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Identifiability and Identification of Chaotic Systems
Based on Adaptive Synchronization

Hervé Dedieu,Member, IEEE, and Maciej J. Ogorzałek,Fellow, IEEE

Abstract—This paper deals with the problem of synchroniza-
tion of chaotic systems when the driven (slave, receiver) system
has the same structure as the master (driving, emitter) system
but its parameters are unknown. It is shown that the concept of
synchronization provides an efficient way to find the unknown
slave system parameters. Parameter mismatch between master
and slave systems and high sensitivity of response to changes of
these parameters were so far considered as crucial for security
issues. This paper shows evidence that this claimed advantage
becomes in fact a major drawback in chaos communication
schemes since parameters can easily be found using adaptive
synchronization and optimization tools. The general problem
of identifiability of chaotic systems is defined and discussed
in the context of possibilities for finding the unknown chaotic
receiver parameters. Several typical systems used in experiments
in chaos communication are tested for identifiability showing
direct applications of the introduced concepts. In particular
examples of the skew tent map, H́enon map, Markov maps and
Chua’s circuit are considered in detail illustrating the problems
of global and local identifiability.

Index Terms—Communication, chaos synchronization, identi-
fiability, identification.

I. INTRODUCTION

A. Background

SINCE THEIR discovery in the late 1980’s [11], chaos
synchronization principles have been applied in different

fields ranging from communications [1] to control [13]. In
particular there was a considerable effort in designing simple
chaotic circuits producing signals suitable for information
transmission purposes, which could offer both: spread spec-
trum and privacy. In many applications the Pecora and Carroll
synchronization scheme [11], [12] has been applied directly.
This scheme relies on a suitable decomposition of the original
chaotic system—later called themastersystem—into an open-
loop cascade of subsystems (calledslavesystem). This cascade
of subsystems is forced using as driving signal one particular
signal transmitted from the master. In general the slave cas-
cade consists of stable and unstable subsystems. To achieve
synchronization one has to make sure that all the conditional
Lyapunov exponents associated with some variational equation
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are negative [11]. The term “conditional” comes from the fact
that the Lyapunov exponents depend on the driving signal.
If all the conditional Lyapunov exponents are negative it can
be expected that all the state variables of the slave system are
forced to follow the corresponding state variables of the master
system (although just one variable was used as driving signal).

In the above-mentioned applications, the decomposition is
carried out in such a way that the slave subsystems are exact
copies of the master subsystems (structure and parameter
values) and synchronization fails if this is not the case.
It has been confirmed by many authors that sensitivity to
parameter mismatch is a common drawback also for other
synchronization schemes like error-feedback, inverse system,
active-passive decomposition etc. and one has to be very
cautious when designing and exploiting chaos synchronization
principles. On the other hand it is claimed that this extreme
sensitivity to changes of parameters is advantageous because
it enhances transmission security. As even very small param-
eter mismatch results in a very different dynamic behavior
it was believed that it will be totally impossible to find
system parameters using measurements of transmitted signals
alone.

In this paper we will show that this claim not only is not
true but as a matter of fact we have an opposite situation—we
propose to take advantage of the property of sensitivity of
chaos synchronization to parameter mismatch for parameter
identification purposes. We show how this property, which
is a major hindrance in design and a claimed advantage of
communication schemes employing chaotic carriers, can be
successfully exploited to find unknown slave system param-
eters. What was supposed so far to offer security will be
used here to break this issue. This is achieved by controling
the slave system by means of tuning its parameters until
synchronization occurs.

The principles of chaotic identification have been first
described by the authors in [4], [5] and developed in a series
of papers [6], [7]. Independently, some of the identification
aspects of synchronized chaotic systems were addressed in
[3], [8], and [9].

It is supposed in [3], [7]–[9] that one knows the class
of system which produced a measured time series (which
can be continuous or sampled at discrete time moments),
i.e., the underlying equation structure for the system under
consideration is known but one is not able to measure ei-
ther the system parameters or all the state variables. The
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parameter identification is therefore carried out using both
synchronization and optimization algorithms which tune the
slave system parameters in order that synchronization occurs.
Synchronization can be seen here as an elegant way to
cope with the problem of sensitivity to initial conditions.
Indeed if we tried to identify a chaotic oscillator directly
in a closed loop, we would be faced with the problem
of rebuilding the state variables and the exact values of
the parameters. These two problems are difficult to solve
due to the intrinsic sensitivity to initial values of the state
variables. By applying synchronization principles, i.e., by
trying to identify some forced open loop version of the
oscillator, we can avoid the problem of sensitivity and find
a simple way to rebuild the state variables of the master
system.

We should remark here that synchronization reduces drasti-
cally the dimension of the minimization problem since it is not
necessary to search for the state variables (these are found by
synchronization!!), it is only necessary to search (optimize)
for the unknown parameters.

Let us also remark that the underlying principle behind
identification is linked to the sensitivity of synchronization to
parameter mismatch. This sensitivity has been advocated to be
the main foundation for security of transmission with chaotic
carriers as it is claimed that synchronization is only feasible
when slave system parameters match accurately enough the
master system parameters. If the ewes dropper does not know
the parameters accurately enough, he will not be able to find
the message hidden within the chaotic signal.

The examples already given in [3], [7]–[9] show the op-
posite of this claim—it is possible to exploit the parameter
mismatch sensitivity and to ‘break the code’ which consist of
finding the values of the parameters of the master system. Syn-
chronization itself provides a tool for parameter identification
and possible break of code.

B. Scope of the Paper

In this paper we describe the principles of parameter iden-
tification for chaotic systems, given a scalar sampled output
signal produced by the system and given the structure of the
system that produced the signal.

At the beginning we review some basic synchronization
principles. Next we carefully check if it is possible to re-
cover the system parameters from the measurements by ap-
plying identifiability principles. This identifiablity approach
is here applied to chaotic systems for the first time and
gives new tools to the parameter identification of chaotic
systems. It provides also a key tool for checking trans-
mission system security. In the third part we explain in
detail the identification algorithms which could be used to
tune the slave system parameters. Finally we present several
identification examples involving both discrete and analog
systems. We present both, theoretical proofs of identifiability
and results of numerical experiments. These kind of analysis
of systems important in applications is also described for the
first time.

Fig. 1. Decomposition of the system into two subsystems coupled in a closed
loop.

II. SYNCHRONIZATION OF CHAOTIC SYSTEMS

A. Principles of Synchronization When
the Parameters are Known

Let us consider here the basic principles that ensure that a
slave system will synchronize its state variables with the corre-
sponding ones of the chaotic master system. Let us assume that
the system of equations of the master is known and the exact
values of the master parameters are also known. Although
there are different manners to achieve synchronization, we
present below the most popular scheme which was suggested
by Pecora and Carroll. For more details on synchronization,
the reader is referred to [1], [2], and [13].

We suppose that we are given a nonlinear dynamical system
which state variables obey an equation of the form

(1)

where is the state vector, and is the vector
of parameters associated with the nonlinear system.

Suppose that the system can be partitioned into two subsys-
tems and in such a way that the original equation
could be rewritten as

(2)

As shown in Fig. 1 the two subsystems are coupled via the
one-dimensional signals which is one component of
and which is one component of In general such a
simple decomposition is not always possible and the coupling
variables can be of greater dimension.

We will assume in what follows that the output of the
oscillator can be chosen as one of these two one-dimensional
coupling signals in such a way that the dynamical system could
be rewritten as described by (3)

(3)

The whole system is therefore depicted in Fig. 2.
The synchronization by decomposition into subsystems con-

sists of building a slave system which is an open loop version
of the master system obeying the following equations:

(4)

This principle of synchronization is shown in Fig. 3.
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Fig. 3. General scheme for master-slave set up for synchronization by decomposition into subsystems.

Fig. 2. Decomposition of the system.

The slave system synchronizes with the master system if

as (5)

This situation arises when the cascade of the slave subsys-
tems exhibits conditional Lyapunov exponents which are all
negative [11], [12].

B. Principles of Synchronization for a Slave
System with Unknown Parameters

Let us consider the case when we do not know the parameter
vector beforehand and we would like to find an algorithm
to recover The basic principle is to relay on the sensitivity
of synchronization to parameter mismatch. Let us define a
slave system with time variant parametersSynchronization
occurs asymptotically when and fails when
The idea is therefore to build a cost function measuring the
synchronization quality and to derive the algorithm which
provides a recursive estimate of converging toward the
minimum of the cost function. This process is called recursive
identification [21]. In order to find the best estimate we will
design an adaptive procedure (Fig. 4) in such a way that
the error of synchronization will tend to zero
as tends to infinity. In its sampled (discrete time) version
the adaptive algorithm works as follows: Suppose that
is the sampling period of the waveform and let us
denote by the sample of measured at the time

Our goal is to find that minimizes the cost
function

(6)

where

(7)

The goal is therefore to find that minimizes (6). A local
minimum of is located at such that

(8)

Unfortunately the solution of (8) requires knowledge of the
probability distributions of all the pairs
for and these probability distributions
are not known beforehand.

Let us describe now some possible approaches for finding
solutions to the above-defined optimization problem.

The underlying idea behind stochastic approximation (which
has been developed as a special branch of the sequential
parameter estimation in the statistical literature) is to build
a sequence of estimates in such a way that

(9)

where is the global minimum of Observe that in our
case provided we get perfect synchronization.

A simple method to find a sequential estimate is to move
the current vector of parameters in the direction opposite to
the gradient, i.e.,

(10)

where is a small positive gain chosen in a convenient
way. Equation (10) can be rewritten

(11)

How to compute ? Solution proposed by
Robbins and Monro [21] assumes that for a chosen small
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Fig. 4. General scheme for adaptive synchronization.

enough (in the original version of the Robbins and Monro
scheme is a sequence of positive scalars which tends to
zero) the expectation can be removed in (11). In other terms,
if varies slowly in time, ‘on the average’ the adjustments are
made in the negative gradient direction. The gradient algorithm
is therefore defined by

(12)

where is the vector of sensitivities (the reaction of the
output to an infinitesimal change of the parameters) which
plays a key role for optimization, i.e.,

(13)

A major drawback of the stochastic gradient method is its
slow convergence rate. The reason for this poor performance is
obvious—on the average the method gives the direction to the
nearest local minimum but nothing is said about the distance
(or the average distance) to this nearest local optimum.

To improve the convergence rate second-order methods are
used. They guarantee faster convergence rates because at every
iteration both, the direction and the distance to the nearest local
optimum are taken into account.

The underlying idea behind second-order methods is to
make a second-order Taylor expansion around the current
vector of parameters i.e.,

(14)

and to choose an update which ensures the best descent
for the performance criterion. This is achieved when choosing
a for which the derivatives at the right-hand side (RHS) of
(14) are equal 0. Thus we obtain an equation for the optimal

update value

(15)

and further the equation which defines the so-calledNewton
method

(16)

It is worthwhile noting that taking as an update we obtain
for the value of the performance criterion at iteration[by
substituting (15) into (14)]

(17)

Equation (17) has an important consequence in practice since
it shows that if the Hessian matrix

(18)

is positive-definite we are sure that will point down-
hill with respect to Close to the optimum the
quadratic approximation (14) is generally a good model of
and the Hessian is therefore a positive definite matrix near the
optimum since has a bowl shaped form (upward concavity).
The quadratic model is in general not valid far from the local
minimum, this is why it is often preferred to replace the
Hessian by aguaranteed positive semidefinite approximation.
The methods in which the Hessian is positive semidefinite are
referred to asquasi-Newton methods.
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Quasi-Newton methods ensure that even far from the opti-
mum the parameter search is carried out “downhill.”

(19)

is usually replaced by the positive semidefinite approximation

(20)

This choice has also the advantage that only first order deriva-
tives (i.e., sensitivities) are required. The so-calledGauss-
Newton methodis defined by the following equation:

(21)

Calculation of formula (21) requires knowledge of two kinds
of expectations for which the correspondent probability distri-
butions are not available. This is why as in the Robbins and
Monro scheme it is proposed to remove the expectations in
(21). The stochastic equivalent of (21) is then given by

(22)

If is slowly time varying the recursivity of the algorithm
will provide on average a good estimate of One
problem left is to find an estimate of since this quantity
is also an expectation. One possible choice often made is to
average over a time window the product thus
giving more weight to the current and recent products and
discarding (forgetting) the older estimate. For instance the
estimation

(23)

where is a constant close to, but less than 1, is often chosen
as a good and convenient recursive estimate. The factor
is referred to asthe forgetting factor. This factor fixes the
tradeoff between the rate of convergence and the precision
of the algorithm in the steady state. The closeris to 1,
the slower is the convergence but the better is the precision
(variance of in the steady state).

In general convergence of the nonlinear optimization
process (22) toward its optimum is not guaranteed, which
is usual for all nonlinear adaptive optimization schemes, since
the cost function can exhibit multiple local minima. In many
cases this means that the algorithm should be restarted with
different initial conditions.

In our studies the identification process has been carried out
using second quasi-Newton techniques described by (22) and
(23).

It should be noted that the cost function (6) will certainly
exhibit several local minima specially in the case in which the
system to be identified is of great dimension. One possibility
to avoid remaining stuck on a local minimum is to find an
additional way to monitor the search process. This additional
mechanism can be in principle implemented by adding a
constraint term in the cost function (6). This constraint is

however dependent on a certaina priori knowledge we could
have on the range of certain parameters. Once this constraint
term is added to the cost function the “instantaneous” gradient
of the cost function can be used as usual in the stochastic
approximation technique.

III. STRUCTURAL IDENTIFIABILITY

Until now we have described one possible technique for
identification. We have not formulated the fundamental ques-
tion if it does really make sense to perform such a procedure.
The output of our chaotic oscillator is a 1-D (scalar) signal
which is defined by a nonlinear mapping of state variables
which are typically of greater dimension. The fundamental
problem consists therefore of determining if the signal
carries enough information to allow rebuilding of the pa-
rameters. A different way to pose this problem is to check,
given a structure of identification, if there exists only one
set of parameters which can produce the same signal
For instance if there exists an infinite number of parameter
sets which explain the same it is certain that we cannot
retrieve the particular set of parameters which was used in the
master system.

In order to check if it is possible to identify the parameters
of the master system we have to studythe structural identifi-
ability [23], [22] of our model. The following definitions are
borrowed from Walter and Pronzato [23], [22].

A. Definitions—Structural Identifiability

Let us suppose first that for the master system the param-
eters of which we want to identify we can build a slave
system (which is a cascade of two subsystems as before)
which exhibits synchronization when driven with the master
output signal for an unknown set of parameters(i.e.,

as
Let us suppose next that we drive an identical structure

with the same input and that this structure has a set of
parameters Under the above conditions it is always possible
to tune the parameters of the modelin such a way that

as (24)

This experimental setup is shown in Fig. 5.
If (24) holds we shall denote by

(25)

the equivalence of the two models of identification.
Let us define as the prior feasible parameter space. The

parameter is said to bestructurally globally identifiable
(s.g.i.) [22], [23] if for almost any

The model is said to bestructurally globally identifi-
able if all its parameters are s.g.i.

The parameter is said to bestructurally locally identifiable
s.l.i. [22], [23] if for almost any there exists a
neighborhood such that and

The model is said to bestructurally locally
identifiable if all its parameters are s.l.i.
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Fig. 5. Framework for structural identifiability study.

Fig. 6. Skew tent map system.

The parameter is said to bestructurally nonidentifiable
(s.n.i.) if for almost any there is no neighborhood
such that and

The model is said to bestructurally nonidentifiableif
at least one of its parameters is s.n.i.

In order to check if it makes sense to identify the parameters
of the chaotic system our goal will be to check the structural
identifiability property of the slave system. Examples will be
given in the following.

IV. EXAMPLES

A. The Skew Tent Map

This 1-D map is defined by the following equations:

if

if

(26)

The block diagram of the skew ten map system is given by
Fig. 6.

1) Structural Identifiability of the Skew Tent Map System:
Next we investigate the question of identifiability of the skew
tent map system. The identifiability setup depends on the
identification structure we will choose. As is our observed
signal, our slave system will be a cascade of two subsystems,
a stable one which will be a simple delay followed by a

nonlinearity of the skew tent map type. To check if the system
is identifiable by synchronization, one has to check the number
of realizations of the parameter which will ensure that

in Fig. 7.
Let denote the skew tent map, whereis its parameter.

We have

for (27)

This means that the model to be identified by synchronization
is globally structurally identifiable. In the next section we
will construct an identification algorithm to find the unknown
parameter of the slave system.

2) Identification of the Skew Tent Map System:The identi-
fication of the skew tent map parameter is not a difficult
problem since examining the dependence between and

would give us directly the skew tent map parameter
However let us consider this identification example in order to
check the efficiency of the proposed identification procedure.
The setup for identification is shown in Fig. 8. Starting from an
initial guess for the parameter we can build a sequential
estimate by applying (22), i.e.,

(28)

where

(29)

where is given by [applying (23)]

(30)

The sensitivity is computed as follows:

if

if

(31)

(32)

where in (31) and (32) We simulated
the adaptive synchronization of the skew tent map system
with parameter to be identified set to 0.47. Initializing

to 0.1, 10 and fixing the forgetting factor to
0.98 we obtained a sequence of estimates for the parameter
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Fig. 7. Identifiability framework for the skew tent map system.

Fig. 8. Setup for identification of the skew tent map system.

which is presented in Fig. 9. After 400 iterations the adaptive
synchronization converged perfectly. Both the synchronization
error and the parameter mismatch are 0. Repeating
the adaptive synchronization with different values of the
initial guess for showed that the adaptive synchronization
occurred independently of this initial guess.

B. Hénon Map System

This two-dimensional system is described by the following
equations:

(33)

By observing the signal one possible setup for
adaptive synchronization is to build a forced system of the
form

(34)

in which is the forcing signal.

Fig. 9. Sequential estimate of parameterâ (Skew tent map system).

1) Identifiability of the Hénon Map System:The identifi-
ability study is carried out by inspecting the set of the
parameters which is governed by the following
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Fig. 10. Block diagram of the identification setup for Hénon system.

Fig. 11. Sequential estimate of parametersâ and^b (Hénon map system).

equations:

(35)

(36)

From (36) and from (33)
therefore (35) becomes

(37)

Let us define and from (37) we obtain

(38)

Since from the (33) it is clear that depends on
and the only solution for (38) is

(39)

which shows that the H´enon map system is structurally glob-
ally identifiable.

Fig. 12. Decomposition of[�1;+1]2:

2) Identification of the H´enon Map System:The identifica-
tion setup for the H́enon system is shown in Fig. 10. Applying
(22) the recursive estimate of and is given as

(40)

where

(41)

(42)

and

(43)

Fig. 11 shows the convergence of the parametersand
toward their optimal values. The parametersin the master
system were set to , The initial values
for and were set to 5 and 0.1. The
matrix was initialized to The forgetting
factor was set to 0.98. Perfect synchronization occurred after
600 iterations. The parameters were recovered exactly. We
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Fig. 13. Synchronization setup for the second-order UPLMM system.

obtained similar behavior for various initializations of
and

C. The Second-Order Markov Map System

We consider in the next a special class of chaotic
maps—the so-called Uniform Piecewise Linear Markov Maps
(UPLMM’s). Order UPLMM have the very interesting
feature of exhibiting a uniform density on the unit cube
of These types of maps have attracted attention both in
the mathematical [26] and the engineering literature [27]–[29].
Applications of Markov maps have been proposed for different
modulation-demodulation schemes for transmission of chaotic
signals.

A piecewise linear transformation of onto
itself is a UPLMM if can be decomposed as

such that is affine on each and maps it onto the whole
The constant density on is the unique

invariant probability density of any UPLMM.
We will restrict the presentation to an order 2 UPLMM

example, for more details on higher-order maps and their
applications the reader is referred to [27].

Let us consider a second-order UPLMM in which
has been decomposed into four rectangular regions as shown
in Fig. 12.

The four rectangles which are parametrized byand
are uniformly expanded onto using four linear
maps and which are such that they provide an
expansion parallel to each of the coordinate axes and that

(44)

(45)

Using (44)–(45) we obtain the general solution

(46)

where stands for the region number in which falls.
More precisely

for and

for and

for and

for and

(47)

We assume that we are given the signal as output
of the UPLMM system. The synchronization setup we will
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consider is shown in Fig. 13, wherestands for the identifier
of the region in which falls

It has been shown in [27] that starting from arbitrary initial
conditions for and the system of Fig. 13 exhibits
almost certain synchronization. Therefore there exists an
depending on the initial conditions of both, the master and the
slave systems, such that

for

1) Identifiability of the Second-Order Markov Map System:
We assume in this subsection that there exists such
that the state variables of the UPLMM slave system are such
that

(48)

and that

(49)

The parameters and are linked to and by
the following relationships, as shown in (50) at the bottom
of the page. We would like to identify the set of parameters

for which the (49) is satisfied. Using (48) we obtain the
input-output relationship of the slave system with parameters

and

(51)

This expression must be compared to the corresponding one
for the synchronized slave system having the parameters
and i.e.,

(52)

Using (49), (51), and (52) we obtain for the relation-
ships

(53)

(54)

For and let us define as
the rectangular region which is the intersection between

regions 1 and 1, i.e.,

This intersection is nonempty and therefore there is a nonzero
probability that there exists such, that two consecutive
points belong to , i.e.,

and

Therefore we obtain

(55)

Observe that for the RHS term in (55) is
always positive. It is easy to show that the points

and can be only such,
that they consecutively belong either to the region
or to the region The combinations

or are impossible
since they give a product which is
always negative.

If we suppose that and (50),
(53) and (55) give

(56)

If we suppose that and we obtain

(57)

for and

for and

for and

for and

(50)
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Fig. 14. Block diagram of the identification setup for the UPLMM system.

Let us define as the rectangular region which is the
intersection between region and i.e.,

Using the same argument as above we can show now by
considering two consecutive points
and that the points

and can be only such
that they belong consecutively either to the region or
the region This leads to the following equations:

(58)

(59)

Combining (56)–(59) shows that for almost every
the only compatible equation pairs are (56)–(59) and

(57)–(58). Solving these compatible sets of equations gives

(60)

Inspecting these two pairs of solutions shows that the UPLMM
system islocally identifiable when is chosen as the
observed (output) signal. The solution are such
that there exist and such that

and for

and for

(61)

This paper shows that two different sets of parameters could
be chosen in order to produce the same chaotic output of the
system. In other terms the identification of the second-order
Markov map parameters could result in the identification of
either or

2) Identification of the Second-Order Markov Map System:
As the Markov map system is a piecewise linear system a
specific identification scheme could be designed by observing
the dependence between and However let us
consider this example in order to test our general procedure of
identification. The identification setup of the UPLMM system
is shown in Fig. 14. The key parameters to be found are the
sensitivities of with respect to the parameters and

Computing these parameters gives (62), as shown at the
bottom of the page, where and are given in (50).

The update equations for the time variant parameters in the
adaptive procedure and are similar to those given
in (40)–(42) for the H́enon map.

Due the discontinuous nature of the map convergence of
the algorithm was very sensitive to the choice of the initial
values of the parameters. For certain initial values we did
not observe convergence in a reasonable number of iterations
(10 000).

We have plotted the results of two experiments in which
the optimal master system parameters were set to
and Fig. 15 shows the exact convergence in about
600 iterations. The forgetting factor was set to , the
initial values for and were and
The matrix was initialized to Exact

(62)
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Fig. 15. Identification of the UPLMM system, convergence toward the
master system parameters.

Fig. 16. Identification of the UPLMM system, verification of the identifia-
bility defect.

synchronization occurred after 600 iterations. The parameters
were recovered perfectly.

Fig. 16 shows the parameter variability for a different
initialization— and . In this case
we obtain perfect synchronization after about 3000 iterations
and we recover exactly the parameters instead of

. This example shows how important it is to study the
identifiability problem before the identification process—the
considered system is only locally identifiable, thus the results
of identification procedure depend on the initial values chosen
at the beginning of the procedure.

D. Chua’s Circuit

Chua’s circuit is a piecewise linear circuit (Figs. 17 and 18)
whose state equation is of the form

(63)

in which refers to one of the three linear regions of the
nonlinear resistor of Fig. 18, is the normalized
time. The vector is composed of the normalized variables

Fig. 17. Chua’s circuit.

Fig. 18. Characteristic of the nonlinear resistorRN :

being the
‘breakpoint voltage’ of the nonlinear resistor.

Taking as parameters and we
obtain for matrix and vector of (63)

(64)

In (64) stands for the linear region while
for and for We assume that
the parameters are chosen such that the system operates in
a chaotic mode.

Suppose that is the observed output of Chua’s
circuit. We can build a] synchronization setup by applying the
Pecora and Carroll scheme, i.e., by cascading two appropriate
subsystems. The first subsystem which is forced by is
described by

(65)

The parameter in the state-matrix in (65) is such that
this matrix is a stable one, therefore and
exhibit an exponential convergence toward and ,
respectively.

The second subsystem is described by

(66)
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Fig. 19. Nonlinear resistor forM(�) andM(�̂):

For the study of the convergence of toward the
reader is referred to the papers by Tesiet al. [24], [25], we will
assume in the following that converges asymptotically
toward

1) Structural Identifiability of Chua’s Circuit:The slave
system built as a cascade of two subsystems [(65) and (66)]
can be rewritten as

(67)

Let be the set of parameters 1. The
system (67) can be therefore described as

(68)

The output of the system denoted by is defined as

with (69)

Let be the set of parameters These pa-
rameters are explained in Fig. 19 where stands for
the linear region stands for and

stands for the linear region
Let be the slave system with state spacewhich

is governed by

(70)

We assume that is such that there exists a time such that

for (71)

and want to find all the sets of parametersfor which (71) is
satisfied. Having this goal in mind we will first show that for

we have (i.e.,
Suppose that there exist two time intervals and

such that is in region

if and is in region if
According to (68) the dynamics of is slowed down
by switching from to this switching occurs at
time when According to (70) and (71) the
dynamics of should be also slowed down at time
because if not it would not possible for to follow
the new dynamic of Therefore this switching occurs
for which indicates that and
that for any

Having shown that the two systems and have
to operate in the same linear region at the same time simplifies
the identifiability study since we can apply the similarity
transformation approach in each linear region. Let us define

(72)

where is a constant invertible square matrix. The dynamical
system is then described as

(73)

2) Identifiability in the Region : If we can find pa-
rameters such that

(74)

(75)

(76)

then (73) describes the system and
Let Using (76) we can show that

(77)

By substituting (77) in (75) we obtain

(78)

Then using (77) and (78) in (74) we obtain

(79)

which shows that

(80)

3) Identifiability in the Region : Application of the
similarity transformation approach in region shows
that

(81)

Concluding, (80) and (81) show that Chua’s circuit is
structurally globally identifiable since there is only one set
of parameters which produces the same output
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Fig. 20. Convergence of̂� and ^�:

Fig. 21. Convergence ofm̂0; m̂1 and ^�:

4) Identification of the Chua’s Circuit:The identification
of such a system has been already performed in [3], [7],
[9] by exploiting synchronization and by using different
optimization techniques. In particular in [9] a deterministic
optimization exploiting the Powell’s method has been shown
to be efficient. Using the Gauss-Newton procedure described
in Section II we were also able [7] to match the parameters
with a precision better than 0.01%. However in order to get a
perfect synchronization in a reasonable amount of time we had
to run the optimization using different initializations of the
parameter set This shows the limitation of
our optimization technique which is local in nature. Figs. 20
and 21 show the convergence of The true
value of these parameters were ,

these values were set in such a way that the
system operates in chaotic mode.

V. CONCLUSIONS

We proposed a general method to find unknown slave
(receiver) system parameters in common chaotic synchro-
nization schemes. The method is based on adaptive control
methods used in combination with synchronization principles.
The synchronization allows a dimension reduction of the
minimization problem which we have to solve and provides an
elegant way to cope with the sensitivity to initial conditions.

Although a deeper study should be carried out to develop better
optimization schemes there is at least experimental evidence
that it is possible to find the unknown parameters of the slave
system using the mixed approach we propose.

We have also used the notion of structural identifiability
which enables us to address the problem of whether it is
possible at all to find the unknown system parameters given
only measured output signals from the system.

In communication applications the recovery of the pa-
rameters can be explained in other terms indicating that
transmission secret keys can easily be found. From this per-
spective security claims in transmission systems using chaotic
carriers should be handled with great care since for low order
systems the knowledge of the structure of the chaotic coder
(master system) is sufficient in most cases to identify its
parameters (secret key) thus breaking the code and finding
the coded information.

However the proposed identification method will not work
properly when the dynamical system to be identified is a
high order system. The reason for this lack of efficiency
is obvious since synchronization will occur when the initial
parameters are not too faraway from the true parameters.
Starting from an arbitrary initial condition there is indeed a
great probability for the parameters to be trapped at some local
minimum of the synchronization cost function. This means
that some monitoring of the search process should be forseen
whenever possible. This monitoring could be in principle done
by injecting some constraints ora priori knowledge in the
cost function. For instance the identification of the Markov
map system could be done easily in high dimension since
the parameter range is known beforehand and since some
correlation technique could give some rough estimation of the
parameter values. For some specific systems it is possible to
design a rigourous adaptive synchronization scheme whose
synchronization error is guaranteed to converge toward zero.
For instance feedback linearizable systems such as those
studied in [30] allow the design of Lyapunov functions such
that adaptive control of the parameters ensures at each step a
monotonic decrease of the Lyapunov function.
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