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Abstract 

Subacute sclerosing panencephalitis (SSPE) occurs in some individuals after measles infection, following a symptom-
free period of several years. It resembles chronic traumatic encephalopathy (CTE), which happens after repetitive head 
impacts or exposure to blast waves, following a symptom-free period. As in CTE, the neurofibrillary changes of SSPE 
are concentrated in superficial cortical layers. Here we used electron cryo-microscopy (cryo-EM) of tau filaments from 
two cases of SSPE to show that the tau folds of SSPE and CTE are identical. Two types of filaments were each made of 
two identical protofilaments with an extra density in the β-helix region. Like in CTE, the vast majority of tau filaments 
were Type I, with a minority of Type II filaments. These findings suggest that the CTE tau fold can be caused by differ-
ent environmental insults, which may be linked by inflammatory changes.

Keywords  Tau, Subacute sclerosing panencephalitis, Chronic traumatic encephalopathy, Inflammation, Electron 
cryo-microscopy

Introduction
Subacute sclerosing panencephalitis (SSPE) is a fatal dis-
order of the central nervous system that occurs follow-
ing infection with measles virus and manifests itself after 
a symptom-free period of several years [1]. It occurs in 
approximately 1 in 75,000 cases of measles [2]. The neu-
ropathology of SSPE is characterized by severe nerve cell 
loss, demyelination, perivascular lymphocytic infiltra-
tions and viral intranuclear inclusion bodies. By silver 
staining, abundant neurofibrillary tangles are present in 
cerebral cortex and other brain regions in a proportion 
of cases [3, 4]. They have been reported to be made of 
paired helical filaments like those from Alzheimer’s dis-
ease brains [5, 6] and stain for abnormally phosphoryl-
ated tau and ubiquitin [7]. Tangle-bearing cases of SSPE 
have mostly a long disease duration [8] and in a recent 
immunohistochemical study, tau pathology was found in 
all cases of SSPE [9].
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Tauopathy has been inferred to result from diffuse 
brain inflammation triggered by infection with measles 
virus and not from a direct effect of the virus [9]. Neu-
rofibrillary tangles of SSPE stain with antibodies specific 
for 3R and 4R tau, like the tau inclusions of primary age-
related tauopathy (PART), Alzheimer’s disease (AD) and 
chronic traumatic encephalopathy (CTE) [10]. Unlike 
PART and AD, but like CTE, the neurofibrillary tangles 
of SSPE are present in superficial cortical layers [9, 11].

We previously used electron cryo-microscopy (cryo-
EM) to determine the atomic structures of tau fila-
ments from a number of neurodegenerative conditions, 
which has resulted in a structure-based classification of 
tauopathies [12]. We showed that the tau filament folds 
of 3R + 4R tauopathies separate into two groups, the first 
of which is formed by PART, AD, and familial British and 
Danish dementias (FBD and FDD), and the second by 
CTE. The neurofibrillary pathology associated with some 
cases of Gerstmann-Sträussler-Scheinker disease (GSS) 
also belongs to the first group [13]. We now report that 
the structures of tau filaments from two cases of SSPE 
are identical to those of CTE. This suggests that the CTE 
tau fold can form in response to different environmental 
insults, which may be linked by inflammatory changes.

Materials and methods
Clinical history and neuropathology
We determined the cryo-EM structures of tau filaments 
from the frontal cortex of two individuals with SSPE. 
There was no history of head injury. Case 1 was a male 
who developed measles when 1.5 years old; at age 8, he 
developed a speech disturbance, as well as eating and 
walking difficulties. He was diagnosed with SSPE based 
on clinical presentation, a history of measles infection 
and characteristic electro-encephalogram and cerebro-
spinal fluid abnormalities. Despite intensive antiviral 
treatment, his condition worsened progressively and he 
died aged 42, after having been on mechanical ventila-
tion for 11  years. The brain was severely atrophic with 
a weight of 439  g. Neuronal rarefaction was extensive 
in cerebrum, brainstem and cerebellum and there was a 
severe loss of myelinated nerve fibres. Tau-immunoreac-
tive NFTs showed a wide distribution and were present 
in layers II and III of the cerebral cortex. The clinico-
pathological characteristics of SSPE case 2 have been 
described [case 4 in [9]]. Briefly, this was a male who 
developed measles at the age of 0.8  year; at age 22, he 
developed convulsions, myoclonus and parkinsonism. He 
was diagnosed with SSPE based on the neurological find-
ings, a history of measles infection, periodic synchronous 
discharge on electro-encephalogram and cerebrospinal 
fluid abnormalities. Intensive antiviral treatment failed 
to improve his symptoms, he became bedridden and died 

aged 41. The brain was severly atrophic with a weight of 
735 g. Pathological examination revealed the presence of 
marked brain atrophy with nerve cell loss and gliosis in 
cerebral cortex, basal ganglia, thalamus and hippocam-
pus, which were associated with severe white matter 
atrophy [9]. Tau immunoreactive NFTs showed a broad 
distribution, in particular in superficial layers II and III of 
the cerebral cortex, in oculomotor nuclei and in the locus 
coeruleus.

Extraction of tau filaments
Sarkosyl-insoluble material was extracted from the fron-
tal cortex of cases 1 and 2 of SSPE, as described [14], with 
minor modifications. Briefly, tissues were homogenized 
with a Polytron in 40 vol (w/v) extraction buffer consist-
ing of 10 mM Tris–HCl, pH 7.4, 0.8 M NaCl, 10% sucrose 
and 1  mM EGTA. Homogenates were brought to 2% 
sarkosyl and incubated for 30 min at 37  °C. Following a 
10 min centrifugation at 27,000 g, the supernatants were 
spun at 257,000 g for 30 min. Pellets were resuspended in 
2 ml extraction buffer containing 1% sarkosyl and centri-
fuged at 166,000 g for 20 min. The resulting pellets were 
resuspended in 100  µl phosphate-buffered saline (PBS) 
and used for subsequent analyses.

Immunolabelling and histology
Immunogold negative-stain electron microscopy and 
immunoblotting were carried out as described [15]. For 
immunoelectron microscopy, the samples were applied 
onto collodion membrane-applied mesh, blocked with 
0.3% gelatin, incubated with AT8 (1:100, Innogenetics 
90,206) for 1 h at 37 °C, followed by a 1 h incubation at 
37 °C with 10 nm gold-labelled secondary antibody (1:50) 
and staining with 2% phosphotungstate. For immuno-
blotting, samples were run on 5–20% gradient gels (Fuji 
Film). Proteins were then transferred to a polyvinylidene 
difluoride membrane and incubated with the following 
primary antibodies overnight at room temperature: Tau 
N (1:1000, Cosmobio TIP-TAU-P-03), AT8 (1:500), RD3 
(1:500, Millipore 05-803), RD4 (1:500, Millipore 05-804), 
anti-4R (1:1000, BioLegend MMS-5020), Tau354-369 
(1:1000, Millipore ABN2178-100UL) and T46 (1:1000, 
Thermo Fisher Scientific 13-6400). Following washing in 
PBS, the membranes were incubated with biotinylated 
anti-mouse or anti-rabbit secondary antibody (Vec-
tor, 1:500) for 1  h at room temperature, followed by a 
30  min incubation with avidin–biotin complex and col-
our development using NiCl-enhanced diaminobenzi-
dine as substrate. Histology and immunohistochemistry 
were carried out as described [16]. Brain sections were 
8 µm thick and were counterstained with haematoxylin. 
Primary antibodies were: RD3 (1:1000); anti-4R (1:1000); 
AT8 (1:300); anti-measles virus fusion protein antibody 



Page 3 of 7Qi et al. Acta Neuropathologica Communications           (2023) 11:74 	

(1:1000, Funakoshi bs-0886R); Iba-1 (1:2000, 019-19741); 
CD3 (1:1000, Novocastra NCL-1-CD3-565).

Electron cryo‑microscopy: sample preparation and data 
collection
Extracted tau filaments were centrifuged at 3000  g for 
1  min and applied to UltrAuFoil cryo-EM grids [17], 
which were glow-discharged with an Edwards (S150B) 
sputter coater at 30 mA for 1 min. Aliquots of 3 µl were 
applied to the glow-discharged grids, blotted with fil-
ter paper and plunge-frozen into liquid ethane using a 

Vitrobot Mark IV (Thermo Fisher Scientific) at 100% 
humidity and 4 °C. Cryo-EM images were collected on a 
Titan Krios electron microscope (Thermo Fisher Scien-
tific) operated at 300  kV and equipped with a Falcon-4 
direct electron detector. Images were recorded during 6 s 
exposures in EER (electron event representation) format 
[18] with a total dose of 40 electrons per A2 and a pixel 
size of 0.824 Å.

Fig. 1  Frontal cortex from SSPE case 1: Immunohistochemical characterisation of tau inclusions and inflammatory changes. a RD3 (specific for 
3R tau)-immunoreactive nerve cells and neuropil threads. b RD4 (specific for 4R tau)-immunoreactive nerve cells and neuropil threads. c AT8 
(specific for pS202 and T205 tau)-immunoreactive nerve cells and neuropil threads. d Antibody against measles virus shows neuronal staining. 
e, Iba-1-immunoreactive microglial cells. f CD3-immunoreactive lymphocytes. Many tau inclusions were found in layers II and III. Scale bars: a–e, 
50 µm; f, 100 µm.
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Electron cryo‑microscopy: image processing
Image processing was performed using RELION-4.0 [19, 
20], unless indicated otherwise. Raw movie frames were 
gain-corrected, aligned, dose-weighted and summed into 
a single micrograph. Contrast transfer function (CTF) 
parameters were estimated using CTFFIND-4.1 [21]. 
Filaments were picked manually and segments extracted 
initially with a box size of 1024 pixels. 2D classification 
was used to remove suboptimal segments and separate 
Type I from Type II filaments. Selected class averages for 
Type I and Type II filaments were then re-extracted with 
a box size of 400 (for SSPE case 1) or 300 (for SSPE case 
2) pixels. Initial models were generated de novo from 2D 
class averages using relion_helix_inimodel2d [22]. Helical 
twist and rise were optimised during 3D auto-refinement. 
Bayesian polishing and CTF refinement [23] were used to 
improve the resolution of reconstructions of Type I fila-
ments. Final maps were sharpened using standard post-
processing procedures in RELION and their resolutions 
were calculated based on the Fourier shell correlation 
(FSC) between two independently refined half-maps at 
0.143 [24]. Helical symmetry was imposed on the post-
processed maps using the relion_helix_toolbox program 
[25].

Model building and refinement
Atomic models of published CTE filament structures [26] 
(PDB:6NWP; PDB:6NWQ) were docked manually in the 

density using Coot [27]. Model refinements were per-
formed using Servalcat [28] and Refmac5 [29, 30]. Mod-
els were validated with MolProbity [31]. Figures were 
prepared with ChimeraX [32] and Pymol [33]. Further 
details of data acquisition and image processing are given 
in Additional file 1: Table S1 and Figure S1.

Results
For cryo-EM, we extracted tau filaments from the frontal 
cortex of two cases of SSPE. Both individuals had measles 
as children, with the clinical picture of SSPE manifesting 
itself following a number of symptom-free years.

In SSPE case 1, immunohistochemistry with anti-tau 
antibodies showed abundant neurofibrillary tangles that 
were stained by anti-tau antibodies specific for 3R tau, 
4R tau and phospho-tau (AT8) (Fig. 1). Neurons and glial 
cells with intranuclear inclusion bodies were observed 
using an antibody against measles virus. Microglial cells 
were activated, as shown by Iba-1 staining; the same was 
true of cytotoxic and T helper lymphocytes, as evidenced 
by CD3 staining (Fig. 1). Similar abnormalities have been 
described in SSPE case 2 [9].

Filaments from the sarkosyl-insoluble fractions were 
decorated by anti-tau antibodies and gave the same 
bands on Western blots as those from AD brains (Fig. 2). 
It has previously been shown that the bands of sarkosyl-
insoluble tau from AD are identical to those from CTE 
[34]. The observed bands indicate that the filaments of 
SSPE cases 1 and 2 are made of all six tau isoforms in a 
hyperphosphorylated state, consistent with previous 
results [9].

By cryo-EM, we show that the CTE fold of assembled 
tau is characteristic of SSPE cases 1 and 2 (Fig. 3; Addi-
tional file 1: Figure S1). As in the CTE fold, two types of 
tau filaments were present, each with an unknown, inter-
nal density in the β-helix of the structured core. Type I 
and Type II filaments are both made of two identical 
protofilaments, with different interprotofilament pack-
ing, i.e. type I and type II CTE filaments are ultrastruc-
tural polymorphs. Type I comprised more than 90% of 
the observed filaments and Type II less than 10%, similar 
to what has been observed in CTE [26].

Discussion
SSPE and CTE share a long interval between the primary 
insult (measles virus infection or repetitive head impacts 
and blast waves) and the appearance of clinical symp-
toms. Like AD and CTE, tangle-bearing cases of SSPE are 
characterised by the presence of abundant filamentous 
inclusions made of all six brain tau isoforms. Unlike AD, 
CTE and tangle-bearing cases of SSPE share the forma-
tion of abundant tau inclusions in cortical layers II and 

Fig. 2  Immunolabelling and immunoblotting of tau filaments from 
SSPE. a, b Immunoelectron microscopy of filaments from SSPE cases 
1 (a) and 2 (b) using anti-tau antibody AT8. c Immunoblotting of 
sarkosyl-insoluble fractions using anti-tau antibodies: Tau N; AT8; RD3; 
Anti-4R; Tau354; T46. Lanes: 1, SSPE case 1; 2, SSPE case 2; 3, AD
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III [9, 11]. We previously showed that the CTE fold dif-
fers from the Alzheimer tau fold by adopting a more 
open conformation of the β-helix region, which contains 
an internal density of unknown identity [26]. In the pres-
ence of NaCl, recombinant tau comprising amino acids 
297–391 assembles into filaments with the CTE fold, but 
in its absence, the Alzheimer tau fold forms [35].

We now find that the tau fold of SSPE is identical to 
that of CTE. As in CTE, two types of filaments, each 
made of two identical protofilaments, were present in 
SSPE cases 1 and 2. Western blots of sarkosyl-insoluble 
tau fractions indicate that these filaments are made of 
all six (3R + 4R) brain tau isoforms [12, 13, 26, 36]. For 
3R + 4R tauopathies, one protofilament fold (the Alzhei-
mer fold) is found in PART, AD, GSS, FBD and FDD, and 

the second protofilament fold (the CTE fold) is found in 
CTE. The present findings show that SSPE is a second 
example of a 3R + 4R tauopathy with the CTE fold. It 
remains to be seen if other conditions with tau inclusions 
in cortical layers II and III also share the CTE fold.

Inflammation may be what CTE and SSPE have in 
common. In SSPE case 2, extensive inflammatory 
changes have been described, with perivascular lym-
phocyte infiltration, aggregates of hypertrophic astro-
cytes and activated microglia [9]. Here we show that the 
frontal cortex from SSPE case 1 also exhibited micro-
glial activation and lymphocyte infiltration. Immuno-
reactivity for measles virus was present in both cases 
of SSPE, even though they had undergone antiviral 
treatment. In untreated cases of long disease duration, 

Fig. 3  Cryo-EM cross-sections and structures of tau filaments from SSPE. a Cross-sections through the cryo-EM reconstructions, perpendicular 
to the helical thickness and with a projected thickness of approximately one rung, are shown for SSPE cases 1 and 2. A majority of Type I and a 
minority of Type II tau filaments are each made of two copies of a single protofilament arranged in different ways (ultrastructural polymorphs). 
Resolutions and filament percentages: SSPE case 1: Type I CTE filament 2.3 Å, 92%; Type II CTE filament 5.1 Å, 8%. SSPE case 2: Type I CTE filament 
3.0 Å, 91%; Type II CTE filament 3.5 Å, 9%. Scale bar, 5 nm. b Cryo-EM density maps (grey transparent) of SSPE Type I and Type II tau filaments and 
the atomic models coloured blue (Type I) and orange (Type II). c SSPE Type I (blue) and Type II (orange) filaments overlaid with CTE Type I (magenta) 
and CTE Type II (magenta) filaments. The filament core extends from tau residues K274/S305-R379 
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measles virus was detected in cases with neurofibrillary 
lesions [37]. In treated cases, the detection frequency of 
measles virus was decreased, even though neurofibril-
lary pathology was unaffected, suggesting that antiviral 
therapies may not be able to suppress the progression 
of tauopathy following SSPE [9]. It remains to be seen 
if tau inclusions influence the clinical picture of SSPE. 
Inflammatory changes also occur in CTE, where micro-
glial cell activation is believed to increase tau pathology 
and the presence of abundant CD68-positive microglial 
cells has been demonstrated [38]. Moreover, translo-
cator protein (TSPO) positron emission tomography 
ligands for activated microglia have shown increased 
signal in retired American football players who are at 
risk for CTE [39].

It is unclear how inflammation and microglial cell 
activation affect tau assembly. Microglial cell activa-
tion has been reported to promote tau assembly in 
mice [40–42] and it also characterizes neurodegenera-
tive diseases with filamentous tau pathology other than 
SSPE and CTE, the most studied of which is AD [43, 
44]. More work is required to identify the links between 
neuroinflammation and tau assembly.
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