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Identifiability of zero-inflated Poisson models

Chin-Shang Li
University of California

Abstract. Zero-inflated Poisson (ZIP) models, which are mixture models,
have been popularly used for count data that often contain large numbers
of zeros, but their identifiability has not yet been thoroughly explored. In
this work, we systematically investigate the identifiability of the ZIP mod-
els under a number of different assumptions. More specifically, we show
the identifiability of a parametric ZIP model in which the incidence prob-
ability p(x) and Poisson mean λ(x) are modeled parametrically as p(x) =
exp(β0 + β1x)/[1 + exp(β0 + β1x)] and λ(x) = exp(α0 + α1x) for x being
a continuous covariate in a closed interval. A semiparametric ZIP regression
model is shown to be identifiable in which (i) p(x) = exp(β0 + β1x)/[1 +
exp(β0 +β1x)] and λ(x) = exp[s(x)], (ii) p(x) = exp[r(x)]/{1 + exp[r(x)]}
and λ(x) = exp(α0 + α1x), or (iii) p(x) = exp[r(x)]/{1 + exp[r(x)]} and
λ(x) = exp[s(x)] for r(x) and s(x) being unspecified smooth functions.

1 Introduction

Numerous disciplines produce count data that contain many zeros; that is, biomed-
ical studies, criminology, environmental economics, political science, and sociol-
ogy. The zero-inflated Poisson (ZIP) distribution (Singh, 1963, Johnson, Kemp and
Kotz, 2005), which is a mixture of a degenerate distribution at zero and a Poisson
distribution, has been proposed to deal with the case in which the number of zeros
exceeds expected for a regular Poisson distribution. One can view the ZIP model
as adding structure to the regular Poisson model. This ZIP model allows separate
consideration of those who are not at risk of an event of interest and those who
are at risk of the event and may have the event several times during a specific time
period (Dietz and Böhning, 1997). This mixture model has become the foundation
of much methodological development in zero-inflated count data analysis. Some
authors made statistical inferences on the existence of zero inflation in the count
data (e.g., El-Shaarawi, 1985, van den Broek, 1995, Ridout, Hinde and Demétrio,
2001, Thas and Rayner, 2005). The seminal work on ZIP regression by Lambert
(1992) modeled the parameters of interest simultaneously with linear predictors
via appropriate link functions, which are described in case (iv) of the theorem in
Section 3. Many authors adopted this basic modeling structure to make a num-
ber of important extensions. Hall and Zhang (2004) fit a marginal ZIP regression

Key words and phrases. Count data, semiparametric zero-inflated Poisson (ZIP) regression
model.

Received November 2010; accepted December 2010.

306

http://imstat.org/bjps/
http://dx.doi.org/10.1214/10-BJPS137
http://www.redeabe.org.br/


Identifiability of zero-inflated Poisson models 307

model to clustered count data. Hall (2000), Hall and Zhang (2004) and Min and
Agresti (2005) used mixed-effects ZIP regression models for repeatedly measured
or cluster-correlated data. The ZIP regression models also have been applied to
several important clinical studies (e.g., Böhning et al., 1999, Yau and Lee, 2001,
Cheung, 2002, Lu, Lin and Shih, 2004). The identifiability of a ZIP model is very
important because one can not obtain unique model parameter estimates without
it. However, to the best of our knowledge, the identifiability of the ZIP models
has not yet been studied in detail. Therefore, motivated by this, in this work we
systematically investigate their identifiability.

The remainder of the paper is organized as follows. Section 2 introduces ZIP
models. We explore their identifiability in Section 3. Some conclusions are pro-
vided in Section 4.

2 ZIP models

Let U be a latent binary variable that indicates an individual’s risk state: U = 0
if the subject is not at risk of an event of interest (i.e., the subject is in the non-
susceptible group); U = 1 if the subject is at risk of the event (i.e., the subject is
in the susceptible group). Let p = Pr(U = 1) be an incidence probability. Let Y

denote the event count, defined only when U = 1, which follows a Poisson dis-
tribution whose probability mass function is denoted by f (y;λ|U = 1) = Pr(Y =
y;λ|U = 1) = e−λλy/y! for y = 0,1, . . . and λ being the Poisson mean. When
U = 0, we have the function f (y;λ|U = 0) = I{y=0}, a degenerate distribution
among individuals, who are not at risk of the event, for y = 0,1, . . . , where I{y=0}
is the indicator function, which is 1 if y = 0; 0 otherwise. It is noted that U = 1 if
Y > 0, and U is unobserved if Y = 0. If we now let f (y;p,λ) = Pr(Y = y;p,λ)

be the unconditional or marginal distribution of Y , one can write the marginal dis-
tribution of Y as follows:

f (y;p,λ) = Pr(U = 0)f (y;λ|U = 0) + Pr(U = 1)f (y;λ|U = 1)
(2.1)

= (1 − p)I{y=0} + p
e−λλy

y! , y = 0,1, . . . .

The marginal distribution f (y;p,λ) is a mixture distribution, which has mix-
ing proportions 1 − p and p with component distributions f (y;λ|U = 0) and
f (y;λ|U = 1). It can be seen from (2.1) that the ZIP distribution is reduced
to a regular Poisson distribution as the mixing proportion p = 1, which means
all subjects at risk of the event of interest. Both p and λ can be dependent on
the same or different covariates. We consider the case in which they depend
on the same covariates. The mixing proportion p is dependent on covariates
x, denoted by p(x) and the degenerate function f (y;λ|U = 0) is denoted by
f (y;λ(x), x|U = 0) = I{y=0}. The Poisson mean λ depends on x, denoted by λ(x)



308 C.-S. Li

and the probability mass function f (y;λ|U = 1) is denoted by f (y;λ(x), x|U =
1) = e−λ(x)[λ(x)]y/y!. We assume that x is one-dimensional and not a constant
within the sample. Hence, we consider the ZIP model as follows:

f (y;p(x), λ(x), x)

= [1 − p(x)]f (
y;λ(x), x|U = 0

)

(2.2)
+ p(x)f

(
y;λ(x), x|U = 1

)

= [1 − p(x)]I{y=0} + p(x)
e−λ(x)[λ(x)]y

y! , y = 0,1, . . . .

Let X be the design space that is assumed to be the closed interval [a0, a1]
for convenience. Assume F = {f (y;λ(x), x|U = 1) :λ(x) > 0 for x ∈ X and y =
0,1, . . .} is the class of conditional event count distributions, that is, Poisson distri-
butions, for individuals, who are at risk of the event. Denote the space of incidence
probability functions by P = {p(x) : 0 < p(x) ≤ 1 for x ∈ X }. Let

H = {
f (y;p(x), λ(x), x) :f (y,p(x), λ(x), x) = [1 − p(x)]I{y=0} + p(x)

f
(
y;λ(x), x|U = 1

)
, x ∈ X , y = 0,1, . . . , p(x) ∈ P,

f
(
y;λ(x), x|U = 1

) ∈ F
}

denote the class of ZIP models.
Following Redner and Walker (1984), we define the identifiability of the ZIP

model in (2.2) as follows.

Definition. The class of ZIP models H is identifiable if for any two members
of H given by f (y;p(x), λ(x), x) = [1 − p(x)]I{y=0} + p(x)f (y;λ(x), x|U =
1) and f (y;p∗(x), λ∗(x), x) = [1 − p∗(x)]I{y=0} + p∗(x)f (y;λ∗(x), x|U = 1),
then f (y;p(x), λ(x), x) = f (y;p∗(x), λ∗(x), x) if and only if p(x) = p∗(x) and
λ(x) = λ∗(x) for x ∈ X and y = 0,1, . . . .

3 Identifiability

We now investigate the identifiability of the ZIP model in (2.2) under a number
of different assumptions. We consider the following cases. p(x) is constant, or a
parametric form or unspecified smooth function is given for the covariate effect
on p(x) via a logit link. λ(x) is a constant parameter, or a parametric form or
unspecified smooth function is given for the covariate effect on λ(x) through a log
link. The results are stated in the following theorem.

Theorem 3.1. Let x be a continuous covariate in the design space X = [a0, a1],
where −∞ < a0 < a1 < ∞.
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(i) The ZIP model in (2.2) is identifiable if p(x) is specified as logit[p(x)] =
log{p(x)/[1 − p(x)]} = β0 + β1x and λ(x) is specified as log[λ(x)] = α0 +
α1x.

(ii) The ZIP model in (2.2) is identifiable if p(x) is specified as logit[p(x)] =
log{p(x)/[1 − p(x)]} = β0 + β1x and log[λ(x)] = s(x), where s(x) is an
unspecified smooth function instead of the linear form α0 + α1x.

(iii) The ZIP model in (2.2) is identifiable if logit[p(x)] = r(x), where r(x) is an
unspecified smooth function instead of the linear form β0 + β1x, and λ(x) is
specified as log[λ(x)] = α0 + α1x.

(iv) The ZIP model in (2.2) is identifiable if logit[p(x)] = r(x), where r(x) is
an unspecified smooth function instead of the linear form β0 + β1x, and
log[λ(x)] = s(x), where s(x) is an unspecified smooth function instead of
the linear form α0 + α1x.

Proof. To explore the identifiability of the ZIP model under each case, we need
to show that f (y;p(x), λ(x), x) = f (y;p∗(x), λ∗(x), x) if and only if p(x) =
p∗(x) and λ(x) = λ∗(x) for x ∈ X and y = 0,1, . . . . Because the “if” part is
clearly true in all cases, we focus on “only if.” To show the “only if” part, suppose
that f (y;p(x), λ(x), x) = f (y;p∗(x), λ∗(x), x). With some algebra, one then can
have the following ratio

p(x)

p∗(x)
= I{y=0} − e−λ∗(x)[λ∗(x)]y/y!

I{y=0} − e−λ(x)[λ(x)]y/y! . (3.1)

(i) If p(x) is specified as p(x) = exp(β0 + β1x)/[1 + exp(β0 + β1x)] and λ(x)

is specified as λ(x) = exp(α0 + α1x), the left-hand side (LHS) of the ratio in (3.1)
is dependent on x and the right-hand side (RHS) of the ratio in (3.1) depends on x

and y. Thus, the ratio is a positive function of x, denoted by c(x), for x ∈ X . The
quantities p∗(x) = exp(β∗

0 + β∗
1 x)/[1 + exp(β∗

0 + β∗
1 x)] and λ∗(x) = exp(α∗

0 +
α∗

1x) must satisfy the following equations

e−λ∗(x)[λ∗(x)]y = [1 − c(x)]y!I{y=0} + c(x)e−λ(x)[λ(x)]y, y = 0,1, . . . ,

p∗(x) = p(x)/c(x).

If we can show c(x) = 1 for x ∈ X , we then show the identifiability of the para-
metric ZIP regression model. Because e−λ∗(x)λ∗(x) = c(x)e−λ(x)λ(x) as y = 1
and e−λ∗(x)[λ∗(x)]2 = c(x)e−λ(x)[λ(x)]2 as y = 2, it follows that λ∗(x) = λ(x)

for x ∈ X and, hence, c(x) = 1. The proof is complete.
(ii) When p(x) is specified as p(x) = exp(β0 + β1x)/[1 + exp(β0 + β1x)] and

λ(x) = exp[s(x)], the LHS of the ratio in (3.1) depends on x and the RHS of
the ratio in (3.1) is dependent on x and y. So, the ratio is a positive function of x,
denoted by c(x), for x ∈ X . The quantities p∗(x) = exp(β∗

0 +β∗
1 x)/[1+exp(β∗

0 +
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β∗
1 x)] and λ∗(x) = exp[s∗(x)] must satisfy the following equations

e−λ∗(x)[λ∗(x)]y = [1 − c(x)]y!I{y=0} + c(x)e−λ(x)[λ(x)]y, y = 0,1, . . . ,

p∗(x) = p(x)/c(x).

By using the arguments of proving case (i), we can show c(x) = 1 for x ∈ X and,
hence, the identifiability of the semiparametric ZIP regression model. In addition,
p(x) is a constant when β1 = 0, so, one can see that the ratio in (3.1) must be a
positive constant c, which is not dependent on x or y because the LHS of the ratio
is independent of x and the RHS of the ratio depends on x and y. One can show
with the above arguments that c = 1. It then turns out that the semiparametric ZIP
regression model is identifiable.

(iii) When p(x) = exp[r(x)]/{1 + exp[r(x)]} and λ(x) is specified as λ(x) =
exp(α0 + α1x), the LHS of the ratio in (3.1) depends on x and the RHS of the
ratio in (3.1) is dependent on x and y. Thus, the ratio is a positive function of x,
denoted by c(x), for x ∈ X . The quantities p∗(x) = exp[r∗(x)]/{1 + exp[r∗(x)]}
and λ∗(x) = exp(α∗

0 + α∗
1x) must satisfy the following equations

e−λ∗(x)[λ∗(x)]y = [1 − c(x)]y!I{y=0} + c(x)e−λ(x)[λ(x)]y, y = 0,1, . . . ,

p∗(x) = p(x)/c(x).

By using the arguments of proving case (i), one can show that c(x) = 1 for x ∈ X
and, hence, the semiparametric ZIP regression model is identifiable. Additionally,
because λ(x) is a constant when α1 = 0, the LHS of the ratio in (3.1) is dependent
on x and the RHS of the ratio in (3.1) depends on y. Then, the ratio must be a
positive constant c. By using the above arguments, we can show c = 1 and, hence,
the identifiability of the semiparametric ZIP regression model.

(iv) One can show with the arguments of proving the previous cases that when
p(x) = exp[r(x)]/{1 + exp[r(x)]} and λ(x) = exp[s(x)] the semiparametric ZIP
regression model is identifiable. �

4 Conclusions

We have demonstrated the identifiability of the ZIP models under some as-
sumptions. Of note, for the parametric ZIP regression model, p(x) = exp(β0 +
β1x)/[1 + exp(β0 + β1x)] and λ(x) = exp(α0 + α1x), given in case (i) of Theo-
rem 3.1, it has three special cases: (1) α1 = 0 and β1 = 0 (i.e., p(x) and λ(x) are
constant); (2) β1 = 0 (i.e., p(x) is a constant); (3) α1 = 0 (i.e., λ(x) is a constant).
The class of mixtures of Poisson regression models with constant mixing proba-
bilities is subsumed by the parametric ZIP models given in the first two special
cases; its identifiability was discussed by, for example, Wang et al. (1996).

The semiparametric ZIP regression models, given in cases (ii)–(iv) of the Theo-
rem 3.1, have been shown to be identifiable. The model in case (ii) of Theorem 3.1
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with p(x) being a constant is a semiparametric ZIP regression model, which is a
special case of the semiparametric ZIP regression model by Li (2011). The semi-
parametric ZIP regression model can be utilized to test the lack of fit of a postulated
parametric form for the covariate effect on the Poisson mean, for example, testing
the linear effect of the covariate on the Poisson mean of the ZIP regression model
in which p(x) is a constant and λ(x) is specified as log[λ(x)] = α0 + α1x.

For case (iii) of theorem, although the r(x) can be estimated with any smooth-
ing technique (e.g., splines, kernels, and local polynomial kernel regression), as
mentioned in Li (2011), the r(x) can be approximated by regression splines, for
example, cubic splines with either the truncated power (“plus-function”) basis or
the B-spline basis (Schoenberg, 1946; Curry and Schoenberg, 1966; de Boor,
2001) that has better numerical properties than the truncated power basis. The
expectation-maximization (EM) algorithm can be applied to easily estimate the
model parameters. Moreover, the semiparametric ZIP regression model with λ(x)

being a constant, which is a special case of the semiparametric ZIP regression
model in case (iii), can be applied to test the adequacy of a parametric form for
the effect of the covariate on p(x); for example, one can test the linear effect of
the covariate on p(x) of the ZIP regression model in which p(x) is specified as
logit[p(x)] = log{p(x)/[1 − p(x)]} = β0 + β1x and λ(x) is a constant.

For case (iv) of theorem, both r(x) and s(x) can be estimated by regression
splines (e.g., cubic splines) or any other smoothing techniques. Furthermore, as
a practical use, this semiparametric ZIP regression model can be used to test the
lack of fit of any of the ZIP models given in the previous cases. In related work,
Houseman, Coull and Shine (2004) discussed the identifiability of semiparametric
negative binomial models for a time series of pathogen counts.
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