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[1] Transient storage models are widely used in combination with tracer experiments to
characterize stream reaches via calibrated parameter estimates. These parameters quantify
the main transport and storage processes. However, it is implicitly assumed that calibrated
parameters are uniquely identifiable and hence provide a unique characterization of the
stream. We investigate parameter identifiability along with the stream conditions that
control identifiability for 10 breakthrough curves (BTC) for 100 m pulse injections along
Stringer Creek, Montana, USA. Identifiability is assessed through global, variance-based
sensitivity analysis of the one-dimensional transport with inflow and storage model (OTIS).
Results indicate that the main channel area parameter A and the dispersion coefficient
D were the most sensitive parameters and, therefore, likely to be identifiable across all
timescales and reaches. Identifiability of transient storage zone size As fell into two
categories along Stringer Creek. As was identifiable for lower elevation regions,
corresponding to a constrained valley, higher stream slopes, and in-channel roughness, but
not for upper stream regions, corresponding to a wider valley floor, flatter stream slopes,
and low roughness. The storage zone exchange parameter � was nonidentifiable across all
study reaches. Our results suggest that only some of the processes represented in the model
will be relevant and, therefore, identifiable for pulse injection data. As such, calibrated
parameter estimates should be accompanied by an assessment of parameter sensitivity or
uncertainty. We also show that parameter identifiability varies with stream setting along
Stringer Creek, suggesting that physical characteristics directly influence the identification
of dominant stream processes.
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1. Introduction

[2] Transient storage models (TSM) are conceptually
simple, widely used tools that have been applied to analyze
solute transport in streams around the world [e.g., Bencala
and Walters, 1983; Runkel, 1998; Edwardson et al., 2003;
Gooseff et al., 2003a; Martinez and Wise, 2003; Keefe
et al., 2004]. These models route mass in a one-dimensional
framework via main-channel processes and exchange with a

temporally static, spatially uniform transient storage zone.
The transient storage zone is a conceptual representation of
slower flow paths in the stream, which includes in-channel
areas of slow flow, dead zones, and the hyporheic zone
[Bencala and Walters, 1983]. The hyporheic zone is a spa-
tially and temporally variable region where channel water
interacts with groundwater [Findlay, 1995; Boulton et al.,
1998]. Transient storage models can be used to predict mass
transport [Runkel, 1998], though recent research has focused
on the relationship between model parameters and physical
stream characteristics to understand nutrient cycling
[Edwardson et al., 2003], ecological functioning [Tate
et al., 1995; Mulholland et al., 1997], geomorphological
setting [Wondzell, 2006; Gooseff et al., 2007], and hydro-
logical functioning [Harvey et al., 1996; Gooseff et al.,
2003a]. Specifically, model parameters that characterize
transient storage, including hyporheic exchange, are used to
assess stream disturbance and biogeochemical functioning
[Edwardson et al., 2003; Lautz et al., 2006; Lautz and
Siegel, 2007], and to interpret flow path timescales [Harvey
et al., 1996; Gooseff et al., 2003a]. Though multiple formu-
lations of transient storage models exist, the one-
dimensional transport with inflow and storage (OTIS) model
[Runkel, 1998] is the most commonly applied transient stor-
age model, and the focus of this study.
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[3] Transient storage models represent stream processes
through conceptual parameters which must be inferred indi-
rectly from other data sources because they cannot be feasi-
bly measured at reach scales [Wagener and Gupta, 2005].
Within OTIS, model parameters are tied to three processes
affecting mass transport : advection, dispersion, and tran-
sient storage (Figure 1a). To quantify these processes,
reach-representative parameters are estimated by optimiz-
ing the model to fit solute concentration data from tracer
experiments [Stream Solute Workshop, 1990]. Stream
tracer injection experiment data and flow measurements are
used as inputs and boundary conditions to the transient
storage model. The model parameters are calibrated to the
observed downstream tracer concentrations, referred to as
the solute breakthrough curve (BTC) [Runkel, 1998]. The
resulting parameter estimates quantify the magnitude of
processes inferred for a given stream [e.g., D’Angelo et al.,
1993; Runkel, 2002; Edwardson et al., 2003].
[4] The crux of transient storage model calibration is that

the parameter estimates are assumed to be uniquely identi-
fied from the experimental data (i.e., a unique single set of
parameters can be determined that characterizes reach
response for a given tracer experiment). This assumption is
rarely tested. Lack of parameter identifiability is a problem
common to all types of environmental models [Beven,
1989; Beven and Binley, 1992]. Past studies have suggested
that TSM parameter nonidentifiability is a result of equifin-
ality, as different combinations of parameters can reproduce
observed BTCs with the same degree of accuracy [Harvey
and Bencala, 1993; Harvey et al., 1996; Harvey and Wag-
ner, 2000; Wagener et al., 2002]. Despite this recognized
problem, researchers and practitioners commonly interpret
calibrated parameter values without testing their unique-
ness. Only unique, identifiable parameters should be used to
formulate reliable conclusions relating parameter estimates
from transient storage models to the characteristics of a
stream [Harvey et al., 1996; Harvey and Wagner, 2000].

[5] The aim of this study is twofold: (1) to demonstrate
a method for quantifying TSM parameter identifiability and
interactions and (2) to use these quantities to link physical
stream attributes to the dominance of flow processes. We,
therefore, analyzed TSM parameter uniqueness for multiple
reaches with varying physical settings along a single
stream. The uniqueness of parameter estimates was tested
via global, variance-based sensitivity analysis for four
OTIS model parameters : the dispersion coefficient D, the
main channel area A, the storage zone area As, and the
exchange rate between the main channel and storage zone
�. Global sensitivity analysis, both applied to the entire
BTC and at each time step across the BTC, quantifies the
individual effects of the parameters and their interactions.
[6] Experiments were performed in Stringer Creek,

located within the Tenderfoot Creek Experimental Forest
in Montana, USA. We analyzed pulse injection tracer test
data from ten 100 m reaches selected along the valley from
the initialization of Stringer Creek to its confluence with
Tenderfoot Creek, to test how stream characteristics relate
to parameter sensitivity. Tracer tests were performed under
relatively constant flow conditions and base flow contribu-
tions. The 10 reaches selected along Stringer Creek also ex-
hibit variability in vegetation, geology, and hydrology. A
change in valley structure at 1200 m separates the upper
from the lower portions of Stringer Creek and corresponds
to general differences in physical setting (stream slope, val-
ley morphology, riparian vegetation, and the presence of
woody debris in the stream channel) [Payn et al., 2009,
2012; Patil et al., 2013; Ward et al., 2013]. Upstream of
1200 m, the valley is less constrained and characterized by
wide valley floors and meadows. Downstream of this point,
stream slopes and hillslope slopes are greater, the stream
channel has more woody debris, and the valley is much
more constrained than in the upper region. As the magni-
tude of stream storage and transport processes are a func-
tion of the physical setting within a given stream reach, we

Figure 1. Conceptual diagrams of (a) stream reach processes affecting solute transport and (b) the con-
ceptualization of these processes as implemented in the OTIS model via four calibration parameters.
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hypothesize that physical setting likely influences our abil-
ity to identify the parameters describing these processes ;
therefore, highlighting which processes are dominant in a
given stream. We seek to identify the conditions (e.g.,
stream characteristics) associated with identifiable parame-
ters for this series of reaches. Understanding parameter
identifiability across these reaches will help clarify whether
stream characteristics (e.g., stream slope, amount of in-
stream vegetation) are associated with identifiable transient
storage parameters.

2. The OTIS Model

[7] The one-dimensional transport with inflow and stor-
age (OTIS) model, the most commonly used transient stor-
age model [Runkel, 1998], estimates solute concentrations
via mass balance equations for an advective main channel
with an adjacent, static storage zone [Thackston and
Schnelle, 1970; Bencala and Walters, 1983]. Within the
main channel, solute transport is governed by advection, dis-
persion, and exchange with the transient storage zone;
within the storage zone, solute transport is a function of the
rate and quantity of water exchanged with the main channel
and the concentration gradient between the transient storage
zone and main channel (Figure 1b) [Runkel, 1998]. The stor-
age zone represents the lumped effects of water exchange
with surface and subsurface exchange, including exchange
with the hyporheic zone, channel dead zones, eddies, or
pools, and groundwater [Harvey and Wagner, 2000; Payn
et al., 2009]. Readers should refer to Bencala and Walters
[1983] for the detailed derivation of model equations and
Runkel [1998] for details on the solution scheme.
[8] The OTIS model operates from the following

equations
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where t is time (s), x is distance (m), C is the solute concen-
tration in the stream (mg L�1), Q is the volumetric flow
rate (m3 s�1), A is the cross-sectional area of the stream
channel (m2), D is the dispersion coefficient (m2 s�1), qLin

is the lateral volumetric groundwater inflow length (per
length of stream) (m2 s�1), CL is the solute concentration in
the lateral inflow (mg L�1), Cs is the solute concentration
in the storage zone (mg L�1), As is the cross-sectional area
of the storage zone (m2), and � is the stream-storage
exchange coefficient (s�1) [Stream Solute Workshop, 1990;
Runkel, 1998]. A, As, D, and � are typically calibration pa-
rameters (Table 1).
[9] Though OTIS only has four calibration parameters,

interactions will likely occur among all parameters based on
the forms of equations (1) and (2). Parameters are said to
interact when their values are interdependent, meaning that
their effects on a given model output are not additive and,
therefore, not independent [Saltelli et al., 2008]. For OTIS
parameters, the level and cause of interactions will differ for
each experiment. Parameter interactions for the OTIS model
are acknowledged in early publications, where stepwise,
manual calibration recommends iterative parameter adjust-
ment because parameter values (e.g., A and D) are interre-
lated [Stream Solute Workshop, 1990]. High correlations
between model parameters found by later studies also cor-
roborate this point [Gooseff et al., 2005; Wagener et al.,
2002]. In terms of equations (1) and (2), A, present in every
term of both equations, is expected to interact with all pa-
rameters. As and �, which are inversely proportional in equa-
tion (2), are also expected to interact. Past work also shows
that D and the storage zone parameters As and � will inter-
act, either for well-mixed conditions when either process can
simulate concentration in the tail or for cases when storage
zone processes are insensitive [Harvey and Wagner, 2000].

2.1. OTIS Calibration

[10] OTIS parameters are usually estimated by calibration
to an experimentally obtained BTC [Edwardson et al.,
2003; Harvey and Wagner, 2000; Ryan et al., 2004; Wond-
zell, 2006]. The most widely used optimization method for
calibration of the OTIS model is OTIS-P, an adaptive, non-
linear least squares algorithm based on the NL2SOL soft-
ware package [Dennis et al., 1981] and implemented within
the Standards Time Series and Regressions Package (STAR-
PAC) [Donaldson and Tryon, 1987]. In this package, error is
quantified by the residual sum of squares RSS, which is cal-
culated according to

Rss ¼
Xn

k¼1

wk Ok � Skð Þ2 ð3Þ

where Ok and Sk are the observed and simulated kth values,
n is the total number of observations, and wk is the weight
for the kth observation [Wagner and Gorelick, 1986].

Table 1. Model Parameter Names, Abbreviations, and Unitsa

Analysis Parameter Units Symbol

Bounds

Lower Upper

1, 2, and 3 Dispersion coefficient L2T�1 D 0.001 1
1, 2, and 3 Storage zone area L2 As 0.001 0.01
1, 2, and 3 Surface-subsurface exchange T�1 � 10�5 0.001
1 Channel area L2 A 0.001 1
2 and 3 Channel area L2 A See Table 3

aThe values for both the wide and constrained runs are included. Refer to Table 3 for the constrained channel area parameter ranges for each reach.

KELLEHER ET AL.: TSM IDENTIFIABILITY FOR A MOUNTAIN STREAM

5292



Weights are not required, but can be included to remove
the emphasis on fitting to larger values at the BTC peak,
given that the squared error values are minimized [Wagner
and Gorelick, 1986].
[11] RSS is minimized iteratively within the OTIS-P

framework. Parameter estimates are updated based on
approximates of the Hessian (second derivative) matrix for
the residual sum of squares and partial derivatives of
model-predicted concentrations, which are constrained by a
parameter trust region that grows and shrinks based on the
level of RSS fit [Donaldson and Tryon, 1987]. The algo-
rithm converges to a final parameter set when there is a
minimal change in (1) parameter value or (2) objective
function value, based on user-defined thresholds for both
criteria [Donaldson and Tryon, 1987; Runkel, 1998].
[12] Like all local search algorithms, convergence to a

final parameter set is sensitive to the choice of an initial pa-
rameter set, and can lead to a local instead of global mini-
mum solution [Dennis et al., 1981]. OTIS-P may not
converge to a final solution for all applications. Singular
convergence can occur when the data or complexity of an
application cannot be used to estimate all transient storage
parameters [Donaldson and Tryon, 1987; Ryan et al.,
2004]. When OTIS-P does not converge, the estimated pa-
rameter values are not reliable, and should not be reported.
Beyond assessing convergence, OTIS-P provides statistical
information on parameter certainty calculated within the
neighborhood of the parameter estimate. These values,
though available as output from an OTIS-P run, are rarely
used or reported in the literature. Statistics from OTIS-P
are based on the variance-covariance matrix for the solu-
tion achieved by the nonlinear least squares optimization
algorithm. The variance-covariance matrix represents an
approximation of parameter uncertainty within the neigh-
borhood of the solution [Donaldson and Tryon, 1987].
Though correlation coefficients from the variance-
covariance may give an indication of uniqueness, they are a
local, not global, assessment [Hill and Tiedeman, 2007].
Therefore, these values cannot be used to infer global
behavior or uniqueness across the feasible parameter space.
One approach to assess parameter uniqueness for similar
models is usually tested by running the least-squares opti-
mization multiple times from different initial parameter
values; if the algorithm converges to the same parameter
set, the set is said to be unique [Hill and Tiedeman, 2007].
While this method has a better chance of assessing parame-
ter uniqueness than a single optimization run, it still does
not guarantee complete exploration of the parameter space,
and any statistics will be local values.

2.2. OTIS Parameter Uncertainty and Sensitivity

[13] Environmental models are simplified mathematical
representations of physical systems used to describe
observed phenomena [Wagener and Gupta, 2005]. Parame-
ter values in these models are often conceptualized physical
processes or system properties that cannot be directly
measured, and therefore, must be estimated via calibration.
Ideally, calibration produces a single set of parameter val-
ues that best reproduce the observed data [Cobelli and DiS-
tefano, 1980; Sorooshian and Gupta, 1983]. However, it is
also possible that more than one parameter set will repro-
duce the observations equally well with respect to a partic-

ular performance measure [Cobelli and DiStefano, 1980].
This condition is sometimes referred to as equifinality
[Beven, 1989; Beven and Binley, 1992]. When equifinality
occurs, it is usually the result of parameters that are insensi-
tive [Johnston and Pilgrim, 1976] and/or interactive [Ibbitt
and O’Donnell, 1971], and therefore nonidentifiable. Pa-
rameter equifinality and identifiability are especially prob-
lematic for complex models with many parameters [Beven
and Binley, 1992], though equifinality can also occur for
simple models with fewer parameters [Ibbitt and O’Don-
nell, 1971; Pickup, 1977; Beven, 1989; Wagener et al.,
2002]. Parameter identifiability is affected by the model
structure, data uncertainty, and the combination thereof
[Sorooshian and Gupta, 1983; Beck, 1987; Beven, 2008].
The portion of the parameter space being sampled can also
influence the interpretation of identifiability and sensitivity
[Saltelli et al., 2006].
[14] Past studies have shown that OTIS model parame-

ters can be nonidentifiable [Harvey and Bencala, 1993;
Harvey et al., 1996; Wagner and Harvey, 1997; Harvey
and Wagner, 2000; Wagener et al., 2002]. Sensitivity anal-
yses addressing nonidentifiability have concluded that sen-
sitivity for each of the parameters occurs for different parts
of the BTC. In these studies, the main channel area parame-
ter A is usually well identified, while identifiability for D
varies [Wagener et al., 2002]. As and � are typically the
least identifiable parameters [Harvey et al., 1996; Wagner
and Harvey, 1997].
[15] Beyond testing parameter identifiability, these stud-

ies have attempted to answer the question, What conditions
control identifiability? As A and D are typically well iden-
tified, research to assess controls on identifiability has
focused on the storage zone parameters As and �. These
controls can be explained in terms of the Damköhler num-
ber (DaI), defined as the ratio of average advective transit
time to the trnaisnet storage zone interaction timescale and
given by Bahr and Rubin [1987] as

DaI ¼ � 1þ
A

As

� �� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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�
L

v
|{z}
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[16] Average advective transit time is a function of reach
length (L), which depends on the experimental design, and
the average reach water velocity (v), both of which can be
determined prior to performing a tracer experiment [Har-
vey and Wagner, 2000; Wondzell, 2006]. Storage zone
interaction time is a function of calibrated parameter values
for A, As, and �, which must be estimated after performing
a tracer experiment. Wagner and Harvey [1997] previously
investigated parameter sensitivities via constant rate injec-
tions. They found that As and � were best identified for DaI
values near 1 and 0.1 respectively, representative of a ratio
where the timescale of advection is reasonably approxi-
mated by the timescale of transient storage zone reactivity.
Nonidentifiability occurs when one process overwhelms
the other, governed by the following conditions:
[17] 1. DaI >> 1, which occurs when storage zone

exchange rates are much greater than advective velocities.
This can occur for slow moving streams with rapid tran-
sient storage exchange. For this condition, the tracer mixes

KELLEHER ET AL.: TSM IDENTIFIABILITY FOR A MOUNTAIN STREAM

5293



quickly in the stream and storage zone, generating a tail
signal that can be matched using D or using As and � [Har-
vey and Wagner, 2000]. The influences of the parameters
are indistinguishable from one another therefore interact,
resulting in parameter interaction and nonidentifiability.
[18] 2. DaI << 1, which occurs when advective veloc-

ities are much larger than storage zone exchange rates. This
occurs for streams with high velocities and lower exchange
rates, resulting in long time scales of transient storage
exchange [Wagner and Harvey, 1997]. For this condition,
the model is more sensitive to the main-channel processes
and less sensitive to the transient storage zone processes
and its parameters As and � [Harvey et al., 1996].
[19] Both conditions can also be influenced by the exper-

imental design, via constraining the reach length to DaI
values, corresponding to recommendations from Wagner
and Harvey [1997] and following Harvey and Wagner
[2000], [Wagner and Harvey, 1997; Harvey and Wagner,
2000], or through the sampling frequency and the duration
of the experiment, which control the length and timescales
of flowpaths that can be detected [Harvey et al., 1996; Har-
vey and Wagner, 2000; Gooseff et al., 2003a; Scott et al.,
2003; Wondzell, 2006]. There is no recommendation for a
specific DaI range that constitutes certain versus uncertain
parameter sets; these guidelines instead offer an interpreta-
tion of how transport processes and experimental design
will influence parameter uncertainty. The DaI recommen-
dations from Wagner and Harvey [1997] are applicable to
high gradient streams for either constant rate or pulse injec-
tions, though the authors show that parameter sensitivity
(quantified in terms of the coefficient of variation) is
greater for a constant rate injection with sampling on the
rise, plateau, and fall of the breakthrough curve as com-
pared to a breakthrough curve generated from a pulse
injection.
[20] Other researchers have applied the DaI recommen-

dations from Wagner and Harvey [1997] to assess parame-
ter reliability and sensitivity in their own studies [Fellows
et al., 2001; Martinez and Wise, 2003]. However, this
approach again assumes that calibrated parameter values
are unique. If the DaI value indicates high uncertainty in
parameter estimates, the estimated parameter values cannot
be used, despite the fact that a tracer experiment has al-
ready been performed. Confidence in this value is espe-
cially limited when it is used with uncertain parameters, as
it implies that the DaI value is also uncertain because it is
based on uncertain parameter estimates. For these reasons,
DaI is not used directly in this study. However, we do
believe that the conditions described above, where DaI is
much greater or much less than 1, should represent cases
where certain transient storage parameters will not be
identifiable.

3. Study Area and Experimental Data

[21] This study uses BTC data from stream tracer tests
along Stringer Creek, which drains a subcatchment of the
Tenderfoot Creek Experimental Forest (TCEF), Montana,
USA (Figure 2). TCEF has a predominantly continental cli-
mate, with an average annual precipitation of 840 mm. Pre-
cipitation occurs mainly as snow, and the majority (70%)
falls between November and May [Farnes et al., 1995;

Jencso et al., 2009]. Streamflow is snowmelt dominated,
reaching a peak between late April and early June during
the melt period. Flow generally declines through the
summer and early fall [Jencso et al., 2009; Nippgen et al.,
2011].
[22] Stringer Creek is a generally gaining, montane head-

water stream. We refer to locations along Stringer Creek by
valley distance from the gauge near the confluence with
Tenderfoot Creek, where 0 m is at the gauge and 2700 m is
near the origin of flow during base flow conditions. Physi-
cal characteristics of the stream vary along the valley, pre-
dominantly due to the gain in stream flow and to a change
in underlying bedrock at approximately 1600 m [Payn
et al., 2009, 2012]. With reference to this location, granite-
gneiss bedrock underlies the valley downstream and sand-
stone bedrock underlies the valley upstream. The transition
in bedrock corresponds to a substantial change in valley
structure near 1200 m. Upstream of this location, down-
valley slope averages 6%. Relative to downstream regions,
the upstream valley is less constrained (wider valley floor)
and hillslopes have lower relief. Meadows dominate the ri-
parian landscape in the upstream valley, and there is less
large woody debris in the stream channel compared to
downstream regions. In contrast, the down-valley slope
downstream of 1200 m averages 9%. Downstream valleys
are more constrained (narrower valley floor) with higher
relief hillslopes, and there are more riparian trees and more
large woody debris in the stream channel.
[23] Our analysis was based on tracer test data collected

in August 2005 using instantaneous tracer releases. Payn
et al. [2009] conducted individual tracer tests every 100 m
along the valley. Salt (NaCl) was used as a conservative
tracer, and tracer concentrations were measured by in situ
electrical conductivity measurements. Mixing lengths
across the reaches varied between a valley distance of 5–30
m and experiments were planned and conducted to limit
the possibility of incomplete mixing by considering stream
channel structure as well as repeating experiments in which
incomplete mixing was observed in the breakthrough curve
[Payn et al., 2009]. Full details of the experimental design
are available in Payn et al. [2009] and Payn et al. [2012],
and other analysis with the 100 m data sets are reported in
Ward et al. [2013].
[24] We selected 10 of the 26 BTCs for 100 m reaches

collected along the 2700 m length of valley (Figure 2).
Reaches were selected to span the entire length of the val-
ley, to include a characteristic set of BTC shapes and dura-
tions, and to include a representative set of varying
physical features along the valley (Figure 3). Each study
reach is referenced by the valley distance at the down-
stream end of the reach, and reaches include: 2500, 2400,
2100, 1300, 700, 600, 400, 300, 200, and 100 m. These
locations reflect the longitudinal spatial variability in
stream flow, velocity, channel area, elevation, slope, gross
hydrologic loss/gain, and net loss/gain (Figure 2b). Physi-
cal stream setting encompasses the variability in physical
characteristics displayed in Figure 2b. These characteristics
were quantified for each reach from the tracer tests or from
a light detection and ranging (LIDAR) derived 1 m digital
elevation model (DEM) of TCEF (Table 2). We compare
model analyses from BTCs among these sites to explore
how parameter identifiability changes with the variability
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in these characteristics. It is generally regarded that physi-
cal stream setting, including the influence of differences in
geology [Morrice et al., 1997], geomorphology [Harvey
and Bencala, 1993; Gooseff et al., 2007], streamflow [Har-
vey et al., 1996], and obstructions to sediment transport
[Gooseff et al., 2003b; Ensign and Doyle, 2005], has some
influence on transient storage parameter estimates. Instead,
we seek to move beyond the scope of these past studies, to
understand the relationship between physical setting and
parameter identifiability. The Stringer Creek system pro-
vides a range of settings to test this relationship.

4. Methods

4.1. Sobol’ Sensitivity Analysis

[25] Sensitivity analysis assesses how variability in
model output is ascribed to variability in model factors
[Saltelli et al., 2004]. Model factors include, but are not
limited to, model inputs, initial states, parameters, and
other user-defined properties that will influence the model
output. We quantify sensitivity using Sobol’ sensitivity

analysis, a global, variance-based technique [Sobol’, 1993,
2001]. Past studies indicate that Sobol’s method effectively
characterizes sensitivities for models of low to intermediate
levels of complexity [Fieberg and Jenkins, 2005; Tang
et al., 2007; Saltelli et al., 2008]. Sobol’s method [Sobol’,
1993, 2001] ascribes the total variance in model output to
variance in model factors. Model output is often measured
by an objective function which computes the difference
between observed and simulated output, though other
model output can be used. The total variance in the model
output D(y) is divided into contributions from individual
factors and factor interactions, represented as

D yð Þ ¼
X

i

Di þ
X

i<j

Dij þ
X

i<j<k

Dijk þ D12 ...m ð5Þ

where y is the distribution of model output, Di is the mea-
sure of the sensitivity to model output y due to the ith com-
ponent of a given input factor pi, Dij is the portion of output
variance due to the interaction of parameters pi and pj, and
m represents the total number of factors being investigated.

Figure 2. The study area and 10 study reaches from a plan view. The map shows the changes in geo-
logic type, elevation contours, and Stringer Creek (modified from Payn et al. [2009]). Color indicates
the reach location, and corresponds to the color bar in Figure 2b. (b) Values of watershed metrics from
the top of the reach (2700 m) to its confluence with Tenderfoot Creek (0 m). Reach locations are all indi-
cated using valley distances, and do not include sinuosity in the active channel [Payn et al., 2012]. Color
indicates magnitude, normalized to the minimum and maximum value across the reaches for each metric.
Arrows indicate the 10 reaches included in the analysis. Photographs correspond to approximate loca-
tions along Stringer Creek and were taken by R. Payn and C. Kelleher.
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From equation (5), first- and total-order Sobol’ sensitivity
indices are calculated for each model factor in terms of the
amount of total output variance reduced by that factor plus
its interactions with other factors. This can be written as

First-order index : Si ¼
Di

D
ð6Þ

Total-order index : STi ¼ 1�
D�i

D
ð7Þ

where D�i represents the average variance from all factors
but pi. STi represents the variance in the output due to the
factor pi and its interactions. It represents the sum of an
interactions index and the first-order index Si, which meas-
ures the effect of factor pi alone. The ratio of first-order to
total-order index is important to factor identifiability, while
the magnitude of the total-order index determines sensitiv-
ity. Factors with high first- and total-order indices are likely
to be identifiable. Factors with a low first-order index but
high total-order index are dominated by interactions and
are likely nonidentifiable. The magnitude of the total-order
index is high for a sensitive parameter and low for an insen-

sitive parameter. Insensitive parameters, defined as having
a low total-order index, are nonidentifiable.
[26] Factor sets are sampled from user-defined ranges

according to the Sobol’ quasi-random sampling sequence
[Sobol’, 1967; Bratley and Fox, 1988; Sobol’, 1994].
Sobol’ indices are calculated for a total of N model runs
and corresponding model outputs for each run. Saltelli
[2002] recommends

N ¼ s 2mþ 2ð Þ ð8Þ

where m is the number of factors being investigated and s
is the quasi-random sample size. Sobol’ [1967] suggests
values of s that satisfy s¼ 2b where b is an integer to
achieve stability in Sobol’ indices.

4.2. Objective Functions

[27] The Sobol’ method quantifies indices based on the
variance in model output. The root-mean squared error
(RMSE) is calculated to assess sensitivity to the entire
simulated and observed time series’. RMSE is calculated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

k¼1

Ok � Skð Þ2
s

ð9Þ

where Ok and Sk are the observed and model simulated val-
ues at each time step k and n is the total number of time
steps. RMSE is a slightly different but equivalent form of
RSS (equation (3)), used commonly in OTIS model calibra-
tion [Runkel, 1998]. As RMSE is not a normalized error
metric, we also report model performance in terms of the
coefficient of determination r2. The r2 value, which
assesses the fraction of variability in the observed BTC that
is described by variability in the simulated BTC, is directly
comparable across reaches. This is calculated as

r2 ¼ 1�

Xn

l¼1

Ol � Slð Þ2

Xn

l¼1

Ol � O
� �2

ð10Þ

where Oð Þ is the mean of the observed time series [Devore,
2000].

Figure 3. The 10 study breakthrough curves, obtained
experimentally from tracer tests. Color indicates the reach
location along Stringer Creek, with 0 m being the bottom
of the stream, and 2700 m being the top. Reach colors cor-
respond to locations in two. Indicated locations are all
measured by valley distances.

Table 2. Names, Abbreviations, Units, and Calculation Methods for Site Characteristicsa

Characteristic Abbreviation Units Calculation

Average flow Qavg m3s�1 Averaged streamflow at beginning and end of the reach
Flow change DQ m3s�1 The difference between the flow at the beginning and end of each reach
Average velocity vavg ms�1 Reach length divided by the time between the pulse peak at the injection point and

the pulse peak at the downstream measurement location
Average area Aavg m2 Average flow divided by average velocity
Elevation Elev m Average value from the DEM across the reach
Stream slope So mm�1 The difference in DEM elevation from the point of injection to the point of mea-

surement, divided by the reach length
Average loss Qloss m2s�1 The average of the minimum and maximum loss, calculated from [Payn et al.,

2009]
Average gain Qgain m2s�1 The average of the minimum and maximum gain, calculated from [Payn et al.,

2009]

aSite characteristics are visualized in Figure 2.
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4.3. Fuzzy Performance

[28] Sensitivity analysis sampling strategies can include
combinations of unreasonable model factors which gener-
ate poorly performing simulations that would normally be
removed from an uncertainty analysis or calibration. When
these solutions are included, the model factors which pro-
duce the largest errors have the highest sensitivity indices.
This obscures the influence of other model factors, leading
to a false assessment of model controls. Fuzzy metrics are
alternative objective functions which allow users to deter-
mine which simulations should be included or excluded for
an analysis [Pappenberger and Beven, 2004]. Applying a
fuzzy performance metric evaluates the sensitivity of pa-
rameters to simulations which approximate the observa-
tions within an envelope of error, minimizing the effect of
simulations outside of this envelope.
[29] The concept of fuzzy sets was first introduced by

Zadeh [1965] as a method for expanding binary to grada-
tional membership. Values for this objective function M
vary between 0 (nonmember) and 1 (member). Previous
applications of this method [Aronica et al., 1998; Pappen-
berger and Beven, 2004; Cloke et al., 2008] determine val-
ues for M by comparing simulation values to two error
widths E1 and E2 from the observed values. As seen in
Figure 4, if the simulation value
[30] 1. is within a width of E1 from the observations,

M¼ 1,
[31] 2. is outside a width of E2 from the observations,

M¼ 0,
[32] 3. is between a width of E1 and E2, M is linearly

interpolated between 0 and 1 based on the distance of the
simulation value from E1, normalized to the difference
between E1 and E2.
[33] Typically, values and widths are selected based on

measurement error/uncertainty or user-specific knowledge
[Pappenberger and Beven, 2004; Cloke et al., 2008]. In
this study, fuzzy metric performance was calculated at each
time step for each model simulation (Figure 4). Because
the observations span multiple orders of magnitude, we
constructed the membership envelope in log10 space. We

assigned values of E1¼ 0.5 and E2¼ 1, so that any simu-
lated values greater or less than an order of magnitude from
the observed value are rejected. These thresholds are wide
so that only very poor solutions are excluded. Before calcu-
lating the fuzzy metric, we additionally removed all unsta-
ble model simulations, identified as oscillating simulations
with more than one peak. Any peaks beyond the maximum
concentration were classified as oscillating solutions if the
difference between the peak value and the value at the pre-
vious and next time step was greater than 0.0048 mg/L, the
smallest value of detection for concentration across the 10
reaches. Fuzzy metric values for an unstable simulation
were set to M¼ 0 across the entire BTC.

4.4. Model Setup for Current Study

[34] The OTIS model was implemented for a conserva-
tive solute, steady flow, and a constant dispersion coeffi-
cient for each river reach. Solute mass input was a
measured time series, which was recorded during the tracer
injection. The model was run at a 2 second time step and
Sobol’ analysis was performed at 6 s intervals. Qin was set
to the flow at the location of the solute injection, which was
calculated via dilution gaging following Payn et al. [2009].
Lateral inflow (qLin) and lateral outflow (qLout) were calcu-
lated from water balance data from Payn et al. [2009]
based on the net change in flow over the reach and tracer
mass recovery. Lateral inflow can be treated as a calibra-
tion parameter [Wagner and Harvey, 1997; Gooseff et al.,
2003a]. In this application, these values were constrained
with independent estimates based on the evidence of both
gross gains and losses in the study reaches. CL was set to
zero, as NaCl concentrations were determined using electri-
cal conductivity measurements which were corrected for
background values [Payn et al., 2009]. A description of the
tracer experiments can be found in Payn et al. [2009].
[35] In this study, parameter identifiability is determined

based on parameter sensitivities. A parameter is likely to be
nonidentifiable for two cases:
[36] 1. It has a low total-order index, in which case the

parameter is insensitive, or,
[37] 2. It has a high total-order index but a low first-

order index, indicating that the parameter influences model
output through interactions with other parameters.
[38] A parameter is likely to be identifiable if it has a

high first-order and total-order index, indicating that it
influences model output through changes in its value alone.
Tang et al. [2007] used a threshold index of 0.1 and 0.01
for a complex, distributed watershed model to distinguish
highly sensitive and sensitive parameters. We distinguish
between high and low sensitivities as those indices greater
or less than 0.25, given that our model is parsimonious
with only four parameters. It is also important to note that a
model parameter can be best identified for a value of zero,
indicating that it is the absence of a process that is impor-
tant [Wagener et al., 2003]. For an application where this
does occur, the parameter would be identifiable, corre-
sponding to a high first-order sensitivity index.
[39] Sensitivity indices were computed for A, As, D, and

� (Table 1). Results are reported for three analyses, each
with varying parameter ranges and objective functions. For
the first analysis, wide ranges were used for all parameters.
Wide ranges were initially used because sensitivity

Figure 4. The fuzzy metric objective function for the
BTC. The dotted black line indicates the observed BTC.
The gray-shaded region indicates behavioral samples,
where M¼ 1. The black region indicates acceptable values
approximated to a value M between 0 and 1. The white
region represents nonbehavioral space, where simulated
values were assignedM¼ 0.
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analyses are dependent on the associated parameter ranges.
Sensitivity indices were calculated based on RMSE for the
entire BTC. Ranges, specified in Table 1, were defined
from an understanding of the system and from values used
in previously performed sensitivity analysis studies [Wag-
ner and Harvey, 1997].
[40] For the second analysis, parameter bounds were

kept wide for As, D, and � (Table 1), but the ranges for A
were narrowed. The results from the first analysis were
used to constrain A, based on the best 1000 runs (quantified
by RMSE and r2) (Table 3). In the first analysis, sensitivity
indices for A were much higher than for any other parame-
ter, so A was constrained to test how the sensitivities for
the other three parameters would change. The top 1000
runs for RMSE and r2 produced similar ranges for A for all
reaches except at location 2500 m. Again, indices were cal-
culated from RMSE of the entire BTC. For the final analy-
sis, fuzzy metric values were calculated from the
simulations produced by the second analysis. Sobol’ indi-
ces were computed for the fuzzy metric values at each time
step in the BTC.

5. Results

5.1. Sensitivity Indices for the Complete BTC

[41] Sensitivity indices for the entire BTC were com-
puted for all 10 reaches (Figure 5). Main channel area A is
the most sensitive parameter for the first 2 analyses and
across all 10 reaches. For the first analysis, where wide
bounds were used for all parameters, the total-order indices
for A were between 0.83 and 1.12 (Figure 5a). D was
slightly sensitive, and As and � had total-order sensitivities
below 0.1 for all reaches. The differences between first and
total-order indices also indicate that interactions accounted
for 34 and 100% of the total-order indices for D. A had the
highest first-order indices across all parameters. First-order
values for A represented 63–89% of the total-order index.
For the second analysis, A and D were most sensitive, with
total-order indices between 0.38 and 1.17 for A and 0.25
and 0.70 for D (Figure 5b). Total-order indices for As and �
were much smaller than values for A and D, but larger than
the total-order values for As and � in the first analysis. As
was slightly sensitive and had total-order index values

between 0.08 and 0.19 across all reaches. Interactions
accounted for nearly all of the total-order indices for As
(72–89%) and � (87–100%), and for variable portions of
the total-order indices for D (29–82%) and A (19–64%).
[42] To illustrate that the parameter ranges did generate

parameter sets that approximated the observations, we
reported the level of parameter fit for the top 1000 runs for
both wide and constrained analyses in Table 3. The top
1000 runs achieved high levels of fit for all reaches for both
analyses. The best values for both analyses and across all
reaches were 0.99. The lowest r2 values for the top 1000
runs ranged from 0.578 to 0.853 for the first analysis to
0.693–0.981 for the second analysis. These levels of fit
demonstrate that model runs provide reasonable predictions
of the observed data.

5.2. Fuzzy Performance Sensitivity Indices

[43] Though indices for RMSE were computed for the
first and second analysis in a moving window framework,
the resulting indices were similar through time and across
all parameters and locations. Thus, the fuzzy metric was
implemented to filter poor simulations and to avoid misrep-
resentation of parameter sensitivities. In general, first-order
fuzzy metric sensitivity indices were small, indicating that
parameter interactions control output variance (Figure 6).
Total-order indices across all reaches were highest for A
and D. Though the patterns of periods when parameters
were most sensitive differ between reaches, D and A were
more sensitive than As and � in the rising limb, the peak of
the BTC, and occasionally through the falling limb. In con-
trast, As and � were more sensitive on the falling limb and
in the tail of the BTC. Applying the fuzzy metric also
removed all unstable solutions, which occurred for only
three reaches (100, 200, and 2500 m) and represented less
than 0.3% of simulations.
[44] We classify high sensitivities as those greater than

0.25, and low sensitivities as those less than 0.25, corre-
sponding to sensitive and insensitive parameters. Across all
reaches, first and total-order sensitivities indicated high
sensitivity to A and D. As and � had high total-order sensi-
tivities for all reaches but 2500 m, and 2400 m, and 2500
m, respectively. In contrast, As had high first-order sensitiv-
ities for reaches near the bottom of the stream (100, 200,

Table 3. Model Fits for the Top 1000 Runs for the First, Second, and Third Analysesa

Analysis 1 Analysis 2 and 3

r2, Top 1000
RMSE, Top
1000

Channel Area,
A (m2) r2, Top 1000

RMSE, Top
1000

Location Reach Length Best Worst Best Worst Lower Upper Best Worst Best Worst

100 103.89 0.999 0.807 1.93 22.56 0.192 0.277 0.999 0.970 1.00 9.98
200 106.58 0.999 0.821 0.58 7.68 0.193 0.272 0.999 0.974 0.50 3.20
300 106.39 0.999 0.853 1.08 15.68 0.180 0.256 0.999 0.981 1.23 6.34
400 106.75 0.998 0.835 0.60 5.80 0.223 0.322 0.999 0.972 0.43 2.58
600 109.4 0.998 0.836 0.49 5.05 0.211 0.314 0.999 0.971 0.43 2.29
700 108.18 0.998 0.818 1.30 13.34 0.180 0.269 0.999 0.970 1.26 5.89
1300 109.86 0.995 0.647 4.31 28.09 0.077 0.164 0.998 0.909 3.06 15.80
2100 124.67 0.997 0.578 2.91 23.20 0.057 0.110 0.996 0.916 2.21 11.95
2400 128.64 0.984 0.602 1.21 6.23 0.005 0.167 0.998 0.764 0.32 4.83
2500 128.09 0.994 0.702 1.57 12.19 0.042 0.620 0.995 0.693 2.14 12.41

aThe constrained ranges for the main-channel area parameter A were taken from the top 1000 runs by RMSE and r2 for the first analysis. These values
were computed for each reach.
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300, 400, 600, and 700 m) and the reach at 2100 m. First-
order sensitivities for � were low across all reaches, indi-
cating that � influences model output through interactions.
Given these patterns, first-order indices were grouped into
two different types of responses. The reaches near the top
of the stream (1300, 2100, 2400, and 2500 m) had higher
first-order indices for D and A, whereas As, when sensitive,
influenced model output through interactions. The excep-
tion is at location 2100 m, where As was sensitive through
the tail. For the reaches toward the bottom of the stream
(100, 200, 300, 400, 600, and 700 m), first-order sensitiv-
ities were highest for As and A in the BTC tail, and D on
the rising limb. For these reaches, interactions were largely
responsible for all parameter sensitivities.

6. Discussion

6.1. The Importance of Parameter Ranges and
Performance Objectives in Assessing Parameter
Sensitivities

[45] Though the magnitudes of indices for the entire
BTC varied slightly across the four parameters, general
controls across all reaches remained the same independent
of whether or not A is constrained. The main channel area
parameter overwhelmingly controlled the largest portion of

model output variance for both analyses, indicating that it
is the main control on output variance in advection domi-
nated systems (Figure 5). A also had a high first-order
index, indicating that the parameter has a strong independ-
ent influence on model output, though it still interacted to
some extent with other parameters. The sensitivity indices
of other parameters increased when A was constrained (Fig-
ure 5b). D and A still controlled the majority of model out-
put variance across all reaches. Sensitivity of the output to
As was limited to interaction with other parameters.
[46] These results suggest that the model output for the

entire BTC provided the most information about the cross-
sectional area of the advective channel. A is likely identifia-
ble and will be accurately estimated using optimization
tools such as OTIS-P. These results are a function of the
performance metric RMSE, which amplifies large errors
and is, therefore, primarily influenced by errors in BTC
peak timing and magnitude. Calibration with RMSE, or by
extension RSS, will therefore be sensitive to A, and will fit
the BTC peak. High sensitivity to A across all reaches is
also a function of stream setting, given the moderate to
steep stream slope gradient (average stream slopes from a
1 m DEM ranging from 2.3 to 6.3%). The first- and total-
order sensitivity indices for As and � were low. As such, As
and � are likely to be nonidentifiable. Calibration to the

Figure 5. First- and total-order indices for RMSE for the entire breakthrough curve, for (a) the first
analysis, with wide parameter ranges and (b) the second analysis, with parameter ranges constrained for
A based on the first analysis. Reach colors correspond to locations in Figure 2. Index colors correspond
to parameters.
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entire BTC will provide little unique information about
transient storage for pulse injections in advective systems.
[47] Sensitivity indices calculated for the fuzzy metric

indicated that A and D controlled the majority of output var-
iance through the entire BTC for all reaches. For reaches at
the bottom of the stream, A exhibited lower first-order sensi-
tivities than As or D, though is still likely to be identified
with first-order index values greater than 0.25 across all
reaches for variable portions of the BTC. Constraining pa-
rameter bounds for A resulted in parameter sets that well ap-
proximate the BTC, such that changes in A may not lead to
much variability in the fuzzy metric. Instead, A influenced
model output across a constrained range through interactions
with other parameters. As and � had larger total-order sensi-
tivity indices than in the previous application to the entire
BTC and variable first-order indices across the reaches.
[48] All parameters across all reaches largely influence

model output through interactions. This supports conclu-
sions of past research that OTIS parameters are highly
interactive [Wagener et al., 2002; Gooseff et al., 2005]. To
our knowledge, this level of interaction has not been previ-
ously quantified. This high level of interaction indicates
that OTIS parameters for the reaches in this study are most
likely nonidentifiable, except when first-order indices are
high (greater than 0.25). Nonidentifiability does not imply
a value of zero for a parameter estimate; it indicates that
the value is interacting with other parameters, such that its
value depends on the value of another parameter, or that
the value is unimportant with respect to a given objective
function.

6.2. Parameter Controls Across Reaches

[49] Reach parameter sensitivities were generalized into
two types of responses, which were grouped based on simi-
larities in sensitivities to the fuzzy metric through time and
changes in physical setting in Stringer Creek. The discon-
tinuous change in valley structure near 1200 m discussed
previously corresponds to similarities in fuzzy metric sensi-
tivities, which divided the reaches into two stream types,
Type I (below 1200 m) and Type II (above 1200 m).
Among many differences in valley, riparian, and channel
structure, this change corresponds to differences in the
down-valley slope, the amount of in-stream woody debris
in the active channel, and the topography of hillslope ter-
rain [Payn et al., 2012]. To explore how this discontinuity
related to parameter sensitivities, fuzzy metric sensitivity
indices were averaged across reaches and different periods
of the BTC for each stream type and visualized in Circos
plots (Figures 7 and 8; [Krzywinski et al., 2009]).
[50] Type I streams included locations 100, 200, 300,

400, 600, and 700 m. In these reaches, A and D had high
(<0.25) total-order sensitivity indices on the rising limb,
peak, and falling limb (Figures 8 and 9a). Additionally,
interactions between A an d D dominated all parts of the
BTC but the tail. Dispersion played a greater role than
advection, with larger total-order sensitivity indices for D
versus A in all but the falling limb and tail. As had high
total-order sensitivity indices through the falling limb and
tail and was most sensitive to model output on the falling
limb. In the falling limb, As and � interacted primarily with

Figure 6. Sensitivity indices for the fuzzy metric objective function applied to the area-constrained
simulations, with indices plotted as a function of time. Indices are (a) first order, (b) interactions, and (c)
total order. Color corresponds to the parameter.
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Figure 8. Circos plots of the sensitivity indices for the fuzzy metric objective function averaged across
the two stream types and across the periods of the BTC shown in the figure.

Figure 7. An introduction to reading a Circos plot (http://circos.ca/) [Krzywinski et al., 2009]. Each
plot contains information about the (a) total order, (b) first order, and (c) interactions indices for all pa-
rameters. An explanation for how to read and interpret a Circos plot is provided.
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D but also with A. Across these reaches, D, A, and As are
likely identifiable parameters given their high first-order
indices.
[51] Type II streams include BTCs from 1300, 2100,

2400, and 2500 m (Figures 8 and 9b). In contrast to Type I
streams, A and D were sensitive to model output through
all parts of the BTC. Advection dominated dispersion, with
larger sensitivity indices for A compared to D. A and D
may be identifiable, given their high first-order indices.
Transient storage parameters As and � had low first-order
indices for Type II streams. As such, they are nonidentifi-
able for this stream type. The only exception is the reach at
2100 m, which had a high first-order index for As through
the tail of the BTC.

6.3. Controls on Parameter Sensitivities

[52] Differences in model sensitivities for the two gener-
alized stream types along Stringer Creek are likely related
to the physical characteristics of the stream systems (Figure
10). The relationships between sensitivity and physical set-
ting also point to controls on parameter identifiability. We
expect sensitive parameters to be tied to dominant reach
processes and use the physical characteristics of Stringer
Creek to interpret this.
[53] The highly advective nature of the Stringer system

and results from Figure 5 indicate that A should be identifi-
able for all reach types. The differences in sensitivity
between A and D and the influence of As and � appear to be
variable and organized by the physical context of the
stream channel. For Type I streams, model output is more
sensitive to D than A in the range of the observed tracer
data. These reaches are subject to greater dispersion in
more tortuous flow through step-pool sequences created by

fallen trees and boulders. In contrast, model output for
Type II streams is more sensitive to A than D. Flow in
Type II streams is much less tortuous than in Type I
streams, likely indicating that dispersion is less important
to solute transport, resulting in lower sensitivity of output
to D.
[54] Sensitivity of the storage zone parameters appears

to be related to both stream size and stream type. As and �
are not identifiable in Type II reaches. Transient storage for
these reaches is most likely occurring to a small extent,
though not absent, and parameters related to this process
are, therefore, insensitive. This is supported by the stream
setting in these locations. The riparian zone in upper por-
tions of the watershed is almost entirely meadow across a
wide valley floor, resulting in far fewer impediments to
water flow or sediment transport in the active channel of
Type II reaches. As may be identifiable for Type I streams.
In contrast to Type I streams, boulders and large woody de-
bris are common in the active channel of the lower portions
of the watershed (Figure 10). The presence of these features
has the potential to result in transient storage. Identifiability
of As appears to be a precursor for the identifiability of �
for instantaneous tracer release data, due to the strong inter-
actions between these two parameters through the falling
limb and into the tail.
[55] Overall, these results indicate that transient storage

models can be used to characterize a subset of processes in
a given reach for pulse tracer data. In this context, it is
unlikely that all four parameters will be identifiable from
instantaneous releases. Instead, dominant processes related
to physical setting will correspond to the most identifiable
parameters, and only these values can be used to formulate
reach-level conclusions. However, we do demonstrate that

Figure 9. The two generalized response types from Figure 6, (a) Type I and (b) Type II from this pres-
ent study, and results from (c) Wagner and Harvey [1997], (d) Wagener et al. [2002], and (e) Scott et al.
[2003]. Color corresponds to the parameter, and line type distinguishes whether the parameter influences
model output by itself or through interactions.
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pulse data can inform estimates of As, but that this informa-
tion is contained within the tail of the BTC, and cannot be
estimated from a calibration to the entire curve. This sug-
gests that there is still valuable information on transient
storage processes contained within a pulse release BTC for
an advection dominated system.

6.4. Comparison to Previous Studies

[56] Several studies have suggested both similar and dif-
ferent conclusions regarding the identifiability of transient
storage parameters from instantaneous release tracer data
(Figure 9). Wagner and Harvey [1997] (Figure 9c), Wage-
ner et al. [2002] (Figure 9d), and Scott et al. [2003] (Figure
9e) have all examined time-varying parameter sensitivities
or surrogate measures of parameter information content for
tracer experiments in various stream settings. All three
stream studies found sensitivity to As and � along either the
falling limb and/or tail of the BTC. This corroborates
results for Type I streams from this analysis. Additionally,
sensitivity to D and A along the rising limb and falling limb
for all three studies was similar to the responses found for
Type I and Type II streams. The most apparent difference
between these past studies and current results occurs at the
peak of the BTC. All three studies found sensitivity at this
peak to either As or �, which was not consistent with our
analysis. Interestingly, none of the studies found sensitivity
to A at the BTC peak, which occurs for both stream types
from this study.
[57] Differences in peak controls may be caused by a

number of different factors. While the stream system stud-
ied by Wagner and Harvey [1997] was similar to the

Stringer system, their study used different methods for
characterizing sensitivity, in terms of the number of param-
eter sets, the algorithm used to generate parameter sets, the
type of data investigated, and the method used to calculate
sensitivity indices. The United Kingdom stream studied by
Wagener et al. [2002] was much different than the Stringer
Creek system, with flat terrain and stream slopes. Also im-
portant to note is that the generalized response from Wage-
ner et al. [2002] does not show that A is the most sensitive
parameter through all parts of the BTC except the tail. This
is again similar to the results of the Stringer Creek sensitiv-
ity analysis. Of these three studies, reaches along the
Stringer Creek valley would be most similar to the reaches
in Uvas Creek investigated by Scott et al. [2003]. Results
of Scott et al. [2003] have similarities to both Type I and
Type II streams. Overall, results of previous studies corrob-
orate findings for the Stringer System that different param-
eters will be sensitive across different parts of the BTC,
and that this will vary across stream reaches. These differ-
ences can be attributed, at least in part, to difference in
physical settings among these sites.

7. Conclusions

[58] While parameter estimates from the transient stor-
age model have been used to characterize streams in terms
of the magnitude of these processes, this approach can be
flawed when estimated parameters are not uniquely identifi-
able. The sensitivity analysis performed in this study cor-
roborates this point, with parameters A and D generally
dominating across 10 reaches in an advective mountain

Figure 10. Photographs and summaries of the general traits of the two stream types along Stringer
Creek. Photos taken by R. Payn and C. Kelleher.
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stream. Storage zone parameter �, which other studies have
shown to be much less certain than A and D, was not sensi-
tive across the analyzed reaches. This suggests that � can-
not be used to characterize high gradient mountain streams
similar to Stringer Creek. Model output was sensitive to As
through the BTC tail for models of reaches with stream fea-
tures generating in-stream transient storage, suggesting that
pulse injections have the potential to identify this parame-
ter. Estimates for As should be reported with caution, as
stream characteristics will influence whether or not this pa-
rameter is identifiable.
[59] Given that the concentration data from this study

were observed for a particular experimental setup and for
particular conditions, there are certain limitations to the
study conclusions. Past synthetic work from Wagner and
Harvey [1997] suggests that parameter uncertainty is also
a function of the type of tracer release and study reach
length. Wlostowski et al. [2013] also show for experimen-
tal BTCs that the type of tracer release will influence
which parameters can be identified as well as where along
the BTC this information is contained. For the experi-
ments analyzed in this study, all data were taken from in-
stantaneous tracer releases and for 100 m reach lengths.
Future work with this approach should test how parameter
identifiability varies for constant rate versus instantaneous
tracer injections, as well as how it varies across different
reach lengths [e.g., Wlostowski et al., 2013]. This study
also uses reach level data from a single stream; all conclu-
sions are given within the context of the physical charac-
teristics and setting which govern this stream. These
results represent one application to a particular type of
stream in one environment. We expect that streams with
more variable stream characteristics than those seen in
Stringer Creek will exhibit different patterns and levels of
parameter identifiability. For instance, transient storage
zone parameters may be identifiable for braided streams or
streams known to experience shorter time or length scales
for hyporheic exchange, as transient storage may be
expected to be a dominant process in these types of
streams. While these limitations merit future investigation,
this study, to our knowledge, represents the most compre-
hensive sensitivity analysis and investigation of parameter
identifiability for the application of transient storage mod-
els to date.
[60] The one-dimensional form of the transient storage

model makes a number of approximations to the stream
system. Assuming a constant value for D and As along the
reach length simplifies a two-dimensional flow field into a
one-dimensional application. For reaches where significant
variation in physical characteristics along a given length of
stream exists, crude approximations to the velocity flow
field may compromise characterization of patterns of hypo-
rheic exchange [Cardenas et al., 2004]. The alternative to
the one-dimensional TSM is a two- or three-dimensional
model, e.g., MODFLOW, MODPATH [e.g., Gooseff et al.,
2006], or COMSOL [e.g., Cardenas, 2009]. While efficient
numerical solvers exist for two-dimensional applications
[Hill and Tiedeman, 2007], the applicability of a 2-D or 3-
D model to a given site depends on whether there is enough
information about a field site to constrain the model [Har-
vey and Wagner, 2000]. Aside from experimental charac-
terization of the field site, equifinality becomes an even

greater problem as the number of parameters in a model
increases [Beven, 2006].
[61] The wider implications of this study are that model-

ing of instantaneous tracer data may not be capable of char-
acterizing all stream processes related to the model
parameters for all stream types. Given that this is an appli-
cation to a series of reaches along a single stream, these
results do not demonstrate that storage zone parameters are
always nonidentifiable. Instead, we recommend that model
parameter estimates should be reported along with sensitiv-
ity estimates as provided here or other types of uncertainty
estimates. Only identifiable parameter values should be
used to infer reach functioning.
[62] While these results suggest that care should be used

in the reporting of these parameters, they highlight that the
transient storage model is an excellent tool for identifying
the dominant processes across stream reaches. They also
show that there is still much information that can be gained
through a pulse injection, and that the amount of informa-
tion that can be abstracted will depend on the characteris-
tics of a given reach. The relationship between parameter
identifiability and physical setting suggests that detection
of important stream processes may be better framed in
terms of parameter sensitivity and identifiability. Parameter
identifiability indicates that a given process is important for
a given reach, while a lack of identifiability can be attrib-
uted to nonsensitivity or interactions with other parameters
(which can be distinguished). In this application, the differ-
ence in dominant controls across reaches suggests that
there is also an opportunity for an a priori classification of
streams if we can relate sensitive processes to physical
reach characteristics. Such a classification system would
allow researchers to determine which transient storage
model parameters are likely identifiable prior to performing
a tracer test. In a broader sense, such a classification system
will undoubtedly improve our understanding of transient
storage processes and their relationship to physical setting.
Broad characterization of stream reaches and the processes
governing solute transport will be especially important
as the anthropogenic footprint on ecosystems continues to
grow, especially within small stream systems [Freeman
et al., 2007] where transient storage models are often
applied [Stanley and Jones, 2000].
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