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|dentifiability and ldentification of Chaotic Systems
Based on Adaptive Synchronization

Herve Dedieu,Member, IEEE and Maciej J. Ogorzatelgellow, IEEE

Abstract—This paper deals with the problem of synchroniza- are negative [11]. The term “conditional’ comes from the fact
tion of chaotic systems when the driven (slave, receiver) systemthat the Lyapunov exponents depend on the driving signal.
has the same structure as the master (driving, emitter) system If all the conditional Lyapunov exponents are negative it can
but its parameters are unknown. It is shown that the concept of )
synchronization provides an efficient way to find the unknown P& expected that all the state variables of the slave system are
slave system parameters. Parameter mismatch between masterforced to follow the corresponding state variables of the master
and slave systems and high sensitivity of response to changes okystem (although just one variable was used as driving signal).
these parameters were so far considered as crucial for security In the above-mentioned applications, the decomposition is

issues. This paper shows evidence that this claimed advantage . .
becomes in fact a major drawback in chaos communication carried out in such a way that the slave subsystems are exact

schemes since parameters can easily be found using adaptivecopies of the master subsystems (structure and parameter
synchronization and optimization tools. The general problem values) and synchronization fails if this is not the case.
of identifiability of chaotic systems is defined and discussed |t has been confirmed by many authors that sensitivity to
in the context of possibilities for finding the unknown chaotic ¢ . tch i d back also f th
receiver parameters. Several typical systems used in experimentsparame gr mlsmac IS a -common rawbac .aso or other
in chaos communication are tested for identifiability showing Synchronization schemes like error-feedback, inverse system,
direct applications of the introduced concepts. In particular active-passive decomposition etc. and one has to be very
gﬁamf”es. Of,:he skew ant rgﬁp’d'dfgo,rl‘ ':‘lna?l 't\/'arkt%V maF;)SI and cautious when designing and exploiting chaos synchronization
ua’s circuit are considered in detail illustrating the problems - g : :
of global and local identifiability. pI’InC.IP|?S. On the other hand it is clglmed that this extreme
o ~_ sensitivity to changes of parameters is advantageous because
_Index Terms—Communication, chaos synchronization, identi- it enhances transmission security. As even very small param-
fiability, identification. . . . . -
eter mismatch results in a very different dynamic behavior
it was believed that it will be totally impossible to find
|. INTRODUCTION system parameters using measurements of transmitted signals
alone.
A. Background In this paper we will show that this claim not only is not

INCE THEIR discovery in the late 1980’s [11] chaodrue but as a matter of fact we have an opposite situation—we

ynchronization principles have been applied in differeffOPOSE 10 take advantage of the property of sensitivity of

fields ranging from communications [1] to control [13]. irchaos synchronization to parameter mismatch for parameter

particular there was a considerable effort in designing simgRentification purposes. We show how this property, which
chaotic circuits producing signals suitable for informatiofs @ m&or hindrance in design and a claimed advantage of
transmission purposes, which could offer both: spread sp§@mmunication schemes employing chaotic carriers, can be
trum and privacy. In many applications the Pecora and Carr8fccessfully exploited to find unknown slave system param-
synchronization scheme [11], [12] has been applied directfters- What was supposed so far to offer security will be
This scheme relies on a suitable decomposition of the origiri€d here to break this issue. This is achieved by controling
chaotic system—later called tineastersystem—into an open- the slave system by means of tuning its parameters until
loop cascade of subsystems (cali@vesystem). This cascadeSynchronization occurs.

of subsystems is forced using as driving signal one particularThe principles of chaotic identification have been first
signal transmitted from the master. In general the slave c&§scribed by the authors in [4], [5] and developed in a series
cade consists of stable and unstable subsystems. To ach®iveapers [6], [7]. Independently, some of the identification
synchronization one has to make sure that all the conditior@iPects of synchronized chaotic systems were addressed in

Lyapunov exponents associated with some variational equatléh [8]. and [9].
It is supposed in [3], [7]-[9] that one knows the class
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parameter identification is therefore carried out using both
synchronization and optimization algorithms which tune th ] = T
slave system parameters in order that synchronization occurs.
Synchronization can be seen here as an elegant way|to =(f)=
cope with the problem of sensitivity to initial conditions.| [®s(t). ®u(t)]
Indeed if we tried to identify a chaotic oscillator directlyi — =s(1)
in a closed loop, we would be faced with the problem
of rebuilding the state variables and the exact values @f. 1. Decomposition of the system into two subsystems coupled in a closed
the parameters. These two problems are difficult to SoNREP-
due to the intrinsic sensitivity to initial values of the state
variables. By applying synchronization principles, i.e., by Il. SYNCHRONIZATION OF CHAOTIC SYSTEMS
trying to identify some forced open loop version of the
oscillator, we can avoid the problem of sensitivity and fingd Principles of Synchronization When
a simple way to rebuild the state variables of the mastg{e parameters are Known
system.

We should remark here that synchronization reduces drasﬁ

cally the dimension of the minimization problem since it is not i t the chaoi L h
necessary to search for the state variables (these are foun&%?/” Ing ones of the chaotic master system. Let us assume that

synchronization!!), it is only necessary to search (optimiz{:ﬁe system of equations of the master is known and the exact

for the unknown parameters. alues of the master parameters are also knowq. Although
Let us also remark that the underlying principle behinirere are different manners to achieve synchronlzanon, we

identification is linked to the sensitivity of synchronization t(a;esent below the most popular scheme which was suggested

parameter mismatch. This sensitivity has been advocated to ePecora gnd Carroll. For more details on synchronization,

the main foundation for security of transmission with chaoti%1e reader is referred to [1]’_ [2], and [;3]' )

carriers as it is claimed that synchronization is only feasible We suppose that we are given a nonlinear dynamical system

when slave system parameters match accurately enough Vf‘rli]éCh state variables obey an equation of the form

z1, Tiy

i_Let us consider here the basic principles that ensure that a
ave system will synchronize its state variables with the corre-

master system parameters. If the ewes dropper does not kpow i(t) = Fg(xz(t)) 1)
the parameters accurately enough, he will not be able to find . . _
the message hidden within the chaotic signal. wherez is the state vectot;(t) = z(t)/dt and@ is the vector

The examples already given in [3], [7]-[9] show the opof parameters associated with the non!ipear system.
posite of this claim—it is possible to exploit the parameter Suppose that the system can be partitioned into two subsys-
mismatch sensitivity and to ‘break the code’ which consist é8mSF 49 and I, g in such a way that the original equation
finding the values of the parameters of the master system. SgAuld be rewritten ag” (t) = [zs(t), zu(t)]
chronization itself provides a tool for parameter identification is(t) = Fyg(z5(t), 21u(1))

and possible break of code. .
Ty (t) = Fp(zu(t), z15(1)). 2

As shown in Fig. 1 the two subsystems are coupled via the
one-dimensional signals;; which is one component afg

In this paper we describe the principles of parameter ideand ;,, which is one component afy. In general such a
tification for chaotic systems, given a scalar sampled outpitnple decomposition is not always possible and the coupling
signal produced by the system and given the structure of thariables can be of greater dimension.
system that produced the signal. We will assume in what follows that the outpuft) of the

At the beginning we review some basic synchronizatiosscillator can be chosen as one of these two one-dimensional
principles. Next we carefully check if it is possible to recoupling signals in such a way that the dynamical system could
cover the system parameters from the measurements by lag@-rewritten as described by (3)
plying identifiability principles. This identifiablity approach .
is here applied to chaotic systems for the first time and &5(t) = Fep(os(t) y(t))
gives new tools to the parameter identification of chaotic Tu(t) = Fye(zu(t), v15(1)). 3)
systems. It provides also a key tool for checking tranﬁ_-

o . : : he whole system is therefore depicted in Fig. 2.
mission system security. In the third part we explain in The synchronization by decomposition into subsystems con-
detail the identification algorithms which could be used to. y y P Y

. SISliS of building a slave system which is an open loop version
tune the slave system parameters. Finally we present severfat . . .
of the master system obeying the following equations:

identification examples involving both discrete and analog
systems. We present both, theoretical proofs of identifiability z¢4(t) = Fs@(zs(t), y(t)) Zu(t) = Fo(3u(t), 215()).
and results of numerical experiments. These kind of analysis (4)
of systems important in applications is also described for the

first time. This principle of synchronization is shown in Fig. 3.

B. Scope of the Paper
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Fig. 3. General scheme for master-slave set up for synchronization by decomposition into subsystems.

t = nAT. Our goal is to findd that minimizes the cost
_ zu(t) = L function V(6)
Fupzult), 21:(0) V(D) = Bl ()] ©
z1,(t) | 0 where
e(n) = y(n) — G(n). ()
L | ws(t) = || The goal is therefore to finéA that minimizes (6). A local
Feg(zs(1), y(1)) minimum of V(@) is located a# such that
Fig. 2. Decomposition of the system. 8V(@) _ dy(n) _
90 = E 20 e(n)| =0. (8)

The slave system synchronizes with the master system ifJnfortunately the solution of (8) requires knowledge of the
probability distributions of all the pairée;(n), dy;(n)/06;)
fori=1-.-Mandj =1.-- N, these probability distributions

This situation arises when the cascade of the slave subs@rse- not known_beforehand. . _—
Let us describe now some possible approaches for finding

tems exhibits conditional Lyapunov exponents which are aIII ) he ab defined S bl
negative [11], [12]. solutions to the above-defined optimization problem.

The underlying idea behind stochastic approximation (which
has been developed as a special branch of the sequential
parameter estimation in the statistical literature) is to build

a sequence of estimatéén) in such a way that
Let us consider the case when we do not know the parameter .
lim O(n)=20 9)

vector @ beforehand and we would like to find an algorithm el

to recoverf).. The basic principle is to relay on the sensitivity .

of synchronization to parameter mismatch. Let us defineWdrered is the global minimum ofy’(6). Observe that in our
slave system with time variant paramet@rsSynchronization caseV () = 0 provided we get perfect synchronization.
occurs asymptotically whefi = 0 and fails whend £ 0. A simple method to find a sequential estimate is to move
The idea is therefore to build a cost function measuring th@e current vector of parameters in the direction opposite to
synchronization quality and to derive the algorithm whickhe gradient, i.e.,

pr_O\_/ldes a recursive est!mate ﬂf converging toward the_ @(n) _ @(n —1)- N(”)Vav[é _ @(n —1)] (10)
minimum of the cost function. This process is called recursive

identification [21]. In order to find the best estimate we wilwhere 1.(n) is a small positive gain chosen in a convenient
design an adaptive procedure (Fig. 4) in such a way thaty. Equation (10) can be rewritten

the error of synchronizatioirgjé(t) — y(¢)| will tend to zero . . ay(n)

ast tends to infinity. In its sampled (discrete time) version 0(n)=0(n-1) —i—u(n)E[ 50 e(n)} (11)

the adaptive algorithm works as follows: Suppose that

is the sampling period of the waveform(t) and let us How to compute E[0y(n)/08¢c(n)]? Solution proposed by
denote byy(n) the sample ofy(t) measured at the time Robbins and Monro [21] assumes that fg@) chosen small

|9(t) —y(t)] — 0 as t— oc.

B. Principles of Synchronization for a Slave
System with Unknown Parameters
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Fig. 4. General scheme for adaptive synchronization.

enough (in the original version of the Robbins and Monropdate value

schemey(n) is a sequence of positive scalars which tendsto =~ . .

zero) the expectation can be removed in (11). In other terméo =0(n) —6(n - 1)

if @ varies slowly in time, ‘on the average’ the adjustments are V(e = 9(71 - 1))
made in the negative gradient direction. The gradient algorithm = 902

is therefore defined by

V(0 =b(n - 1)

50 (15)

N R and further the equation which defines the so-caNedvton
0(n) = 6(n — 1) + p(n)ih(n)e(n) (12)  method

where(n) is the vector of sensitivities (the reaction of thej(,) =g(n — 1)

output to an infinitesimal change of the parameters) which

02V(0 =0(n—1)] " aV(0=b(n—1))

plays a key role for optimization, i.e., _
Su(n) 00* o0 - (16)
yn
= . 13
¥(n) o0 (13) It is worthwhile noting that taking\@* as an update we obtain

A major drawback of the stochastic gradient method is i{gr the value of the performance criterion at iteratior{by

slow convergence rate. The reason for this poor performancé@smu“ng (15) into (14)]
obvious—on the average the method gives the direction to tI@e@(n)) _ V(@(n ~1))
nearest local minimum but nothing is said about the distance

N A -1
(or the average distance) to this nearest local optimum. _9V(0=0(n— )" [82V(0 = b(n - 1))
To improve the convergence rate second-order methods are 00 o6°
used. They guarantee faster convergence rates because at every av (6 = @(n —1))
iteration both, the direction and the distance to the nearest local . 50 . a7

optimum are taken into account. _ _ _ _ _
The underlying idea behind second-order methods is Esjuation (17) has an important consequence in practice since
make a second-order Taylor expansion around the currénshows that if the Hessian matrix

vector of parameter@(n — 1), i.e., 82V (0 = O(n — 1))
A X H(”) = 2 (18)
V(0(n — 1)+ A8) o0
=V((n-1) is positive-definite we are sure thE(8(n)) will point down-
V(0 = é(n 1) ., hill with respect toV(#(n — 1)). Close to the optimum the
+ 90 Al guadratic approximation (14) is generally a good modeV of
1 .19%V(0 = g(n —1) ., and the Hessian is therefore a positive definite matrix near the
+540 pYe Ab (14)  optimum sinceé/” has a bowl shaped form (upward concavity).

The quadratic model is in general not valid far from the local
and to choose an updated* which ensures the best descenminimum, this is why it is often preferred to replace the
for the performance criterion. This is achieved when choosittessian by aguaranteed positive semidefinite approximation
aA@* for which the derivatives at the right-hand side (RHS) ofhe methods in which the Hessian is positive semidefinite are
(14) are equal 0. Thus we obtain an equation for the optim@ferred to agjuasi-Newton methods
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Quasi-Newton methods ensure that even far from the optiewever dependent on a certairpriori knowledge we could

mum the parameter search is carried out “downhill.” have on the range of certain parameters. Once this constraint
1022(n) term is added to t_he cost function the “instantr_:tneous” gradier_lt
H(n) =E{§ 502 } of the cost function can be used as usual in the stochastic
" o2 approximation technique.
_E |:86(7’L) dte(n) +e(n) 6(271) (19)
a0 o6 o0 ll. STRUCTURAL IDENTIFIABILITY

is usually replaced by the positive semidefinite approximation until now we have described one possible technique for
. de(n) 9T e(n) . identification. We have not formulated the fundamental ques-
H(n) = E[ 0 00 } = E[yp(n)y (n)] (20) tion if it does really make sense to perform such a procedure.
The outputy(t) of our chaotic oscillator is a 1-D (scalar) signal
This choice has also the advantage that only first order deriyghich is defined by a nonlinear mapping of state variables
tives (i.e., sensitivities) are required. The so-calléduss- which are typically of greater dimension. The fundamental
Newton methods defined by the following equation: problem consists therefore of determining if the signé)
N N L1 carries enough information to allow rebuilding of the pa-
O(n) =0(n—1)+H (n)E[e(n)p(n)]- (21)  rameters. A different way to pose this problem is to check,
Calculation of formula (21) requires knowledge of two kind§iven a structure of identification, if there exists only one
of expectations for which the correspondent probability distiet of parameters which can produce the same sig(al
butions are not available. This is why as in the Robbins afi@r instance if there exists an infinite number of parameter
Monro scheme it is proposed to remove the expectations SAts Which explain the samgt) it is certain that we cannot

(21). The stochastic equivalent of (21) is then given by  retrieve the particular set of parameters which was used in the
master system.

O(n)=0(n—-1)+H 1(71)(3(71)1/)(71). (22) In order to check if it is possible to identify the parameters
of the master system we have to stutlg structural identifi-
ability [23], [22] of our model. The following definitions are
borrowed from Walter and Pronzato [23], [22].

If 9(71) is slowly time varying the recursivity of the algorithm
will provide on average a good estimate8fe(n)y(n)]. One
problem left is to find an estimate (fI(n) since this quantity
is also an expectqtion. Qne possible choice of;en made 'SAEODeﬂmuons—StructuraI Identifiability

average over a time window the produg{n)#” (n) thus

giving more weight to the current and recent products andLet us suppose first that for the master system the param-

discarding (forgetting) the older estimate. For instance ti§éers of which we want to identify we can build a slave
estimation system (which is a cascade of two subsystems as before)

. . T which exhibits synchronization when driven with the master
H(n) =AH(n - 1)+ 4(n)y" (n) (23) output signaly(t), for an unknown set of parametefis(i.e.,

where) is a constant close to, but less than 1, is often chosBft[ve(t) — 4(H)] — 0 as ¢ — oo).
as a good and convenient recursive estimate. The factor Let us suppose next that we drive an identical structure
is referred to aghe forgetting factar This factor fixes the with the same inpuy(t) and that this structure has a set of

tradeoff between the rate of convergence and the prec's%wameterﬁ Under the above conditions it is always possible
of the algorithm in the steady state. The closeis to 1, to tune the parameters of the modein such a way that

the slower is the convergence but the better is the precision lim |yg(t) — yg(t)| —~0 as t— oo. (24)
(variance off in the steady state).

In general convergence of the nonlinear optimizatiohhis experimental setup is shown in Fig. 5.
process (22) toward its optimum is not guaranteed, which!f (24) holds we shall denote by
is usual for aII. nonlinear aplgptwe ppt|m|zat|oq sphemes, since M(@) = M(6) (25)
the cost function can exhibit multiple local minima. In many
cases this means that the algorithm should be restarted with equivalence of the two models of identification.
different initial conditions. Let us define ag’ the prior feasible parameter space. The

In our studies the identification process has been carried parameterd; is said to bestructurally globally identifiable
using second quasi-Newton techniques described by (22) e(p@.i.) [22], [23] if for almost anyd € P, M (0) = M(0) =
(23). 6; = 6.

It should be noted that the cost function (6) will certainly The modelM(-) is said to bestructurally globally identifi-
exhibit several local minima specially in the case in which thable if all its parameters); are s.g.i.
system to be identified is of great dimension. One possibility The parametef; is said to bestructurally locally identifiable
to avoid remaining stuck on a local minimum is to find as.l.i. [22], [23] if for almost any@ € P, there exists a
additional way to monitor the search process. This additionagighborhood:(8) such thath € v(8) and M(8) = M(0) =
mechanism can be in principle implemented by adding fa = 6;. The model M (-) is said to bestructurally locally
constraint term in the cost function (6). This constraint iglentifiableif all its parameter®; are s.li.
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! &s(t) = du(t) =
Fog(zs(t), y(1)) Fug(zul(t), z:5(1))

Slave system with parameters @

nonlinearity of the skew tent map type. To check if the system
is identifiable by synchronization, one has to check the number
of realizations of the parameter which will ensure that
y(n) Ya(n) = y(n) in Fig. 7.
> Let f,(-) denote the skew tent map, wherés its parameter.
We have

a 1« ya(n) = y(n) = falx) = fo(z)forz € [0,1] = a =a. (27)

A

This means that the model to be identified by synchronization
is globally structurally identifiable. In the next section we
will construct an identification algorithm to find the unknown
1 - parameterz of the slave system.

2) Identification of the Skew Tent Map Systefhe identi-
fication of the skew tent map parameter is not a difficult
problem since examining the dependence betwgen and
y(n—1) would give us directly the skew tent map parameter
However let us consider this identification example in order to
check the efficiency of the proposed identification procedure.
The setup for identification is shown in Fig. 8. Starting from an
initial guess for the parameté(0) we can build a sequential
gtimate by applying (22), i.e.,

y 3
S

Fig. 6. Skew tent map system.

The parametep; is said to bestructurally nonidentifiable
(s.n.i.) if for almost anyd € P, there is no neighborhooﬂ(@)
such thatd € v(8) and M (0) = M(60) = §; = 6;.

The modelM () is said to bestructurally nonidentifiablef
at least one of its parameters is s.n.i.

In order to check if it makes sense to identify the paramete?

of the chaotic system our goal will be to check the structural SN s e(n)
identifiability property of the slave system. Examples will be a(n) =a(n - 1) + R(n) #(n) (28)
given in the following. where
IV. EXAMPLES e(n) =y(n) = fag-1)(y(n —1)) (29)
A. The Skew Tent Map where R(n) is given by [applying (23)]
This 1-D map is defined by the following equations: R(n) = AR(n — 1) + ¢*(n). (30)
1a:(n) if 0<z(n)<a The sensitivityp(n) is computed as follows:
v =1 “1 1 d§(n) _ —a(n)
z(n)— —— ifa<zn) <1 wn) _ T
a—1 a—1 o6 a2(n—1)
z(n) =y(n —1). (26) if 0< z(n) <aln—1) (31)
The block di f the skew t tem is given b =Y ogm) T ala) L
i e : ock diagram of the skew ten map system is given by 9 " amn—1) -1 (am-1 -1
9. ©. if a(n—1)<z(n) <1 (32)

1) Structural Identifiability of the Skew Tent Map System:
Next we investigate the question of identifiability of the skewhere in (31) and (32)(n) = y(n — 1). We simulated
tent map system. The identifiability setup depends on thlee adaptive synchronization of the skew tent map system
identification structure we will choose. Agn) is our observed with parameter to be identified set to= 0.47. Initializing
signal, our slave system will be a cascade of two subsysteri)) to 0.1, R(0) = 10 and fixing the forgetting factok to
a stable one which will be a simple delay followed by 8.98 we obtained a sequence of estimates for the paradmeter
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Master system

Fig. 7. Identifiability framework for the skew tent map system.

1 1
1 1
1 1
(n) ! i)
yn 1 z{n 1y(n e(n
, - » (n) )
g " : " o
| ] -+
! 1
1 ) A
v! / ! y(n)
) Adaptive slave system !
Fig. 8. Setup for identification of the skew tent map system.

which is presented in Fig. 9. After 400 iterations the adaptive Skew tent map
synchronization converged perfectly. Both the synchronizatiorf-6 —— — A

error and the parameter mismatéh— « are 0. Repeating
the adaptive synchronization with different values of thega |

initial guess fora(0) showed that the adaptive synchronization /2 R D Optimal Value
occurred independently of this initial guess. 02 —O*Iéistin}lated_Patr,am%er
N : —— dynchromzation Lrror o
B. Hénon Map System AN
This two-dimensional system is described by the following RN AV
equations: I
0.2
z1(n) 1—ar?(n—1) +bzo(n — 1) I
= . (33)
z3(n) zi(n—1) o4 L. T RN R B
20 40 60 80 100

By observing the signaj(n) = z1(n), one possible setup for

adaptive synchronization is to build a forced system of the
form Fig. 9. Sequential estimate of parametefSkew tent map system).

Iterations (to be multipled by 10)

Z1(n) 1—az¥(n— 1)+ bia(n — 1)
<§32(n)> = < ' z1(n—1) (34) 1) Identifiability of the K¢hon Map SystemThe identifi-
ability study is carried out by inspecting the set of the
in which z1(n — 1) is the forcing signal. parameters (@, b) which is governed by the following
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> z1(n) =1 —azi(n—1) >
( + b.’L‘gETL— 1) z1(n)

. zz2(n) = z1(n—1)

21

Master system to be identified

Fig. 10. Block diagram of the identification setup forehbn system.

Henon map 3

6 Z2
: ! ! 5 (-1, 1) (+1, +1)
; ] [ T )

R Estimated value fora || !
—-0—- Estimated value forb | 1 IIT | Iv
—— Synchronization error 1
————— Exact value for a ] b (a,,0)
--------- Exact value for b 1 -———#———-—~————

® o >

: —0--0—0—0—0-+0—0—0—0+0—0—0—07 (=1, =1) «a (+1, -1) =

100 200 300 400 500 Fig. 12. Decomposition of—1, +1]2.
Iterations (to be multipled by 2)
Fig. 11. Sequential estimate of parameterandb (Henon map system). 2) Identification of the ldhon Map SystemThe identifica-
tion setup for the Enon system is shown in Fig. 10. Applying
equations: (22) the recursive estimate éfandé is given as
1= dwd(n = 1) + bia(n — 1) )= ] e wse @0
=1—az?(n—1) +bxa(n —1) (35) " "
#9(n) where
=@ =1). (36) e(n) =a1(n) = #1(n) (41)
From (36)i#2(n — 1) = x1(n —2) and from (33)r2(n — 1) = H(n) =AH(n — 1) +$(n)y" (n) H(0) = Rol (42)
z1(n — 2), therefore (35) becomes
and
1—az?(n—1) + bz1(n—2) = 1—az(n—1) + bz (n—2). d%1(n)
BN ymy= |99 | = —zi(n—1)] _ [-zi(n 1)
. 9i1(n) Za(n —1) z1(n—2) |
Let us defineAd = a—a andAb = b—b, from (37) we obtain b
(43)

—Adaxd(n — 1) + Abzy(n —2) = 0. (38)
_ o Fig. 11 shows the convergence of the parameteend b
Since from the (33) it is clear thatl(?l -1 depgnds ON toward their optimal values. The parametetsin the master
1(n — 2) andz,(n — 3), the only solution for (38) is system were set ta = 1.4, b = 0.3. The initial values
Ad=Ab=0 (39) for @ and b were set t0a(0) = 5 and b(0) = 0.1. The
matrix H(0) was initialized toH(0) = 10001. The forgetting
which shows that the &ion map system is structurally glob-factor A was set to 0.98. Perfect synchronization occurred after
ally identifiable. 600 iterations. The parameters were recovered exactly. We
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-~~~ -~ = - - mm = - = - == 1 e el di i e 1
E = -~ D z3 = aa{n)z1 + Fa(n) 22(n) E E > 2 = ai(f)zs + (9 )-—fﬂl—;——
l Lo \ :
| \ 4 1 | |
| - 1 1 (" -1) -1 1
l : L L T :
) A | ) |
! | | |
] ri(n ] 1 z1({n—1 |
| > T = al(n)ic? + ﬁl(n) =( ) ™ W Lo = (ﬁ)l‘l + ﬂ2(7/) .
: za(n — 1) : : Eo(n) :
| Yy 1 | |
' ‘ 2! L |

UPLMM Master System UPLMM Slave System

Fig. 13. Synchronization setup for the second-order UPLMM system.

obtained similar behavior for various initializations &f0) Fy <—1> _ <—1> Fy <a> _ <+1>

and b(0). +1 +1)’ b -1’
a(h)=() =6)-()

C. The Second-Order Markov Map System A1) "\ ) b)) T \-1.

We consider in the next a special class of Cha0tl95|ng (44)~(45) we obtain the general solution
maps—the so-called Uniform Piecewise Linear Markov Maps

(UPLMM's). Order N UPLMM have the very interesting <a:1> B <a1(77)a:2+/31(77)>
feature of exhibiting a uniform density on the unit cube ~"\z2 /)  \@a(n)z1 + B2(n)
of RY. These types of maps have attracted attention both in

the mathematical [26] and the engineering literature [27]—[2
Applications of Markov maps have been proposed for differe

ore precisely

modulation-demodulation schemes for transmission of chaotic ( [ 2x2+ (1—10)
signals. 145

A piecewise linear transformatio#” of [—1,+1]"Y onto 2r1 + (1 - a)
itself is a UPLMM if [-1, +1]" can be decomposed as 1+a

n=1
-1, +1]Y = U S; —229 _((1 _ Z)
such that is affine on eacts; and maps it onto the whole —2m +(1+a)
[-1,+1]". The constant density op-1,+1]" is the unique

invariant probability density of any UPLMM. < )

l1—a

We will restrict the presentation to an order 2 UPLMM £
example, for more details on higher-order maps and their
applications the reader is referred to [27].

Let us consider a second-order UPLMM in whieht, +1]?
has been decomposed into four rectangular regions as shown
in Fig. 12.

The four rectangles which are parametrized dyand b
are uniformly expanded ontd—1,+1]* using four linear
mapsFi1, F», F3 and F, which are such that they provide an

—2.%’1—(1-@)
1+a

:3)

[\
H
S
|
+

|
i)
((
i

for 1<a:1<aand 1< zo<b

fora<z < +land-1<zo<b

for-1<z<candb<zo< +1

(46)

£j‘;](/lheren stands for the region number in whi¢h; , z.) falls.

expansion parallel to each of the coordinate axes and that for a < a:l < +landb< o< +1

7

a(5)=(3) 86)= (%) :

-1 -1 +1

7 <+1> _ <+1> £ <G) _ <—1) (44y ~ We assume that we are given the signa(n) as output
’ b of the UPLMM system. The synchronization setup we will

(47)
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consider is shown in Fig. 13, whefgestands for the identifier Using (49), (51), and (52) we obtain far> n; the relation-

of the region in which fallgz,(n — 1), £2(n — 1)). ships
It has been shown in [27] that starting from arbitrary initial

conditions forz; (0) andZ2(0) the system of Fig. 13 exhibits

almost certain synchronization. Therefore there exista@n = ai(n — Daz(n - 2) (53)

depending on the initial conditions of both, the master and the dq(n — 1)/92(71 -2)+ /91(71 -1

slave systems, such that =ai(n—1)fa(n—2)+ Bi(n = 1). (54)

641(71 bt 1)6&2(71 bt 2)

for n>ng “:71(”) = z1(n) For (a,b) €] —1,41[ and (4, b) €] —1,+1] let us define as
2(n) = x2(n). T the rectangular region which is the intersection between
1) Identifiability of the Second-Order Markov Map Systenf€9ionss = 1 andq = 1, i.e.,
We assume in th_ls subsection that there exists- ny such T, = [-1,inf(a, &)] x [~ 1, inf(b, 8)]
that the state variables of the UPLMM slave system are such

that This intersection is nonempty and therefore there is a nonzero
X X probability that there exists; > n; such, that two consecutive
Z1(n) =d1(n — Da2(n — 1) + fr(n — 1) points (z1,z2) belong toT1, i.e.,

Za(n) =az2(n — Dai(n — 1) + Ba(n — 1) (48) <a:1(n2 - 1)) cT, and <$1(n2 - 2)) cT,.

and that x2(ng — 1) z2(n2 — 2)
#1(n) = z1(n) (49) Therefore we obtain
N N . 4
The parametersi;, @2,/51 and 32 are linked toa and b by ay(ng — Dag(ng - 2) = a+rnd+a) (55)

the following relationships, as shown in (50) at the bottom _ _
of the page. We would like to identify the set of parametefgbserve that for(a, b) €] —1,+1[ the RHS term in (55) is
(a,b) for which the (49) is satisfied. Using (48) we obtain th&/Ways positive. It is easy to show that the poifts (n, —

input-output relationship of the slave system with paramete]rg’ &2(n2—1)) and(z1(n2 —2), £2(n2 —2)) can be only such,
4 and b that they consecutively belong either to the regipn= 1

or to the region; = 3. The combinationsj(n, — 2) = 1,

.f?l(ﬂ) _ &l(n _ 1)&2(71 _ 2)371(71 _ 2) ﬁ(?’LQ - 1) = 3_0r ﬁ(ﬂg —2) =3, 77(712 - 1) =1are ImpOSSIb|e
A . . since they give a product;(ns — 1) &2(n2 — 2) which is

+ 061(71 - 1)/32(71 - 2) + /31(71 — 1) (51) aIWayS negative.

If we suppose thafi(n: — 1) = 1 and#(ny — 2) = 1, (50),

This expression must be compared to the corresponding ctgg) and (55) give

for the synchronized slave system having the parameters

and b, i.e., l4a+b+ab=1+a+b+ab (56)
21(n) = ar(n — Das(n — 2)ai(n — 2) If we suppose thaf(n,—1) = 3 and#(n, —2) = 3, we obtain
+ai(n—1fn—2)+pn-1). (52 l4a+b+ab=1+a—b—ab (57)
(. 2 . 1-b
] = ~ /31: = ~
1J2rb %Jrlg for -1 <z <aand—1< 2, <b (h=1)
N A —a
Ge=175 P11
. -2 A 1-0
by = = PL=——= .
1+3 1—1ﬂéb fora <z < +land—1<i,<b (=2
by = — ~ [ = p
L ; 1438 (50)
a1 = = 1= = N
1—2b 1Ib& for -1 < z;<aandb < 3o <+1 (h=3)
A }:_ -
a2 1 a P2 L+
Gy = b=t
1= = = - = A
1=b 1_12 fora <zi<4+1andb < o< +1 (77:4)
. 2 N 1+a
G2 =1 Py = ———
\ —a 1—-a
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e(n)

Sy

z1(n)

[ L1
| I

Adaptive UPLLM Slave System

Fig. 14. Block diagram of the identification setup for the UPLMM system.

Let us define aslz the rectangular region which is theThis paper shows that two different sets of parameters could

intersection between regiop= 3 and = 3, i.e., be chosen in order to produce the same chaotic output of the
_ . . system. In other terms the identification of the second-order
T3 = [-1,inf(a, a)] X [sup(b, b), +1]- Markov map parameters could result in the identification of

%i§/her (a,b) or (a,—b).

2) ldentification of the Second-Order Markov Map System:
As the Markov map system is a piecewise linear system a
specific identification scheme could be designed by observing
the dependence between(n) andz; (n —2). However let us
consider this example in order to test our general procedure of
identification. The identification setup of the UPLMM system

l4+a—b—ab=14+a+b+ab (58) is shown in Fig. 14. The key parameters to be found are the
ldta—boab=14da—b—ab (59) sensitivities of21(n) with respect to the parameteésand
b. Computing these parameters givesA (62), as shown at the
Combining (56)—(59) shows that for almost evefy,b) ¢ bottom of the page, whew, , &, 3, and3; are given in (50).
]-1,+1[ the only compatible equation pairs are (56)—(59) and The update equations for the time variant parameters in the
(57)—(58). Solving these compatible sets of equations givefidaptive proceduré(n) andb(n) are similar to those given
R in (40)—(42) for the E¥non map.
a=a b==b (60)  Due the discontinuous nature of the map convergence of
i i i the algorithm was very sensitive to the choice of the initial
Inspecting these two pairs of solutions shows that the UI:)I"\/l%lues of the parameters. For certain initial values we did

system islocally |dgnt|f|able when a.jl(n) is chosen as the . 5pcerve convergence in a reasonable number of iterations
observed (output) signal. The solutién= ab = +b are such (10 000)

that there existny andm; such that

Using the same argument as above we can show now
considering two consecutive poins; (ns — 1), z2(ns — 1))
and (z1(n3 — 2), z2(ns — 2)) € T3 that the pointgz;(ns —
1), 22(n3—1)) and(z1(ng — 2), £2(ng — 2)) can be only such
that they belong consecutively either to the regipe- 1 or
the regions = 3. This leads to the following equations:

We have plotted the results of two experiments in which

4 =aandb = b= forn>mg the optimal master system parameters were sat+0—0.48
51(n) = ) da(n) = 2a(n) andb = 0.56. Fig. 15 shows the exact convergence in about
1 ”A T 2Ry = Ean 600 iterations. The forgetting factor was setXte= 0.98, the

4 =aandb = —b = forn>m, initial values fora andb werea(0) = —0.7 andb(0) = 0.72.
Z1(n) =z1(n) Za(n) = —x2(n). (61) The matrix H(0) was initialized toH(0) = 10000/. Exact

a“gé”) Gn(bn — Dar(n — 2)—80‘2(“8’6;1 =2 | (b - 1)78/32(“8’5 =2
b= amn) | = | ( 1)8&1(8,71 1) 9p(hn—1) ' (62)
A ol — = =
ab ? ab ab
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Second order Markov map R
2 N T T T T T T T T T T T T T I T T T T 1‘]‘ wz
I —a— Estimated value of a 3
15 F . —O—gstimﬁted.valye ofb ... 4
o _— nchronization error ] —_— —— ) .
o [ S [P E)¥act value of a ] L ) R O G " |u | Ba
1 o B D N ety Exact valueofb |}~ 3
05 Hiogapia=sro- . | '
o Ei A AVAVW 5 Fig. 17. Chua's circuit.
05 S PN —
1 ] Slope my x3 = &
! ‘ | : ST
LS Fdmmmds | |
r ; ] I |
20 T S S —onn |
0 50 100 150 200 N T °
Iterations (to be multiplied by 10) l | Lope) ™Mo o
| | I
Fig. 15. Identification of the UPLMM system, convergence toward the ] ] ' »U0
master system parameters. —11 Bl=1
| |
! |
Second order Markov map I trng4- Slope my
2 i |
: ' Estimated value of a | ]
: —o— Estimated value of b -
15 ' [T ——— ISynchronization errorl , e
; — — - Exact value of a = — — = +1
1 l | TR T l I --------- Exact value of b 7 n=0 =
05 I R T N Fig. 18. Characteristic of the nonlinear resisfoy .
0Ff ) .
3 ; ] Ty = Ul/vo,xg = UQ/U(), T3 = R('LL/U()),UO belng the
05 SIS i ‘breakpoint voltage’ of the nonlinear resistor.
0 F ‘ ] Taking as parameteks = C»/C; and 8 = R*(Cy/L), we
obtain for matrixA and vectorb of (63)
15 |
LEIY AN TN ] —a(l+mp) o 0
0 100 200 300 400 500 600 An) = 1 -1 1
Iterations (to be multiplied by 10) 0 -3 0
Fig. 16. Identification of the UPLMM system, verification of the identifia- —na(mo - ml)
bility defect. b(n) = 0 (64)
0

synchronization occurred after 600 iterations. The paramet

fhX64) n = 0 stands for the li i hile =
were recovered perfectly. S( )1 = 0 stands for the linear regigm, | <1 whilen =1

. for x; > 1 andnp = —1 for z; < —1. We assume that

initializati 20) — —0.8 and b(0) = 0.8 In thi nlthe parameters are chosen such that the system operates in
initialization—a(0) = —0.8 and 6(0) = 0.8. In this case a chaotic mode.

we obtain perfect synchronization after about 3000 'terat'onSSuppose thay(t) = x1(t) is the observed output of Chua’s

and we recover exactly the parametérs —b) instead of circuit. We can build a] synchronization setup by applying the

.(a’ b).' _Th_|s_ example shows how l_mpor_tgnt _'t Is to study th%ecora and Carroll scheme, i.e., by cascading two appropriate
identifiability problem before the identification process—th ubsystems. The first subsystem which is forcedyby) is
considered system is only locally identifiable, thus the resué%scribed b.y 4

of identification procedure depend on the initial values chosen

at the beginning of the procedure. ior(M) (=1 1\ [z2(7) y(7) 65
<j:3,,(7)> o <—/3 0) <a:3,,('r)> + < 0. ) (65)
D. Chua’s Circuit

Chua’s circuit is a piecewise linear circuit (Figs. 17 and 18t . trix | tabl theref d
whose state equation is of the form s matrix is a stable one, therefors,,(r) and zs(r)

- exhibit an exponential convergence towargr) and z3(7),
dx(T ivel

= Alnz(7) + b 63 respectively.
dr (ma(r) +b(n) 63) The second subsystem is described by
in which n refers to one of the three linear regions of the
nonlinear resistor of Fig. 18; = t/RC, is the normalized &1,(7) = —al+myy, 21 () + a2 (7) —nra(mo—my).
time. The vectorz is composed of the normalized variables (66)

he parameter3 in the state-matrix in (65) is such that
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if 7€ [r,m] andzy,.(7) is in regionn, = —1 if 7 €], 73].
Sloperin According to (68) the dynamics of;,.(7) is slowed down
AT T3, + 0, (Mo — my) by switchingm,,, from mg to my, this switching occurs at
: mg, &1, + 0, (the — 1) time 75 whenz1,.(m2) = +1. According to (70) and (71) the
Slopem, ! — Slope 1 dynamics of#;,.(7) should be also slowed down at time
i) because if not it would not possible fég,.(7)r > 7, to follow
I ) the new dynamic ofc1,.(7). Therefore this switching occurs
Sloperiy 4 , 1 B, L1r for Z1,(m2) = z1.(m) = +1 which indicates thaB3, = 1 and
~ T R -~ ~
-B, - ;! Eir that #,.(r) = n,.(7) for any 7 > 7.
! : ! Having shown that the two systendd (@) and M () have
: I | | slopemy to operate in the same linear region at the same time simplifies
i ! i the identifiability study since we can apply the similarity
4—1|—'|<__,'r i ~ transformation approach in each linear region. Let us define
= — H =0 —
n | n n
=1 le———— 3l X1 sloperiy zp(7) =Tz, (7) (72)

n =0

whereT’ is a constant invertible square matrix. The dynamical

Fig. 19. Nonlinear resistor fohZ(8) and M (6). systemM (8) is then described as

For the study of the convergence of.(7) toward z,(7) the dz, (T _
reader is referred to the papers by Teis(‘hl?[24], [25], \Eve) will di ) =T A0, )T 2(7) + Tb: (6,71, (7)),
assume in the following that;.(7) converges asymptotically v (T) :cf(e)T_lz,,(T). (73)
toward z1 (7).

1) Structural Identifiability of Chua’s Circuit:The slave 2) Identifiability in the Regiom,. = 0: If we can find pa-
system built as a cascade of two subsystems [(65) and (6@neters® such that
can be rewritten as

i1 (T) —a(l+my,) a 0\ [z A,,(o =0)=TA.(0,n, =0)T* (74)
(a‘aAT)) = ( 0 -1 1) <$21’(T)> b.(0,7 (T)) T.(0,n- = 0,y(r))  (75)
G0 (7) 0 -8 0/ \wsn(7) () = L (@) (76)
—h (mO - ml)
+ y(r (67) then (73) describes the systemfi(8) and M (8) = M(6).
0 Let T = [t;;]. Using (76) we can show that

Let § be the set of parameters, 3, mg,mi,B, = 1. The

system (67) can be therefore described as tiu=1, t12=0, #t3=0. (77)

d‘”gl‘(T) = A (0,7)%,(7) + b.(8,m,y(7)).  (68) By substituting (77) in (75) we obtain
-
The output of the system denoted hy(r) is defined as tao =1, t32=0. (78)
_ T i T _
yel7) = ¢y 2,(r) with ¢, =[1,0,0] (69) Then using (77) and (78) in (74) we obtain
Let & be the set of parameters, (3, 10,711, B,. These pa-
rameters are explained in Fig. 19 wheje = 0 stands for to1 =0, t23=0, t31=0, t3z=1
the linear regiont,, < B, 7%, = 1 stands forz,, > B, and &d=a, B=8, rho=mo (79)
= —1 stands for the linear regiofy,. < —B,.

Let M(8) be the slave system with state spagewhlch which shows that
is governed by
. T=1 4=«
d.’l,'r T A ~ ’ ’
BAD) — A, 0.3)8,7) + 0.0, (r). (70)
3) Identifiability in the Regiom,. = 1: Application of the
We assume tha is such that there exists a timg such that similarity transformation approacH in regions, = 1 shows

~

3 = /3, mo = myp. (80)

-

&1,(1) = 21,(7) = 21(1) for 7>19 (71) that
and want to find all the sets of paramet@réor which (71) is T=I &=co, pB=8, ny=m. (81)
satisfied. Having this goal in mind we will first show that for
T >19 We haven, =1, (i.e., B, = B, = 1). Concluding, (80) and (81) show that Chua’s circuit is

Suppose that there exist two time intervals, -] and structurally globally identifiable since there is only one set
|72, 73](73 > T2 > 11 > 70) Such thatz;.(7) is in regionn,. = 0 of parameter® which produces the same outpyt(7).
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e ———r Although a deeper study should be carried out to develop better
‘: : optimization schemes there is at least experimental evidence
that it is possible to find the unknown parameters of the slave
system using the mixed approach we propose.

We have also used the notion of structural identifiability
which enables us to address the problem of whether it is
possible at all to find the unknown system parameters given
only measured output signals from the system.

In communication applications the recovery of the pa-
rameters can be explained in other terms indicating that
transmission secret keys can easily be found. From this per-
spective security claims in transmission systems using chaotic
carriers should be handled with great care since for low order
systems the knowledge of the structure of the chaotic coder
(master system) is sufficient in most cases to identify its
parameters (secret key) thus breaking the code and finding
the coded information.

However the proposed identification method will not work
properly when the dynamical system to be identified is a
high order system. The reason for this lack of efficiency
is obvious since synchronization will occur when the initial
parameters are not too faraway from the true parameters.
Starting from an arbitrary initial condition there is indeed a
great probability for the parameters to be trapped at some local
¢ : minimum of the synchronization cost function. This means
. ] that some monitoring of the search process should be forseen
2 - : - . L whenever possible. This monitoring could be in principle done
0 500 1000 1500 2000 py injecting some constraints @& priori knowledge in the

Tterations cost function. For instance the identification of the Markov
map system could be done easily in high dimension since
the parameter range is known beforehand and since some
correlation technique could give some rough estimation of the

of such a system has been already performed in [3] [ﬁarameter values. For some specific systems it is possible to
yS o yp ) ' tdésign a rigourous adaptive synchronization scheme whose
[9] by exploiting synchronization and by using different

L ; : . ..~_.synchronization error is guaranteed to converge toward zero.
optimization techniques. In particular in [9] a deterministi Y 9 9

S . . For instance feedback linearizable systems such as those
optimization exploiting the Powell's method has been shown ' . . . .
. . . stydied in [30] allow the design of Lyapunov functions such
to be efficient. Using the Gauss-Newton procedure describ .
in Section 1| we were also able [7] to match the arametetr at adaptive control of the parameters ensures at each step a
. . . b fRonotonic decrease of the Lyapunov function.
with a precision better than 0.01%. However in order to get a

perfect synchronization in a reasonable amount of time we had
to run the optimization using different initializations of the [1] M. Hasler, “Synchronizat inciol d applications "TBCAS'94

A “ ~ . L . Hasler, “Synchronization principles and applications,
parameter set, 3, 1, 7111, Bp. This shows the limitation of Tutorials, C. Toumazou, Ed., London, England, 1994, pp. 314-327.

our optimization technique which is local in nature. Figs. 202] , “Engineering chaos for encryption and broadband communica-

20 b ——— ALPHA

A N
PRV VY

1000 1500 2000

Iterations

Fig. 20. Convergence of and A.

Mo’ Ml’ B

Fig. 21. Convergence ofig, ni; and 3.
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