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Abstract

This paper presents a numerical method for the

determination of the identifiable parameters of parallel

robots. The special case of Stewart-Gough 6 degrees-of-

freedom parallel robots is studied for classical and self

calibration methods, but this method can be generalized

to any kind of parallel robot. The method is based on QR

decomposition of the observation matrix of the calibration

system. Numerical relations between the identifiable and

non identifiable parameters can be obtained.

1. Introduction

The classical methods for parallel robot calibration need

external sensors to measure the position and orientation of

the mobile platform [1] [2] [3] [4] [5]. The calibration

problem is formulated in terms of minimizing the

difference between the measured and computed motorized

joint variables, it uses the inverse kinematic model which

is easy to calculate for parallel robots. Self calibration

methods using extra sensors on the passive joints have

been also proposed for parallel robots [6] [7] [8] [9].

These methods are based on the use of redundant sensors

on the passive joints and to adjust the values of the

kinematic parameters in order to minimize a residual

between the measured and the calculated values of the

angles of these joints. As many parallel robots don’t have

redundant sensors on the passive joint, mechanical

constraints on the leg can also be used [10] [11].

 For some calibration methods, all the geometric

parameters cannot be identified. In previous work, the

identifiable parameters of parallel robots are derived by

intuition. In the case of serial robots, the identifiable

parameters are computed from a QR decomposition of the

analytical observation matrix [12]. We propose to extend

this method for parallel robots even in the case where the

Jacobian matrix cannot be obtained analytically.

2. Description of the robot

The parallel robot studied here is the Stewart-Gough 6

degrees of freedom robot (Figure 1). The base

connections are composed of Universal joints (U-joints)

and the platform connections are composed of Spherical

joints (S-joints). The centers of the U-joints and S-joints

are denoted by Ai and Bi (i = 1 to 6) respectively. The

configuration of the parallel robot is given by the (6x1)

vector L representing the leg lengths AiBi for i=1,…,6:

L = [  l1   l2   l3   l4   l5   l6  ]
T

(1-a)

Typically each variable is given as:

ioffii qql ,+= (1-b)

where qi is the prismatic position sensor reading and qoff,i

is a fixed offset value.

A1

A2

A3A4

A5

A6

B2

B3
B4B5 mobile

platform

mobile

fixed

base

prismatic joint

(motorized)

S-joint

(passive)

U-joint

(passive)

Figure 1: Stewart-Gough parallel robot

Let the frame F0 be fixed with respect to the base and

frame Fm fixed to the movable platform, such [7]:

- A1 is the origin of frame F0, while the x0 axis is

determined by (A1A2) and x0y0 plane is determined by the

points A1, A2 and A6.

- similarly, B1 is the origin of frame Fm, while B1B2

represents its xm axis and B1B2B6 its xmym plane.

With this definition of F0 and Fm we have:

0
PxA1 = 

0
PyA1 = 

0
PzA1 = 

0
PyA2 = 

0
PzA2 = 

0
PzA6 = 0

khalil
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m
PxB1 = 

m
PyB1 = 

m
PzB1 = 

m
PyB2 = 

m
PzB2 = 

m
PzB6 = 0

Where 
j
PPi denotes the coordinates of the point Pi with

respect to coordinate system Fj and:

j
PPi = [ 

j
PxPi   

j
PyPi   

j
PzPi ]

T

Thus, the robot is described by 24 constant parameters

which may be not equal to zero.

A1
A6

A5

A4 A3

A2

B1B6

B5

B4 B3

B2
Fm

F0

FE

F-1

-1
T0

mTE

OE

O-1

Figure 2: Definition of the frames

The (4x4) transformation matrix between frames F0 and

Fm giving the location (position and orientation) of the

platform with respect to the base is denoted by:

0
Tm = 









1000

PA m
0

m
0

(2)

The location of frame F0 with respect to the world

reference frame F-1 of the environment is given by a

transformation matrix Z. In addition, the matrix E denotes

the location of the end-effector frame FE in frame Fm (cf.

Figure 2). The location of the end- effector frame relative

to the world reference frame is:

ETZT m
0

E
1 ⋅⋅=−

(3)

Thus, the coordinates of  Ai relative to frame F-1 are:









⋅=








⋅=






 −

−

1

P
Z

1

P
T

1

P
iii A

0
A

0

0
1A

1

(4)

The coordinates of point Bi relative to frame FE are:









⋅=








⋅=








1

P
E

1

P
T

1

P
iii B

m
B

m

m
EB

E

(5)

The matrices Z and E can be defined using 6 independent

parameters. Thus, we can describe the geometry of the

robot using 36 constant parameters: either by 
–1

PAi and
E
PBi, or by 

0
PAi, 

m
PBi and the matrices E and Z. The total

number of parameters is thus equal to 42, after taking into

account the 6 joint variables.

For the calibration, we propose to use the coordinates of

points Ai and Bi in frames F-1 and FE respectively in order

to have homogeneous parameters to identify (only

lengths). From these coordinates, it is easy to find the

transformations Z and E, and the coordinates of the points

of the base and the platform in frames F0 and Fm.

2.1 Kinematic modeling

The inverse kinematic model (IKM) which computes the

leg lengths vector for a desired 
-1

TE is unique and easy to

obtain [13]. While, the direct kinematic model (DKM),

which gives the matrix 
-1

TE as a function of a given leg

lengths vector, is difficult to obtain analytically and up to

40 solutions may exist [14]. A numerical iterative method

based on the inverse Jacobian matrix is used to find a

local solution for the DKM.

3. General calibration models

The aim of the kinematic calibration is to estimate

accurately the geometric parameters. All the calibration

methods are based on calculating a function, for sufficient

number of configurations, in terms of the robot parameters

and some external variables. The model parameters are

estimated by minimizing this function by solving a

nonlinear system of equations. The general form of the

calibration equation is:

1 1

1

e e

e

f ( , , )

F( , , ) 0

f ( , , )

q x

Q X

q x

η
η

η

 
 = = 
 
 

! (6)

where η denotes the geometric parameters, Q={ q
1
,…, q

e

}
T
 contains the prismatic positions of the robot for e

different configurations, and X = { x
1
,…, x

e
 }

T
 are the

corresponding external measured variables such as the

Cartesian coordinates. This nonlinear optimization

problem can be solved by the leastsq function of Matlab

based on the Levenberg-Marquardt method.

Supposing that the U- and S-joints are perfect, we have to

identify the error ∆-1
PAi, ∆E

PBi, ∆qoff,i (with i = 1,…,6).

They will be collected in the vector ∆η. Before solving

the calibration equation, it is important to define the

identifiable parameters, because only these parameters can
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be identified without ambiguity. We propose to determine

these parameters using QR decomposition of the

observation matrix of the linearized model of randomly e

configurations satisfying the constraints of the calibration

procedure. The outlines of this algorithm is given

references[12,15]. The linearized equations corresponding

to the nonlinear equation (6) can be written as:

)W(Q,),(Q, ρηηη +∆⋅=∆ XY (7)

where ∆Y is the difference between the model and the real

robot, W is the (r , np) observation matrix of the system,

with np the number of geometric parameters and r >> np,

The vector ρ indicates the residual errors owing to noise

or modeling errors.

For parallel robots, the observation matrix W can be

obtained analytically for the calibration method which is

based on the IKM. For all the other methods we have to

calculate W numerically by  supposing small variations ε
on each geometric parameter and calculating the

corresponding ∆Yi. The j
th

 column of W corresponding to

that parameter will be computed as ∆Yj/ε . Good results

are obtained with ε =  10
-6

 meter for each parameter.

The number of the identifiable parameters denoted by b.

The QR decomposition will provide as a set of identifiable

parameters those corresponding to the first b independent

columns of W. We assign a priority number to each

parameter, the parameters with higher priority will be

placed at first in η. We place at first the offsets qoff,i

(priority 3), and we place at the end the 12 coordinates of

the points defining frames F0 and Fm (
-1

PxA1, 
-1

PyA1,
-1

PyA2, 
-1

PzA1,
 -1

PzA2, 
-1

PzA6, 
E
PxB1, 

E
PyB1, 

E
PyB2, 

E
PzB1,

E
PzB2, 

E
PzB6) (priority 1), the other parameters will get

priority 2 and will be placed after the offset parameters in

the following order:

-1
PxA2,…, 

-1
PxA6, 

-1
PyA3,…, 

-1
PyA6, 

-1
PzA3,…, 

-1
PzA6, then

E
PxB2,…, 

E
PxB6, 

E
PyB3,…, 

E
PyB6, 

E
PzB3,…, 

E
PzB6.

4. Application to calibration methods

We compute the identifiable parameters for several

calibration methods for the parallel robot whose nominal

parameters are given in Table 1. The obtained identifiable

parameters are valid for any robot of the Stewart-Gough

type. The grouping relations of the non identifiable

parameters are functions of the numerical values of the

geometric parameters.

leg 1 2 3 4 5 6
-1

PxAi 0 0,8426 0,9382 0,5168 0,3258 -0,0955
-1

PyAi 0 0 0,1654 0,8952 0,8952 0,1654
-1

PzAi 0 0 0 0 0 0
E
PxBi 0 0,1042 0,3340 0,2819 -0,1777 -0,2298

E
PyBi 0 0 0,3980 0,4883 0,4883 0,3980

E
PzBi 0 0 0 0 0 0

qoff,i ,85 0,85 0,85 0,85 0,85 0,85

Table 1: Nominal values of the geometric parameters

4.1 Calibration using the IKM

Measuring the location of the platform, the inverse

kinematic model (IKM) can be used to compute the 6 leg

lengths of the robot. The calibration method consists in

minimizing the residual between the computed and the

measured prismatic variables [2].

The equation for each leg and each configuration

is:

( )
( )

















∆
∆
∆
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


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
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



−
−−−

−−
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−

−−−−

−−−

ii

i
i

qL
L

q

,off

B
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1

T

E
1T

E
1

B
E

E
1

A
1

T

E
1

B
E

E
1

A
1

i

i

ii

ii

P

P

.A.PP.AP

PP.AP

1

(8)

Applying this equation for the 6 legs of the robot and e

configurations, we have the relation:

ηη ∆=∆ .),W(XQ (9)

where ∆Q is the difference between the measured

prismatic joint values and those computed by the IKM.

Note that the observation matrix W can be computed

analytically. Using (9) for e random configurations, with

e >> 7 such that the number of rows of W is greater than

the number of the parameters. The rank of the matrix W is

42. Thus, all the parameters can be identified. The

condition number of W can be used as a measure of the

excitation of the parameters by the calibration method.

Using e configurations such that the number of equations

is 4 times the number of parameters we find that The

condition number of W is about 350.

4.2 Calibration with measurement of the position of

the platform

Measuring only the position of the platform, we cannot

use the IKM of the robot since we have only 3 equations

to solve a system of 6 unknowns (the 6 leg lengths of the
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robot). Nevertheless, using the direct kinematic model

(DKM), if we consider a configuration q of the robot and

pE the measured position of the effector in frame F-1, we

can write the nonlinear model of calibration as:

1

E EP ( , ) 0q pη− − = (10)

The corresponding linear differential model is:

ηη ∆Ψ=∆ .),(pE q (11)

The Jacobian matrix Ψ is obtained numerically by

supposing small variation on each parameter and

calculating the corresponding variation on Ep∆ .

Measuring the position of the end-effector for a sufficient

number e of random configurations (minimum 14

configurations), we have:

ηηη
η

η
∆=∆

















Ψ

Ψ
=

















∆

∆
=∆ .),W(.

),(

),(
111

E

E Q

q

q

p

p

P
eee

!!

ΕΕΕΕ

(12)

The rank of the matrix W is obtained as 39. The

identifiable parameters of the system are obtained by the

QR decomposition of this matrix. Applying the rules of

priority described in section 3, the errors ∆E
PyB2, ∆E

PzB2

and ∆E
PzB6 are not identifiable and their effect are

grouped on the other parameters which defines the

positions of the S-joints on the mobile platform. We

propose to fixe these parameters such that:

0
622 B

E
B

E
B

E === PzPzPy (13)

This makes that the orientation of frame E, which cannot

be determined, is such that the x axis is along the

measured point and the point B2 while the xy plane is

along the measured point and the points B2 and B6. The

condition number of the observation matrix W for this

calibration method using a  number of equations which is

equal to 4 times the number of parameters is about 2000.

4.3 Calibration using two inclinometers

In this calibration method the rotation angles of the

platform of the robot about xm and ym axis are measured

by two inclinometers fixed on the platform [5]. For a

given configuration q, the theoretical values α1 and α2 of

the inclinometers can be computed using the DKM. These

values are functions of some elements of the orientation

matrix 
–1

AE and of the angle γ between the inclinometers

axes. The linear differential model can be written as:

ηγηΦ ∆Ψ=∆ .),,(q (14)

where ∆Φ is the difference between the inclinometers

measured values Φm
 and those computed by the model Φ,

and Ψ is the numerical Jacobian matrix (cf. section 3).

Using a sufficient number e of configurations:

ηγη
Φ

Φ
∆⋅=

















∆

∆
),,W(

1

Q
e

(15)

The rank of W is 36, there are 4 non identifiable

parameters concerning the U-joints (∆-1
PxA1, ∆-1

PyA1,

∆-1
PzA1 and ∆-1

PyA2) and 3 on the position of the S-joints

(∆E
PxB1, ∆E

PyB1 and ∆E
PzB1). The effect of these

parameters are grouped on the other parameters of the

base (U-joints) and the platform (S-joints) respectively.

These results are confirmed by the study of the geometry

of the system. The position coordinates of the

inclinometers on the platform have no effect.

Consequently, we can consider that the origin OE, which

cannot be determined by this method, is aligned with the

origin of frame Fm. Then we have by convention:

0
111 B

E
B

E
B

E === PzPyPx (16)

Similarly, the position of the base of the robot with

respect to F-1 has no influence on the inclinometers

measurement, as well as its orientation around the vertical

axis. We can define arbitrarily the origin of frame F-1  as

A1 and the axis x-1 and z-1 such that A2 is in the plane

(A1x-1z-1). Then we have by definition:

0
2111 A

-1
A

-1
A

-1
A

-1 ==== PyPzPyPx (17)

The condition number of the linear observation matrix W

for this method using a  number of equations which is

equal to 4 times the number of parameters is about  2000.

4.4 Calibration with mechanical constraints on the

orientation of the legs

This method uses the variables of the motorized prismatic

joints corresponding to configurations where either one U-

joint or one S-joint is fixed by mechanical lock, thus the

leg direction is constant with respect to the base or with

the movable platform [11].

Each U-joint i is described by 2 angles θ1,i and θ2,i, while

each S-joint i is defined using three angles θ3,i, θ4,i and θ5,i.
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For a given configuration q, these angles can be computed

by a generalized direct kinematic model [11]:

),(
,2

,1 η
θ
θ

qgy
i

i

ui
=









=  (18), ),(

,5

,4

,3

η
θ
θ
θ

qhy

i

i

i

si
=
















= (19)

4.4.1 Fixing the U-joint of a leg

Supposing 2 configurations q
a
 and q

b
 for which the i

th
 U-

joint has been locked. The nonlinear error function

between them is given as 0),(),( =− ηη bb
u

aa
u qyqy

ii

The differential equation is given as:

ηη ∆⋅Ψ=−=∆ ),(qyyy
b
u

a
uu iii

(20)

With a sufficient number e of configurations:

ηη ∆⋅=
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
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
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
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−

−
=
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














∆

∆
=

−−
),(W

1

21

1

1

Q

yy

yy

y

y

C
e
u

e
u

uu

e
u

u

u

ii

ii

i

i

i
!! (21)

The rank of W is 29, giving 7 non identifiable parameters

of the base and 6 non identifiable parameters for the

platform. The interpretation of this result is given in

section 4.4.4. The condition number of the observation

matrix for this method using a  number of equations 4

times the number of parameters is about 2500.

4.4.2 Fixing the S-joint of a leg

Using a set of configurations Q = { q
1
,…,q

e
 } for which

the i
th

 S-joint has been locked, we can write a differential

linear system of equations by the use of relation (19):

ηη ∆⋅=
















−

−
=

















∆

∆
=

−−
),(W

1

21

1

1

Q

yy

yy

y

y

C
e
s

e
s

ss

e
s

s

s

ii

ii

i

i

i
!! (22)

The rank of W (which is computed numerically) is 29, this

gives 6 non identifiable parameters for the base and 7 non

identifiable parameters for the platform. The condition

number of the linear observation matrix W for this

calibration method using a  number of equations which is

equal to 4 times the number of parameters is about 7500.

4.4.3 Mixing the data of locking different joints

If two or more sets of configurations are used, where in

each set either an U-joint or a S-joint has been fixed, the

rank of the numerical observation matrix W of the

calibration system is 30. The QR decomposition of this

matrix shows that 6 parameters of the base and 6

parameters of the platform are not identifiable. With the

priority rules, defined in section 3, these parameters

correspond to those which define the base and the end-

effector transformation matrices Z and E. In practice we

put them equal to zero:

0
622111 A

-1
A

-1
A

-1
A

-1
A

-1
A

-1 ====== PzPzPyPzPyPx (23)

0
622111 B

E
B

E
B

E
B

E
B

E
B

E ====== PzPzPyPzPyPx (24)

This gives:  frame F-1 = F0 and Fm = FE.

The condition number of the observation matrix W for

this method using a  number of equations which is equal

to 4 times the number of parameters is about (with one U-

joint and one S-joint locked) using four time the number

of equations that are necessary is about 700.

4.4.4 Comments

This autonomous method cannot identify the Z and E

elements because they have no effect on the angles of the

legs with respect to the base or the platform. Thus, the

maximum number of identifiable parameters by such

autonomous calibration method is 30.

When only one set of configurations is used with one U-

joint (respectively one S-joint) locked, a 7
th

 geometric

parameter of the base (respectively of the platform) cannot

be identified. In fact, placing the center of the locked joint

along its leg direction will satisfy the locking constraint

(cf. figure 3). That is why we have a non identifiable

parameter more. This situation has not been mentionned

in reference [11], but it has been shown that two different

joints must be locked to get good results.

4.5 Calibration with sensors on Universal joints

Zhuang [9] has presented autonomous methods based on

the use of extra sensors on some passive U-joints.

Knowing a set of e random configuration Q and the real

(measured) values of θ1,i and θ2,i of U-joint i for each

configuration, the following linear differential system can

be written from  (18):

( )

( )
ηη ∆⋅=



















−

−
),(W

r

1
r

1

Q

yy

yy

e
u

e
u

uu

ii

ii

! (25)



6/6

where ( ) r
1

iuy  is the vector of the values measured for the

i
th

 U-joint and 
1

iuy  is computed from the DKM.

constrained leg

2 positions

for the U-jo int

Figure 3: Two different robots with the same orientation

of one leg for a given configuration q

The QR decomposition of W shows that using only one

sensor reading is sufficient to identify 30 parameters

which is the maximum for a self calibration method. In

this case, the condition number of W is about 1500. This

means that the increase of the number of measured angles

increases the observability of the system, using 6 sensors

on 3 passive U-joint gives reduces the condition number

to about 350.

5. Conclusion

This paper presents a generalized method which gives the

identifiable and non identifiable geometric parameters for

the calibration methods of parallel robots. This method is

based on the QR decomposition of a numerical

observation matrix of the calibration system which is

obtained numerically by supposing small variations on

each geometric parameter of the model. Results are given

for several methods, the physical interpretation of the non

identifiable parameters has been given. The observability

measure of each method is given by the condition number

of the observation matrix of the linearized model.
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