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Abstract— In this article we propose a reduced model of
the input-output behaviour of an arterial compartment, in-
cluding the short systolic phase where wave phenomena are
predominant. The objective is to provide basis for model-based
signal processing methods for the estimation from non-invasive
measurements and the interpretation of the characteristics of
these waves. Standard space discretizations of distributed mod-
els of the flow lead to high order models for the pressure wave
transfer function, and low order rational transfer functions
approximations give poor results. The main idea developed here
to circumvent these problems is to explicitly use a propagation
delay in the reduced model. Due to phenomena such that
peaking and steepening, the considered pressure pulse waves
behave more like solitons generated by a Korteweg de Vries
(KdV) equation than like linear waves. So we start with a quasi-
1D Navier-Stokes equation that takes into account a radial
acceleration of the wall, in order to be able to recover, during
the reduction process, the dispersive term of KdV equation
which, combined with the nonlinear transport term gives rise
to solitons. The radial and axial acceleration terms being
supposed small, a multiscale singular perturbation technique
is used to separate the fast wave propagation phenomena
taking place in a boundary layer in time and space described
by a KdV equation from the slow phenomena represented
by a parabolic equation leading to two-elements windkessel
models. Some particular solutions of the KdV equation, the
2 soliton solutions, seem to be good candidates to match the
observed pressure pulse waves. They are given by close form
formulae involving propagation delays that are proposed to
represent input and output wave shapes. Some very promising
preliminary comparisons of numerical results obtained along
this line with real pressure data are shown.

I. INTRODUCTION

Reduced mathematical models of the cardiovas-
cular system. The cardiovascular system can be seen as
consisting of the heart, a complex double chamber pump,
pumping the blood into vessels organized into vascular
compartments forming a closed circulation loop. This point
of view is useful for building models of the whole system as
interconnection of simpler subsystem models. Such reduced
mathematical models are usually a set of coupled ordinary
differential equations, each of them representing the input-
output behaviour of a subsystem: conservation law of the
blood quantity for short time-intervals and specific behaviour
laws. They can be used for understanding the global hy-
draulic behaviour of the system during a heartbeat. They
can also be used to study the short-term control by the
autonomous nervous system [16], [14], [11].
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Fig. 1. Proximal arterial blood pressure waveform

Description of the arterial blood pressure (ABP) wave-
form. In this paper we are interested by models of the
ABP as a fonction of space and time between proximal
(i.e. close to the aortic valve) and distal (say at the finger)
sites. The normal proximal ABP waveform is shown in
Figure 1. The systolic upstroke of the pressure pulse is
produced by left ventricular contraction. When the aortic
valve closes, a temporary retrograde flow of blood against the
valve cusps causes a decrease in aortic pressure, the dicrotic
notch, at the beginning of diastole. As the pressure pulse is
travelling forward in the arterial tree, it presents ”peaking”
and ”steepening” and the dicrotic notch appears lower on
the diastolic curve at more distal sites (Figure 2). The shape
and amplitude of the diastolic curve after the dicrotic notch
change with arterial compliance and peripheral resistance,
this is the windkessel effect.

Windkessel models of the input impedances of vascu-
lar compartments. Input-output models of vascular com-
partments are 0D models (differential equations with no
space variable) used in the above-mentioned models of the
cardiovascular system. Also called windkessel models, they
have been intensively studied because they can be useful to
define global characteristics of vascular compartments with a
small number of parameters having a physiological meaning.
The first results of this type go back to Stephen Hales [5]
who measured blood pressure in a horse by inserting a
tube into a blood vessel, allowing the blood to rise up the
tube. Measuring the heart rate and the capacity of the left
ventricle, he was able to estimate the output of the heart
per minute, and then the resistance to flow of blood in the
vessels, the ratio of the pressure over the flow. Considering
the dynamical behaviour of pressure, led Otto Frank in 1899
[4] to propose the original two-element windkessel model
to represent the seemingly exponential decay of pressure
in the ascending aorta during diastole, when the input flow
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is zero. The time constant of this exponential decay is the
product of the two elements of the model: the peripheral
resistance, Rp, and the total arterial compliance, C. This
model is analog to an electrical circuit, a two-port network
with a parallel resistor Rp and a parallel input capacitor
C. The input impedance is given by Zin = Rp

1+ jωRpC . Since
these first results, windkessel models with three or four
elements have been introduced to represent more precisely
the high-frequency behaviours of input impedances when it
became possible to measure them [20]. The main observation
leading to the three-element windkessel model is that the
input impedance at high frequencies is close to a constant
resistance Rc (constant modulus and zero degrees phase an-
gle) that can be interpreted as the characteristic impedance of
the compartment. The two-element model is then corrected
as follows: Zin = Rc + Rp

1+ jωRpC . But now, for low frequencies
Zin is close to Rc + Rp instead of Rp, an error corrected by
adding a fourth element, an inertance L in parallel with Rc,
so that Zin = jωRcL

Rc+ jωL + Rp
1+ jωRpC . Usually L is interpreted as

the total inertance of the arterial system. Good estimations
from aortic pressure and flow measurements, of the input
impedance of the entire systemic tree, and in particular of
the total arterial compliance have been obtained using this
four-element windkessel model [20].

Windkessel models and linear transmission line con-
cepts. The linear transmission line theory is underlying the
developments of windkessel models. The arterial systemic
compartment can be seen as a multi-port network coupling
the heart to the extremities of the arterial tree through
series of vessel bifurcations. When modelling the aorta input
impedance, three situations are considered [20]: for very low
frequencies (under the heart rate), the input impedance is
close to the equivalent resistance Rp of the very distal parts
of the arterial tree (arterioles and small arteries); for low
frequencies (under the heart rate) the input impedance de-
creases due to the distributed compliance C and inertance L.
Remark that 1√

LC
is the wave velocity. Finally, for medium to

high frequencies (above two times the heart rate), reflections
in the proximal aorta can be neglected, so that, as in the
case of a reflectionless line, the input impedance equals the
characteristic impedance of the ascending aorta (a constant
resistance for high frequencies). This reflectionless property
does not seem to be limited to high frequencies. As noticed
in [21]: ” Indeed, Milnor [10] remarked that the properties
of the aortic tree in the normal young animal are those of an
almost perfect diffuser (i.e., it generates far fewer reflections
than the best man-made distribution network)”. We will
come back on this property later. Estimating ascending aortic
pressure from a distal pressure waveform is of particular
interest in the case of a non-invasive distal measurement, for
example for a distal pressure measured at the finger. Having
in mind the linear transmission line concepts, the problem
is to estimate an input-output transfer function between
proximal and distal pressures. Several methods have been
proposed ([6], [19]) but some important limitations appear
when 0D models are used to represent the relations between

distant signals [9]. This is not surprising because rational
transfer functions have been used but the transmission line,
in this case, behaves like a delay-line: an infinite dimensional
system. We will propose a solution for this problem, based
on some kind of nonlinear transmission line concepts.

Multiscale modelling of the cardiovascular system.
Windkessel models are also used as models of the loads
of the heart or of the arteries in some multiscale compu-
tations where they appear as boundary conditions of partial
differential equations (PDE) when distributed models of the
heart [1], [18] or of vessels [17] are used. In the case of
vessel modelling, the question arises of the consistency of
the lumped models with models taking into account one, two
or three space variables to represent, apparently, the same
vessels. It is discussed in [8] in the 1D case: a series of well
chosen windkessel-like models can be used as a semi-discrete
approximation of the linearized flow equations, while a single
windkessel model can be used when it is possible to neglect
the variations in space of pressure and flow (hypothesis (9)
in [8]), a limitation that is not surprising for 0D models and
seems valid after the pressure pulse wave has propagated
through the arterial tree. So windkessel models appear as
low frequency approximations of the input impedances of the
downstream compartments loading the studied element (heart
or vessel). In [13], as a result of a direct spectral analysis
of the linearized flow equations, the number of elements of
the windkessel model is chosen in relation with the order of
this low frequency approximation. These theoretical results
are an explanation of the good experimental results reported
for example in [20]. Remark that if one is interested by
the transmission line transfer function, the approximation
by a long series of winkessel models provided by this PDE
approach is not a reduced model.

Reduced models of the arterial compartments based on
nonlinear waves. In this article we propose reduced models
of the input-output behaviour of vascular compartments,
including the short systolic phase (about 100 ms) where
wave phenomena are predominant. The long-term objective
is to provide model-based signal processing methods for the
estimation and interpretation of the characteristics of these
waves (shape, velocity?), in order to assess the compart-
ment function and the heart-compartment adaptation. As we
have seen above, the PDE discretization approach leads to
high order models for the Pressure Wave Transfer Function
(PWTF). In what follow, the main idea to circumvent this
problem will be to explicitly use a propagation delay, for
example the Pulse Transit Time (PTT) that, in practice can
be measured directly. A close look to the waves of interest
leads to the hypothesis that they are indeed nonlinear waves.
For example, during the travel of a pressure pulse from the
heart towards a finger, it is easy to observe an increase of
the pulse amplitude and a decrease of its width (peaking
and steepening phenomena), at the opposite of what would
be expected of linear weakly damped waves. Comparing the
shapes of such pressure pulse wave, when it is close to the
heart and when at the finger, it seems possible to interpret
the downstream shape as a deformation of the upstream one
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due to higher velocities for higher peaks during the travel:
this is particularly striking for the dichrotic wave. All these
qualitative phenomena leads to consider the pulse wave as a
solitary wave, for example generated by a Korteweg de Vries
equation for the flow. After this systolic phase a windkessel
model will be able to represent the waveless phenomena
as in [21]. These remarks are not new, but we want here
to precise the corresponding computations, in particular the
type of solitary waves, in order to be able to propose signal
processing techniques. In a first part a quasi-1D Navier-
Stokes equation is studied that takes into account a radial
acceleration. The radial and axial acceleration terms being
supposed very small and small respectively, a multiscale sin-
gular perturbation technique is used to isolate the fast wave
propagation phenomena taking place in a boundary layer in
time (and space) and the slow phenomena represented by a
parabolic system similar to those studied for example in [11]
or [8] and leading to two-elements windkessel models. For
the hyperbolic system in the boundary layer, the situation
is similar to those leading to Korteweg de Vries equation
when a direction of the solitary waves is chosen, which
corresponds to the matching condition of the linear case.
For example, using various asymptotic methods, Yomosa and
Demiray [23], [3] studied the motion of weakly nonlinear
pressure waves in a thin nonlinear elastic tube filled with
an incompressible fluid. They proved that, when viscosity
of blood is neglected, the dynamics are governed by the
Korteweg-de Vries equation. We adapt this technique in the
second part. In a third part we study particular solutions
of the Korteweg-de Vries equation, namely the 2-soliton
solutions that seem to be good candidates to match the
observed pressure pulse waves. Finally we show the first
comparisons of numerical results obtained along this line
with real pressure data.

II. ASYMPTOTIC EXPANSION OF A QUASI 1D MODEL OF

FLOW : QUASISTATIC APPROXIMATION AND KDV
CORRECTOR.

In this section, we derive the Korteweg-de Vries equation
in a boundary layer, governing the motion of blood flow in
large arteries.

The idea of a boundary layer where a corrector of the motion
of the fluid satisfies a KdV equation is a conjecture to
represent the wave phenomena rather fast when compared
to the windkessel effect. We derive formally the equations
satisfied by this corrector.

We suppose that the arteries can be identified with an elastic
tube, and blood flow is supposed to be an incompressible
fluid. Moreover, we neglect the viscosity of the blood in
the large arteries and will only consider it in the outflow
boundary condition (peripheral impedance), leading to the
windkessel model.

Thus, we consider a one dimensional elastic tube of mean

radius R0. The Navier Stokes equation can read as

AT +QZ = 0, (1)

QT +
(

α
Q2

A

)
Z
+

A
ρ

PZ = 0. (2)

where, Z and T are the spatial and time variables, A(T,Z) =
πR2(T,Z) is the cross-sectional area of the vessel, Q(T,Z) is
the blood flow and P(T,Z) is the blood pressure. Moreover
ρ is the blood density, α is the momentum-flux correction
coefficient.
Furthermore, the motion of the wall satisfies, (see for exam-
ple [23])

ρwh0R0

A0
AT T = (P−Pe)− h0

R0
σ (3)

where, ρw is the wall density, Pe is the pressure outside the
tube, h0 denotes the mean thickness of the wall. Moreover,
σ is the extending stress in the tangential direction.

Remark 2.1 Usually the term ρwh0R0
A0

AT T is neglected be-
cause AT T is small. ♦

This system is completed by a model of the local compli-
ance of the vessels, a state equation

σ = E
∆A
2A0

. (4)

where ∆A = A−A0, with A0 the cross-sectional area at rest,
and E is the coefficient of elasticity.
First of all, we rewrite system (1)-(4) in non dimensional
variables.
Let

Z = Lz, T =
L
c0

t

where L is the typical wave length of the waves propagating

in the tube, c0 =
√

Eh0
2ρR0

, with R0 the means radius of the
tube. The velocity c0 is the typical Moens-Korteweg velocity
of a wave propagating in an elastic tube, when all nonlinear
terms are neglected. we suppose P or Q given for z = 0
along with a relation between P and Q for z = 1, P = Z (Q)
(peripheral impedance).

Moreover, we suppose that ε = R2
0

L2 << 1. (This hypothesis
is in good agreement with real data, we have ε � 0.01).
Let us rescale pressure, blood flow and cross-sectional area
by,

P−P0 = ρc2
0 p,

Q = A0c0q,

A = A0(1+a),

where A0 and P0 are the constant cross sectional area and the
pressure reference, where Q0 = 0. Thus, we get the following
system,

at +qz = 0,

qt +
(

α
q2

1+a

)
z
+(1+a)pz = 0,

ρwh0R0

ρL2 att +a = p.
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By hypothesis,

ρwh0R0

ρL2 =
ρw

ρ
h0

R0

R2
0

L2 = O(ε) = λε.

Thus, we get,

at +qz = 0, (5)

qt +
(

α
q2

1+a

)
z
+(1+a)pz = 0, (6)

λεatt +a = p. (7)

We suppose that the solutions admit an asymptotic expan-
sion in terms of ε , i.e.,

a(t,z) = ∑
k≥1

εkak(t − z,εz), (8)

p(t,z) = ∑
k≥1

εk pk(t − z,εz), (9)

q(t,z) = ∑
k≥1

εkqk(t − z,εz). (10)

We perform the following change of variables,

τ = t − z, ξ = εz.

Remark 2.2 This change of variables implies that we con-
sider only waves moving from left to right. If we keep both
directions, we get a Boussinesq type model as for example
in [15].

Remark also that we have chosen a smaller scale, ε = R2
0

L2

instead of ε = R0
L commonly chosen [2], so that the small

acceleration term in (7) does not disappear in the sequel. ♦

Thus equations (5)-(7) become (at the second order of ε),

ε[−a1
τ +q1

τ ]+ ε2[a2
τ +q1

ξ +q2
τ ] = 0, (11)

ε[−q1
τ + p1

τ ]+ ε2[−q2
τ +2q1q1

τ + p1
ξ + p2

τ +a1 p1
τ ] = 0, (12)

ε[a1 − p1]+ ε2[λa1
ττ +a2 − p2] = 0. (13)

From (11)-(13), it is normal to choose

q1 = p1, (14)

a1 = p1, (15)

2p1
ξ +3p1

τ p1 +λ p1
τττ = 0. (16)

In initial variables, we have the following KdV equation for
the fast pressure pulse, P1 = ρc2

0 p1, with (14)-(16)

P1
Z +d0P1

T +d1P1P1
T +d2P1

T T T = 0, (17)

with

d0 =
1
c0

,

d1 = −(α +
1
2
)

1

ρc3
0

,

d2 = −ρwh0R0

2ρc3
0

.

Remark 2.3 The blood flow, Q1, and the cross sectional area
∆A1 are also solutions of Korteweg-de Vries equations with
some other parameters. ♦

Remark 2.4 Usually, with the available measurements (e.g.
given by a FINAPRES sensor), we get the pressure at a
localized point, for example the finger, and as a function of
time. Thus, it is useful to get, not a time-evolution equation
but a space-evolution equation as obtained in (17). ♦

The equation (17) describes rather fast travelling waves (3-10
m/s). After these waves have gone across the compartment
there is still a slowly varying flow that will appear as some
kind of parabolic flow well approximated by a windkessel
model.

Remark that the convergence in (8)-(10) is still an open
question.

III. MODELLING OF PULSATILE AND NON PULSATILE

BLOOD FLOWS.

After studying different pressure pulse waves measure-
ments, we clearly see that the pulses can be approximated by
2-soliton solutions. We recall that solitons are solitary waves
solutions of the Korteweg-de Vries equation, see e.g. [7],
[22]. Roughly speaking a n-soliton will have n components
of different heights travelling with different velocities while
interacting.
In the next subsection, we give the analytical expression of
these soliton solutions we will use in the sequel.

A. The 2-soliton pressure model

Thanks to Lamb [7], we exactly know the analytical
expression of a 2-soliton solution.
We first consider the following a-dimensioned KdV equation

yξ +6yyτ + yτττ = 0. (18)

Then a 2-soliton solution of (18) can be written,

y(ξ ,τ) = 2
a2

1 f1 +a2
2 f2 +2

(
a1−a2
a1+a2

)2
(a2

2 f 2
1 f2 +a2

1 f1 f 2
2 )

(1+ f1 + f2 +
(

a1−a2
a1+a2

)2
f1 f2)2

(19)
with

f j(ξ ,τ) = exp(−a j(τ − s j −a2
jξ )),

(a j,s j) ∈ R
2and a1 > a2 > 0.

We have,

P1(Z,T ) =
6d2

d1
y(ξ ,τ).

Therefore, P1 is a solution of the pressure-pulse KdV equa-
tion (17), and we have

P1(Z,T ) =
12d2

d1

a2
1 f1 +a2

2 f2 +2
(

a1−a2
a1+a2

)2
(a2

2 f 2
1 f2 +a2

1 f1 f 2
2 )

(1+ f1 + f2 +
(

a1−a2
a1+a2

)2
f1 f2)2

with f j(Z,T ) = exp(−a j(T − s j −Z(d0 +a2
jd2))),

(a j,s j) ∈ R
+ ×R.
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B. Identifiability of 2-soliton representations.

In this subsection, we use the 2-soliton parameters of
subsection III-A.

Theorem 3.1: If S is the initial data of a 2-soliton solution
of

yξ +6yyτ + yτττ = 0, (20)

then ηS is the initial data of a 2-soliton solution of (20) if
and only if η = 1.

From Theorem 3.1, we easily deduce the following theo-
rem about the identifiability of a 2-soliton-pressure.

Theorem 3.2: Suppose that for Z = 0 the pressure P0(T ) =
P1(0,T ) is known and is the initial data of a 2-soliton. Then
for any other position Z �= 0, P1(Z,T ) is well defined as soon
as we know the parameters d0 and d2.

Proof of Theorem 3.1:
We look at the equivalent in space in +∞ and in −∞ of S a

2-soliton. By using Lamb formulae, [7], we get the following
equivalents, by letting a1 and a2 the 2 parameters of S (see
formula (19)) with a1 < a2 and s1 the initial delay of the first
component of the soliton.

S = 8
a2

2 −a2
1

(a2 −a1)2 a2
1e2(a1τ+s1) (+∞)

S = 8
a2

2 −a2
1

(a2 −a1)2 a2
1e−2(a1τ+s1) (−∞)

As ηS is supposed to be a 2-soliton it must have the same
equivalent in space in +∞ and in −∞ . Thus if we take b1

and b2 the 2 parameters of ηS with 0 < b1 < b2 and r1 the
delay, we get

8η
a2

2 −a2
1

(a2 −a1)2 a2
1e2(a1τ+s1) = 8

b2
2 −b2

1

(b2 −b1)2 b2
1e2(b1τ+r1)

8η
a2

2 −a2
1

(a2 −a1)2 a2
1e−2(a1τ+s1) = 8

b2
2 −b2

1

(b2 −b1)2 b2
1e−2(b1τ+r1)

We immediately deduce that b1 = a1, and r1 = s1 and we
obtain the following equation,

η
a2 +a1

a2 −a1
=

b2 +a1

b2 −a1

By using the first conserved quantity of the KdV solution
(see Lamb [7]), for the 2-soliton solutions S and ηS, namely,

∫ +∞

−∞
S(τ,ξ )dξ = C

we get,

η(a2 +a1) = b2 +a1

thus

a2 = b2, η = 1

and we have exactly the same soliton which ends the proof
of Theorem 3.1.
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Fig. 2. Pressure obtained with a FINAPRES sensor and superposed with
a 2-soliton model

0 1 2 3 4 5 6
70

80

90

100

110

120

130

140

t (s)

P
a

 (
m

m
H

g
)

Pression au doigt et 2−soliton

Fig. 3. Pressure obtained with a FINAPRES sensor and superposed with
a 2-soliton model after a tilt test

IV. DISCUSSION OF THE SOLITON REPRESENTATIONS OF

REAL PRESSURE WAVES.

In Fig. 2, the 2-soliton is well adapted to represent the
pressure pulse. Note that we have only superposed the 2-
soliton to the second pressure wave in this case.

For the patient of Fig. 3, we don’t need to correct the
2-soliton solution with a windkessel part. The heart rate is
rather high after a tilt test, thus the windkessel effect doesn’t
appear.

Remark that we have obtained a good fit between mea-
sured and computed pressures using only forward waves.

The forward wave plus windkessel effect description given
in the introduction is in general completed by describing the
effect of wave reflections related to the narrowing and bifur-
cations of the arterial vessels and to peripheral resistances.
The superposition of the forward and backward waves is
then also invoked to explain observations like peaking or
even the dicrotic notch. For example in [12], using an inflow
boundary condition, a peripheral impedance model is shaped
to obtain the dicrotic pressure notch. Wave reflection, like
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windkessel effect, is also clinically useful to represent the
left ventricular workload: in patients with elastic arteries,
the reflected wave returns to the heart during the diastole
and thus augments coronary artery perfusion. In patients
with stiff, atherosclerotic vessels, it returns to the heart
during systole and thus increases systolic pressure and left
ventricular afterload.

V. CONCLUSION

In this article we have proposed a reduced model of the
input-output behaviour of an arterial compartment, includ-
ing the short systolic phase where wave phenomena are
predominant. We believe that this model may serve as a
basis for model-based signal processing methods for pressure
estimation from non-invasive measurements and interpreta-
tion of the characteristics of pressure waves. The explicit
use in the reduced model of nonlinear wave characteristics,
among which some propagation delays, seems promising.
Phenomena, such that peaking and steepening, are well taken
into account by the soliton description. A first attempt is done
here to separate the fast wave propagation phenomena taking
place in a boundary layer in time and space described by a
KdV equation from the slow windkessel effect represented
by a parabolic equation leading to windkessel models. It
relies on the hypothesis that radial and axial acceleration
terms are small. A heuristic multiscale singular perturbation
technique is used to derive the model. Giving more solid
basis to this technique will be the topics of further research.
It is already possible to observe that 2-soliton descriptions
of the waves combined with two-element windkessel models
active outside a boundary layer, in the diastolic phase, lead
to good experimental results to represent pressure pulse
waves. The close form formulae of these nonlinear models
of propagation in conjunction with windkessel models are
rather easy to use to represent wave shapes at the input
and output of an arterial compartment. Some very promising
preliminary comparisons of numerical results obtained along
this line with real pressure data have been shown.

The soliton decomposition leads already to a good approx-
imation of the pressure pulse using only forward waves (and
windkessel flow). To improve this approximation introducing
reflected waves (still solitons here) will probably be useful.
This will be the object of future works along with clinical
interpretation of all the wave parameters.
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