (1 . 1)
If d <k thend+1 1...,1)is an inner point ofk( +B) and ( +21.1., &)
1,...,1)=,Q..., 0)¢ B, becausd > 2. Therefore, fér< k R, is not level.

If d >k then (k¢ +1)B has an inner point with (1)=& . Indeed, n{ 4)
d(k+1) andkn > d k¢ +1).

If k>3, we have g,u (2)...,u g ¥ 1..., V)=K— u (& 1..,un(>) 14 B
and henceR is not a level ring.

If k=2, thenn = 2. We will show thatR is level in this case. For> 3 let
u € r B be an inner point which is a descending vector. Then ,..(1, € X)— (B 2) ,
and thereforeR is level.

CASE 2. d does not divide: .

Now we havek =[n/d] andi #%d —s with &@s <d . Note also that> 3.

If d <k, then kB has the inner poinig = (s+1, 1, ..., 1). Note that for any other
inner pointu € kB we haver (1xs +1. The vector & ( #1 +1.1., 1)isan
inner point of ¢ +1B andv —ug=(d —s,s,0,...,0).

If d—s>2o0rs>2,thenR is not level.

Suppose now that =1and =2. Then &£2 1and (2.1 1) is the only
descending vector which is an inner point/a®  .klf&= 4, thén ( B1l)pntains the
inner point (4 1..., 1) and henc® is not level.A4f =3, then =5 and \weeha
level ring as we shall see below.

If d=k thenn =d? —s with O < s < d.

If s+1 <d,then ¢ +1 1..., 1)e dB is an inner point with the largest first
coordinate, 4 +1B has the inner point,¢ +2.1., 1), aads( ,+2.1, -1)
s+1,1...,0)=@d—s—1s +1 0Q..., O¢ B . Therefor& is not level.

If s+1=d andd =2, we haves =3 and theR is the polynomial ringd I¥ 2,
thendB containsd— 12,1.., 1)d( +B) has the inner poititd, , 2.1, 1) and
d,d,2,1,...,)-d—221...,1)=(1d— 2 1 0.., 0). Therefore if > 4, then
R is not level. Ifd =3, therm =7 andk is level as we shall see below.

Assume now thatl > k . Let be the largest integer such that ( nBH#(< dk
Thenr =|s/k— 2) andt <n .

If t+ > 1, thenkB has an inner point such that (1)-= =t ()k=— 1,
k—1>u(t+1)>--->u@)> landtk— 1)+ +1)+-- 4 ) =dk . Since
th+u(@+1)+2)+u +2)+-- +u o) =dk + +2, it follows that for the case +2d



818 J. HERzoG T. HiBI AND M. VLADOIU

the set ¢ +1B has an inner point such that (2)= ve (Rt (+W)E (HAL)
andv (j)>u(j) forj >t +2. ThereforeR is not level.

If k>4,thent <s/2 andr +2X<d , ank is not level.

So it remains to study the cage =3. Thens = , @d is not level if <t
If nis even, thend and have the same parity and therefore <t2 n. # odd,
then except in the case &— 1 we have +«24 slif d= 1, then d=2 +1
and we will show thatR is level. We may assume that 2: This widlude the
casesd =2np =5and =3; =7. The descending inner ppint Af 3 satisfi
ud) =---=ud—-1) =2andud )=-- =ui )=1 Lev be an inner point irB
with r > 4 andr— 1> v (1)> --- > v £ )> 1. We want to show that-u € r{ B) .
First we shall see that > u . Indeed, if we suppose that —( 1) = In the <
(d—2)(r —1)+d +3<dr, a contradiction. Sod(- B 2, and hence we are done.
Now we want to prove that j( > u j( ¥ r — 3 for alf € n[ ]. This is obvious for
j <d—1. Assume now that d(5 1#— 2. This implies that (1)= v= ( y= 1,
and hencgv| >d {— 1)# +2* dr , which is a contradiction. Theref@re isvalle
ring.

If t =0, then we haves < k — 2. Ley be the maximal integer such thatether
exists a descending inner poiat kB with (1) . Then let be theximal
number for which there exists a descending inner peint A hwifl) = u(2) =

- =u(l) = g. Hence we havé s/ qg(— 1) and< s . Also = 0 implies that
qg < k — 2. Then in the same manner as in the case 1 we show that thests exi
an inner pointv ink +1B suchthat (1)=- &l ()Fg +21,0 (+1wd ( +1)+2
andv(j)>u() forallj>1 +2 Becaus¢ +2s +2k<d ,itfollows as in the
caser > 1 thatR is not level. O

3. ldeals of fiber type

Let K be a field,S =K fi,...,x,] the polynomial ring,/ C S an equigener-
ated graded ideal, that is, a graded ideal whose genergtors., f,, are all of same
degree. Then the Rees ring

R(I) =@ 17t = S[fut. ... fut] C S[]

Jj=0

is naturally bigraded with deg{ ) = (1 0) far = 1.,n and dég( ) s (0fd)
i=1...,m.

Let T = S[y1, ..., yn] be the polynomial ring oveS in the variables, ..., y,.
We define a bigrading o by setting deg( )5 (1 0) for =1,n , and g%
(0,1) for j = 1,...,m. Then there is a natural surjective homomorphifnbigraded
K-algebrasp T — R [ ) withp X; ) =x; fori =1L...n aneg y¢ )z foj =
1,...,m.

If his a bihomogeneous element of bidegree{ ). Then we «all xtdegree,
and b they -degree of
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Let o = (@;j)i=1...- be the relation matrix of . Then far =1..,r , the bihomo-
j:

.....

geneous polynomialg; >, a;;y; belong to Kerg ), and
T/L with L=(g1,...,8)

is isomorphic to the symmetric algebsal ( ) bf . The generagprsf L are all linear
in the variablesy; .

Let m = (x1,...,x,) be the graded maximal ideal of . Th& -algebra
R(I)/mR(I) is called the fiber ring of I.

Note that the standard graded subalgeRra () ¥ ;.o R(I),j) of R() is iso-
morphic to K [f1,..., fiu] C S, and that the composition of the natur&l -algebra
homomorphismsR (@ .) — R(I) — R(I)/mR(I) is an isomorphism. Therefore the
fiber ring of I is isomorphic toK fi, ..., ful-

The homomorphisny T — R I( ) induces a surjectike -algebra homphism

(0/3 K[ylw--a_Ym] = T/mT - R(I)/mR(I) = K[fla-“’ fm]-

The elements in Keg( ) are called tfiber relations We note that

¢ =90+ Tox=Kly1, ..., yml = R(D ) = K[ f1, ..., ful-

Therefore Kerg’ ) C  Kerp ). We seR =K y[,...,y,] and J = Kerf'). Then
K[f1..... ful = R/J.

The natural mapy S I( )»> R I ) is a surjective homomorphism of bigrhd
K-algebras. Recall that is called thear type if ¢ is an isomorphism, that is, if
Ker(p) = L. The next best situation is given by

Derinimion 3.1. The ideall is called ofiber type if Ker(¢) = (L, JT).

Note that/ is of fiber type if and only if Key{ ) is generated byraents of
x-degree 0.

We begin with an example which is due to Villareal ([17, Thear8.2.1]). Let
/> & € S be monomials. We denote byf[¢g ] the least common multiplefof and

Let fi,...,fm € S. If @ = (iy,...,i;) with 1 < i; <ip < --- < iy < m we set
fa:ﬁlﬁz"'fi\-'

Theorem 3.2 (Villareal). Supposel = (f1,..., fn) IS an equigenerated mono-
mial ideal satisfying
(%) for all non-decreasing sequences= (i1, ..., i) and 8 = (j1, ..., js) With i, ji €

[m] for & = 1,...,s for which f, # fs, there exist integerss and such that

i, (fa/ fi,) divides[fa, fg].
Then! is of fiber type
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Moreover condition (x) is satisfied if/ is generated by quadratic monomials
Here is another class of monomial ideals of fiber type.
Theorem 3.3. Let I C S be a polymatroidal idealThen is of fiber type

Proof. There exists a discrete polymatraid  with set of baBesuch that/ is
generated by the monomials’ with € B . We denote the variabl@ in ictwis
mapped ontac’r € R [ ) by, .

Since I is a monomial ideal, the Rees algel®a ( ) is a toric rarg] hence
Ker(p) is generated by bihomogeneous binomials

(3) f :xayulyuz" *Yu, _xbyvlyw’ c Y,

such that the first and second term in the binomial have n@rfantcommon.

We show thatf can be reduced modulo, (7 ) to a binomial which isrhib
geneous of degree (@ ), that is, contains no facigrs

We have degf{ »> 2. If deg{ ) = 2, then there is nothing to provepp®se now
that degf )> 2. We may assume nfax b;} / =0 for some , because otheiveise
is nothing to show. Lek =mdx : m#x,b;} / 30 . Thén> 2, sine¢ |[bE . We
may assume that, > O ang =0.

Let u =ustus+- - -+u, andv =vi+vo+---+v,.. Thenu k)< v k) andu i ) = i( ) for
i > k. Sinceu andv belong to the set of bases of the discrete polgidatP, there
exists j < k such that—e; & is again a baserdt . Thatis, we fiid .., u, € B
such that
4) XjYVuy Yu, — XkYuy  Yu, € KeT(p).

r

Modulo this relationf can be rewritten as

a’ b
X yu’l"'yu’, —X Yo Yottt Yo

with x? = (xj/xi)x?.

We will show that f can be reduced to zero modulo relations pety4). Note
thata, =a,— 1. Ifa, > 0, we use a similar reduction, so that after a fimitenber of
steps we may assume that satisfies fhax :{mak;} / } =0

If min{a;, b;} = 0 for all i < k, then by induction ork we may assume that
can be reduced to zero modulo relations of type (4).

Suppose for someé < k we havwg > 0 and > 0 (which after these re-
ductions may of course happen). Thgh  xFg wigh  ® & YuYuy - Y, —

(X2 /x1) Yo, Vv, - - - V.- Since R () is a domain, and sinog ¢  Ker( ) we conclude that
g € Ker(p). Therefore by induction on the degree we see that canebtlaced to
zero modulo relations of type (4).
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Thus it remains to show that the relations of type (4) can loeiged to zero mod-
ulo (L, JT). In other words we may assume that

f = XiYur Yup " Yu, — xjyvl))vg Yo

and that the two terms inf have no common factor. We denote kyf i =
Y-, dis@;, v;) and show by induction on def( ) and dis( ) that can be aedu
to zero modulo L, JT ).

Sincee; +ug+upx+---+u, =g +tvp+uvy+--- +v,., there existss such that
us(i) < v(i), and hence by the exchange property there exists arx ikdsuch that
us(k) > vy(k) and such that;, =, # —e& € B . Thus modulkqy, —x;y, € L  the
relation f can be rewritten as

f = Xk Yuy " Yu, = Yu, — XjYvi Yoo Yo, -

If k= j, then f =x;g withg € JT, and we are done. Iff & for somie , th¢gn =

yu & With g a relation of type (4) and deg(9 deg( ), and we are donenilyigtion

on deg(f ). Otherwise the ney  has no common factor. Howeveesilis(’, v, ) <

dis(u,, v,) it follows that dis{ ) has dropped, and again inductimmcludes the proof.
O

In the next proposition we want to describe a condition whiictplies that an
ideal is of fiber type.

Proposition 3.4. Let I C S be an equigenerated ideahssume that for some
hem
(1) 1S is of linear type
(2) 05y h)NmS(1) =0.
Then I is of fiber typeand Ker(y) = (0 ¢y h) = (0 sy mS(I)). In other words
J={feR:mf el

Proof. We first show that Ke¥( ) = (Qq) h). Let f € (0 5 ), then fh =0,
and hencehy [ ) = Hf ) = 0. Sinc® I( ) is a domain, it follows thatf ( ) = O,
and hencef € Kerf ). Conversely, suppose tliiat #er( ). Sihge isneér
type it follows that Ker(y ) = 0. Thereforé” f =0 for some integerlf n=1, then
f € (05 h), as desired. Otherwise,> 1 andh"(1f) =0, so that" 1 f € (0 5
h) N mS(I). Since this intersection is 0, by assumption, it followstth”—1f = 0.
Backwards induction yields that € (9 &).

Finally, since Ker{y ) = (0gy) #) and since (Ogpy 2) NmS(I) = 0, we see that
Ker(y) contains no elements of positive -degree. Therefors of ifiber type. U

Let M be the finitely generate& y{, ..., y,]-module S ( }1.). ThenM is gen-
erated byxi, ..., x,, and (0 54 mS(/))es = Anng(M). Under the assumptions of
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Proposition 3.4 we have

Ker(¥) = (0 ¢y mS(7)).
Since Ker{/ . =J, we conclude that
(5) J = Anng (M).

Let A be the matrix of linear relations of

=f{,..., fu)- If I hasr lin-
ear relations, themd is an x m

-matrix whose coefficients areafirferms in S
K[xl, ..
R = K[y1,

., x,]. There is a unique xn -matriB whose coefficients are lineamfoin
..., ¥Ym] such that
Ay = Bx.

Here x is the transpose ok ..., x,) andy the transpose ofy{, .
trix B is the relation matrix of theR -modulé/

.., Ym). This ma-
Note that the annihilator oM equals the radical of the idgaB) ¢f n-minors of
B, wherel, B ) =0 ifr <n. Therefore, sincé is a prime ideal, it follofvem (5).

Corollary 3.5.

Then

Let 7 be an equigenerated ideal witker(y') = (0 5y mS(7)).

J =/1,(B).

In particular, the degree of the fiber relations is bounded by

Quite generally one has (Q x;) C Ker(y). Hence if Ker{y ) = (0 gy mS([1)),
then (0 sy x;) = (0 sy mS(I)) = Ker(y) for all i. This case seems to be rather
rare. On the other hand, singe’-,(0 :s;) x;) C Ker(y), it is more likely that in some
cases) (0 5y x;) = Ker(y).

Conjecture 3.6. Let/ C S be a polymatroidal idealThen

Ker(y) =) (0 sy x:)-

i=1

Equivalently J is the ideal generated byf € R: fx; € L for somei} .

Remark 3.7. The conjecture is true if the fiber ideal

is generated yoprset-
ric exchange relations. Indeed, It yz ¢+, Yo—¢;+; — Yuy» D€ such a relation. Then

xif = (xin*Ei"'é‘j - xjyu)yvfsjﬂ?i + yu(-xjyvfb“j"'!?i - xiyv)
is an element ofL .
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4. l-exchange property

In this section we introduce the -exchange property for eétmteger vectors of
modulusd , and give classes of such sets having this propéfgywill then see in
the next section that the monomial ideals correspondingete with the/ -exchange
property are of fiber type.

Let V@ c 7! denote the set of vectons € Z" of modulusd . Letk be a field
andS =K [, ..., x,] the polynomial ring inn variables ovek . Given a nonempty
subsetB C V@, we write K [B] for the K -subalgebra of generated by those mono-
mials x* = [T’ xD with u = (1), ..., u(n)) € B.

Let R = K [{y.}.cs] denote the polynomial ring ovek  with the standarddinag,
i.e., each deg, = 1. Theoric ideal of K[B] is the ideal Ix;y C R which is the
kernel of the surjective homomorphism R:— K B[ ] defined by setting,) = x*
for all u € B. If a= (a,)ucp is a vector with each & a, € Z, then we writey? for
the monomial[ [, vi« belonging ta&

Let < be a monomial order oR  and.inlk(p) the initial ideal of Ix[z with re-
spect to< . Recall that atandard monomiabf Ix[z with respect to< is a monomial

y® € R with y? ¢ in_(Ikg).

DeriniTion 4.1, We say that a nonempty subseic V(@ satisfies thd-exchange
property with respect to a monomial ordet ok H possesses the follgvprop-
erty: If ]_[fl’:1 Yu, and ]_[fle yy, are standard monomials dkp of degreeN with re-
spect to< such that
() Yhcauu@) =Y qvu@) fori=12....g— 1 (withg <n— 1);

(W) Yo u(a) < 3= v(a),

then there exist kK6 <N ang <j<n withs & —¢;€B
One of the most fundamental examples is

ExavpLe 4.2. A nonempty subseB C V@ is called strongly stableif u € B
andu (j)> O, thenu —¢; +; € B forali < j . A strongly stable subsetc V@
satisfies thd -exchange property with respect to any monamiker < onR . In fact,
it YNy, (i) = YN i) fori=1,2....q— 1 andy_)_  uu(g) < Y0-; vu(q). then
there is 1<§ <N and; < j <n suchthat j(> 0. Hensg—e¢; et B

A class of finite setsB c V¥ satisfying thel -exchange property naturally arises
from the theory of discrete polymatroids.

Let B C VY. Letu,v € B, and writex"x" = x;,x;,---x;,, With iy < ip < --- <
ing. Setx¥ = ]‘[;lezj,l andx’ = ]_[‘j:lxzj, and we define the map

sort: B x B— VW x v (u,v) = (', V).
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We call B ¢ V@ sortableif Im(sort) ¢ B x B. It is known ([16, Theorem 14.2],
[5]) that if B ¢ V@ is sortable, then the toric idedk(p possesses a Gbner basis
consisting of the sorting relations,y, — y,yy, Withhv e B and' (v ) =sortf )
with respect to the “sorting order<sy. It is shown in [9] that the set of bases of a
discrete polymatroid with the strong exchange propertyoisable.

Theorem 4.3. If B is sortable and is the set of bases of a discrete polymgtroi
then B satisfies thé -exchange property with respectig..

Proof. Let [\, y,, and[]).,y, are standard monomials dfc(s of degree
N with respect to<so and suppose that saf(, u,, ) #, u, ) and sogt(v, )=
(vpovp) forall 1 < p < p/ <n. If Zgzluu(i) = Zﬁlzlv“(i) fori=1,2...,q— 1,
thenu, ¢) =v, () forall 1< pu < N and for all 1< i < ¢ . If, in addition,
Soauu(g) < Yoh-vu(g), then there is 1= 8 < N such thats g (3 vs ¢ ( ). Since
us(i) = vs(@) for all 1 <i < ¢, the symmetric exchange property Bf  guarasatéhat
there isq < j <n withus +, —¢; € B, as desired. O

Another natural class of finite se8 ¢ V@ satisfying thel -exchange property
comes from algebras of Segre-Veronese type ([12]).

Fix nonnegative integers £ r <n ant,ny,...,n, With 0 =ng <n; < --- <
n_1 < n, =n. Let{ag, ..., o}, {B1,.--, B} and{cy, ..., c,} be sets of nonnegative
integers. Write

B = B ({}=1, (B));=1 {ci}i=1)

for the subset ofV(@ consisting of all vectorss =u( (1)..,u n( ¥ V@ such that
(i) u(i) <c; for each 1<i <n ;
(i) B; <3l wulk) < foreach 1< j <r .

Theorem 4.4. If B = B({o;})-y, (B;})=p, {ci}/=y) is nonemptythen B c V) is

sortable and satisfies the -exchange property with respeetgtt.

Proof. In [12] it is noticed thatB is sortable. Thus, except floe last sentence
with using the symmetric exchange property, the proof ofofbm 4.3 is valid in the
present situation. What we must prove is that, for and betontp B with u () =
v(@) for all 1 <i < ¢ and withu ¢ )< v ¢ ), there isy < j <n such that ef—¢;
B.

Letn;_1 <g <nj. Sinceu § )< ¢, , ifqg <n; and if there iy < ¢’ <n; with
u(g’) > 0, thenu +¢, —e, € B .
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Let either (i)g =n; or (i)nj_1 <q <n; with u(g+1)=--- =u(@;) = 0. Since
n; q q nj
Bi< D u®= > u®< Y vk Y vk)=e;
k=nj_1+1 k=nj_1+1 k=nj_1+1 k=nj_1+1

there isj < j/ <r with

ﬂjr Iljr
Br< Y vk)< Y u(k)<a.
k=n_q+1 k=nj_;+1
If nj_1 <i"<nj with u(i’) > 0, thenu +e, —¢; € B, as required. U

We now turn to the discussion of a class of finite sBtsc V@ satisfying the
I-exchange property related with classical root systems.

Let n > 3. LetA,(f_)l denote the set of positive roots of the root syst&m;, i.e.,
A;(1+—)1 ={g —¢ej:1<i < j<n} Sete =e1+---+sg,, fi; =&+ —¢&;) with
l1<i<j<n,and

B(A,1)={fij:1<i<j<n}U{e}cVv®.

Using the notationy; ; instead of;,, and insteadyof , we writg, for the re-
verse lexicographic ordege, on the polynomial ringR X ¥, {yi j}1<i<j<a] iN (’é)+1
variables overK induced by the ordering of the variables

Y<YVin <YVin-1<---<y1r3<y12<ym<---<y23

< < VYn-2n <Yn-2n-1<Yn—1n-

It is known ([8], [13]) that the reduced Gbner basis ofix(z with respect to<ey
consists of the binomials; jy;x — yyix With ¥i < j <k <n and of ;y, ; —
Yir,ji"Vi,j with1<i' <i < Jj< j/ <n.

Since sort((2 0 1 1) 1,1,20) = ((2,0,2,0),(1L 21 11) and, 202 @
B(A3), it follows that B A,—1) is not sortable forn > 4.

It follows from [14, Theorem 2.1] that

Lemma 4.5. Let B be a subset oB(A,—1) with ¢ € B and with the property
(1) ifl<i’'<i<j<j <nandif f,; € B, thenf,; € B,
and fix a monomial ordex o = K[y, {y;;} 5 e8] satisfying the conditions

((X) if lf i/ <i< j < j/ <n and if f,j S B, theny,-r,jry,-,j < y,'f’jy,'.jf;
B) ifl<i<j<k<nandif f;, fix€B, thenyy, <yi;yj.
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Then the reduced ®bner basis of the toric idealx; with respect to< consists of
all binomials y; ;yjx — yyix € Ixp With 1 <i < j < k < n and of all binomials
Yir,j¥i.j — Yir,j’Vi,j € IK[B] with 1 < i <i< j < j/ <n.

Theorem 4.6. Let B be a subset oB(A,—1) with ¢ € B and with the prop-
erty (#) and fix a monomial ordex O = K[y, {yi j} e8] satisfying the conditions
(@) and (B). Then B C V™ satisfies thd -exchange property with respectto

Proof. Lety“yi, j, - yiy,jy and y“'y,-i,jrl-ny,-k,_j;v, be standard monomials of the
toric ideal Ix[p of degreea N (=’ N’ ) with respectta . Lat =¢ E,’:’:l(s+
(gi, —€j)) andv =a’ - ¢ +Z,’:’='l(s + (e;; — €j;)), and suppose thati () =i () for
i=1,2...,q—1(Wwithg<n—-— 1) andu 4 v 4 ).

(i) If jx <gforsome 1<k < N and ifji, > j, for all 1 < k; < N, then there
is 1<k < N with j, =j.. Ifix #Zi;, and, sayjx < i, , then there isdk, < N
with iy, =i}, Since f, ;, € B, in case ofi, > ji, the monomialyy, j, -+ yiy,jy
cannot be a standard monomial. Henge= j;, and the variabl@,-;“jk@, appears in both
Y Yipjr v Viy.ju and y“'y,-i,jrl---y,-;v,_j‘rv,. Thus by using induction on &  the desired
result arises. Letjy >¢q forall Kk <N

(i) If iy > q then (e + (s, —€;,)) +eg — &, € B. Letiy <gq forall 1<k <N.

(iii) If jx= g then (e+(e;, —&,)) +&4 —€4+1 € B. Let ji #q forall 1<k < N. Thus
by (i) jy >¢q forall 1<k <N.

(iv) Now, sinceu § )< v g ) and sincg, >¢g forall ¥k <N , there is<lk’ < N’
with i, =q. If a >0, thene +¢; — ¢, =fy ;; € B. Leta =0.

Now, by (i), (i) and (iv), one hasy (1)+-- 4w V= + N =( +( &' ).
However,v (L)+-- v § )<q & W' )W <u (1)+-- # ). This contradicisi ( )=i ()
fori=12...,g—1andu § )<v §). O

Corollary 4.7. With keeping the notation as abgvB(A, 1) C V™ satisfies the
[-exchange property with respect toe,.

5. Rees algebras

Let, as before,8 be a nonempty subsetWf) and S =K [, ..., x,] the poly-
nomial ring inn variables oveK . Writédz for the monomial idedl S generated by

those monomials = [r_, x*@ with u = (u(1), ..., u(@)) € B.
Let T = K[{x1,...,x,} U {y.}ueg] be the polynomial ring oveX with the stan-
dard grading, i.e.,, each deg = 1 and each ydeg = la ¥ (a1,...,a,) and

b = (b,)ues are vectors with each & a;, b,, € Z, then we writex?y? for the mono-
mial (x7*---x%) [],cp y2 belonging toT .

The toric ideal of the Rees algeb® Iz( ) is the idé&l;,) C T which is the
kernel of the surjective homomorphisgpn 7: — R Iz( ) defined by setiify;) = x;
forall 1<i <n ande (, ) =x"r for allu € B .



IDEALS OF FIBER TYPE 827

Let <® be an arbitrary monomial order oR K y][ and <ex the lexicographic
order onS induced by; > --- > x,. We introduce the new monomial ordejfgf( on
T as follows: For monomials@y® and xy® belonging to7 , one hagdy? < xayb’
if and only if either (i)x® <jex X¥ or (ii) X2 =x& andyP <@ y',

We are now in the position to state the main result of thisigect

Theorem 5.1. Let B be a nonempty subset &f* and <® a monomial order
on R = K[y]. Let G_w(Jks) denote the reduced @bner basis of the toric ideal
Jkrs Of K[B] with respect to<®. Suppose thatB satisfies tHe -exchange prop-
erty with respect to<(®. Let <. denote the lexicographic order ofi  induced by
x1 > --- > x,. Then the reduced ®bner basis of the toric ideaPg(,) with respect
to <f§; consists of all binomials belonging 6.« (Jx[5) together with

(6) XiYu — XjYv,

wherei < j withu+e; = v+e; and wherej is the largest integer for whiehts; —¢;
B. In particular, I is of fiber type

Proof. LetG denote the finite set which consists of all binomials beloggio
G.w(Jkrs) and all binomials of type (6). Our goal is to show thatis a GBbner
basis of Pg(;,) with respect to<,(§f<. (Once we know thag is a Gibbner basis 0Pk,

with respect to<\?), an easy computation says thatis the reduced Gibner basis of

Pr(i) With respect to<).

Let f € T be an irreducible binomial belonging ®g(,). If in<|(;)x(f) € R, then
f € Pruy) N R = Jgp and in<|(;)x(f) is divided by the initial monomial of a bi-
nomial belonging toG_«(Jks)). Let in<|(§l(f) ¢ R and write f :x,-xa]_[fleyuﬂ —

x X% Hﬁlzlyv;u where x; is the biggest variable appearing fn  and where j
We assume thaﬂf{zl yu, IS a standard monomial afg[p with respect to<®. Our
work is to show that; ]_[,"F1 yu, is divided by the initial monomial of a binomial of
type (6).

Now, replacing]‘[fb’zl ¥y, With its standard monomial ofk(p with respect to<(®
enables us to assume that bquzlyu# and ]'[Zzlyvu are standard monomials of
Jk(s With respect to<®.

Since none of the variables, with<i appearsfin , it follows tHiat,each
1 < k < i, the power of the variable, appearing in the monomziﬂ_[gzly,,“)
is equal to the power of the variable appearingni(ﬂ'[ﬁ':l Yu,)- In other words,
Soheyuu(k) = Y0y vu(k) for k = 1,2 ...,i — 1. Since the variable; cannot appear
in x¥, one hasy__y u, (i) < 5=y v (D).

The [ -exchange property a8 with respect4&) guarantees the existence okl
8§ <Nandi <l <n such that/ ##; % —e& € B . Thus;y,, — x;yw € Pg(;,) and
its initial monomial dividesx; [T, y.,. Consequently,x; [T, y, is divided by the
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initial monomial of a binomial of type (6), as desired. O
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