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IDEALS OF REGULAR OPERATORS ON I2

W. ARENDT AND A. R. SOUROUR

Abstract. Let £r be the Banach algebra (and Banach lattice) of all regular operators

on I1, i.e. the algebra of all operators A on I2 which are given by a matrix (amn) such

that (| am„ |) defines a bounded operator \A\. We show that there exists exactly one

nontrivial closed subspace of £' which is both a lattice-ideal and an algebra-ideal of

£r, namely the space %' = {A e £r: | A | is compact}. We also show that every

non trivial ideal in £r is included in %r.

It is well known that the only nontrivial closed (algebra) ideal in the Banach

algebra £(77) of all bounded operators on a separable Hilbert space 77 is the ideal

%(H) consisting of all compact operators on 77 and that %(H) includes every

nontrivial ideal. In this note we prove order-theoretic analogues of these results.

To give a precise statement we need some notation. Let 77 = I2, the Hilbert space

of all (real or complex) square-summable sequences, and denote by [e„), n — 1,2,...,

the standard basis in I2. Every bounded operator A on I2 can be represented by a

matrix (am„) given by am„ = (Ae„ \ em), m, n = 1,2,..., where (/| g) denotes the

scalar product of/, g G I2. If the matrix (| am„ |) also defines a bounded operator

| A | , then A is called regular, and | A | is called the modulus of A. For example, every

operator of finite rank is obviously regular, but there exist compact operators which

are not regular [4, IV, §1, Example 2]. We denote by £r the space of all regular

operators on I2. It is known that £r is a subalgebra of £(/2) and is a Banach algebra

under the r-norm \\A\\r defined as the operator norm of | A \ , i.e.

\\A\\r= \\\A\\\

where ||T|| denotes the operator norm of T (cf. [4, IV, §1]). A bounded operator^

on I2 is called positive (we write A > 0) if (Ae„ \ em) > 0 for all natural numbers

m, n. With this order relation, £r becomes a Banach lattice (cf. [4, IV, §1]). A

lattice-ideal of £r is, by definition, a subspace f of £r such that if A E j-, B E fcr,

\B\<\A\\, then B E%. For the purpose of this paper, we say briefly that j- is an

ideal if it is both an algebra-ideal and a lattice-ideal.

A regular operator is called r-compact if A can be approximated in the r-norm by

operators of finite rank. The space %r of all r-compact operators is a closed ideal in

£r. Our main theorem gives a confirmation of the following conjecture by H. H.

Schaefer: %r is the only closed non trivial ideal in £r. Furthermore, we show that

every nontrivial ideal is included in %r.
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For vectors/, g G I2, we denote by / ® g the rank one operator given by

(/®g)« = («|/)g (hEl2).

The orthogonal projection onto span{<?,,.. .,e„) will be denoted by P„ (i.e., P„ —

1"m=xem <8> em) and will be called an initial projection. Note that Pn » 0, (1 — P„) > 0

for every n E N (the set of natural numbers).

The following proposition is well known and easy to prove.

Proposition I. Let A E £(/2). Then

(i) \\A\\ = supneN\\P„APJ = lim„^ J\P„AP„\\;

(ii) A is compact if and only if Mm„_x ||(1 — 7>„),4(1 — P„)\\ — 0.

We give a characterization of r-compact operators (cf. [4, p. 293, Corollary 1]).

Proposition 2.   (i) Let B, C E £r, | B |< C. 7/C is compact, then B E %r.

(ii) %r = {A E Êr: | A | /'s compact}.

(iii) 5ir ¿s a closed ideal in £r.

Proof. Let F„ = T^TJT*,, + (1 - P„)BP„ + PnB(\ - P„). Then F„ is an operator of

finite rank and

| B - F„\ = \(\ - P„)B(\ - P„) \< (1 - P„) \B\(\- P„) < (1 - P„)C(1 - P„).

It follows from Proposition 1 (ii) that lim.I_O0l|7i — F„\\r = 0. Hence B E %r. This

proves part (i).

From (i), it follows that %" includes {A E £r: | A | compact}. To prove the reverse

inclusion, first observe that | F\ is compact if F is an operator of finite rank (this

follows from (i) since if F = 2"=1x, ® y„ then | F|< 2,"=1 \x¡\ ®\y¡\). Now, let

A E %r. Then lim,,^^!!/! — 7;,||r = 0 for a sequence {F„} of finite rank operators.

This implies that lim„_0O|| \A\ —\F„\\\ =0. Therefore | A \ is a limit of a sequence

of compact operators and so is compact.

Part (iii) follows immediately from (i) and (ii).    D

Theorem 1. Let fbe a proper ideal in f. Then % G %r.

Proof. Let f be an ideal in £r which is not included in %r. We will show that

J = £'.
There exists a positive operator A in J which is not compact. Let P„ be an initial

projection such that \\P„ AP„ || > ^\\A\\. By induction, we can find a sequence of

increasing initial projections {P„ }, j = 1,2,..., such that

HK+1 - Pnj)4PnJ+i - ^ >Í|I0 - Pn,W ~ ^y)H-

Since A is not compact, the norms ||(1 — P„)A(\ — P„ )\\ are bounded below by a

positive number 8. Let B} = (P„+i - P„)A(P„^ - P„), so \\Bj\\ 3* 8/2. The opera-

tor B = supJIENBj belongs to f since 0 < B ^ A. Denote by 77, the range of

P„ — P„ and let g ■ be a positive vector in H} of norm 1 such that || Bjgj II > 8/2.

Let R„ = e" ® g„, where e" is the first basis vector in 77„ (i.e., e\ — en +1), and let

7? = sup,,6N7t„. Thus 7< is a positive operator of norm 1. Let M„ = B„R„ = e" ® B„g„

and let M = sup„^NM„, so M = BR E f. Finally, let T = M*M. Then T E f and.
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T = sup„eA, T„, where T„ — M*M„. So T„ is represented (with respect to the stan-

dard basis) by the diagonal matrix 1a„e" ® e", where a„ = ||7i„g„||2. There is a

permutation matrix U such that

UTU= diag(a,,0,a2,0, a3,...).

The sequence {a„} is bounded below, therefore the matrix
■

diag(ar1,0,a2,,0,a3-',0,...)

defines a bounded positive operator D, and so F— DUTU — diag(l,0,1,0,...)

belongs to f. If Kis the permutation operator defined by Ve2n_ x = e2n, Ve2n — e2n_,

(« G TV), then 1 = F + VFV E %. Therefore % = tr.    D

Lemma. Every nonzero algebra ideal in £r contains the finite rank operators.

Proof. (This is the same proof as the well-known proof of the analogous result in

£(/2); we merely point out that all the operators involved are regular.) Let |bea

nonzero algebra ideal in tr and let A be a nonzero operator in %. Pick a vector

/, such that \\Afx\\ = 1. For two arbitrary vectors / and g, we have f®g —

(Afx ® g)A(f®/,), and so every operator of rank one belongs to f. Finally, every

finite rank operator is a sum of rank one operators and therefore belongs to $•.    D

As an immediate consequence of Theorem 1 and the Lemma we obtain the main

result.

Theorem 2. %r is the only nontrivial closed ideal in £r.

Corollary. %r — [A E £r: lim„^001A | Re„ = 0 for every positive operator R}.

Remark 1. There are nontrivial closed lattice-ideals as well as non trivial closed

algebra-ideals in £r other than %r. For example, {T E £r: \im„m^x(Te„ \ em) = 0)

is a non tri vial closed lattice-ideal different from %r. Moreover, there exists a

compact operator A E £r such that | A | is not compact [4, IV, §1, Example 2]. Hence

%(l2) n £r = {T E £r: T is compact} is a nontrivial closed algebra-ideal in £r

which contains %r properly.

Remark 2. By Theorem 1, %r is the largest ideal in £r. The smallest ideal fs is the

one which is generated by the finite rank operators (by the Lemma). Thus it has the

form %s = {T E £r: | T\< « <8» « for some positive « G I2}. This ideal %s is properly

included in the ideal of Hilbert-Schmidt operators, which, in turn, is properly

included in %r.

Remark 3. The situation is different if we replace I2 by L2[0,1]. For the definition

of £r(L2), see [4, IV, §1]. The space %r(L2) of all regular operators on L2 which can

be approximated in the r-norm by operators of finite rank is a closed ideal in £r(L2)

(this follows from [4, p. 293, Corollary 2 ]); and by the same proof that we used for

the Lemma, it is the smallest closed ideal in £r(L2). The space DC, = {T E tr(L2);

\T\ is compact} is obviously closed, and it follows from the Dodds-Fremlin

Theorem ([3], see also [1]) that %x is a lattice-ideal. This implies that it is also an

algebra-ideal. However, 3C, includes %r(L2) properly (see [2,3.7 in connection with

2.6]). Another nontrivial closed ideal in £r(L2) is i, the space of all regular integral
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operators (or kernel operators), i.e. operators T of the form

Tf(s)=fk(t,s)f(t)dt,

where k is a measurable function such that | k | is the kernel of a bounded operator.

(The ideal í is (L2 9 L2)^1-, the band in £r(L2) generated by the finite rank

operators [4, IV, 9.8].) In the atomic case (H = I2), all regular operators are kernel

operators. Here, in the nonatomic case, í is a proper closed ideal of tr(L2), properly

includes %r(L2), and is not comparable to %x. Furthermore %r(L2) = %x n í [4, p.

293, Corollary 2]. In view of this, one nonatomic version of the problem solved in

Theorem 2 is the following question: Is %r(L2) the only nontrivial closed ideal in

the Banach lattice algebra of kernel operators on L2?
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