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Abstract: A new modification of the McEliece public-key cryptosystem is 
proposed that employs the so-called maximum-rank-distance (MRD) codes 
in place of Goppa codes and that hides the generator matrix of the MRD 
code by addition of a randomly-chosen matrix. A short review of the 
mathematical background required for the construction of MRD codes is 
given. The cryptanalytic work function for the modified McEliece system 
is shown to be much greater than that of the original system. Extensions 
of the rank metric are also considered. 

1. INTRODUCTION 

The purpose of this paper is to show that error-correcting codes for 
the rank metric, as introduced recently in [l], can advantageously be used 
to replace codes for the usual Hamming metric in McEliece's public-key 
cryptosystem [21. The next section develops the necessary mathematical 
background for describing codes over the rank metric. The codes 
themselves are derived in Section 3. Section 4 describes how these codes 
are used in the McEliece system and quantifies the increase in security 
compared to the system based on codes for the Hamming metric. 

2. MATHEMATICAL PRELIMINARIES 

A linearized polynomial with coefficients in the finite field GF(qN) 
is a polynomial of the form 

where here and hereafter "[i]" in an exponent is shorthand for ''qi". The 
largest i such that fi f 0 will be called the norm of the polynomial. By 
way of convention, the norm df the linearized polynomial 0 is taken to be 
-00. We write &[Z] to denote the set of all linearized polynomials with 
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coefficients in GF(qN). Addition and multiplication in R"z] are defined 

n 

i=O 

by 

F(z) + G(z) = C (fi + gi) zIi] 

and by 

respectively, It is important to note that multiplication in R"z1 is not 
commutative. The set R"z] under these two operations is a non- 
commutative ring whose multiplicative identity is the polynomial z. 

The polynomial z"] - z commutes under multiplication with every 
polynomial F(z) in RN[z]. Moreover, if G(z) and H(z) are polynomials in 
R"Z] with leading coefficients 1 and such that G(z) * H(z) = z"] - z, then 
G(z) and H(z) also commute under multiplication, i.e., G(z) * H(z) = H(z) 
* G(z). Thus, one can speak unambiguously of the divisors of z"] - z. We 
will write L"z] to denote the quotient ring RN[Z]/(Z[~] - z), i. e., the ring 
whose operations are addition and multiplication modulo the polynomial 
z"] - z. The ring L"Z] is a non-commutive ring with qm elements where 
m = N2. Every left (or right) ideal in this ring is a principal ideal 
generated by a polynomial G(z) that divides z"] - z. The elements of this 
left ideal are all the polynomials in R"Z] of the form F(z) * G(z) with F(z) 
in the ring LN[Z]. 

3. IDEALS ON L"Z] AS ERROR-CORRECTING CODES 

We will consider left ideals of L"z] as codes over the "large" field 
GF(qN). Instead of the Hamming metric that is most frequently used to 
study the error-correcting properties of codes, we will instead use a family 
of metrics induced by the so-called rank metric. This metric was 
introduced in [l], where a complete theory of codes with maximal rank 
distance (MRD) was given, including encoding and decoding techniques. 

We will write FN to deiote the N-dimensional vector space of N- 
tuples over the "large" field GF(qN). Let x = (xo, xi, ... w-1) be a vector in 
FN. Then the rank norm of x, denoted r(x), is defined to be the maximum 
number of components of x that are linearly independent when GF(qN) 
itself is considered as an N-dimensional vector space over the "small" 
field GF(q). The rank distance between x and y, denoted d(x, y), is then 
defined as r(x - y). It is easy to show that the minimum rank distance d of 
an (N, k) linear code over GF(qN) satisfies d 5 N - k + 1, a code for which 
d = N - k + 1 is called a maximum-rank-distance (MRD) code. 



The vector j i  = (XN-l[s], xo[sl, ... ~ ~ - 4 4 )  will be called the Is]-cyclic 
shift of x. Note that jiis obtained from x first by a right cyclic shift of its 
components followed by raising these components to the qs power. A code 
Tz will be call an [sl-cyclic code if the [sl-cyclic shift of a code word is always 
itself a code word. Note that x and j i  have the same rank norm. The 
main construction of 111-cyclic codes is given by the following theorem. 

Theorem 1 [l]: Let y be an element of GF(qN) such that y = $oil $1, ... ,$N-l] 
are linearly independent over the "small" field GF(q) [or, equivalently, 
such that these elements form a so-called normal basis for GF(qN)], then 
the linear code Tt over GF(qN).with parity-check matrix 

is a [I]-cyclic MRD code of length N over GF(qN) with minimum rank 
distance d and dimension k = N - d +l. 

We now wish to treat code words and other N-tuples over the 
"large" field F = GF(qN) as N x N matrices over the "small" field GF(q) so 
as to pave the way for consideration of "errors" in the digits lying in the 
"small" field. To do this, we suppose that a normal basis $01, $11, ... ,$N-l] 
for F has been fixed, and we associate the vector x with the matrix 

whose entries are elements of GF(q) determined from the components of x 
according to the representation of these components in the normal basis, 
i.e./ 

N-1 

In this manner, single errors e in the rank metric correspond to matrices E 
with rank 1 and have the form 

E = CJD, 

where C, J and D are N x N matrices over GF(q) such that J has N identical 
non-zero columns, C is nonsingular, and D is a non-zero diagonal matrix. 
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4. APPWCATION TO THE McELIECE PUBLIC-KEY CRYPTOSYSTEM 

In [21, McEliece introduced a public-key cryptosystem based on 
algebraic codes that can be described as follows. The cryptographer chooses 
a k x n generator matrix G for a t-error-correcting binary Goppa code, for 
which a fast decoding algorithm is known, and chooses also a k x k 
nonsingular "scrambling" matrix S and an n x n permutation matrix P. 
He then computes the matrix K = S G P, which is also the generator 
matrix of an (n, k) linear t-error-correcting code, but one for which no fast 
decoding algorithm is known [?I if S, G, and P are not individually known. 
He then publishes K as his public encryption key. When someone wishes 
to send him a message, that person fetches K from the public directory, 
then encrypts his k-bit message m as 

c = m K + e  

where e is a randomly chosen pattern of t or fewer errors. The legitimate 
receiver, i. e., the cryptographer, upon receipt of c first computes c P-1 = 
(m S) G + e P-1. He then applies his fast decoding algorithm to this vector 
to obtain m S, and finally recovers the message m as (m S) S-1. 

The cryptanalyst's work funcfion for breaking this scheme by the 
attack considered by McEliece [ZI is 

where p k3 is the number of computations required to invert a non- 
singular k x k matrix; p = 1 will be used in all examples hereafter. For the 
parameters suggested by McEliece (n = 1024, k = 524, t = 501, this gives W = 
280.7. Adams and Meijer [4] determined that the value of t that maximizes 
W for n = 1024 was t = 37, which gives k = 654 and W = 284.1. 
Lee and Brickell [5] improved the attack; against their attack the best choice 
is t = 38 which gives W = 273.4. 

The main disadvantages of McEliece's public-key cryptosystem are 
its large public key (about 219 bits for McEliece's original parameters), its 
expansion of the plaintext by a factor n/k (about 2), and the existence of a 
systematic attack for the cryptanalyst. We will see that these disadvantages 
can be overcome at least partially by the use of codes for the rank metric 
and its induced metrics. 

To adapt McEliece's scheme to h4RD codes requires some 
modification. First, because there are no distinguished coordinates in an 
MRD code, there is no point to using the permutation matrix P when G is 
the generator matrix of a MRD code. However, the matrix S G is still the 
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generator matrix of another MRD code so this structure must be hidden in 
another way to make the decoding problem "hard". We suggest hiding 
this structure by adding a matrix aT eg to S G where a is a non-zero k-tuple 
and eg is a non-zero n-tuple over GF(qn) such that r(eg) I tg c t, where tg 
is a design parameter and t is the rank-error-correcting capability of the 
code. 

The modified McEliece cryptosystem works as follows. The 
cryptographer chooses a k x n generator matric G for a t-rank-error- 
correcting code, and chooses also a k x k nonsingular "scrambling" matrix 
S together with a matrix aT eg as described above. He then computes the 
matrix K = S G + aT eg. He then publishes K as his public encryption key. 
When someone wishes to send him a message, that person fetches K from 
the public directory, then encrypts his k-bit message m as 

c = m K + e e  

where ee is a randomly chosen pattern of = t - t or fewer rank errors. 
The legitimate receiver applies his fast decoding Jgorithm to this c to 
remove the error pattern m aT eg + ee (which has rank weight at most t) 
to obtain m S, and finally recovers the message m as (m S) S-1. 

There are two possible attacks on this modified scheme. The first is 
similar to that in [41 and 151 for the original scheme. The difference is that, 
with high probability, there will be no subset of k code coordinates that is 
error-free, which means that the cryptanalyst must search through all 
error patterns of rank te or less in some selected set of k coordinates. The 
number of k-tuples e over GF(qn) with r(e) I te is much greater than the 
number of such e with Hamming weight at most te when te < n/2. Thus, 
the complexity of this attacking algorithm for the rank metric is much 
greater than for the Hamming metric. The work function for the rank 
metric is 

where L(k, te) is the number of k-tuples e over GF(qn) with r(e)= k. This 
number is given by 

where 
(qk - l ) (qk - q) ... (qk - qi-1) [TI = (9' - l)(q' - q) ... (9' - qi-9 

is the number of i-dimensional subspaces of a k-dimensional vector space 
over GF(qn). 
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The second attack is for the cryptanalyst to try to determine from the 
public key K a generator matrix for the code for which he can find a 
decoding algorithm. The complexity of the best attack of this kind that we 
have been able to formulate is 

The complexity of this second attack is much greater than that of the first, 
but it must be remembered that the second attack needs to be carried out 
only once to solve any number of cryptograms whereas the first attack 
must be carried out for each cryptogram to be solved. 

W = L(k, tg) (qn - l)k n3. 

As a numerical example, consider the case where n = 20, k = 12 
and = 3. The code rate is then k/n = 3/5, i. e., the plaintext is expanded 
by a factor of 5/3. The size of the public key is n2 k = 4800 = 2l2 bits. The 
work functions for the first and second attack are about 2100 and 2290, 
respectively. [Note that the operations counted are in GF(2") rather than 
in GF(21.1 All parameters are substantially better than for the original 
McEliece system that uses codes based on the Hamming metric. 

5. EXTENSIONS OF THE RANK METRIC 

The rank metric matches [sl-cyclic shifting for any s in the sense that 
a vector x and its [sl-cyclic shift have the same rank norm. But it is also 
possible to introduce a new set of metrics that apply for specific values of s, 
as we shall now do. 

Consider now the mapping 'ps (where 0 I s c N) defined by 

This mapping is a bijection on FN but is nonlinear for s # 0. We will call 
the metric Ds defined by 

the metric on FNinduced by 'ps. Single errors in the induced metric Ds 
have the same structure C J D as for the rank metric except that the matrix 
J now may have any non-zero first column. One now considers this first 
column as representing an element of GF(qN), say x@], and forms 
subsequent elements xo[S], xo[2S], ... , q [ ~ - l ) S ] ,  then returns to the matrix 
representation. If one uses a normal-basis representation, then each 
subsequent column of the maxtrix is simply the cyclic shift by s positions 
of the components of the previous column. 

If a code I% is optimal f6r the rank metric, then the image code qS(Ft) 
is optimal for the induced metric Ds. Moreover, encoding and decoding 
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schemes for the original code in the rank metric are easily adapted to the 
image code in the induced metric. 

code. The following theorem is an immediate consequence. 
It was shown in [l] that h y  left ideal 'L of L"z] is a [l]-cyclic MRD 

Theorem 2: Let 'L be a left ideal of L"Z] and let 'L is an 
[s+l I-cyclic codes with maximal minimum distance for the induced metric 
DS. 

= cps('L ). Then 'L 

The choice s = N - 1 in Theorem 2 gives nonlinear codes over 
GF(q) that are cyclic in the usual sense and that have maximal minimum 
distance in the induced metric Ds. 

The public encryption key when the metric Ds is used in McEliece's 
cryptosystem is the matrix 

where, as above, G is the k x n generator matrix for a t-rank-error- 
correcting code, eg is a vector of rank norm tg, and (P,(G) is the matrix 
obtained by applying the map$ing qS to each row of G. The k-bit message 
m is encrypted as 

c = m Ks + &(el 

where e is a randomly chosen vector of rank norm at most t - tg. 

The use of these induced norms in the McEliece system allows one 
to increase the number of possible public encryption keys compared to the 
case where only the rank metric is used. For a fixed s # 0, the system based 
on the D, metric is equivalent to that based on the rank metric. W e  are 
currently investigating whether it would be possible to increase the 
security of the system by somehow making s part of the private key only. 

REMARK 

We point out that MRD codes can also be useful in implementing 
perfect local randomizers, Maurer and Massey's bound [61 on the degree 6 
of perfect local randomizers obtained with maximum-distance-separable 
(MDS) codes for the Hamming metric also applies to MRD codes, since 
MRD codes are also MDS. However, this bound can sometimes be 
improved for MRD codes. 



489 

REFERENCES 

[l] E. M. Gabidulin, "Theory of Codes with Maximum Rank Distance", 
Problems of InformationTransmission , vol. 21, no. 1, pp. 1-12, July, 1985 
(Russian Original, January-March, 1985). 
[2] R J. McEliece, "A Public-Key Cryptosystem Based on Algebraic Coding 
Theory", pp. 114-116 in DSN Progress Report 42-44, Jet Propulsion Lab., 
Pasadena, CA, January-February, 1978. 

[3] E. R Berlekamp, R. J. McEliece and H. C. A. van Tilborg, "On the 
Inherent Intractability of Certain Coding Problems", ZEEE Trans. Inf. Th., 
vol. IT-24, pp. 384-386, May 1978. 

[4] C. M. Adams and H. Meijer, "Security-Related Comments Regarding 
McEliece's Public-Key Cryptosystem", pp. 224-228 in Advances in 
Cryptology--CRYPT0 '87 (Ed. C. Pomerance), Lecture Notes in Computer 
Sa. No. 293. Heidelberg and New York Springer-Verlag, 1988. 

[51 P. J. Lee and E. F. Brickell, "An Observation on the Security of the 
McEliece Public-Key Cryptosystem", pp. 275-280 in Advances in 
Cryptology--EUROCRYPT '88 (Ed. C. Giinther), Lecture Notes in Computer 
Sci.  No. 330. Heidelberg and New York: Springer-Verlag, 1988. 

161 U. M. Maurer and J, L. Massey, "Perfect Local Randomness in Pseudo- 
Random Sequences, pp. 100-112 in Advances in Cryptology--CRYPT0 '89 
(Ed. G. Brassard), Lecture Notes in Computer sci. No. 435. Heidelberg and 
New York Springer-Verlag, 1990. 


	Ideals over a Non-Commutative Ringand their Application in Cryptology
	1. INTRODUCTION
	2. MATHEMATICAL PRELIMINARIES
	3. IDEALS ON L"Z] AS ERROR-CORRECTING CODES
	4. APPWCATION TO THE McELIECE PUBLIC-KEY CRYPTOSYSTEM
	5. EXTENSIONS OF THE RANK METRIC
	REFERENCES


