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From assumption we get immediately i o ¢ is null homotopic in BSO; ... But BSO, is

a bundle over BSO, ., with fibre S¥, therefore by the lifting homotopy property,

@ is homotopic to a map
o': MP->S*CBSO,,
and hence @ restricted to the (fe—1)-skeldton of M, is null-homotopio and hence
oy = 0 for igk—1. ‘
COROLLARY. If M™ and M7 are two 1-comected closed manifolds which are
tangentially equivalent then:

m If 5<m<15, then
@ . MixD=

Proof. The corollary follows from the theorem, Proposition 3 and the remark.

TXDkE-EMg'XDk, kztm+4),
mx DY, kzm-2, mzS5.
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Tdempotent generated algebras and Boolean pairs
by

Carlton J. Maxson {College Station, Tex.)

Abstract. Let R be a commutative ring with unit. In this paper we introduce the category
of Boolean R-pairs and obtain a full faithful functor B from the category of idempotent generated
R-algebras to the category of Boolean R-pairs, We also determine an adjoint for B, Results are
given to.point out some applications of these functors. '

0. Introduction. T A is a commufative algebra over a commutative ring R,
then it is well-known that the set of idempotents of A can be made into a Boolean
ring. However this functor is not full. We-consider the category, R-IGA, of commuta-
tive idempotent generated R-algebras and obtain a full faithful functor & on this
category to the category of Boolean R-pairs (defined below) which containg full
subcategories isomorphic to the category of Boolean rings. This result is then applied
to the recent problem of finding categories in which the objects are determined
(up to isomorphism) by ionoids of endomorphisms. For related results on this
problem see [3], [4], [51, [7], [8), [91, [10].

For the particular case of torsion free idempotent generated rings, George
M. Bergman (see [1]) indicates a left adjoint for the functor &. That is, given any
Boolean ring B he construcis an idempotent generated ring Z[BY with torsion free
additive group such that the Boclean ting of idempotents of Z[B] is isomorphic
to B. Here we present the construction of such an adjoint for the category R-IGA of
commutative idempotent generated R-algebras. Upon restricting to a certain sub-
category of pairs, we obtain an equivalence with R-IGA which contains results of -
MecCrea [5] and Stringall [10] as special cases.

Conventions. In this paper, all rings will be associative, commutative, with
unit and all algebras will be unitary. For an R-algebra 4, let ‘

Bndpd = {f: A= Al@+ by = af+bf, (@b)yf = aflf, (raf) = r(af), a,be 4, reR}.

‘We give a short outline of the paper. Tn Section 1, we show that the Boolean
ring of any R-algebra is determined by Endpg 4. In Section 2, the category of Boolean
R-pairs is defined and the functor & is constructed. Applications of these results
give the results of McCrea [51, Smith and Luh (8], and Stringell [10]. In Section 3,
the left adjoint of # is constructed and in Section 4 an equivalence between RflGA
and & ceftain -subcategory of pairs is «obtained which generalizes the work of

MecCrea [5] and Stringall [10].
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1. Endg determines 4. Let #(4) denote the set of idempotents of the R-algebra
A=A, +, 5. (Recall that 4 is a commutative ring.) For e, fin Z(4), if we define
e@f = et f~2ef, then B(4) = (B(4), ®, > is a Boolean ring. We now show
that Endg A determines #(A) in the sense that whenever Bndg 4; and Endy A, are
semigroup isomorphic, #(d,) and #(4,) are ring isomorphic.

Let £ = {¢ e Endzd|p® = @}. Partially order E by o<y if of = o = o.
For ¢ & #(A), define @,: 44 by ap, = ae. Then e—+p, is a monomorphism
and hence an order preserving map of % (4) into E. Clearly, ¢, and @, are regpectively
the minimum and maximum elements. of E. For ‘pe X let C(p) denote
{i e El bo = oy} .

Lewma 1.1, For ¢ € E the following are equivalent:

(1) there exisis e e B(A) such that ¢ = Qg;

(2) there exists e E such that C(p) = C(), 0o = gLlb.{p, W} in E and
oy =Lub.9p,y} in E ‘ .

Proof. Suppose (1) holds. It is easily verified that ¢y_, = v satisfies (2). To
see that (2) implies (1), let e = 1 and f = 1y, From the fact that C{g) = C(})
we find Y@ <@ and Yo <y which in turn gives Yo = @y = ¢q. From this we obtain
©, Y<p+y which implies that ¢+ = ¢,. Hence e+f = 1. It is eagily verified
that @+, is in E and o+e,2¢, ¥. Thus ¢o+¢, = ¢, and ¢ = @,.

Xf ¢: Endgd,—Endp 4, is a semigroup isomorphism and H; = {p,] e & #{4)}
i=1, 2, then we see from the above characterization of the H, that the restriction
of @ to H, is a semigroup isomorphism onto H,. Thus #(4,) and #(4,) are semi-
group isomorphic and hence are ring.isomorphic (see [41).

TrEoREM 1.2. For R-dalgebras A, and 4,, ¥ Bndgd; = Endzd, then
B4y = B(A4). _
The converse of - this theorem is not true. In fact, for ‘A, = Z,xZ, and
Ay = Zy%xZ, we have #(d,) = #(4,) but Endp 4, = End, 4,. Moreover, as is
well-known, B (4,) & %(4,) does not in generalimply 4, 2 4. In the next section,
we consider this problem further and do find classes % of algebras such that for
. Ay, 4y €%, from Endpd; = Endgd, we obtain 4, & A,.

2. The category of Boolean R-pairs. An R-algebra 4 is said to be . idempotent
"

generated it for each aed, o =Y re, r,eR, ;e B(4). Recall that a set
1=

{fi; fas n 1} of idempotents is pairwise orthogonal if £ Ji = 0,15 j. Thus if « has
" . N .

representation, a = Y r;e,, then >

i=1

=]

a= a(j];[1(eJ+e;)) = i;lriet(jﬁ (ept+e)),

Wh.cre_ € = l~¢;. Consequently @ can be represented as a linear combination of
pairwise orthogonal idempotents whiq]g,,,we call an orthogonal representation for 4.

icm
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We let R-IGA denote the category of idempotent generated R-algebras. We now
introduce the category of Boolean R-pairs. )

Let #(R) = (¥ (R), &« denote the collection of ideals of R under the inclusion
relation, Let B = {B, @, ') be a Boolean ring and let 4: B+2(R) be a function
such that for e, fe B, ) ' :

(i) (evf)d = ed N fS where evf = e@ f Def,

(i) {ef)dmes+f3 ((+" denotes sum of ideals),

(i) ¢ = R if and only if e =0, :
(B, by is called o Boolean R-pair. :

For a fixed R, we consider the collection of all Boolean R-pairs as objects of
category in which the morphisms @i {B;, 6;>—{B;,8,) are those Boolean 1ing mor-
phisms ¢: B, ~B, such that &, S ¢8,. Because of the similarity of this category to the
“comma. categories” of MacLane [2], we denote our category of Boolean R-pairs
by {# | R>.

(B, 8,> and (B, 8, are said to be isomarphic in (A R} if there are morphisms
@t LB, 8,>+(By, 8235 i {By, 830—2{By, 8, such that @ = 1y, trp = 15,. This
is equivalent to ¢: By—+B, being a Boclean ring isomorphism with 8, = @4,

Let A RIGA. For ec®(4) we let ef = ann(e) = {reR| re =0} and
obtain a Boolean R-pair (B(4), 8 associated to 4. For an algebra morphism
& A, A, we obtain a morphism ¢ = $/B(4): {B(Ay), 60 +{B(4,), 05> end
consequently a functor #: RIGA~+{(B|R>. We now show that & is full.

Let ¢ (#(4)), 80—{B(4,), ;> and let xe 4, have orthogonal representa-

' N n
tion x =ti1riei. ‘We now show that ¢: x»i;rietqo is a well-defined algebra
morphism, .

LemMa 2.1, Vr, & R, Ve, Fe B(A)), if re = sf then r(ep) = s(f¢).

Proof. From re=gf, we find ref = sf = re = gfe which in turn gives
(r—s)ef = 0. Since §,S9d,, (r=5H{(efHp =0 or r(efe) = #(efp). Furt.her, A
rle—ef) =0 implies r{(e—ef)e) =0 and similarly s((f—ef)qa) = 0. Since
e = ¢f@le—ef), rlep) = r(efp) and similarly s(fo) = sefp).

Lumma 2.2. & is well-defined. . ,

Prool. We must show that & does not depend upon the orthogonal representa-

.

. n m
tion used for x & A. Suppose x has orthogonal representations izlrlei and Elsj S
' = i=

n ut
Lete=Y e, f= }iﬁ and note (¥) ex = x, fx = x; (+) rie, = xe; = fxe; = frie;
for all 4, and s, f; = xf; = exf; = es [y, for all J: (xex) riefy = seuf;, for all &,
From (s#«} and Lemma 2.1, ¢,{(e; /) = e fP)porriepfyp = (e, 0)s;(f30).
Summing over j gives '

" L m .
rep Y 00 = ep Y, 8,50

2 — Fundamenta Mathematicae XCIIT
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and now summing over i gives

n m B m

Ve The =Y ep sk
Since the e, (and fj) are olthogonal (eIC-B Pe)o = (e +
fo = ijcp) and therefore fo Z rep = egon 1159, From (w), r{e; ) = rfe.f)p
= (fp)rie; o). Now summing over i gives

iri(etﬁo) =f¢'iri(ei¢) .

m "
Similatly ¥ s,0f0) = ep Y, 5@
desired.
LemMa 2.3. @ is an algebra morphism ,

wete)e = ep (and

Hence we have Y r{eq) =

Lo as

Proof. Let x = Zr €, ¥ = 2 s;f; be orthogonal representations of x and y
in A;. Then xy = Zz r.5;e; fis an orthogonal representation for xy and, 1t is clear

that (xy)qi = x@y®. Also for r.e R, (rx)® = r(x®). As above let e = Z e; and

F=3.1 Then i .,
x = xfpx(l—f) = (Zne)f,ffrzrsel(l—f) = szietfri‘zriei(l =f}.
Similarly

=yety(l- = ZZsjelj}+Zsjf,(1--e) .
Thus

rm n m
x4y =YY (ri+s)e fi+ 3 riedl =+ s f1—-e)
is an orthogonal representation of x-+y and we find that (x+))® = xP+ yd')

THEOREM 2.4. &' R- IGA—»(QNR} is a full faithful functor.

Proof. This follows from the above lemmas and the observation that
B/B(A5) = .

CORDLLARY 2.5, For Ay, A, € RIGA, 4, = A, <= (H(4,), 8> = (B(d). 63D

We say 4 € R-IGA is R-torsion free if for ae 4, anil(a) = (03, Thus, in the
associated Boolean R-pair (#(4). 5, 05 = R and ed = (0) for ¢ # 0, Combining
Theorem 1.2 and the above corollary gives the next result.

THEOREM 2.6. Let A, 4, e RAIGA. If A1 and A4, are R-torsion free, then
Endpd; = Endzd, <A & 45

The above theorem generalizes results in'[5], {7}, [8] and [10]. Thc special cases
can be recovered by specifying the rings R.

3. Construction of the left adjoint of #. Consider a Boolean R-pair (B, d)
and denote the collection of maximal ideals of the Boolean ring B by .#(B). For

/
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each m e #(B), define R(m) = {re R| reeb, for some eém}. Using the proper-
ties of & and m, we find that R(m) is an ideal of R.
For each me #(B), B/m =2 Z, and so there is a Boolean ring embedding
u: Bjfm—R[R(m). We then have a Boolean ring monomorphism y: [[(Bfm)
Ly

—>I;[ (RfR(n)) where [T denotes the product of the indicated rings. (For e [ (B/m),
(f): m—~(mfg,.) Since B can be embedded in [[(B/m) (e—& where (m)é : et+m)
we obtain a Boolean ring monomorphism ¢: B—:]?[(R/R(m)). Let 4 be the R-sub-
algebra of ]':[(R/R (m)) generated by the set of igempotents Bo.. -

Applying # to the above constructed algebra, we obtain the Boolean R-pair
{B(A), 8). We now show ¢J = &.

Lemva 3.1, For ee B, epd = N Rew.

. =¢m

Proof. Since egp = &y, epd = ann(&)). Recall thatif e ¢ m, (m) (&) = 1+R(m),
while if e &m, (m)(EY) = R(m). Now r e ann(@y) if and only if, r[(m)&)] = R(m)
for all m. But this is equivalent to ¥ e R(m) for all m such that e &m. ]

Lemva 3.2, For bye; in B, i=1,2,.,n, let e=De®..@b,e,, then
ed=2() (bie)d. :

3

Proof. For a and ¢ in B, (a®c){ave) = a®c which in turn implies
(a®e)d=(av )b = 4é r c§. The desired result now follows by induction.
Lemma 3.3. For ee B, e = [} R(m).
' ofm
Proof. If is clear that ed<R(m) for all m such that e ¢m. Conversely, for
re [} R(m), there exists e(m) in B such that e(m) ém and ree(m)é. Let Kol
m N N

agm
denote the collection of all such idempotents; i-e., Kyr) = {e| e,€ B, e, &m for
some m in .#(B) such that e ¢ m, and r & g,8}. Let K be the ideal of B generated
by Ko(¥). X eckK, then e = b, e, ®...@b,e,., b € B. From (3.2) 52 ) (b;e,)d
i

and since (b;e,)82b,5+¢, 8 we have r € eb. If, on the other hand, ¢4 K then using
Zorn’s lemma we obtain a maximal ideal my of B such that KSmg and e ¢ my.
Consequently, € R(m,) and thus there exists e(wp) & my such that ree(my)d.
But this means that e(mg) is in Ko() and thus in K which is impossible. Hence e & K
and r e ed.

THEOREM 3.4, For every Boolean- R-pair {B,8) there exisis an algebra A in
RIGA and u Boolean ring monomorphism ¢: B—%(AY such that @8 = & where
{B(A), 5> is the Boolean R-pair associated with A

For <B, 8> in {(BLR} let o (B) denote the idempotent generated R-algebra
given by the above construction, As in Theorem 2.4, we find that a meorphism
ax
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@: {By,8.>{B,,5,> of Boolean R-pairs extends to an-algebra morphism
SZ{B,)~ 5 (By). Thus o: (B Ry—R-IGA is a functor. (Note that F(#(B))2B.
None-the-less, B (better an isomorphic copy) generates &/(B).) For 4e RIGA
and (B, 5 € (BLR), a map & in Hom(s# (B), A) induces a map ¢ in Hom (B, &,
{B(4), 5Y) and conversely a map ¢ € Hom({B, ), {#(4), 3}) gives rise to & map
Ye Hom(£(B), A). Since these processes are inverses of each other and natural in
both 4 and ¢{B, 5> we have the following result.

THEOREM 3.5, o is a left adjpoint of A.

4. Equivalence results. In this section we obtain an equivalence between a sub-
category of (#|R) and R-IGA. Restricting our ring R of scalers, we obtain some
new (and some old) special cases.

For 4 € RIGA and me H(B(AY) let m =Y, de. 7 is an ideal of 4 and for

ecsm
each ec #(A)—m, ¢ = 1modulom. In fact, if edm, (l—e)em and therefore
a—~ae = a{l—e)em, for each ae 4. :

LeMMA 4.1. A/m has only the irivial idemporents.

k

Proof. If x4+ /iis an idempotent of 4/ then x®—xe . Hence x*>~x = Y aye,,
=1
k

a6 4, 'e;em. Thus 1—e; = ¢ ¢m. Consequently, if e = []e|, then e¢m and
=1
(x?—x)e = 0. Hwelet y = xe then y is an idempotent in 4 and x—y = x(1—¢) e A,
Since y € #(4) we have the desired result..
It is clear that A/ € R-IGA and since 4/m has only one non-zero idempotent,
we have A/ = R(I) and R(1) = Rjfann(T) where I = 1+7.

Lemma 4.2, ann{l) = R(m) where 72(1—11) = {reR| re ann(e) for some e & m}.
Proof If reann(l) then r T=m which in turn give r'1em. Hence

r-1 —Zre I we again let e = He then e¢mand 0 = (- l)e— wwhlm shows

that re R(m). On the other hand, if re = 0 for some edm then l—ecm and
r-l =r(l—e)eim; i.e., reann(l),

Combining these two lemmas we obtain the next result.

COROLLARY 4.3, For A & RIGA gnd m e #(H(4)), RIR(m) has only ihe trivial
1dempotents

Let {B, &> be a Boolean R-pair md construct o7 (B). For cach ¢ B, let
(&) = {me #(B) edm}. It is well-known that these sets determine a to pology
on . (B) in such a manner that .#(B) is a Boolean space (compact totally discon-
nected Hausdorf space). We note that »/(B) is a set of functions from .#(B) ta D
where D denotes the disjoint union of the quotient rings R/R(m), m e 4 (B). In
order to define a topology on D so that each fin &/ (B) becomes a continuous map,
we need the following analogue of a result of Pierce ([6], Lemma 4.3, p. 16).

.
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Lemma 4.4, Let a, be o (B). If there exists me M (B) such that (mya = (m)b
then there exists an e in B such that me A (¢) and (h)a = (A)b for oll he A (e).
Proof. Let a = izlr,-ef, b= Zs,-éi, ris 5i, € R, &;, & € By be orthogonal rep-

= i=1 :
resentations of & and b respectively Suppose mg, = § for all i. Then for all 7, e em

and consequently ey = H e; & m. Then me A (¢,) and for he N (), &, ¢ implies
e;ehi=1,2,.

_ T Thus, (We = (A)b. If for some i, mé; 5 0, then (m)a = r, 1+ R(m)
= Si—I-R(m) =

(m)b Thus ry—s; € RGm) and so by definition, r;~s; /5 for some

' feB, fém. Now me N (e, f) since e;¢ m and fém. ¥ ke A (e,f), e, f&h which

means that ;8 +f6< (e, f)S=R() or r~—s-eR(ﬁ). Since e; ¢ h, (Aa = r,+RE)
= 5;+R(ky = (h)b.

Following Pierce ([6], pp. 16-18) we are now able to define a topology on D
$0 that the functions insf{B) are continuous and have compact support ([6], p. 37)
(Support of f= Suppf = {me 4 (B)| mf % 0}.)

Leia 4.5. If fe B(L(B)) is such that mfe (0,1} for each me M(B) then

JFeBo. (aRecall thar ¢: B—~% (o (B)) is the Boolean ring monomorphism constructed
above.)

Proof, Since fe & (B), f = Z ri&;, rye Rand the g; are orthogonal idempotents
1=1

in Bp and thus it suffices to show for arbitrary i, 1<i<n, rg is in Bp. For
me Supp{re), (m)ré; = 1+ R(m) which is equivalent with 1—r & R(n). Thus there
exists S &, ¢m such that 1—-ree,d. Now, me A (ge,) and for he A (e,e) ()1,

(h)e e, since 1—ree,d S(e;¢,)8 SR(A). Since Supp (&) is compact there is a finite

subcollection A (e; e,,l), w, N(eie,) with Supp{rgy) = U (e;e,). But then rg

= e,emv...v e;e,, and since each e,-e,zj is in By so is e;.

TiueoreM 4.6. For a Boolean R-pair (B, 8>, Bp = B(&/(B)) if and only if
R[R(m) has only the trivial idempotents, for each m in 4 (B).

Proof. Every maximal ideal of Bp has the form me where me #(B), It
Bo = % (s (B)) then from Corollary 4.3, R/R(mep) has only the trivial idempotents.
However, r € R(me) if and only if r ¢ &5 for some & & mep; i.e., if and only if r c epd
for some e ém. Using the fact that @3 = &, this last condition is equivalent to
re R(m). Hence R/R(m) has only the trivial idempotents. Conversely, we have
Bo= @ (#(B)). For fe B((B)), me 4 (B), mf is an idempotent in R/R(m) and
consequently mfe {0, 1}. By the previous lemma, /e Bp.

‘We say a Boolean R-pair is reduced if it satisfies the conditions of the above:
theorem and we denote the subcategory of reduced Boolean R-pairs by {@B{R>.

THEOREM 4.7. R-IGA is equivalent to {B|R).

Proof. We first note that for 4 & R-IGA, (& (4), ) is reduced (Corollary 4.3).
Thus (et (#(4))) is isomorphic to #(4) and this isomorphism induces (as in
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Theorem 2.4) an isomorphism between &7 (EZ(A)) and 4. That is, &4 is naturally
isomorphic to the identity functor on R-IGA. On the other hand, for a reduced
pair (B, 8, #(s(B)) = Bp and § = 5. Thus At is naturally isomorphic to the
identity functor on {B{R).

We conclude by considering some special cases. In particular, the collection of
Boolean R-pairs ¢B, 5,> where ed, = 0 if & # 0 and 08, = R are the objects of
a full subcategory of (@ R. Since this subcategory is isomorphic to the category of
Boolean Tings, we denote it by Borng. If R has only the trivial idempotents then
B, 8y is reduced. The following corollary is a generalization of a result of McCrea
for the special case in which R is the ring of integers.

CORCLLARY 4.8. If R is a ring with only the trivial idempotenss then the category
of R-torsion free idempotent generated R-algebras is equivalent to the category of
Boolean rings.

CorOLLARY 49. If R is a ﬁeld RIGA is equivalent to Borng.

Thus for fields F, and F,, F;-IGA and F,-IGA are equivalent, Ta particular,
for prime integers p, we obtain the result of Strmgall [10] that the categories of p-rings
are equivalent.
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3-dimensional AR’s which do not contain 2-dimensional ANR’s
by
S. Singh* (Altoona, Penn.)

Absiract. There exists an upper semicontinvous decomposition' G of 3-dimensional cell B®
such that the decomposition space B¥G is a 3-dimensional AR which does not contain any 2-di-
mensjonal ANR.

1. Introduction and terminology. By an AR (ANR) we understand a compact
metric absolute retract (compact absolute neighborhood refract). One may consult [$]
for ‘additional information on AR’s (ANR’s) and related terminology.

If G is an upper semicontinuous decomposition of a topological space X we de-
note the associated decomposition space by X/G and by p: X=X /G the canonical
projection, unless otherwise stated. For more information on uppér semicontinuous
decompositions see [21}. A survey of results on upper semicontinuous decompo—
sitions can be found in [2] and [21).

Let n denote a positive integer. By E” we shall always mean an n- dlmenslonal
Buclidean space, by B" the closed ball of unit radius, and by §! the boundary
sphere of B". By a disc we shall always understand a space homeomorphlc io BZ,
All maps will be continuous.

A family (collection, sequence) C of subssts of metric space X is called a null
family (collection, sequence) provided that for each ¢>0 at most a finite number of
elements of C are of diameter greater than a.

The purpose of this paper is to provide an affirmative answer to the following.
question which arises in Bing and Borsuk [8] and Armentrout [4]:

Do there exist 3-dimensional AR’s which do not contain 2-dimensional AR’s
or even 2-dimensional ANR’s?

In [8], Bing and Borsuk described an upper semicontinuous decomposition G
of B® whose nondegenerate elements form a countable null family of arcs such, that
the decomposition space B3/G is a 3-dimensional AR which does not contain any
disc. They asked whether their 3-dimensional -AR B3/G contained any 2-dimen-
sional AR, Armentront [4] described an upper semicontinuous decomposition G
of B? similar to the one desctibed by Bing and Borsuk [3] such that B3/G is a3~-dimen-
sional AR which does not contain any disc but does contaln 2-dimensional AR’s.

_* The author wishes to thank Professor Steve Armeutrout ot‘ The Pem;sylvama State Uni-
versity for many lelpful suggestions.
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