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Introduction

A finite-dimensional commutative algebra A over a field K is called a Bernstein
algebra if there exists a non-trivial homomorphism co: A -> K (baric algebra) such that
the identity (x2)2 = CO(X)2JC2 holds in A (see [7]).

The origin of Bernstein algebras lies in genetics (see [2,8]). Holgate (in [2]) was the
first to translate the problem into the language of non-associative algebras.
Information about algebraic properties of Bernstein algebras, as well as their possible
genetic interpretations, can be found in [10, Chapter 9B; 11; 12; 3; 1].

The existence of idempotent elements, that is elements e, e # 0, such that ez = e,
is of interest in the study of the structure of a non-associative algebra. From the
biological aspect the existence of such elements is also interesting, because the
equilibria of a population which can be described by an algebra correspond to
idempotent elements of this algebra.

The algebras occurring in applications usually do contain an idempotent. This
occurs in Bernstein algebras (see [10]). With respect to an idempotent eeA (whose
existence is guaranteed), A splits into the direct sum A = (e) + U+Z, where

U={ey:yeKerco}, Z = {xeA:ex = 0},

and the set of idempotents of A is given by {e + u + u2:ue U}. Ljubic in [8] associates
with each Bernstein algebra a pair of integers, the type (/•+ 1, d) of the algebra, where
r = dim U and d = dim Z, and he presents a classification of Bernstein algebras via
their type. Another decomposition for a Bernstein algebra A with respect to one
idempotent e is given by Holgate [7].

In this paper we intend to study the influence of the idempotent elements of a
Bernstein algebra in another direction. In previous papers [4, 5] we have studied an
order relation in Jordan rings without non-zero nilpotent elements, in the same
direction that Abian had done for reduced associative rings and Myung and Jimenez
for the alternative case. When this order relation is considered only over idempotent
elements we obtain the usual boolean relation: two idempotent elements e, f satisfy
e < / i f and only if ef= e. We do not have generally a boolean algebra, only an
ordered set.

It is natural to think about this relation for Bernstein algebras. However, it is
trivial in this case, that is, if e and / satisfy e ^ / , then e = / . So we cannot get
information about the Bernstein algebra by studying this relation between
idempotents. So we define a new relation between idempotent elements that will be
an equivalence relation and try to get information about the whole algebra by using
the information about this relation.
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First we need to improve the characterization of Jordan-Bernstein algebras given
in [11].

1. Jordan-Bernstein algebras

DEFINITION 1. Let A be a commutative AT-algebra, charA^ # 2, and co:A -• K a
non-trivial homomorphism ('weight homomorphism'). We call A a Bernstein algebra
if the identity (x2)2 = co(x)2x2 holds in A for every x in A.

OBSERVATIONS. 1. The weight homomorphism co:A -> K in a Bernstein algebra
is uniquely determined.

2. Every Bernstein algebra has at least one idempotent element 0 ± e = e2.
3. The algebra A splits into a direct sum of vector subspaces

A = K(e)+U+Z,

with U = {e^:^eKerto} = {x:ex = \x} and Z = {zeA:ez = 0}. Then Kertw = U+Z
and if x = oce + u + z, aeK, ueU, ztZ, then co(x) = <x.

In [11] the following properties are proved:
(1) U2^Z,UZ^U,Z2^U,Z2U = 0;
(2) M3 = 0 for every u in U;
(3) u{uz) = uz2 = u\uz) = z2(uz) = (uz)2 = u2z2 = 0 for every u in U and z in Z.

Also in [11], the following result [11, Theorem 3] is proved.

THEOREM. Let A = K(e)+U+Z be a Bernstein algebra over K. Then A is a
Jordan algebra if and only ifZ2 = 0 and the following equations are satisfied for every
utux in U and z,zltz2 in Z:

(i) (uz1)z2 + (uz2)z1 = 0,
(ii) (u\ u2) z + 2((w1 z) M2) «x = 0,

(hi) ((MZ1)Z2)Z1 = 0,

(iv) (u\u2)ux = 0,
(v) ((MZ1)Z2)« = 0.

This theorem can be improved to the following.

THEOREM 1. Let A = K(e)+ U+Z be a Bernstein algebra over K. Then A is a
Jordan algebra if and only ifz2 = 0 and (uz)z = Ofor every u in U and z in Z.

Proof Notice first that if char K # 2, the relation (i) is equivalent, by linearizing,
to the relation {uz) z = 0 for every u in U and z in Z.

One implication is clear; if A is a Jordan algebra, then z2 = 0 and (uz)z = 0 for
every u in U and z in Z.

Reciprocally, let us suppose that z2 = 0 = (uz) z for every u in U and z in Z. Then
if x = <xe + u + z,y = fie + u' + z' are two elements in y4 (<x,fieK, «,w'e£/and z ,z 'eZ)
we can see that

x2(yx) = o 3 ^ 4- (£oV+fa2y9«+iaW + |a2wz' + ayfoz) + Qpfuu' + frfiu2) = (x 2y) x

and consequently 4̂ is a Jordan algebra.

To prove that JC2(^JC) = (x2y) x we have used
(a) ux(u2 z) + «2(M1 Z) = 0, the linearized form of u(uz) = 0,
(b) («x W2) H3 + (w2 M3) MX + («3 «x) M2 = 0, the linearized form of u3 = 0,
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(c) M V + 2(uu') u = 0, the particular case of (b) with ul = ui = u and M3 = u',
(d) (uzx) z2 + (uz2) zx = 0, the linearized form of (uz) z = 0,
(e) u\u'z) = -(u'u2)z = 2((u'u) u)z = -2(u'u) {uz) obtained by using (c) and (d),

and where u, u', M15 M2, M3 are elements of U and z, z', zv z2 are elements of Z.

2. Idempotent elements

Let A = K(e)+U+Z be a Bernstein algebra as before. It is known that the
set of idempotent elements of A (which we will denote by I(A)) is given by
I(A) = {e + u + u2:ueU}.

It is clear that
(a) A has no identity element, except in the trivial case when A = K(e).
(b) A has only one idempotent e # 0 if and only if A = K(e) + Z; that is, ez = 0

for every z in Kerca. Consequently Kerco is a zero algebra.
As we have already said, the aim of this paper is to study the set of idempotent

elements I(A) and to transfer the information about I(A) to the whole of A. First, we
shall consider the relation ^ as in the associative case, given by e ^ / i f ef= e.

But if /= e+u + u2, ueU, and e = ef- e+\u, then u = 0; that is, e ^ / i f and only
if e — f So we cannot get information about A by using information about this
relation ^ . (In some sense, this result is not surprising, because a Bernstein algebra
is close to a nil algebra and the order relation has a good behaviour in the reduced
case.)

Now we are going to study the cases in which the product of two idempotent
elements is again an idempotent element.

If e,/=e+w+M2, ueUe, are two idempotent elements, then e/=e+|« is an
idempotent element if and only if u2 = 0; that is, f=e+u with u2 = 0 and so
uf=ue = \u, ue Ue n Uf, where we write

Ue = {ueKtrco-.ue = \u} and Uf = (xeKer <«:*/= \x}.

So we can define a relation K in I(A) as follows.

DEFINITION 2. Two idempotent elements e,feI(A) are related by R', eR'f, if ef
is idempotent (that i s , /= e + u, u2 = 0, ue Ue).

It is clear that this relation is reflexive and symmetric, but is not transitive (in
general) as the following example shows.

Let A be the 4-dimensional algebra with basis {e, u, u', uu'} and product given by

ee — e, eu — \u, eu' = \u', e(uu') = 0,

uu = u'u' = 0 = u(uu') = u'(uu') = (MM') (UU').

This algebra is a Bernstein algebra (it is even a Jordan-Bernstein algebra),
A = K(e)+ U+Z, where U = K(u, u') and Z = K(uu'). It is easy to see that eR'e + u
and eR'e + u', but e + ufte + u' since (e + u)(e + u') = e + \(u + u') + uu' is not
idempotent because (K

Note. If e,fe I(A) and e R'f, then/ = e + u with u2 = 0 and eu = \u. Consequently
the idempotent element g = ef= e + \u satisfies eR' g and fR' g. So if we consider the
relation R given by eRf'xi there is an element geI(A) with e =fg, this relation R is
the same as the above relation R'. In fact, if eR'f, then/= e + u with eu = \u and
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u2 = 0. Then the element g = e — u is also idempotent and e = fg. Reciprocally, if eRf,
then there is geI(A) with e =fg. But then fR'g and the above comment ensures that
eR'f and eR'g.

Consequently the relation R is symmetric in I(A); that is, if e and/are idempotent
elements and there exists another idempotent element g such that e =fg, then there
are idempotent elements/' and g' such that g = eg' a n d / = ef.

3. An equivalence relation

The aim now is to modify somehow the above definition to get an equivalence
relation.'

DEFINITION 3. Let e,fe I(A). Then e Rf if / = e + u, u e U, and uUe = 0.

In order to see that R is an equivalence relation we shall give first another,
equivalent, definition.

PROPOSITION. Ife,feI(A), then eRf if and only if Ue = Uf.

Proof. Suppose that Ue = Uf a n d / = e + u + u2 as usual. Then ue = uf= \u by
hypothesis; that is, i _ /•.

and consequently u2 = 0, / = e + u. If u' is an element of Ue, then u'sUf. So
\u' = u'f= u'e + u'u = \u' + u'u. Then u'u = 0; that is, uUe = 0 and eRf.

Reciprocally, let eRf, that i s , / = e + u, with uUe = 0. Then for every u' in Ue,
u'f= u'e + u'u - u'e = \u'\ that is, w'e Uf and so Ue £ Uf. Let xeUf,x = u + z, ue Ue,
zeZe. Then

\x = xf= xe + xu = ue + ze + uu + zu = \u + 0 + 0 + zu.

So \u + \z = \u + zu. This implies that \z = zueZe n Ue = 0. Then x = ueUe and

Note. It is known that in the finite-dimensional case, dim Ue = dim Uf for any
pair of idempotent elements e,f. So Ue £ Uf implies that Ue = Uf. However, the
above result is true without any restriction over dimK^4.

COROLLARY. The above relation R is an equivalence relation.

Suppose that there is only one equivalence class; that is, e Rf for every two
idempotent elements e,feI(A). Then for every u in Ue, eRe + u + u2 and consequently
uUe = 0; that is, U\ = 0. Clearly the converse is true.

THEOREM 2. There is only one equivalence class of idempotent elements by R if and
only ifU2 = Ofor every idempotent e and this is the case if and only ifUe is a subalgebra
of A and if and only if Ue is an ideal of A.
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Note. The above result implies that when U2 = 0 for one idempotent element,
then U) = 0 for every idempotent element. As we shall see later, this is not the case
for Ze.

Suppose now that there are as many equivalence classes as idempotent elements;
that is, each equivalence class has only one element.

In this case, if zeZe , then u = z2 satisfies that uUe = 0, so eRe + z2 for every z in
Zg. By the hypothesis e = e + z2; that is z2 = 0 for every z in Ze. Also, for u in Ut and
z in Ze the element (uz)z satisfies that ((uz)z) Ue = 0 (u'(z(uz)) = —(uz)(u'z) = 0) for
all u'eUe. So again eRe + z(zu) for every u in U and z in Z. With the present
hypothesis (uz) z = 0 for every u in Ue and z in Ze.

Consequently we have proved the following.

THEOREM 3. If each equivalence class has only one element, then A is a
Jordan-Bernstein algebra.

The converse is not true as it is shown by any Jordan-Bernstein algebra with
U * 0 and U2 = 0.

If we consider an idempotent element e, then we obtain a decomposition
A = K(e)+Ue + Ze, where

Ue = {ueKerw.ue = f w} and Ze = {zeKer<w:ze = 0}.

For another idempotent element/the decomposition is A = K(f)+Uf+Zf, where

Uf = {«' eKer (o:u'f= |K '} , Zf = {zf eKerco:z'f= 0}.

I f / = e + u + u2 with i7e Ue, then the relation between Ue and Uf and Ze and Zf is
given by:

Uf = {u + 2uu:ueUe}, Zf = {-

We shall write

U? = {u€Ue:uUe = 0} and IP, = {u'eUf :u'Uf = 0}.

By the definition of /?, the equivalence class of e is given by [e] = {e + u:ueU°}.
Similarly [f] = {/+ u'.u'e U»).

LEMMA, (i) £/" = U, for every pair of idempotent elements e,f
(ii) Two equivalence classes have the same cardinal.

Proof. It suffices to prove (i), because if U, = £/° we can define clearly a bijection
between [e] and [/].

By symmetry it suffices to prove that U° e C/°.
Let M° £ Ug, u' e U,. Then there exists u e Ue with «' = u + 2uu, using the same

notation as above. First notice that u° = u° + 2u°ue Uf and

wV = u°u + 2u°(uu) = 0 + 2w>i7).

But KO(««) + (MOK)" + ("O«)M = 0 and u°u = u°u = 0. So M°(M«) = 0 and wV = 0; that
is, u*eWf.

If we call / = U° = {we Ue:uUe = 0} for some idempotent element e, the above
result asserts that U° is independent of the idempotent e; that is, C/° = C/° for every
<? in I(A).
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/ is an ideal of A (for all zsZe,u°eU° = I,ue Ue we have (u°z) u = - (uz) w° = 0)
satisfying P = 0, AI = I. Clearly / is the biggest ideal of A contained in Ue (for every
idempotent element e).

COROLLARY. The following affirmations are equivalent.
(i) Every equivalence class of R has only one idempotent element.
(ii) U° = 0.
(iii) There is one idempotent element e with [e] = {e}.
(iv) There is one idempotent element e such that A has no non-zero ideals I with

THEOREM 4. Let Abe a Bernstein algebra. Then A is Jordan-Bernstein if and only
if Z2 = 0 for every idempotent element e.

Proof Let eeI(A), and Ue and Ze be as usual.
If feI(A), then there is an element ueUe such that / = e + w + w2 and

f

Clearly if A is Jordan then Z) = 0. (The proof that Z\ = 0 is independent of the
idempotent element. Also it is clear using the expression of Zf and the characterization
of Jordan algebras given in Theorem 1.)

Reciprocally, suppose that Z\ - 0 for every eeI(A). Let eeI(A) and we£/e
(arbitrary). Then/= e + u + u2eI(A) and by hypothesis Z) = 0. But zu2eZ% = 0, for
every zeZe, and s o Z / = { - 2 z u + z:zeZe}. Consequently

( - 2uz + z) ( - 2uz + z) = 4(ZM) (ZU) - 4z(zu) + zz = 0 - 4z(zu) + 0 = 0

for every zeZe. Then z{zu) = 0 for all ue Ue and zeZe and A is a Jordan-Bernstein
algebra.

Note. There are Bernstein algebras (not Jordan) with Z\ = 0 for one idempotent
element e, but Z) # 0 for other / e I(A). It suffices to consider the 3-dimensional
algebra with basis {e, u, z) and products given by

ee = e, eu = \u, ez = 0, uu = zz = 0, uz = u.

Clearly A is a Bernstein algebra, Ue = K(u), Ze = K(z) and Z\ = 0. If we consider
f=e + u, feI(A) (even fRe) and Zf = {-2z'u + z':z'eZe} = K{z-2u). But
(z-2u)(z-2u) = -4M # 0 and so Z) # 0.

COROLLARY. Let Abe a Jordan-Bernstein algebra and e 61(A). Then UeZe = 0 if
and only if Ze = ZJor allfeI(A).

Proof. Suppose that UeZe = 0. Let/be an element in I(A). Then there is we Ue

such that/ = e + u + u2. By the hypothesis uz eUeZe = 0, u2z e Z\ = 0 for all z e Ze. So

= Ze.

Reciprocally, if Ze = Zf for all fe I(A), this means that

Ze+u+u* = {-2«z + z:zeZe} = Ze

for all we Ue. So wz = 0 for all zsZe; that is, UeZe = 0.
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COROLLARY. Let A be a Jordan-Bernstein algebra. Then if Ue Ze = 0 for one
idempotent element e, then UfZf = Ofor every idempotent element f

Proof If Ue Ze = 0 for one idempotent element e, Corollary 1 implies that
Ze = Zf for every idempotent element / . If fsI{A), then Z/ = Zg for all geI(A).
By Corollary 1 again this implies that UfZf = 0.
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