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theoretical and monoid properties; in particular we consider their idempotence
(a requirement in image segmentation). We characterize block splitting open-
ings (kernel operators) as operators splitting each block into its connected
components according to a partial connection; furthermore, block splitting
openings constitute a complete sublattice of the complete lattice of all open-
ings on partial partitions.

Our results underlie the connective approach to image segmentation intro-
duced by Serra.
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1 Introduction

In image processing, image segmentation means partitioning space into re-
gions, in such a way that each region is homogeneous (according to some
criterion) in the image. We illustrate in Figure 1 three examples of segmen-
tations of an electron micrograph image. Let us explain how this idea can be
formalized in terms of partitions.

Fig. 1 (From [32].) (a) Electron micrograph of concrete; (b,c,d) are segmentations of (a)
by: (b) the “jump” criterion of parameter 12; (c) the “smooth” criterion of parameter 6; (d)
the Boolean meet of the two criteria of (b) and (c).

Images can be modeled as functions E → T , where E is the space of points
and T is the set of image values (grey-levels or colours). Write P(E) for the
set of parts of E, and TE for the set of all functions E → T . According to
Serra [39], given an image F : E → T and a region A ∈ P(E) (not necessarily
connected), whether F is homogeneous on A or not, depends only on A and
on F . Thus we have a criterion, that is a map cr : TE ×P(E) → {0, 1}, where
for F : E → T and A ∈ P(E), we have cr[F,A] = 1 if F is homogeneous on A
according to cr, and cr[F,A] = 0 if not; such a criterion can take into account
the properties of the restriction of F to A or to its neighbourhood, but also
intrinsic properties of A such as shape or size. In practice, most homogeneity
criteria require connectedness (in a digital or topological sense), in other words
cr[F,A] = 1 implies that A is connected. Soille [41] summarizes conventional
requirements of segmentation as follows; given an image F : E → T :

1. A subset X of E that is not homogeneous for F must be split, leading to
a uniquely determined partition σ(X) of X.

2. The blocks of σ(X) are homogeneous (so they should not be split further).
3. If we merge two (or more) adjacent blocks of σ(X), the new merged block

is no more homogeneous.

Mathematically speaking, from the criterion cr and the image F , we derive
(condition 1) a set splitting operator σ defined on P(E), that associates to
every X ∈ P(E) a partition σ(X) of X; note that σ is uniquely determined
by cr and F . From the set splitting operator σ one derives the block splitting
operator β(σ) on partitions, that associates to every partition π of any set X
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the partition obtained by applying σ to each block of π separately; in other
words if π is considered as the set of its blocks, we have β(σ)(π) =

⋃

B∈π σ(B).
For the refinement ordering on partitions [26], we have β(σ)(π) ≤ π. Now
condition 2 means that for every X ∈ P(E), β(σ)(σ(X)) = σ(X); equivalently,
β(σ) is idempotent. Then condition 3 means that for every X ∈ P(E) and for
every partition π of X such that π > σ(X), we have β(σ)(π) < π; equivalently,
given π0 a partition of some X ∈ P(E), for every partition π of X such that
β(σ)(π0) < π ≤ π0, we must have β(σ)(π) < π.

Let us now briefly explain how the segmentations of Figure 1 were ob-
tained. A more detailed description is to be found in [39,32,30]. We assume
that the points are square pixels (i.e., E ⊆ Z2), with one of the two usual
adjacency relations on pixels, namely the 4-adjacency (horizontal or vertical
adjacency) or 8-adjacency (horizontal, vertical or diagonal adjacency); then
the neighbourhood of each pixel is a cross of size 5 (in 4-adjacency) or a 3× 3
square (in 8-adjacency); this determines a graph-theoretical connectivity pred-
icate for sets of pixels. In each of the three segmentations (b,c,d), we have a
criterion that leads to pixels being painted white or black; then the white con-
nected components, together with the black singletons, form the segmentation
partition.

– The segmentation (b) is obtained by the jump algorithm. Given an image
F , a regional minimum of level m is a connected set M of pixels on which
F has constant value m, and such that every pixel q /∈ M adjacent to
some pixel of M must have F (q) > m. Given a jump parameter h > 0,
we call a seed any connected set S of pixels such that for some level m, S
intersects a regional minimum M of level m, and for every p ∈ S we have
m ≤ F (p) < m+ h. We paint in white all seeds, and pixels not belonging
to any seed are painted in black. Here we took h = 12.

– For the segmentation (c) we take a slope parameter s > 0, and paint in
white all pixels p such that the restriction of F to the neighbourhood of
p is Lipschitz of parameter s (equivalently, for every pixel q adjacent to p,
|F (q)− F (p)| ≤ s); other pixels are painted in black. Here we took s = 6.

– In segmentation (d) we take the conjunction of the above two criteria. We
paint in white every seed S (for h) such that the restriction of F to the
neighbourhood of any pixel p ∈ S is Lipschitz of parameter s.

These segmentations follow the model of connective segmentation [39,32,30],
which imposes the following condition on the criterion cr: for every F : E → T ,
the family CFcr of all A ∈ P(E) such that cr[F,A] = 1 is a connection, see
Subsection 2.2; equivalently [39,30], the set of partitions of E with blocks in
CFcr is closed under the supremum operation (including the void supremum,
i.e., it contains the least partition made of singletons), see also Subsection 3.2.
Here the set splitting operator σ associates to X the greatest partition of X
with blocks in CFcr ; then β(σ) is idempotent and isotone [30], in other words it
is an opening (kernel operator), hence it satisfies the above requirements, in
particular β(σ)(π0) < π ≤ π0 ⇒ β(σ)(π) = β(σ)(π0).
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Although the aim of segmentation is the construction of a partition of E, in
the above mathematical analysis of its requirements we considered partitions of
any subset of E, in other words families of subsets of E (called blocks) that are
non-empty and mutually disjoint (but do not necessarily cover E). We call such
objects partial partitions of E [30]. The refinement order on partitions extends
to partial partitions, and they constitute a complete lattice that was studied
more than 30 years ago by Czekoslovak mathematicians: Dras̆kovic̆ová [8,9],
and to a lesser extent Sturm [42]. The properties of this lattice are summarized
in [30,31]. As can be seen there, and also throughout this paper, the lattice of
partial partitions is mathematically more versatile than the one of partitions.
Hence the wider framework of partial partitions is mathematically useful.

Note that partial partitions correspond to partial equivalence relations (i.e.,
symmetric and transitive binary relations), and the latter have been used in
programming semantics (cf. PER models, equilogical spaces) [24,33,1]. Fur-
thermore, universal algebra has studied weak congruences, that is, partial
equivalence relations compatible with the algebra operations; they were shown
to constitute an algebraic lattice [44,43]; a particular case is that of an algebra
without operation, giving the lattice of partial equivalence relations.

There are also practical reasons related to image segmentation justifying
the use of partial partitions instead of partitions. We gave some arguments in
[30]. But we can also look at the segmentations in Figure 1. In each of the three
segmentations (b,c,d), the objects are the white connected components, while
black points form the background. Formally, the segmentation is the partition
made of all white connected components and all black singletons; but then this
partition loses the distinction between a black singleton and a white connected
component consisting of an isolated singleton, i.e., between a background point
and an object made of a single point. The same loss of information occurs if
we consider the black zone as a single block. This leads us to consider that the
segmentation has produced in fact a partial partition whose blocks are only
the white connected components, while the black points, being outside the
support of the partial partition, constitute the “background”. Thus Serra’s
connective segmentation approach [39] has been generalized into the one of
partially connective segmentation [32,30], where partitions are replaced by
partial partitions, and connections by partial connections.

Therefore, the analysis of image segmentation methods, in particular the
three requirements discussed above, leads us to investigate block splitting op-
erators on partial partitions, that is, anti-extensive maps that act by splitting
each block independently, and conditions leading to their idempotence. In this
respect, what can we gain from previous works ? If we look at the mathe-
matical literature on partitions, after the seminal works of Dubreil [10] and
Ore [26], most studies have dealt with conditions for some identities to hold
(such as the modular one), geometrical and combinatorial properties of the
lattice of partitions of a set of size n, etc. The works of Dras̆kovic̆ová [8,9]
and Sturm [42] on partial partitions follow the same path. However, the study
of operators (maps) on (partial) partitions with given lattice-theoretical or
monoid properties, has been largely neglected. The only work we are aware
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of is that of Jordens and Sturm [19,20], who linked Moore families (in other
words, closure operators) on partitions with those on sets. In the literature on
image segmentation, some operators on partial partitions have been designed,
but their algebraic properties were not investigated. This is particularly the
case with recent works by Serra [38] and Soille [41], whose operators have in
fact very interesting properties that we will analyse in the second paper.

The purpose of this work divided into two parts is the study of block
splitting operators on partial partitions, and conditions for their idempotence.
Most of the idempotent operators that we obtain follow the constructions
given in the framework of image segmentation [38,39,41]; some of them extend
to partial partitions some techniques previously used for processing binary
or grey-level images [25], that had also been analysed in a general lattice-
theoretical framework [28]. In fact, the idempotent operators that we obtain
are either openings, or order-theoretical generalizations of openings that the
author studied long ago under the names of open-condensations [27] and open-
overcondensations [28].

This work belongs to an ongoing study of lattice-theoretical and monoid
properties of maps on partial partitions. It follows a paper analysing adjunc-
tions (residuations) on partitions and partial partitions [31]. Future works
will study extensive operators on partial partitions, for example by closing
(as in [19,20]) or clustering blocks; this topic is relevant for region growing
approaches to image segmentation.

1.1 Paper organization

Subsection 1.2 summarizes our terminology; it follows [31], and mixes classical
lattice-theoretical terminology with that used in mathematical morphology (a
lattice-based approach in image processing), cf. Table 1; we also recall the
definition of basic morphological operators on sets. Then Section 2 gives the
mathematical background: first the basic properties of the lattice of partial
partitions, then those of partial connections. Section 3 studies block splitting
operators on partial partitions. In particular, we show that a block splitting
opening is always the decomposition of blocks into their connected compo-
nents according to a partial connection. Finally Section 4 gives a provisional
conclusion to this first paper. We give as appendix a table of our notation (in
the order of first appearance).

The second paper will consider idempotent non-isotone block splitting op-
erators, in particular those introduced by Serra [38] and Soille [41].

1.2 Terminology

We adopt the terminology of [31], which is a compromise between that of clas-
sical lattice theory [4,6,13,14] and that of mathematical morphology [22,34,
35,16,40], a branch of image processing based on a lattice approach. Indeed,
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mathematical morphology has a rich repertoire of maps with various lattice-
theoretical and monoid properties, and many of them have no established
denomination in classical lattice theory. However the two terminologies some-
times conflict, so we have avoided using confusing terms. Table 1 compares
the two terminologies, and gives in italics our choice.

The only order-theoretical structures that we consider are posets and com-
plete lattices ; in other words, whenever we mention “the lattice X”, this means
implicitly “the complete lattice X”. Thus our terminology is given in this gen-
eral framework: a notion involving order only is defined for any poset, while
a notion involving suprema and infima is defined for any complete lattice; it
is never restricted to the power-set lattice P(E). For example, many authors
speak of a closure operator or a Moore family “on sets” or “on E” (where E
is an arbitrary set), but for us they are a closure operator on the poset P(E)
or a Moore family of the complete lattice P(E).

Note also that in a complete lattice, whenever we consider a “complete”
property in relation to arbitrary suprema (resp., infima), this includes also the
empty supremum (resp., infimum), in other words the least (resp., greatest)
element. This applies in particular to the notions of Moore family and dilation
(for suprema), dual Moore family and erosion (for infima), complete sublattice
and complete morphism (for both suprema and infima).

Let us now introduce our general notation; specific notation introduced
in our work is summarized in a table at the end of this paper. Throughout,
we consider a “space” E, whose elements are called “points”; in fact E is an
arbitrary set of size at least 2, although in practice E will be the Euclidean
space Rn, the digital space Zn, or a bounded interval in such spaces. Points
of E will be written p, q, r, . . ., while subsets of E will be designated by upper-
case letters A,B, . . . , Y, Z (except the empty set ∅). Partial partitions of E
will be written π, π′, π1, π

1, . . .. Given a set T of values, functions E → T will
be written F,G,H, . . ..

An abstract poset (or complete lattice) will be written L,M, . . ., and its
elements will be denoted with lower-case letters a, b, . . . , y, z, except the least
and greatest elements written 0 and 1 respectively; subsets of L will be des-
ignated by upper-case letters A,B, . . . , Y, Z; we write ≤ for the order on the
poset.

Given two sets A and B, we will write (α, β) : A ⇀↽ B, or say that (α, β)
is A ⇀↽ B, if α is a map A→ B and β is map B → A.

Given two complete lattices L and M (equal or different), a map L → M
is called an operator. Operators will be designated by lower-case Greek letters
α, . . . , ω (except π, reserved for partial partitions). We generally use γ for
an opening and ϕ for a closure. We write ψ(x) for the image of x by ψ (for
example [14] writes xψ); thus the composition of operators is read from right
to left: given ψ : L → M and ξ : M → N , the composition of ψ followed
by ξ is ξψ : L → N : x 7→ ξ(ψ(x)). The set ML of operators L → M , with
componentwise order: ψ ≤ ξ iff ψ(x) ≤ ξ(x) for all x ∈ L, is a complete lattice
with componentwise supremum and infimum:

[
∨

i∈I ψi
]

(x) =
[
∨

i∈I ψi(x)
]

,
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Table 1 Morphological and alternative terminology for lattice-theoretical notions (in ital-
ics, the terminology used in this paper)

Morphological Other Meaning
lower set [13] down-set [4] S : y ≤ x ∈ S ⇒ y ∈ S

upper set [13] up-set [4] S : y ≥ x ∈ S ⇒ y ∈ S

inf-closed family, closure system [13], F : X ⊆ F ⇒
∧

X ∈ F
Moore family [3] closure subset [4],

closure range

sup-closed family, kernel system, F : X ⊆ F ⇒
∨

X ∈ F
dual Moore family [3] dual closure subset [4]

(not defined) directed subset [13] D : p, q ∈ D ⇒
∃ r ∈ D, p, q ≤ r

operator [16] map [6], mapping [4], ψ : L→M
function [13]

increasing [22,34] isotone [4] ψ : x ≤ y ⇒ ψ(x) ≤ ψ(y)

decreasing [16] antitone [4] ψ : x ≤ y ⇒ ψ(x) ≥ ψ(y)

dilation [35] complete join-morphism δ : δ
(
∨

i∈I
xi
)

=
∨

i∈I
δ(xi)

erosion [35] complete meet-morphism ε : ε
(
∧

i∈I
xi
)

=
∧

i∈I
ε(xi)

complete morphism both dilation and erosion

adjunction [13] residuation [4] (ε, δ) : δ(x) ≤ y ⇔ x ≤ ε(y)

lower adjoint [13] residuated [4] δ : (ε, δ) adjunction

upper adjoint [13] residual [4] ε : (ε, δ) adjunction

extensive [2,22] increasing [6] ψ : ψ(x) ≥ x

anti-extensive [22] intensive, contracting, ψ : ψ(x) ≤ x
decreasing

idempotent ψ : ψ(ψ(x)) = ψ(x)

closing [22] closure [4] ϕ : x ≤ ϕ(y) ⇔ ϕ(x) ≤ ϕ(y)

opening [22] dual closure [4], γ : x ≥ γ(y) ⇔ γ(x) ≥ γ(y)
kernel operator [13]

invariance domain fixpoint set {x ∈ L | ψ(x) = x}

identity identity operator id : x 7→ x

monoid of operators L→ L M ⊆ LL : id ∈ M,
ψ, ξ ∈ M ⇒ ψξ ∈ M

and similarly for
∧

. The isotone operators constitute a complete sublattice of
the lattice of operators.

When an operator is L→ L, we say that it is “on L”. The set of operators
on L, with the law of composition, is a monoid (i.e., composition is associative
and admits the identity operator as neutral element), and the set of isotone
operators is a sub-monoid of it. The invariance domain of an operator ψ : L→
L is the set Inv(ψ) = {x ∈ L | ψ(x) = x}. Recall that a monoid morphism is a
map from a monoid to another one (or to itself), that is compatible with the
composition law, and that preserves the neutral element.

Let us finally make some remarks on the various notions given in Table 1.
The definition of closure given there, namely for all x, y ∈ L, x ≤ ϕ(y) ⇔
ϕ(x) ≤ ϕ(y), is equivalent to the classical one: ϕ is an isotone, extensive and
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idempotent operator on L. For a recent survey on closures, see [11]. Dually,
the definition given for an opening, namely x ≥ γ(y) ⇔ γ(x) ≥ γ(y), is
equivalent to the usual one: γ is an isotone, anti-extensive and idempotent
operator.

A Moore family or dual Moore family is itself a complete lattice for the
order ≤. Note that a subset F of L is a Moore family iff it is the invariance
domain of a closure, while it is a dual Moore family iff it is the invariance
domain of an opening. The set of Moore families (resp., dual Moore families)
of L is closed under intersection in P(L). In the lattice of operators on L, the
set of closures is closed under infima and the set of openings is closed under
suprema. The map ψ 7→ Inv(ψ) gives a dual isomorphism between the complete
lattice of Moore families and the one of closures, and an isomorphism between
the complete lattice of dual Moore families and the one of openings: for two
closures ϕ,ϕ′ and two openings γ, γ′, we have

ϕ ≤ ϕ′ ⇐⇒ Inv(ϕ) ⊇ Inv(ϕ′) and γ ≤ γ′ ⇐⇒ Inv(γ) ⊆ Inv(γ′) .

A dilation δ must satisfy δ(0) = 0, while an erosion must satisfy ε(1) = 1.
Dilations and erosions are isotone. In an adjunction (ε, δ), ε is an erosion and
δ is a dilation, δεδ = δ, εδε = ε, δε is an opening and εδ is a closure [13,16].
Conversely, given a dilation δ : L → M , there is a unique erosion ε : M → L
such that (ε, δ) is an adjunction, and given an erosion ε : M → L, there is
a unique dilation δ : L → M such that (ε, δ) is an adjunction. Note that
(ε, δ) is an adjunction iff δ and ε are isotone, δε is anti-extensive and εδ is
extensive. The set of adjunctions constitutes a dual isomorphism between the
Moore family of erosions and the dual Moore family of dilations.

Let us now recall the basic morphological operators on sets. Our terminol-
ogy and notation follows that of [3,16], contradicting slightly that of [22,34,35,
40]. We suppose that the space E is Euclidean (E = Rn) or digital (E = Zn).
For every p ∈ E, the translation by p is the map E → E : x 7→ x + p; it
transforms any subset X of E into its translate by p, Xp = {x + p | x ∈ X}.
Then the Minkowski addition ⊕ [23] and Minkowski subtraction ⊖ [15] are
defined as follows: for any X,B ∈ P(E) we set

X ⊕B =
⋃

b∈B

Xb =
⋃

x∈X

Bx = {x+ b | x ∈ X, b ∈ B} ;

X ⊖B =
⋂

b∈B

X−b = {p ∈ E | Bp ⊆ X} .

We define then the two operations ◦ and • by

X ◦B = (X ⊖B)⊕B =
⋃

{Bp | p ∈ E, Bp ⊆ X}

and X •B = (X ⊕B)⊖B .

This leads then to four operators on P(E): the dilation by B, δB : X 7→ X⊕B;
the erosion by B, εB : X 7→ X⊖B; the opening by B, γB = δBεB : X 7→ X◦B;
the closing by B, ϕB = εBδB : X 7→ X •B. The set B is called the structuring
element. Clearly, (εB , δB) is an adjunction, δB is a dilation, εB is an erosion,
γB is an opening and ϕB is a closure.
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2 Background

Subsection 2.1 recalls basic facts [8,9,30,31] about the lattice of partial parti-
tions. Then Subsection 2.2 recalls the definition and basic properties of partial
connections and of the lattice that they constitute [30].

2.1 The lattice of partial partitions

We summarize from [30,31] the essential facts about partial partitions and the
complete lattice that they make; we follow the same terminology and notation.
See also [8,9] for further results.

Every binary relation R on the space E can be identified with the set of
ordered pairs (x, y) ∈ E2 such that x R y; the support of R is the subset
supp(R) of E comprising all p ∈ E such that there is some q ∈ E with p R q
or q R p. The support of a family B of subsets of E is the set supp(B) =

⋃

B
comprising all points covered by at least one element of B.

A partial equivalence on E is a binary relation on E that is symmetric and
transitive. Equivalently, it is a relation that forms an equivalence relation on
its support. A partial equivalence is an equivalence relation iff it is reflexive,
iff its support is E. A partial partition of E is a family π of subsets of E that
are non-empty and mutually disjoint, in other words, such that every point of
E belongs to at most one member of π. Equivalently, π is a partition of its
support supp(π). Every member of a partial partition is called a block [26]. A
partial partition is a partition of E iff its support is E. There is a natural one-
to-one correspondence between partial partitions of E and partial equivalences
on E; write PE(π) for the partial equivalence on E corresponding to a partial
partition π of E; then we have supp(PE(π)) = supp(π).

With every partial partition π is associated the partial partition class map
Clπ : E → P(E) given by Clπ(p) = ∅ if p /∈ supp(π), while for p ∈ supp(π),
Clπ(p) is the unique block of π to which p belongs; then Clπ(p) is called the
class of p in π. See [30] for a characterization of partial partition class maps.
Now the partial equivalence relation PE(π) corresponding to π satisfies:

∀ p, q ∈ E, p PE(π) q ⇐⇒ q ∈ Clπ(p) .

Write Π(E) for the set of all partitions of E, and Π∗(E) for the set of all
partial partitions of E. We have Π∗(E) =

⋃

A∈P(E)Π(A). Now Π(∅) = Π∗(∅)

has a unique element, the empty partition having no block, we write it Ø.
Then Ø ∈ Π∗(E), and for every p ∈ E we have Clø(p) = ∅. Formally, Ø is
identical to the empty set ∅, but we use a slightly modified notation in order
to distinguish the two roles of the empty set, as least element ∅ of the lattice
P(E), and as least element Ø of the lattice Π∗(E). For A ∈ P(E), let 0A be
the partition of A into its singletons, and 1A the partition of A into a single
block (or no block if A = ∅):

0A =
{

{p} | p ∈ A
}

and 1A = {A} \ {∅} =

{

{A} if A 6= ∅ ,
Ø if A = ∅ .

(1)
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Following [26], we call 0A the identity partition of A and 1A the universal
partition of A. Note that 0∅ = 1∅ = Ø.

The well-known refinement ordering on partitions [26] extends to partial
partitions. Given π1, π2 ∈ Π∗(E), we say that π1 is finer than π2, or that π2
is coarser than π1, and write π1 ≤ π2 (or π2 ≥ π1), iff every block of π1 is
included in a block of π2:

π1 ≤ π2 ⇐⇒ ∀C1 ∈ π1, ∃C2 ∈ π2, C1 ⊆ C2 .

The bijections π ↔ PE(π) ↔ Clπ between partial partitions, partial equiv-
alences and partial partition class maps induces a one-to-one correspondence
between the refinement order on partial partitions, the inclusion order on par-
tial equivalences, and the inclusion of class maps: ∀π1, π2 ∈ Π∗(E),

π1 ≤ π2 ⇐⇒ PE(π1) ⊆ PE(π2) ⇐⇒ ∀ p ∈ E, Clπ1
(p) ⊆ Clπ2

(p) . (2)

Therefore partial partitions, ordered by refinement, constitute a complete lat-
tice isomorphic to the one of partial equivalences. Write

∨

and
∧

for the
supremum and infimum operations on the complete lattice

(

Π∗(E),≤
)

. The
least (finest) and greatest (coarsest) partial partitions are Ø and 1E . Given a
family {πi | i ∈ I} of partial partitions, the class map of their infimum

∧

i∈I πi
is given by intersection of the respective class maps:

∀ p ∈ E, Cl∧
i∈I

πi
(p) =

⋂

i∈I

Clπi(p) . (3)

The class map of their supremum
∨

i∈I πi is given by chaining [26] class maps:
for p, q ∈ E, q ∈ Cl∨

i∈I
πi
(p) iff there is some integer n ≥ 1 and a sequence

x0, . . . , xn in E with x0 = p and xn = q, such that for each t = 1, . . . , n
there is some i(t) ∈ I with xt ∈ Clπi(t)(xt−1). Note that (3) and the chaining
construction are also valid for I empty: the empty infimum gives as point
class the empty intersection, that is, Cl1E (p) = E, while chaining in an empty
family of partitions does not give any point, and we get Clø(p) = ∅.

Given a family B of non-empty subsets of E and two points p, q ∈ E, we
say that p and q are chained by B if there are B1, . . . , Bn ∈ B (n ≥ 1) such
that p ∈ B1, q ∈ Bn and for i = 2, . . . , n we have Bi−1 ∩ Bi 6= ∅. Then in
a supremum

∨

i∈I πi of partial partitions, two points p, q ∈ E belong to the
same block iff they are chained by

⋃

i∈I πi, see Figure 2.
Note that when the partial partitions have pairwise disjoint supports (i 6=

j ⇒ supp(πi) ∩ supp(πj) = ∅), their supremum is their union:
∨

i∈I πi =
⋃

i∈I πi. In particular, for any π ∈ Π∗(E) we have π =
⋃

C∈π 1C =
∨

C∈π 1C .
For A ∈ P(E), the non-empty supremum and infimum operations inΠ∗(A)

are inherited from Π∗(E); in other words for a non-void {πi | i ∈ I} ⊆ Π∗(A),
∨

i∈I πi and
∧

i∈I πi are the same in Π∗(A) and in Π∗(E).
A partial partition on E is a partition iff it majorates 0E :

Π(E) = {π ∈ Π∗(E) | π ≥ 0E} .
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p

q

Fig. 2 A block (shown as a rounded rectangle)
of the supremum of a family of partial parti-
tion is obtained by chaining blocks (shown as
ellipses) of these partitions.

Then
(

Π(E),≤
)

is a complete lattice whose non-empty supremum and infi-
mum operations are inherited from Π∗(E); the least and greatest elements
of Π(E) are 0E and 1E . For A ∈ P(E), the non-empty supremum and in-
fimum operations in Π(A) are inherited from Π∗(A), hence from Π∗(E); in
other words a non-void supremum or infimum of partitions of A is the same
in Π(A), in Π∗(A) or in Π∗(E).

Given a non-empty family {πi | i ∈ I} of partial partitions of E such that
for every p ∈ E, the set {Clπi(p) | i ∈ I} is directed, we have [30,31]:

∀ p ∈ E, Cl∨
i∈I

πi
(p) =

⋃

i∈I

Clπi(p) ; (4)

∀π ∈ Π∗(E), π ∧
(

∨

i∈I

πi

)

=
∨

i∈I

(π ∧ πi) . (5)

Two conditions guaranteeing that {Clπi(p) | i ∈ I} is directed for every p ∈ E,
are: (A) the set {πi | i ∈ I} is directed; (B) for any two distinct i, j ∈ I, every
non-singleton block of πi is disjoint from every non-singleton block of πj .

An example of (4) for condition B is that for B ∈ P(E) and π ∈ Π∗(E),
we have π ∨ 0B = π ∪ 0B\supp(π). One of (5) for condition B is that

∀π, π′ ∈ Π∗(E), π ∧ π′ =
∨

B∈π′

(π ∧ 1B) =
⋃

B∈π′

(π ∧ 1B) . (6)

The support map supp : Π∗(E) → P(E) : π 7→ supp(π) is a complete
morphism. Its upper adjoint is the erosion

1• : P(E) → Π∗(E) : A 7→ 1A ,

while its lower adjoint is the dilation

0• : P(E) → Π∗(E) : A 7→ 0A ,

in other words, for π ∈ Π∗(E) and A ∈ P(E), supp(π) ⊆ A ⇔ π ≤ 1A and
A ⊆ supp(π) ⇔ 0A ≤ π. Since 1• is an erosion and 0• is a dilation, we have:

∀B ⊆ P(E), 0⋃B =
∨

B∈B

0B and 1⋂B =
∧

B∈B

1B . (7)
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Furthermore, the map supp is surjective, while the maps 1• and 0• are injec-
tive. Thus 1• and 0• are order-embeddings of the poset P(E) into the poset
Π∗(E): for A,B ∈ P(E), A ⊆ B ⇔ 0A ≤ 0B ⇔ 1A ≤ 1B .

2.2 Partial connections

We recall from [30] the definition and basic properties of partial connections,
and of the complete lattice that they make. Unless we mention another source,
all results and examples come from [30]. At the end of this subsection, Corol-
lary 3 is a new result.

Write S(E) for the family of all singletons in E: S(E) =
{

{p} | p ∈ E
}

.
Formally, S(E) is the same set as 0E , however we will use the notation 0E in
the case of (partial) partitions, and S(E) in relation to (partial) connections.

A partial connection on P(E) is a family C ⊆ P(E) such that ∅ ∈ C, and
for any B ⊆ C such that

⋂

B 6= ∅, we have
⋃

B ∈ C. The partial connection
C is a connection on P(E) if for all p ∈ E, {p} ∈ C (some authors [29,17,
5] call it a connectivity class). Note that C ⊆ P(E) is a partial connection iff
C ∪ S(E) is a connection; then C ∪ S(E) is the least connection containing C.
The elements of C are said to be C-connected, and when there is no ambiguity
about the underlying partial connection C, we will call them connected.

The notion of connection unifies previous definitions of connectivity. For
example, in a topological space, the family of connected sets (i.e., that cannot
be partitioned by two open sets), and the family of arc-connected sets are
two connections; the family of open connected sets and the one of open arc-
connected sets are partial connections (in a metric space, the two coincide). In
a graph, path-connected sets (i.e., sets of vertices where any two vertices are
connected by a path), form a connection. Many other examples of (partial)
connections have been given in [36,29,17,5,30], we will will describe some of
them later.

Suppose that to every point p ∈ E is associated an opening γp on P(E),
and consider then the following properties that they may satisfy:

(C0a) For any p ∈ E, γp({p}) = {p}.
(C0b) For any p ∈ E and X ∈ P(E), p ∈ X ⇒ p ∈ γp(X).
(C1a) For any p ∈ E and X ∈ P(E), p ∈ X or γp(X) = ∅.
(C1b) For any p ∈ E and X ∈ P(E), p ∈ γp(X) or γp(X) = ∅.
(C2a) For any p, q ∈ E and X ∈ P(E), q ∈ γp(X) ⇒ γp(X) = γq(X).

Then (C0a) is equivalent to (C0b), and (C1a) is equivalent to (C1b).
A system of partial connection openings on P(E), (γp, p ∈ E), associates to

each p ∈ E an opening γp on P(E), such that (C1a) (equivalently, (C1b)) and
(C2a) are satisfied; each γp is called the partial connection opening at p. If the
γp satisfy also (C0a) (equivalently, (C0b)), then (γp, p ∈ E) is called a system
of connection openings on P(E), and the γp are called connection openings.
Note that in a system of connection openings (i.e., when (C0a)/(C0b) holds),
(C2a) can be replaced by:
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(C2b) For any p, q ∈ E and X ∈ P(E), γp(X)∩γq(X) 6= ∅ ⇒ γp(X) = γq(X).

There exists a one-to-one correspondence between partial connections on
P(E) and systems of partial connection openings on P(E). To every partial
connection C corresponds the system of partial connection openings (γp, p ∈ E)
given by

∀ p ∈ E, ∀X ∈ P(E), γp(X) =
⋃

{C ∈ C | p ∈ C, C ⊆ X} ,

and in fact: either the set {C ∈ C | p ∈ C, C ⊆ X} is empty and γp(X) = ∅, or
γp(X) is the greatest element of that set {C ∈ C | p ∈ C, C ⊆ X}. Conversely,
to every system of partial connection openings (γp, p ∈ E) corresponds the
partial connection

C = {γp(X) | p ∈ E, X ∈ P(E)} .

Furthermore, C is a connection iff the corresponding (γp, p ∈ E) is a system of
connection openings on P(E).

Let C be a partial connection on P(E). For any X ∈ P(E), call a C-
component of X, or connected component of X according to C, any C ∈ C
with C 6= ∅ and C ⊆ X, which is maximal for inclusion: ∀C ′ ∈ C, C ⊆ C ′ ⊆
X ⇒ C ′ = C. This corresponds to the usual notion of connected component
in topology.

Proposition 1 Let C be a partial connection on P(E). For any X ∈ P(E),
the C-components of X are the γp(X), p ∈ X, for which γp(X) 6= ∅. They

constitute a partial partition PCC(X), whose partial partition class map is
X → P(X) : p 7→ γp(X). When C is a connection, PCC(X) is a partition of X.

The partial partition PCC(X) is isotone in X: X ⊆ Y ⇒ PCC(X) ≤ PCC(Y ).

Note that PCC(X) is the finest partial partition π of X such that every
C ∈ C ∩ P(X) is included in a block of π, and it is also the coarsest partial
partition of X whose blocks belong to C.

Let us now give some examples of partial connections. Take E = Rn or Zn,
provided with a standard connection Cstd (the topological or arc connectivity
for Rn, the digital connectivity based on the 4 or 8-adjacency on Z2, the
6, 18 or 26-adjacency on Z3, etc.). Choose a non-void B ∈ Cstd. Then the
set C∗

B of all Z ∈ Cstd such that Z ◦ B = Z (i.e., all connected unions of
translates of B) forms a partial connection; for X /∈ C∗

B , the C∗
B-components

of X are the Cstd-components of X ◦ B, see Figure 3. The partial connection
C∗
B allows to decompose a set X into its “wide” parts, eliminating “narrow”

portions and sharp corners. In fact, one has usually considered the connection
CB = C∗

B ∪ S(E) [29].
Next, take B ∈ Cstd containing the origin. The dilation by B is extensive

and it preserves Cstd: for X ∈ Cstd, X ⊆ X ⊕ B and X ⊕ B ∈ Cstd. Then the
set CB of all X ∈ P(E) such that X ⊕ B ∈ Cstd is a connection containing
Cstd [36]. For X /∈ CB , the CB-components of X are obtained by intersecting
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X
B Fig. 3 Left: the structuring element B ∈ Cstd

is a disk. Right: the C∗
B
-components of the

bowtie X are the two Cstd-components of its
opening X ◦ B (shown in grey). The points of
the residual X\(X◦B) (shown in black) do not
belong to any C∗

B
-component, but they consti-

tute singleton CB-components.

B

1

1

1

2
2

3
3

Fig. 4 Top left: the structuring element B ∈ Cstd is a disk centered about the origin (shown
as a black dot). Top right: the set X. Bottom left: the dilate X ⊕ B (in grey, with X in
black) has three connected components. Bottom right: the trace on X of the three connected
components of X ⊕B are the three CB-components of X.

with X the Cstd-components of X ⊕ B, see Figure 4. This connection allows
to cluster neighbouring connected components of a set.

The above examples retain some similarity with the usual notion of con-
nectivity, but there are stranger instances of partial connections, for example
[29]: the family CnNLS of all subsets of Rn that are not linearly separable (i.e.,
such that there is no hyperplane disjoint from the set that separates it into two
nonvoid parts), is a connection comprising all topologically connected sets. We
show in Figure 5 a “pie” cut into three connected parts, such that the union
of any two parts is “disconnected”, but the union of all three is again “con-
nected”: this is incompatible with a connectivity arising from a topology or a
graph adjacency.

BA

C

BA A

C

B

C

Fig. 5 In the connection C2
NLS

of all non linearly separable sub-
sets of R2, we have A,B,C ∈
C2
NLS

, then A∪B,B∪C,A∪C /∈

C2
NLS

but A ∪B ∪ C ∈ C2
NLS

.



15

Dual Moore families are also partial connections; more precisely, a subset
M of P(E) is a dual Moore family of P(E) iff it is a partial connection such
that every set has at most one M-component; given the opening γ such that
Inv(γ) = M, for every X ∈ P(E), the unique M-component of X is γ(X) if
γ(X) 6= ∅, while there is none if γ(X) = ∅. For example in Figure 3, taking for
γ the opening by B, the unique M-component is the whole grey subset of X.

A particular case is when M = {∅}∪U , where U is an upper set. Thus the
partial connection contains, besides the empty set, all subsets of E that are
“large enough”. For example:

– For a discrete space E, given an integer n > 1, all subsets of E of size ≥ n.
– For a fixed A ∈ P(E), all subsets of E containing A.
– Given an isotone operator ψ on P(E), all X ∈ P(E) such that ψ(X) 6= ∅;

for instance, if E = Rn or Zn and ψ is the erosion by B, ψ(X) = X ⊖ B,
this gives all sets wide enough to contain a translate of B.

– Given a metric on E, all subsets of E whose diameter exceeds some fixed
value.

These families are not very interesting taken alone; however they can be useful
if we take the intersection of the Moore family with the standard connection
Cstd, for example: all connected sets whose diameter exceeds a given threshold.

Indeed, such an intersection gives a partial connection. More generally,
any intersection of connections on P(E) is a connection on P(E), and any
intersection of partial connections on P(E) is a partial connection on P(E),
including the empty intersection P(E) that is a connection, hence a partial
connection.

Thus intersection is a very useful way for generating new partial connec-
tions from existing ones. For example in Figure 1 we obtained a new segmenta-
tion by an infimum of connective criteria, i.e., by an intersection of connections
CFcr . Also, the partial connection of Figure 3 is the intersection of the standard
connection Cstd and of the dual Moore family consisting of all Z ∈ P(E) such
that Z ◦ B = Z. Other examples can be given, for example the partial con-
nection made of all Z ∈ Cstd such that Z ⊖B 6= ∅, in other words such that Z
contains at least one translate of B.

Now given a family B of subsets of E, we define Con(B), the connection gen-
erated by B, as the least connection containing B; we define similarly Con∗(B),
the partial connection generated by B, as the least partial connection contain-
ing B. Obviously, Con(B) = Con(Con∗(B)) = Con∗(B) ∪ S(E).

Let Γ (E) be the set of all connections on P(E), and Γ ∗(E) the set of all
partial connections on P(E). Then Γ (E) and Γ ∗(E), ordered by inclusion,
are atomistic complete lattices. In both the infimum operation is given by the
intersection, including the empty intersection, or greatest element P(E). The
supremum operation is given, in Γ (E), by the connection generated by the
union, while in Γ ∗(E), it is the partial connection generated by the union.

The intersection of partial connections can also be described in terms of
systems of partial connection openings. Given two partial connections C and C′

with systems of partial connection openings (γp, p ∈ E) and (γ′p, p ∈ E), then
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C ⊆ C′ iff for every p ∈ E we have γp ≤ γ′p. Given a non-void family Ci (i ∈ I,
I 6= ∅) of partial connections with systems of partial connection openings
(γip, p ∈ E), then

⋂

i∈I Ci has the system of partial connection openings (γp, p ∈
E) such that for every p ∈ E, γp is the greatest opening on P(E) that is
≤

∧

i∈I γ
i
p, in other words, γp is the infimum, in the lattice of openings on

P(E), of the γip, i ∈ I.
A supremum of partial connections has no straightforward expression in

terms of partial connection openings. However we have a nice result concerning
the partition into connected components:

Proposition 2 For any A ∈ P(E), the map

Γ ∗(E) → Π∗(A) : C 7→ PCC(A)

is a dilation. The restriction to Γ (E) of the map C 7→ PCC(A) is a dilation
Γ (E) → Π(A).

This means that given a family Ci (i ∈ I) of partial connections, and
C = Con∗

(
⋃

i∈I Ci
)

, PCC(A) =
∨

i∈I PC
Ci(A); in particular for I empty, we

have PC{∅}(A) = Ø.
Note that [21] showed that the map associating to every topological space

the partition of its connected components, preserves the coarse-to-fine order-
ing: a finer (i.e., greater) topology leads to a finer (i.e., smaller) partition into
connected components.

A consequence of this proposition is that given a non-void family B of non-
void subsets of E, Con∗(B) is the set of all X ∈ P(E) that are chained by B ∩
P(X). In other words, the construction of a supremum of partial connections
uses the same chaining operation as in a supremum of partial partitions. This
“coincidence” had been remarked previously in the case of connections and
partitions [29,39].

In [12] a “connectivity system” is built from a family B ⊆ P(E); it consists
in all subsets X of E such that any two distinct points of X are chained by
blocks in B ∩ P(X), in other words it is Con(B), the connection generated by
B.

Note that there is no analogue of Proposition 2 for the infimum operation.
Combining Proposition 2 with the fact that ClPCC(A)(p) = γp(A) (see Propo-
sition 1), and with (4) in condition A below it, we get:

Corollary 3 Given a directed family Ci (i ∈ I) of partial connections with
systems of partial connection openings (γip, p ∈ E), and their supremum C =

Con∗
(
⋃

i∈I Ci
)

with system of partial connection openings (γp, p ∈ E), then for
any p ∈ E and A ∈ P(E) we have γp(A) =

⋃

i∈I γ
i
p(A).

3 Block splitting operators and openings

We consider anti-extensive operators on partial partitions, that operate by
splitting each block independently. We are particularly interested in the design
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of idempotent operators. From a practical point of view, such a block splitting
operator is often derived from an image F : E → T and a criterion cr, then
it is applied to the universal partition 1E to produce the partial partition
representing the segmentation of the image F on E.

Subsection 3.1 studies the relations between a set splitting operator and the
resulting block splitting operator on partial partitions. Subsection 3.2 charac-
terizes block splitting openings, they coincide with operators splitting each
block into its C-components for a partial connection C; this result is related to
another characterization of connections and partial connections [39,30]. These
operators underlie Serra’s approach to segmentation [32,39].

For any complete lattice L, write AE(L) for the set of anti-extensive oper-
ators on L. A general reminder: AE(L) is a complete lattice, it has the same
non-void supremum and infimum operations as the power lattice of all op-
erators L → L; both lattices have also the same empty supremum, or least
element, namely the constant operator x 7→ 0. However the empty infimum,
or greatest element, is the identity operator id : x 7→ x in AE(L), while in the
lattice of all operators, it is the constant operator x 7→ 1. Write AEI(L) for
the set of isotone anti-extensive operators on L; it is a complete sublattice of
AE(L).

3.1 Set splitting and block splitting

Let us start with a few technical details about the family of partial partitions
that are below a given partial partition. Let us fix π∗ ∈ Π∗(E). For any
π ∈ Π∗(E) such that π ≤ π∗, the blocks of π∗ induce a partition of π; for
any B ∈ π∗, the restriction of π to B is the set [π]B of blocks of π that are
included in B:

π ≤ π∗, B ∈ π∗ : [π]B = π ∩ P(B) = π ∧ 1B . (8)

By extension, we set [π]∅ = Ø. In term of point classes, we have:

π ≤ π∗, B ∈ π∗, p ∈ E : Cl[π]B (p) =

{

Clπ(p) if p ∈ B ,
∅ if p /∈ B .

(9)

Then the [π]B , B ∈ π∗, are pairwise disjoint, more precisely they have pairwise
disjoint supports, and their union gives π:

π ≤ π∗ : π =
⋃

B∈π∗

[π]B =
∨

B∈π∗

[π]B . (10)

The restriction to a block B is compatible with refinement order:

π, π′ ≤ π∗ : π ≤ π′ ⇐⇒
(

∀B ∈ π∗, [π]B ≤ [π′]B

)

. (11)
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In particular, π = π′ iff for all B ∈ π∗, [π]B = [π′]B . Given a non-void family
of partial partitions below π∗, the infimum and supremum are compatible with
the restriction to a block B:

πi ≤ π∗, i ∈ I 6= ∅, B ∈ π∗ :
[

∧

i∈I

πi

]

B
=

∧

i∈I

[πi]B and
[

∨

i∈I

πi

]

B
=

∨

i∈I

[πi]B . (12)

Indeed, if we have a non-void intersection of blocks, one from each πi, or
a chaining of blocks from the union of all πi’s, then these blocks must all
be included in the same block of π∗. Alternately, this can be deduced from
(10,11). We illustrate (11,12) in Figure 6.

π∗

π1 π2 π2π1

π1 π2

π’

π

Fig. 6 Top left: the partial partition π∗. Top right: for π, π′ ≤ π∗, checking that each block
of π (in black) is included in a block of π′ (in grey) can be done by such a check inside every
block of π∗, thus (11) holds. Middle row: π1, π2 ≤ π∗. Bottom left: the intersection of blocks
of π1 with those of π2 always happens inside a block of π∗. Bottom right: the chaining of
blocks of π1 and π2 can be done only inside a block of π∗. Hence (12) holds.
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Let us now define set splitting operators and the corresponding block split-
ting operators on partial partitions; the latter will also be characterized in
Corollary 7.

Definition 4 A set splitting operator on P(E) is a map σ : P(E) → Π∗(E)
such that for every X ∈ P(E), σ(X) ∈ Π∗(X). If for every X ∈ P(E),
σ(X) ∈ Π(X), then we say that σ is support-preserving. The block splitting
operator on Π∗(E) derived from σ is the map β(σ) : Π∗(E) → Π∗(E) that
applies σ to each block of a partial partition, in other words

∀π ∈ Π∗(E), β(σ)(π) =
⋃

B∈π

σ(B) ; (13)

equivalently,

∀π ∈ Π∗(E), ∀B ∈ π,
[

β(σ)(π)
]

B
= σ(B) . (14)

Write Σ(E) for the set of all set splitting operators on P(E).

Note that we always have σ(∅) = Ø, and a block on which σ is applied,
is always non-void. Thus a set splitting operator needs only to be defined on
P(E)\{∅}. When σ is support-preserving, then β(σ) is also support-preserving:
for all π ∈ Π∗(E), supp(β(σ)(π)) = supp(π); in particular, if π ∈ Π(E), then
β(σ)(π) ∈ Π(E). Conversely, if for some X ∈ P(E) \ {∅} we have σ(X) /∈
Π(X), then taking any partition π with X ∈ π, we get β(σ)(π) /∈ Π(E).

Proposition 5 For any set splitting operator σ on P(E):

1. for any A ∈ P(E), β(σ)(1A) = σ(A);
2. for any p ∈ E and π ∈ Π∗(E), Clβ(σ)(π)(p) = Clσ(Clπ(p))(p), see Figure 7;
3. β(σ) is anti-extensive;
4. β(σ) is isotone iff σ is isotone.

Σ(E) is a complete lattice, and β is an injective complete morphism (i.e.,
a complete embedding) from Σ(E) into AE(Π∗(E)), the complete lattice of
anti-extensive operators on Π∗(E).

Proof 1. If A = ∅, then 1A = Ø; now by definition σ(∅) = Ø and β(σ)(Ø) =
Ø. Suppose now that A 6= ∅, thus 1A = {A}, and by definition we get
β(σ)({A}) = σ(A).

3. For B ∈ P(E), σ(B) ∈ Π∗(B), so σ(B) ≤ 1B . Thus for π ∈ Π∗(E),

β(σ)(π) =
∨

B∈π

σ(B) ≤
∨

B∈π

1B = π .

2. See Figure 7. If p /∈ supp(π), then Clπ(p) = ∅, so σ(Clπ(p)) = σ(∅) =
Ø, hence Clσ(Clπ(p))(p) = Clø(p) = ∅. As β(σ) is anti-extensive (item 3),

β(σ)(π) ≤ π, so p /∈ supp
(

β(σ)(π)
)

, and Clβ(σ)(π)(p) = ∅. Thus Clβ(σ)(π)(p) =
Clσ(Clπ(p))(p). Suppose now that p ∈ supp(π), so Clπ(p) = A ∈ π. For any
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π β(σ)(π)

σ(  )σ(  )σ(  )B C

qp

A

qp

A B C

Fig. 7 Illustration of item 2 of Proposition 5. Here Clπ(p) = A and Clβ(σ)(π)(p) = Clσ(A)(p);
on the other hand q /∈ supp(π) and Clπ(q) = Clβ(σ)(π)(q) = ∅.

B ∈ π \ {A}, p /∈ B, and as σ(B) ∈ Π∗(B), p may not belong to a class of
σ(B). Thus in β(σ)(π) =

⋃

B∈π σ(B), p may belong only to a class of σ(A),
that is, Clβ(σ)(π)(p) = Clσ(A)(p) = Clσ(Clπ(p))(p).

4. Suppose that σ is isotone, and let π, π′ ∈ Π∗(E) such that π ≤ π′. Then
every block B of π is included in some block C of π′; as B ⊆ C and σ is isotone,
σ(B) ≤ σ(C), in other words every block of σ(B) is included in some block
of σ(C); as β(σ)(π) =

⋃

B∈π σ(B) (and similarly for β(σ)(π′)), every block
of β(σ)(π) is included in some block of β(σ)(π′), that is, β(σ)(π) ≤ β(σ)(π′).
Hence β(σ) is isotone.

Conversely, suppose that β(σ) is isotone, and let A,B ∈ P(E) such that
A ⊆ B. Then 1A ≤ 1B , and as β(σ) is isotone, β(σ)(1A) ≤ β(σ)(1B). By
item 1, this gives σ(A) ≤ σ(B). Hence σ is isotone.

Let us now show the last sentence of the statement. In Π∗(E)P(E), the
power lattice of all maps P(E) → Π∗(E), Σ(E) is the set of maps that are
≤ 1• : A 7→ 1A. Thus it is a complete lattice with greatest element 1•. By
item 3, β maps Σ(E) into AE(Π∗(E)), and by item 1, β is injective. Let
π ∈ Π∗(E) and consider a non-void family σi, i ∈ I 6= ∅, of set splitting
operators. Combining (14) and (12), for any B ∈ π we have

[

β
(

∨

i∈I

σi

)

(π)
]

B
=

(

∨

i∈I

σi

)

(B) =
∨

i∈I

σi(B)

=
∨

i∈I

[

β(σi)(π)
]

B
=

[

∨

i∈I

β(σi)(π)
]

B
=

[(

∨

i∈I

β(σi)
)

(π)
]

B
,

from which we deduce that β
(
∨

i∈I σi
)

(π) =
(
∨

i∈I β(σi)
)

(π); thus β
(
∨

i∈I σi
)

=
∨

i∈I β(σi). We obtain the same with
∧

i∈I σi. Hence β commutes with
non-empty suprema and infima. Now in Σ(E) the empty supremum, or least
element, is the constant 0Σ : X 7→ Ø, with β(0Σ) : π 7→

⋃

B∈πØ = Ø,
which is the least anti-extensive operator on Π∗(E). Finally, in Σ(E) the
empty infimum, or greatest element, is 1• : X 7→ 1X , which gives β(1•) : π 7→
⋃

B∈π 1B = π, in other words the identity onΠ∗(E), which is the greatest anti-
extensive operator. Therefore β is a complete morphism Σ(E) → AE(Π∗(E)).

⊓⊔
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Since Σ(E) is a complete lattice, and β : Σ(E) → AE(Π∗(E)) is a com-
plete morphism, it follows that the family of block splitting operators is a
complete sublattice of AE(Π∗(E)). The following example will be used in
Subsection 3.2:

Example 6 Take a fixed non-void π0 ∈ Π∗(E), and let σ be the set splitting
operator given by σ(B) = 1B ∧ π0. The block splitting operator β(σ) satisfies
β(σ)(π) = π ∧π0 by (6). Note that σ is isotone and β(σ) is an opening. When
π0 ∈ Π(E), σ is support-preserving.

Corollary 7 Let η be an anti-extensive operator on Π∗(E). Then η is a block
splitting operator iff for any π ∈ Π∗(E), η(π) =

⋃

B∈π η(1B).

Proof Given a set splitting operator σ, (13) and item 1 of Proposition 5 give
for any π ∈ Π∗(E):

β(σ)(π) =
⋃

B∈π

σ(B) =
⋃

B∈π

β(σ)(1B) ,

thus η = β(σ) has the required property.
Conversely, let η be an anti-extensive operator on Π∗(E) such that for any

π ∈ Π∗(E), η(π) =
⋃

B∈π η(1B). Define σ by setting σ(B) = η(1B) for any
B ∈ P(E); as η is anti-extensive, η(1B) ≤ 1B , that is, σ(B) ∈ Π∗(B), and σ
is a set splitting operator. By (13) we get then for any π ∈ Π∗(E):

η(π) =
⋃

B∈π

η(1B) =
⋃

B∈π

σ(B) = β(σ)(π) ,

thus η = β(σ). ⊓⊔

Corollary 8 The family of block splitting operators is a monoid.

Proof The operator 1• : X 7→ 1X is set splitting, and the derived block
splitting operator β(1•) is the identity on Π∗(E). Now let η and ζ be block
splitting operators. Let π ∈ Π∗(E); we apply Corollary 7:

ζη(π) =
⋃

{

ζ(1C) | C ∈ η(π)
}

=
⋃

{

ζ(1C) | C ∈
⋃

B∈π

η(1B)
}

=
⋃

B∈π

(

⋃

{

ζ(1C) | C ∈ η(1B)
}

)

=
⋃

B∈π

ζ
(

η(1B)
)

,

see Figure 8, so ζη is block splitting. ⊓⊔

The complete morphism β : Σ(E) → AE(Π∗(E)) has both an upper and a
lower adjoint AE(Π∗(E)) → Σ(E). Define β+, β− : AE(Π∗(E)) → Σ(E) by
setting ∀ η ∈ AE(Π∗(E)): β+(η)(∅) = β−(η)(∅) = Ø, and ∀B ∈ P(E) \ {∅}:

β+(η)(B) =
∧

π∈Π∗(E\B)

[

η(1B ∪ π)
]

B
=

[

∧

π∈Π∗(E\B)

η(1B ∪ π)
]

B
,

β−(η)(B) =
∨

π∈Π∗(E\B)

[

η(1B ∪ π)
]

B
=

[

∨

π∈Π∗(E\B)

η(1B ∪ π)
]

B
.

(15)
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π η(π) ζ(η(π))

Bη(1  )B

Cζ(1  )C

Fig. 8 Illustration of Corollary 8. Here B ∈ π and C ∈ η(1B).

The two rightmost equalities follow from (12). By (8), in the above, each of
the four [. . .]B can be replaced by (. . .) ∧ 1B .

Proposition 9 The two pairs (β+, β) : AE(Π∗(E)) ⇀↽ Σ(E) and (β, β−) :
Σ(E) ⇀↽ AE(Π∗(E)) are adjunctions, β+ and β− are surjective and β+β =
β−β is the identity on Σ(E). For any anti-extensive operator η on Π∗(E), the
following five statements are equivalent: (a) η is a block splitting operator; (b)
ββ+(η) = η; (c) ββ−(η) = η; (d) ββ+(η) = ββ−(η); (e) β+(η) = β−(η).

Proof Let σ ∈ Σ(E) and η ∈ AE(Π∗(E)). Since σ(∅) = β+(η)(∅) = Ø, we
have σ ≤ β+(η) iff ∀B ∈ P(E)\{∅}, σ(B) ≤ β+(η)(B) =

∧

π∈Π∗(E\B)

[

η(1B∪

π)
]

B
, in other words iff ∀B ∈ P(E) \ {∅}, ∀π ∈ Π∗(E \ B), σ(B) ≤

[

η(1B ∪

π)
]

B
. Now the map π 7→ 1B ∪ π = π′ induces a one-to-one correspondence

between pairs
(

B ∈ P(E) \ {∅}, π ∈ Π∗(E \ B)
)

and pairs
(

π′ ∈ Π∗(E), B ∈

π′
)

. So the condition becomes ∀π′ ∈ Π∗(E), ∀B ∈ π′, σ(B) ≤
[

η(π′)
]

B
,

which by (14) means
[

β(σ)(π′)
]

B
≤

[

η(π′)
]

B
, and by (11) this is equivalent

to ∀π′ ∈ Π∗(E), β(σ)(π′) ≤ η(π′), that is, β(σ) ≤ η. Hence (β+, β) is an
adjunction. The proof that (β, β−) is an adjunction is dual by inverting the
order (≤↔≥,

∧

↔
∨

).
The remaining statements follow from the two adjunctions (β+, β), (β, β−)

and the injectivity of β, using classical results [4,7,13,16]. In particular we
easily show that (a) ⇒ (e) ⇒ (d) ⇒ (b, c), then (b) ⇒ (a) and (c) ⇒ (a). ⊓⊔

For any anti-extensive operator η on Π∗(E), define:

ρ(η) : P(E) → Π∗(E) : B 7→ η(1B) ,

θ(η) : P(E) → Π∗(E) : B 7→
[

η(1B ∪ 1E\B)
]

B
,

(16)
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with ρ(η)(∅) = θ(η)(∅) = Ø. The remark made after (15) applies here, so

θ(η)(B) = η(1B ∪ 1E\B) ∧ 1B .

Clearly ρ(η) and θ(η) are set splitting operators.

Proposition 10 If η is isotone, then β+(η) = ρ(η), β−(η) = θ(η) and ρ(η)
is isotone.

Proof We have β+(η)(∅) = ρ(η)(∅) = β−(η)(∅) = θ(η)(∅) = Ø. Let B ∈
P(E) \ {∅}. For any π ∈ Π∗(E \ B) we have 1B ≤ 1B ∪ π ≤ 1B ∪ 1E\B , so

η(1B) ≤ η(1B∪π) ≤ η(1B∪1E\B), hence by (11) we get η(1B) =
[

η(1B)
]

B
≤

[

η(1B ∪ π)
]

B
≤

[

η(1B ∪ 1E\B)
]

B
; thus (15) gives β+(η)(B) = ρ(η)(B) and

β−(η)(B) = θ(η)(B). Now ρ(η) is the composition of the two isotone maps η
and 1•, so it is isotone. ⊓⊔

Note that θ(η) is usually not isotone (because it involves the antitone map
B 7→ E \B). Now let ΣI(E) be the set of isotone set splitting operators, and
recall AEI(Π∗(E)) the set of isotone anti-extensive operators on Π∗(E). Both
are complete lattices, and by Proposition 5, β induces a complete morphism
ΣI(E) → AEI(Π∗(E)); now ρ restricted to AEI(Π∗(E)) coincides with the
restriction of β+ to AEI(Π∗(E)), and is a map AEI(Π∗(E)) → ΣI(E). Thus
if we restrict β to ΣI(E) and ρ to AEI(Π∗(E)), then (ρ, β) is an adjunc-
tion AEI(Π∗(E)) ⇀↽ ΣI(E). However (β, θ) is not an adjunction ΣI(E) ⇀↽
AEI(Π∗(E)), because θ is not AEI(Π∗(E)) → ΣI(E).

Let us illustrate ρ(η) and θ(η) with two examples of an isotone η:

1. Assume E = Rn or E = Zn, and let T be a translation of E; then T
acts on points of E, on subsets of E and on partial partitions of E. Let
η ∈ AE(Π∗(E)) be given by η(π) = π∧T (π). Then ρ(η) and θ(η) are given
by setting for any B ∈ P(E):

ρ(η)(B) = 1B∩T (B) and θ(η)(B) = 1B∩T (B) ∪ 1B\T (B) .

2. Let γ be an opening on P(E). We define the operator γ on Π∗(E) by
γ(π) = π ∧ 1γ(supp(π)). Then γ is an opening on Π∗(E), characterized by
its invariance domain

Inv(γ) = {π ∈ Π∗(E) | supp(π) ∈ Inv(γ)} .

Now ρ(γ) is the map B 7→ 1γ(B) and β(ρ(γ)) operates on a partial partition
by applying γ to each block, and keeping the non-void opened blocks:

∀π ∈ Π∗(E), β(ρ(γ))(π) = {γ(B) | B ∈ π, γ(B) 6= ∅} .

Then β(ρ(γ)) is also an opening on Π∗(E). We illustrate the behaviour of
γ and β(ρ(γ)) in Figure 9. Note that θ(γ) is the map B 7→ 1B∩γ(E).

This second example introduces a special case of set splitting operators:
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Fig. 9 Top left: a partial parti-
tion π. Top right: let γ be the
opening by the disk structuring
element shown here. Bottom left:
γ(π), the corners of supp(π) are
rounded, and blocks included in
narrow portions of supp(π) disap-
pear. Bottom right: β(ρ(γ))(π),
the corners of each block of π are
rounded, and all narrow blocks
are removed.

Definition 11 1. Given an anti-extensive operator ψ on P(E), the map 1ψ :
P(E) → Π∗(E) : X 7→ 1ψ(X) ∈ Π∗(X) is called a set shrinking operator on
P(E), and β(1ψ) is called the block shrinking operator on Π∗(E) derived
from ψ.

2. [31] Given an operator ψ on P(E), the blockwise extension of ψ is the
operator B(ψ) on Π∗(E) given by B(ψ)(π) =

∨

B∈π 1ψ(B) for all π ∈
Π∗(E).

We have then the following analogue of Proposition 5.

Proposition 12 For any anti-extensive operator ψ on P(E):

1. B(ψ) = β(1ψ) and for any π ∈ Π∗(E),

B(ψ)(π) = {ψ(B) | B ∈ π, ψ(B) 6= ∅} ; (17)

2. for any A ∈ P(E), B(ψ)(1A) = 1ψ(A);
3. for any p ∈ E and π ∈ Π∗(E),

ClB(ψ)(π)(p) =

{

ψ(Clπ(p)) if p ∈ ψ(Clπ(p)) ,
∅ otherwise ;

4. B(ψ) is anti-extensive;
5. B(ψ) is isotone iff ψ is isotone.

The map AE(P(E)) → AE(Π∗(E)) : ψ 7→ B(ψ) is an injective erosion and a
monoid morphism.

Proof 1. By definition,

β(1ψ)(π) =
⋃

B∈π

1ψ(B) =
⋃

B∈π

1ψ(B) =
∨

B∈π

1ψ(B) = B(ψ)(π) ,

so B(ψ) = β(1ψ). Now 1ψ(B) = {ψ(B)} if ψ(B) 6= ∅, and is void otherwise.
Thus

⋃

B∈π 1ψ(B) gives (17).
2. This follows from item 1 of Proposition 5.
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3. By item 2 of Proposition 5, ClB(ψ)(π)(p) = Cl1ψ(Clπ(p))(p), that is, the
class of p in 1ψ(Clπ(p)), which gives ψ(Clπ(p)) if p ∈ ψ(Clπ(p)) and ∅ otherwise.

4. This follows from item 3 of Proposition 5.
5. Given X,Y ∈ P(E) such that X ⊆ Y , we have ψ(X) ⊆ ψ(Y ) ⇔

1ψ(X) ≤ 1ψ(Y ) (since 1• is an order-embedding). Thus ψ is isotone iff 1ψ
is isotone, and by item 4 of Proposition 5, this is equivalent to B(ψ) being
isotone.

Since 1• : A 7→ 1A is injective, the map ψ 7→ 1ψ is injective. Now β is
injective by Proposition 5, so ψ 7→ β(1ψ) = B(ψ) is injective. Since 1• is an
erosion, cf. (7), the map AE(P(E)) → Σ(E) : ψ 7→ 1ψ is an erosion (this works
also for the empty infimum, or greatest element: id, the greatest element of
AE(P(E)), is mapped on 1•, the greatest element of Σ(E)). But β : Σ(E) →
AE(Π∗(E)) is also an erosion by Proposition 5. Thus ψ 7→ β(1ψ) = B(ψ) is
the composition of two erosions, hence an erosion.

For ψ1, ψ2 ∈ AE(P(E)), it remarked was in [31] that they satisfy the two
properties ψi(∅) = ∅ and [X∩Y = ∅] ⇒ [ψi(X)∩ψi(Y ) = ∅], and it was shown
that these two properties guarantee that B(ψ1)B(ψ2) = B(ψ1ψ2). Given id the
identity on P(E), clearly B(id) is the identity on Π∗(E). Therefore ψ 7→ B(ψ)
is a monoid morphism. ⊓⊔

From now on we will write B(ψ) for β(1ψ).
Given a sequence xn, n ∈ N, we write xn ↓ x if the sequence xn is de-

creasing (xn ≥ xn+1) and x =
∧

n∈N
xn; an isotone operator ψ is said to be

↓-continuous if xn ↓ x ⇒ ψ(xn) ↓ ψ(x) [18].

Corollary 13 Let ψ be a ↓-continuous isotone and anti-extensive operator
on P(E). Then B(ψ) is a ↓-continuous isotone and anti-extensive operator on
Π∗(E). For γ =

∧

n≥1 ψ
n, γ is the greatest opening ≤ ψ, B(γ) =

∧

n≥1 B(ψ)
n,

and B(γ) is the greatest opening ≤ B(ψ).

Proof B(ψ) is isotone by item 4 of Proposition 12. Take πn ↓ π in Π∗(E). By
(2) and (3), for any p ∈ E we have Clπn(p) ↓ Clπ(p); as ψ is ↓-continuous,
ψ(Clπn(p)) ↓ ψ(Clπ(p)). Now we have two cases:

1. For all n ∈ N, p ∈ ψ(Clπn(p)); then p ∈
∧

n∈N
ψ(Clπn(p)) = ψ(Clπ(p));

by item 3 of Proposition 12, ClB(ψ)(πn)(p) = ψ(Clπn(p)) for all n ∈ N, and
ClB(ψ)(π)(p) = ψ(Clπ(p)). Hence ClB(ψ)(πn)(p) ↓ ClB(ψ)(π)(p).

2. There is some n ∈ N such that p /∈ ψ(Clπn(p)); then p /∈ ψ(Clπm(p)) for all
m ≥ n, and p /∈ ψ(Clπ(p)); by item 3 of Proposition 12, ClB(ψ)(πm)(p) = ∅
for all m ≥ n, and ClB(ψ)(π)(p) = ∅. As ∅ ↓ ∅, we get ClB(ψ)(πn)(p) ↓
ClB(ψ)(π)(p).

Since ClB(ψ)(πn)(p) ↓ ClB(ψ)(π)(p) for any p ∈ E, applying again (2) and (3),
we get B(ψ)(πn) ↓ B(ψ)(π). Therefore B(ψ) is a ↓-continuous.

Let γ =
∧

n≥1 ψ
n. By Proposition 12, the map ψ 7→ B(ψ) is compatible

with the infimum and with the composition, hence B(γ) =
∧

n≥1 B(ψ)
n. The

fact that γ and B(γ) are the greatest openings ≤ ψ and ≤ B(ψ) respectively,
follows from [18]. ⊓⊔
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Remark 14 If we restrict ourselves to operators on Π(E), hence to support-
preserving set / block splitting operators, we may not consider 1A, but 1A ∪
0E\A = 1A ∨ 0E . Thus item 1 of Proposition 5 becomes: β(σ)(1A ∨ 0E) =
σ(A) ∨ 0E . Then we have to replace ρ by ρ′ defined as follows:

ρ′(η) : P(E) → Π(E) : B 7→ [η(1B ∨ 0E)]B .

For an anti-extensive operator ψ on P(E), instead of 1ψ, we consider the map
1ψ ∨ 0• : X 7→ 1ψ(X) ∨ 0X . Then

β(1ψ ∨ 0•)(π) = {ψ(B) | B ∈ π, ψ(B) 6= ∅} ∨ 0E .

Up to these modifications, the above results remain valid for Π(E) in place of
Π∗(E).

3.2 Partial connections and block splitting openings

It is known since [37] that given a connection C, the operator on partitions
that splits each block into its C-components is an opening. This result led to
further works on the relation between connections and partitions [39], then
between partial connections and partial partitions [30]. Here we extend these
studies by showing that a block splitting operator is an opening iff it is the one
decomposing each block into its C-components for some partial connection C;
these block splitting openings constitute a complete sublattice of the lattice
of openings on Π∗(E), isomorphic to the lattice of partial connections.

Given a partial connection C, for any A ∈ P(E), recall the partial partition

PCC(A) = {γp(A) | p ∈ A, γp(A) 6= ∅} (18)

of all C-components of A (cf. Proposition 1); note that PCC(A) is isotone in
A, and commutes with the supremum on C (Proposition 2).

For any family C ⊆ P(E), let

and
Π(E, C) = Π(E) ∩ P

(

C \ {∅}
)

Π∗(E, C) = Π∗(E) ∩ P
(

C \ {∅}
)

,
(19)

be the families respectively of partitions and of partial partitions, whose blocks
belong to C (in fact, blocks are non-void, so they belong to C \ {∅}). Then:

Proposition 15 Let C ⊆ P(E) such that ∅ ∈ C. Then:

– C is a partial connection on P(E) iff Π∗(E, C) is a dual Moore family of
Π∗(E) [30].

– C is a connection on P(E) iff Π(E, C) is a dual Moore family of Π(E)
[39].
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More characterizations can be found in [30]. Now the dual Moore family
Π∗(E, C) (or Π(E, C)) is the invariance domain of an opening. Given a partial
connection C, let CSC be the operator on Π∗(E) that splits each block of a
partial partition into its C-components:

∀π ∈ Π∗(E), CSC(π) =
⋃

C∈π

PCC(C)

=
{

γp(C) | C ∈ π, p ∈ C, γp(C) 6= ∅
}

.
(20)

The map PCC : P(E) → Π∗(E) : A 7→ PCC(A) is a set splitting operator;
when C is a connection, PCC is support-preserving, since PCC(A) ∈ Π(A). By
(20), CSC = β(PCC). Proposition 1 and item 2 of Proposition 5 give:

∀π ∈ Π∗(E), ∀ p ∈ E, ClCSC(π)(p) = ClPCC(Clπ(p))(p) = γp(Clπ(p)) . (21)

Proposition 16 [30] For any partial connection C on P(E), CSC is an open-
ing on Π∗(E), whose invariance domain is Π∗(E, C). When C is a connec-
tion, the restriction of CSC to Π(E) is an opening whose invariance domain
is Π(E, C).

In order to characterize CSC as a block splitting operator β(σ) which is an
opening, we analyse the domain of invariance of β(σ):

Definition 17 For any set splitting operator σ on P(E), its fixed set is

F(σ) = {X ∈ P(E) | σ(X) = 1X} . (22)

Proposition 18 For any set splitting operator σ on P(E), we have ∅ ∈ F(σ)
and Inv(β(σ)) = Π∗(E,F(σ)). If σ is support-preserving, then S(E) ⊆ F(σ)
and the restriction of β(σ) to Π(E) has invariance domain Π(E,F(σ)).

Proof As σ(∅) = Ø = 1∅, ∅ ∈ F(σ). Let π ∈ Π∗(E). Since β(σ(π)) ≤ π,
by (11) we have β(σ(π)) = π iff for every B ∈ π,

[

β(σ)(π)
]

B
= [π]B , in

other words by (14), σ(B) = [π]B = 1B , that is B ∈ F(σ). Thus Inv(β(σ)) =
Π∗(E,F(σ)).

Let σ be support-preserving. For any p ∈ E, σ({p}) ∈ Π∗({p}) = {Ø,1{p}}
with supp(σ({p})) = {p}, thus σ({p}) = 1{p}, hence {p} ∈ F(σ). Restricting
β(σ) to Π(E), its invariance domain is Π∗(E,F(σ)) ∩Π(E) = Π(E,F(σ)).

⊓⊔

Lemma 19 For any partial connection C, F
(

PCC
)

= C.

Proof Indeed, A ∈ F
(

PCC
)

iff PCC(A) = 1A; clearly PCC(∅) = Ø = 1∅ and

∅ ∈ C; now for A 6= ∅, PCC(A) = 1A iff A is a C-component of A, that is,
A ∈ C. ⊓⊔

Theorem 20 Let σ be an isotone set splitting operator on P(E). Then:
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1. F(σ) is a partial connection and CSF(σ) is the greatest opening ≤ β(σ) (on
Π∗(E)). In particular, β(σ) is an opening iff there is a partial connection
C such that β(σ) = CSC, in other words σ = PCC; we have then necessarily
C = F(σ).

2. If σ is support-preserving, then F(σ) is a connection and:

– in the lattice of operators on Π(E), CSF(σ) is the greatest opening ≤
β(σ);

– in the lattice of operators on Π∗(E), CSF(σ) is the greatest block split-
ting operator on Π∗(E) inducing on Π(E) an opening ≤ β(σ).

In particular, β(σ) induces an opening on Π(E) iff there is a connection
C such that β(σ) = CSC, in other words σ = PCC; we have then necessarily
C = F(σ).

Proof 1. Since σ is isotone, β(σ) is isotone and anti-extensive (Proposition 5).
It is then known [16] that Inv(β(σ)) is a dual Moore family, and that the great-
est opening ≤ β(σ) is the one having the same invariance domain Inv(β(σ)).
By Proposition 18, Inv(β(σ)) = Π∗(E,F(σ)). As Π∗(E,F(σ)) is a dual Moore
family, F(σ) is a partial connection by Proposition 15. The greatest opening
≤ β(σ) is the one whose invariance domain is Inv(β(σ)) = Π∗(E,F(σ)), by

Proposition 16 this opening is CSF(σ). If β(σ) is an opening, then it is the

greatest one ≤ β(σ), thus β(σ) = CSF(σ) = β(PCF(σ)), and as β injective

(Proposition 5), we get σ = PCF(σ). Conversely, if for a partial connection C
we have β(σ) = CSC , that is, σ = PCC , then β(σ) is an opening by Proposi-
tion 16, and C = F(σ) by Lemma 19.

2. Since σ is support-preserving, by Proposition 18 F(σ) comprises all
singletons; as it is partial connection, it will be a connection.

Let us first restrict ourselves to operators on Π(E). Here Inv(β(σ)) =
Π(E,F(σ)) is a dual Moore family, and the greatest opening ≤ β(σ) is the
one having the same invariance domain Π(E,F(σ)); by Proposition 16, this

opening is CSF(σ).
Let us now consider again operators on Π∗(E). Clearly CSF(σ) is a block

splitting operator on Π∗(E), and by the previous paragraph it induces on
Π(E) an opening ≤ β(σ). Let ζ be a set splitting operator such that β(ζ)
induces on Π(E) an opening ≤ β(σ). By the previous paragraph, the restric-

tion of β(ζ) to Π(E) is ≤ CSF(σ). Thus for π ∈ Π(E), β(ζ)(π) ≤ CSF(σ)(π).
Now for every B ∈ P(E) \ {∅} there is some π ∈ Π(E) with B ∈ π, hence by
(11,14) we get:

ζ(B) =
[

β(ζ)(π)
]

B
≤

[

CSF(σ)(π)
]

B
=

[

β(PCF(σ))(π)
]

B
= PCF(σ)(B) .

Thus by (13), for any π ∈ Π∗(E) we have:

β(ζ)(π) =
∨

B∈π

ζ(B) ≤
∨

B∈π

PCF(σ)(B) = CSF(σ)(π) .

Therefore β(ζ) ≤ CSF(σ) on Π∗(E), and CSF(σ) is the greatest block splitting
operator on Π∗(E) inducing on Π(E) an opening ≤ β(σ). If β(σ) induces
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an opening on Π(E), then β(σ) ≤ CSF(σ), but CSF(σ) ≤ β(σ) by item 1,

thus β(σ) = CSF(σ), in other words σ = PCF(σ) (by the injectivity of β).
Conversely, if for a connection C we have β(σ) = CSC , that is, σ = PCC , then
β(σ) is an opening by Proposition 16, and C = F(σ) by Lemma 19. ⊓⊔

Thus, given an isotone set splitting operator σ such that β(σ) is an opening,
for any A ∈ P(E) \ {∅}, the F(σ)-components of A are the blocks of σ(A) =

PCF(σ)(A).
A typical example of block splitting opening CSC arises when we choose

for C a usual connection in the Euclidean or digital space: we split each block
into its connected components. We can also use the derived connections of
Figures 3 and 4 (or even the one of Figure 5). However, there are many more
types of partial connections, many examples were given in [36,29,17,5,30]. Let
us indeed describe some atypic instances of block splitting openings:

– Let γ be an opening on P(E). Then B(γ) is a block shrinking opening, and
(17) gives for any π ∈ Π∗(E):

B(γ)(π) = {γ(B) | B ∈ π, γ(B) 6= ∅} ,

cf. Figure 9. Here F(1γ) = Inv(γ), it is a dual Moore family of P(E),
hence a partial connection such that every subset B of E has at most one
Inv(γ)-component: γ(B) if γ(B) 6= ∅, and none if γ(B) = ∅ [30].

– More generally, let ψ be an isotone anti-extensive operator on P(E). We
have F(1ψ) = Inv(ψ), it is a dual Moore family of P(E), hence a partial
connection. Let γ be the opening on P(E) given by Inv(γ) = Inv(ψ); then

γ is the greatest opening on P(E) which is ≤ ψ, and B(γ) = CSF(1ψ) is
the greatest opening on Π∗(E) which is ≤ B(ψ). If ψ is ↓-continuous, we
can obtain B(γ) as the limit of the iteration of B(ψ), cf. Corollary 13.

– Let C = {∅} ∪ S(E), the least connection. The C-components of a set are
its singletons, so CSC is the block grinding opening [30,31] that pulverizes
each block into its singletons: CSC(π) = 0supp(π).

– For a fixed non-void π0 ∈ Π∗(E), take the block splitting opening of Ex-
ample 6, namely σ : B 7→ 1B ∧ π0 and β(σ) : π 7→ π ∧ π0. Here F(σ)
is the partial connection made of all subsets of blocks of π0, we write it
subbl(π0) [30]; thus:

subbl(π0) =
⋃

B∈π0

P(B) = {X ∈ P(E) | ∃B ∈ π0, X ⊆ B} .

For any A ∈ P(E)\{∅}, the F(σ)-components of A are the non-void A∩B
for B ∈ π0. When π0 ∈ Π(E), subbl(π0) is a connection; it was already
described in [36].

Given a set splitting operator σ, we see from Propositions 5 and 18 that
β(σ) is an opening iff σ is isotone and for any A ∈ P(E) \ {∅} we have
σ(A) ∈ Π∗(E,F(σ)), in other words all blocks of σ(A) belong to F(σ). By
the above theorem, this is the necessary and sufficient condition for σ to be,
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for some partial connection C, the operator PCC splitting every set into the
partial partition of its C-components.

The above theorem has an important consequence, which in some way
implicitly contains many of our results on partial connections:

Corollary 21 The set of block splitting openings is a complete sublattice of
the complete lattice of openings on Π∗(E), and by the correspondence C ↔ CSC

it is isomorphic to the complete lattice of partial connections on P(E).

Proof The least opening on Π∗(E) is the constant π 7→ Ø, it is the block
splitting operator corresponding to the constant set splitting operator X 7→ Ø.
The greatest opening on Π∗(E) is the identity, which is β(1•), with 1• : X 7→
1X . Consider a non-void family of set splitting operators σi (i ∈ I 6= ∅),
such that the β(σi) are openings. Then

∨

i∈I β(σi) is an openings [35,16]; but
∨

i∈I β(σi) = β
(
∨

i∈I σi
)

(by Proposition 5), so this opening is block splitting.
The infimum, in the lattice of openings, of the β(σi), is the greatest opening
≤

∧

i∈I β(σi) [35,16]; but
∧

i∈I β(σi) = β
(
∧

i∈I σi
)

, it is thus an anti-extensive

block splitting operator; by Theorem 20, the greatest opening ≤ β
(
∧

i∈I σi
)

is block splitting. Therefore the set of block splitting openings is a complete
sublattice of the complete lattice of openings on Π∗(E).

Consider two partial connections C and C′. If C ⊆ C′, then PCC(X) ≤

PCC′

(X) by Proposition 2; by (20), we get CSC(π) ≤ CSC
′

(π) for all π ∈ Π∗(E),

hence CSC ≤ CSC
′

. Conversely, if CSC ≤ CSC
′

, then for C ∈ C \ {∅} we have

1C = CSC(1C) ≤ CSC
′

(1C) ≤ 1C , which gives CSC
′

(1C) = 1C , thus C ∈ C′;

hence C ⊆ C′. Therefore C ⊆ C′ ⇔ CSC ≤ CSC
′

, and the map C 7→ CSC is an
isomorphism between the two complete lattices. ⊓⊔

This gives a new light on Proposition 2, which states that for a fixed
A ∈ P(E), the map C 7→ PCC(A) is a dilation; indeed, it expresses at the level
of a single block A the fact that for a supremum C = Con∗

(
⋃

i∈I Ci
)

of partial

connections Ci, the opening CSC is the supremum, in the lattice of operators,
of the openings CSCi , in other words for any π ∈ Π∗(E) we have CSC(π) =
∨

i∈I CS
Ci(π). Just before Proposition 2, we said that for I 6= ∅, given the

systems of partial connection openings (γip, p ∈ E) of Ci, the infimum
⋂

i∈I Ci
has its system of partial connection openings (γp, p ∈ E) such that for every
p ∈ E, γp is the infimum, in the lattice of openings on P(E), of the γip, i ∈ I.

Now for π ∈ Π∗(E) and p ∈ E, by (21) we have ClCSCi (π)(p) = γip(Clπ(p)),

and the fact that CSCi is an opening implies that γip is an opening, thus the

greatest opening below each CSCi must correspond to the greatest opening
below each γip.

Let us illustrate this result with an example. Take E = Z2, and for Cstd the
family of all 4-connected sets. Given a pair H (resp., V ) of horizontally (resp.,
vertically) adjacent pixels, following the method of Figure 3, we obtain the
partial connections H = C∗

H and V = C∗
V consisting of all 4-connected subsets

X of Z2 such that X ◦ H = X (resp., X ◦ V = X). Equivalently, H (resp.,
V) consists of all 4-connected sets X such that each p ∈ X is horizontally
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(resp., vertically) adjacent to some q ∈ X. Now C = Con∗(H ∪ V) is the
family of all non-singleton 4-connected sets. We show in Figure 10 a partial
partition π, then CSH(π), CSV(π), and CSH(π) ∨ CSV(π) = CSC(π); then
π′ = CSH(π) ∧ CSV(π) and π′′ = CSH(π′) ∧ CSV(π′); since π′′ is invariant
under CSH and CSV , we have π′′ = CSH∩V(π).

Fig. 10 Pixels in the support of a partial partition are shown as filled disks; those that are
removed by an operator are shown as hollow circles (and those previously removed as dashed
hollow circles). Each block is delineated by a polygon. Top left: π. Top center and right:
CSH(π) and CSV (π), where H (resp., V) is the partial connection of all 4-connected sets
where each pixel has a horizontal (resp., vertical) neighbour. Bottom left: CSH(π)∨CSV (π) =
CSC(π), where C = Con∗(H ∪ V) is the partial connection of all non-singleton 4-connected
sets. Bottom center: (CSH ∧ CSV )(π) is not invariant under CSH and CSV . Bottom right:
(CSH ∧ CSV )2(π) is invariant under CSH and CSV , so it is CSH∩V (π).

We saw above the example of the block splitting opening B(γ) for an open-
ing γ on P(E). In [31] we showed that for an adjunction (ε, δ) on P(E) where
ε(∅) = ∅ (or equivalently, ∀X ∈ P(E1), X 6= ∅ ⇒ δ(X) 6= ∅), defining
B(ε) and B(δ) according to Definition 11, then

(

B(ε),B(δ)
)

is an adjunction
on Π∗(E).

Proposition 22 Let (ε, δ) be an adjunction on P(E) such that ε(∅) = ∅
(equivalently, ∀X ∈ P(E1), X 6= ∅ ⇒ δ(X) 6= ∅). Then B(δε) = B(δ)B(ε).

Proof By [31], B(ε) satisfies (17), that is, for any π ∈ Π∗(E) we have

B(ε)(π) = {ε(B) | B ∈ π, ε(B) 6= ∅} .

Then by Definition 11 we get

B(δ)B(ε)(π) =
∨

{

1δε(B) | B ∈ π, ε(B) 6= ∅
}

.

By hypothesis, ε(B) 6= ∅ ⇒ δε(B) 6= ∅, and as δ is a dilation, δ(∅) = ∅;
so ε(B) 6= ∅ ⇔ δε(B) 6= ∅, and in this case 1δε(B) = {δε(B)}. Since δε is
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anti-extensive, the δε(B), B ∈ π, are pairwise disjoint; also by Proposition 12,
δε must satisfy (17). Therefore

B(δ)B(ε)(π) =
∨

{

{δε(B)} | B ∈ π, δε(B) 6= ∅
}

= {δε(B) | B ∈ π, δε(B) 6= ∅} = B(δε)(π) ,

thus the two openings B(δε) and B(δ)(B(ε) are equal. ⊓⊔

4 Conclusion

This paper initiates the study of block splitting operators on the complete lat-
tice of partial partitions. Section 3 explores a simple but fruitful idea: to make
an anti-extensive operator on (partial) partitions by splitting each block inde-
pendently; in particular we can apply to each block an anti-extensive operator
on sets. This principle is explored quite generally in Subsection 3.1, where the
lattice-theoretical and monoid features of set splitting and block splitting are
investigated. The special case of isotone operators is also analysed.

The remainder of Section 3 rests on another simple but powerful idea:
the archetype of set splitting is the decomposition of a set into its connected
components according to a (partial) connection. Using the background of Sub-
section 2.2, Subsection 3.2 expands the findings of [30,39] concerning the rela-
tions between partial connections and partial partitions; the main conclusion
(cf. Theorem 20 and Corollary 21) is that a block splitting opening coincides
with the splitting of blocks into C-components for some partial connection C,
and this correspondence is a lattice isomorphism between partial connections
and block splitting openings, the latter forming a complete sublattice of the
lattice of all openings.

Subsection 3.2, together with [30], provides a theoretical basis for Serra’s
connective segmentation approach [30,32,39]. Here a criterion cr associates to
each image F (seen as function E → T ) and each subset A of E a binary value
cr[F,A] that tells whether the set A is homogeneous w.r.t. the function F .
The basic assumption is that “a union of overlapping homogeneous sets must
be homogeneous”, in other words the set CFcr = {A ∈ P(E) | cr[F,A] = 1}
must be a partial connection; we say then that the criterion cr is partially
connective. From this property the segmentation of the function F on a subset

A of E is given by the partial partition PCCFcr (A) of all CFcr -components of A.
The results obtained in Subsection 3.2 are relevant to this segmentation model,
in particular on the question “when does a segmentation algorithm follow the
connective model ?” Indeed, given a segmentation algorithm associating to
each function F and each subset A of E a partial partition σF (A) of A, one
has only to check that for every function F , the block splitting operator β(σF )
is an opening; equivalently, σF must be isotone, and for every A ∈ P(E), all
blocks of σF (A) must belong to F(σF ).

Often a segmentation algorithm only associates to a function F a (partial)
partition πF of the whole space E. Then, according to Example 6, we take
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the set splitting operator σ : B 7→ 1B ∧ πF , giving rise to the block splitting
opening β(σ) : π 7→ π∧πF , corresponding to the partial connection subbl(πF )
consisting of all subsets of all blocks of πF . Generally the space E is provided
with a standard connection Cstd, and we have πF ∈ Π∗(E, Cstd) (all blocks
of πF are connected according to Cstd); then we take the partial connection
subbl(πF )∩Cstd, giving thus the set splitting operator B 7→ PCCstd(1B ∧ πF )
and the block splitting opening π 7→ CSCstd(π ∧ πF ): we split every block
according to πF , then split the resulting blocks into their Cstd-components.
Such a construction has been implicitly used in [39], cf. the discussion at the
end of [30] on “a posteriori” connective criteria.

The second paper will study non-isotone idempotent block splitting op-
erators, in particular those involved in some variants [38,41] of connective
segmentation.

Acknowledgements This work arose from several years if discussion with Jean Serra, and
more recent ones with Pierre Soille.
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Table 2 Notation

E space of points
T set of image values (grey-levels or colours)

cr a criterion TE × P(E) → {0, 1}

CFcr {A ∈ P(E) | cr[F,A] = 1} (F ∈ TE)
(α, β) : A ⇀↽ B α : A→ B and β : B → A

Inv(ψ) invariance domain of the operator ψ
supp(R) support of the binary relation R on E
supp(B) support of the family B of subsets of E
π a partial partition

PE(π) partial equivalence corresponding to π
Clπ partial partition class map associated to π
Π(E) set of all partitions of E

Π∗(E) set of all partial partitions of E
Ø empty partial partition
0A identity partition of A into its singletons
1A universal partition of A into a single block

1• A 7→ 1A
0• A 7→ 0A
S(E) family of all singletons in E
C a partial connection on P(E)

γp partial connection opening on P(E)
(γp, p ∈ E) system of partial connection openings on P(E)

PCC(X) partial partition of all C-components of X
Cstd a “standard” connection on P(E)

(e.g., arc, topological, or graph connectivity)
C∗
B

partial connection {Z ∈ Cstd | Z ◦B = Z} (B ∈ Cstd, B 6= ∅)
CB C∗

B
∪ S(E), connection generated by C∗

B

CB connection {X ∈ P(E) | X ⊕B ∈ Cstd} (B ∈ Cstd, o ∈ B)
Γ (E) set of all connections on P(E)

Γ ∗(E) set of all partial connections on P(E)
Con(B) connection generated by the family B
Con∗(B) partial connection generated by the family B
AE(L) set of all anti-extensive operators on L

AEI(L) set of all isotone anti-extensive operators on L
[π]B π ∩ P(B), for B ∈ π∗, π ≤ π∗

σ set splitting operator X 7→ σ(X) ∈ Π∗(X)

β(σ) block splitting operator on Π∗(E) derived from σ
Σ(E) set of all set splitting operators

β+, β− upper and lower adjoint of β

η anti-extensive operator on Π∗(E)
ρ(η), θ(η) set splitting operators derived from η

ΣI(E) set of all isotone set splitting operators

1ψ set shrinking operator X 7→ 1ψ(X)

B(ψ) π 7→
∨

B∈π
1ψ(B)

Π(E, C) set of all partitions of E with blocks in C \ {∅}
Π∗(E, C) set of all partial partitions of E with blocks in C \ {∅}

CSC opening on Π∗(E) splitting blocks into C-components
F(σ) {X ∈ P(E) | σ(X) = 1X}, fixed set of σ
subbl(π) partial connection of all subsets of blocks of π


