IDEALS OF REGULAR OPERATORS ON l^2

W. ARENDT AND A. R. SOUROUR

ABSTRACT. Let \mathcal{L}^r be the Banach algebra (and Banach lattice) of all regular operators on l^2 , i.e. the algebra of all operators A on l^2 which are given by a matrix (a_{mn}) such that $(|a_{mn}|)$ defines a bounded operator |A|. We show that there exists exactly one nontrivial closed subspace of \mathcal{L}^r which is both a lattice-ideal and an algebra-ideal of \mathcal{L}^r , namely the space $\mathcal{K}^r = \{A \in \mathcal{L}^r: |A| \text{ is compact}\}$. We also show that every nontrivial ideal in \mathcal{L}^r is included in \mathcal{K}^r .

It is well known that the only nontrivial closed (algebra) ideal in the Banach algebra $\mathcal{L}(H)$ of all bounded operators on a separable Hilbert space H is the ideal $\mathcal{K}(H)$ consisting of all compact operators on H and that $\mathcal{K}(H)$ includes every nontrivial ideal. In this note we prove order-theoretic analogues of these results.

To give a precise statement we need some notation. Let $H = l^2$, the Hilbert space of all (real or complex) square-summable sequences, and denote by $\{e_n\}$, n = 1, 2, ...,the standard basis in l^2 . Every bounded operator A on l^2 can be represented by a matrix (a_{mn}) given by $a_{mn} = (Ae_n | e_m)$, m, n = 1, 2, ..., where (f | g) denotes the scalar product of $f, g \in l^2$. If the matrix $(|a_{mn}|)$ also defines a bounded operator |A|, then A is called *regular*, and |A| is called the *modulus* of A. For example, every operator of finite rank is obviously regular, but there exist compact operators which are not regular [4, IV, §1, Example 2]. We denote by \mathcal{L}^r the space of all regular operators on l^2 . It is known that \mathcal{L}^r is a subalgebra of $\mathcal{L}(l^2)$ and is a Banach algebra under the *r*-norm ||A||, defined as the operator norm of |A|, i.e.

$$\|A\|_{r} = \||A|\|$$

where ||T|| denotes the operator norm of T (cf. [4, IV, §1]). A bounded operator A on l^2 is called *positive* (we write $A \ge 0$) if $(Ae_n | e_m) \ge 0$ for all natural numbers m, n. With this order relation, \mathcal{L}^r becomes a Banach lattice (cf. [4, IV, §1]). A *lattice-ideal* of \mathcal{L}^r is, by definition, a subspace \mathcal{G} of \mathcal{L}^r such that if $A \in \mathcal{G}$, $B \in \mathcal{L}^r$, $|B| \le |A|$, then $B \in \mathcal{G}$. For the purpose of this paper, we say briefly that \mathcal{G} is an *ideal* if it is both an algebra-ideal and a lattice-ideal.

A regular operator is called *r-compact* if A can be approximated in the *r*-norm by operators of finite rank. The space \mathcal{K}' of all *r*-compact operators is a closed ideal in \mathcal{C}' . Our main theorem gives a confirmation of the following conjecture by H. H. Schaefer: \mathcal{K}' is the only closed nontrivial ideal in \mathcal{C}' . Furthermore, we show that every nontrivial ideal is included in \mathcal{K}' .

Received by the editors June 7, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47D30; Secondary 47B55, 47B05.

For vectors $f, g \in l^2$, we denote by $f \otimes g$ the rank one operator given by

$$(f \otimes g)h = (h | f)g \qquad (h \in l^2).$$

The orthogonal projection onto $\text{span}\{e_1, \dots, e_n\}$ will be denoted by P_n (i.e., $P_n = \sum_{m=1}^n e_m \otimes e_m$) and will be called an *initial projection*. Note that $P_n \ge 0$, $(1 - P_n) \ge 0$ for every $n \in N$ (the set of natural numbers).

The following proposition is well known and easy to prove.

PROPOSITION 1. Let $A \in \mathcal{L}(l^2)$. Then

(i) $||A|| = \sup_{n \in N} ||P_n A P_n|| = \lim_{n \to \infty} ||P_n A P_n||;$ (ii) *A* is compact if and only if $\lim_{n \to \infty} ||(1 - P_n)A(1 - P_n)|| = 0.$

We give a characterization of r-compact operators (cf. [4, p. 293, Corollary 1]).

PROPOSITION 2. (i) Let $B, C \in \mathcal{C}^r$, $|B| \le C$. If C is compact, then $B \in \mathcal{K}^r$. (ii) $\mathcal{K}^r = \{A \in \mathcal{L}^r : |A| \text{ is compact}\}.$ (iii) \mathcal{K}^r is a closed ideal in \mathcal{L}^r .

PROOF. Let $F_n = P_n B P_n + (1 - P_n) B P_n + P_n B (1 - P_n)$. Then F_n is an operator of finite rank and

$$|B - F_n| = |(1 - P_n)B(1 - P_n)| \le (1 - P_n) |B| (1 - P_n) \le (1 - P_n)C(1 - P_n).$$

It follows from Proposition 1 (ii) that $\lim_{n\to\infty} ||B - F_n||_r = 0$. Hence $B \in \mathcal{K}^r$. This proves part (i).

From (i), it follows that \mathcal{K}^r includes $\{A \in \mathcal{L}^r : |A| \text{ compact}\}$. To prove the reverse inclusion, first observe that |F| is compact if F is an operator of finite rank (this follows from (i) since if $F = \sum_{i=1}^n x_i \otimes y_i$, then $|F| \leq \sum_{i=1}^n |x_i| \otimes |y_i|$). Now, let $A \in \mathcal{K}^r$. Then $\lim_{n \to \infty} ||A - F_n||_r = 0$ for a sequence $\{F_n\}$ of finite rank operators. This implies that $\lim_{n \to \infty} ||A| - |F_n||_r = 0$. Therefore |A| is a limit of a sequence of compact operators and so is compact.

Part (iii) follows immediately from (i) and (ii). \Box

THEOREM 1. Let \mathcal{G} be a proper ideal in \mathbb{C}^r . Then $\mathcal{G} \subset \mathcal{K}^r$.

PROOF. Let \mathcal{G} be an ideal in \mathcal{L}^r which is not included in \mathcal{K}^r . We will show that $\mathcal{G} = \mathcal{L}^r$.

There exists a positive operator A in \oint which is not compact. Let P_{n_1} be an initial projection such that $||P_{n_1}AP_{n_1}|| \ge \frac{1}{2}||A||$. By induction, we can find a sequence of increasing initial projections $\{P_{n_1}\}, j = 1, 2, ...,$ such that

$$\|(P_{n_{j+1}}-P_{n_j})A(P_{n_{j+1}}-P_{n_j})\| \ge \frac{1}{2}\|(1-P_{n_j})A(1-P_{n_j})\|.$$

Since A is not compact, the norms $||(1 - P_{n_j})A(1 - P_{n_j})||$ are bounded below by a positive number δ . Let $B_j = (P_{n_{j+1}} - P_{n_j})A(P_{n_{j+1}} - P_{n_j})$, so $||B_j|| \ge \delta/2$. The operator $B = \sup_{j \in N} B_j$ belongs to \mathcal{G} since $0 \le B \le A$. Denote by H_j the range of $P_{n_{j+1}} - P_{n_j}$ and let g_j be a positive vector in H_j of norm 1 such that $||B_jg_j|| \ge \delta/2$. Let $R_n = e_1^n \otimes g_n$, where e_1^n is the first basis vector in H_n (i.e., $e_1^k = e_{n_k+1}$), and let $R = \sup_{n \in N} R_n$. Thus R is a positive operator of norm 1. Let $M_n = B_n R_n = e_1^n \otimes B_n g_n$ and let $M = \sup_{n \in N} M_n$, so $M = BR \in \mathcal{G}$. Finally, let $T = M^*M$. Then $T \in \mathcal{G}$ and.

94

 $T = \sup_{n \in N} T_n$, where $T_n = M_n^* M_n$. So T_n is represented (with respect to the standard basis) by the diagonal matrix $\sum \alpha_n e_1^n \otimes e_1^n$, where $\alpha_n = ||B_n g_n||^2$. There is a permutation matrix U such that

$$UTU = \text{diag}(\alpha_1, 0, \alpha_2, 0, \alpha_3, \dots).$$

The sequence $\{\alpha_n\}$ is bounded below, therefore the matrix

diag
$$(\alpha_1^{-1}, 0, \alpha_2^{-1}, 0, \alpha_3^{-1}, 0, \dots)$$

defines a bounded positive operator D, and so F = DUTU = diag(1, 0, 1, 0, ...)belongs to \mathcal{J} . If V is the permutation operator defined by $Ve_{2n-1} = e_{2n}$, $Ve_{2n} = e_{2n-1}$ $(n \in N)$, then $1 = F + VFV \in \mathcal{J}$. Therefore $\mathcal{J} = \mathcal{L}'$. \Box

LEMMA. Every nonzero algebra ideal in \mathbb{C}^r contains the finite rank operators.

PROOF. (This is the same proof as the well-known proof of the analogous result in $\mathcal{L}(l^2)$; we merely point out that all the operators involved are regular.) Let \mathcal{G} be a nonzero algebra ideal in \mathcal{L}' and let A be a nonzero operator in \mathcal{G} . Pick a vector f_1 such that $||Af_1|| = 1$. For two arbitrary vectors f and g, we have $f \otimes g = (Af_1 \otimes g)A(f \otimes f_1)$, and so every operator of rank one belongs to \mathcal{G} . Finally, every finite rank operator is a sum of rank one operators and therefore belongs to \mathcal{G} . \Box

As an immediate consequence of Theorem 1 and the Lemma we obtain the main result.

THEOREM 2. \mathfrak{K}^r is the only nontrivial closed ideal in \mathfrak{L}^r .

COROLLARY. $\mathfrak{K}^r = \{A \in \mathbb{C}^r : \lim_{n \to \infty} |A| | Re_n = 0 \text{ for every positive operator } R\}.$

REMARK 1. There are nontrivial closed lattice-ideals as well as nontrivial closed algebra-ideals in \mathcal{L}' other than \mathcal{K}' . For example, $\{T \in \mathcal{L}': \lim_{n,m\to\infty} (Te_n | e_m) = 0\}$ is a nontrivial closed lattice-ideal different from \mathcal{K}' . Moreover, there exists a compact operator $A \in \mathcal{L}'$ such that |A| is not compact [4, IV, §1, Example 2]. Hence $\mathcal{K}(l^2) \cap \mathcal{L}' = \{T \in \mathcal{L}': T \text{ is compact}\}$ is a nontrivial closed algebra-ideal in \mathcal{L}' which contains \mathcal{K}' properly.

REMARK 2. By Theorem 1, \mathcal{K}' is the largest ideal in \mathcal{L}' . The smallest ideal \mathcal{G}_s is the one which is generated by the finite rank operators (by the Lemma). Thus it has the form $\mathcal{G}_s = \{T \in \mathcal{L}': |T| \le h \otimes h \text{ for some positive } h \in l^2\}$. This ideal \mathcal{G}_s is properly included in the ideal of Hilbert-Schmidt operators, which, in turn, is properly included in \mathcal{K}' .

REMARK 3. The situation is different if we replace l^2 by $L^2[0, 1]$. For the definition of $\mathcal{L}'(L^2)$, see [4, IV, §1]. The space $\mathcal{K}'(L^2)$ of all regular operators on L^2 which can be approximated in the *r*-norm by operators of finite rank is a closed ideal in $\mathcal{L}'(L^2)$ (this follows from [4, p. 293, Corollary 2]); and by the same proof that we used for the Lemma, it is the smallest closed ideal in $\mathcal{L}'(L^2)$. The space $\mathcal{K}_1 = \{T \in \mathcal{L}'(L^2); |T| \text{ is compact}\}$ is obviously closed, and it follows from the Dodds-Fremlin Theorem ([3], see also [1]) that \mathcal{K}_1 is a lattice-ideal. This implies that it is also an algebra-ideal. However, \mathcal{K}_1 includes $\mathcal{K}'(L^2)$ properly (see [2, 3.7 in connection with 2.6]). Another nontrivial closed ideal in $\mathcal{L}'(L^2)$ is \mathcal{G} , the space of all regular integral operators (or kernel operators), i.e. operators T of the form

$$Tf(s) = \int k(t,s)f(t) dt,$$

where k is a measurable function such that |k| is the kernel of a bounded operator. (The ideal \mathcal{G} is $(L^2 \otimes L^2)^{\perp \perp}$, the band in $\mathcal{E}'(L^2)$ generated by the finite rank operators [4, IV, 9.8].) In the atomic case $(H = l^2)$, all regular operators are kernel operators. Here, in the nonatomic case, \mathcal{G} is a proper closed ideal of $\mathcal{E}'(L^2)$, properly includes $\mathcal{K}'(L^2)$, and is not comparable to \mathcal{K}_1 . Furthermore $\mathcal{K}'(L^2) = \mathcal{K}_1 \cap \mathcal{G}$ [4, p. 293, Corollary 2]. In view of this, one nonatomic version of the problem solved in Theorem 2 is the following question: Is $\mathcal{K}'(L^2)$ the only nontrivial closed ideal in the Banach lattice algebra of kernel operators on L^2 ?

References

1. C. D. Aliprantis and O. Burkinshaw, Positive compact operators on Banach lattices Math. Z. 174 (1980), 289-298.

2. W. Arendt, On the o-spectrum of regular operators and the spectrum of measures, Math. Z. 179 (1981), 271-287.

3. P. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J. Math. 34 (1979), 287-320.

4. H. H. Schaefer, *Banach lattices and positive operators*, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT, 74 TÜBINGEN, FEDERAL REPUBLIC OF GERMANY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VICTORIA, VICTORIA, BRITISH COLUMBIA, CANADA V8W 2Y2