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Abstract

Proofs of consistency of extremum estimators usually require assumptions ensuring

that there exists a unique well separated (identifiably unique) minimizer of the limit cri-

terion function. Unfortunately, these assumptions are sometimes opaque and do not lend

themselves to immediate verification. This paper discusses ways of confirming that iden-

tifiable uniqueness holds for the class of extremum estimators whose limiting criterion

function can be appropriately defined as a divergence on a space of probability measures

(minimum distance estimators being a special case). In particular, the task of verifying

that identifiable uniqueness holds is reduced to that of verifying the strong unicity of best

approximations on an appropriate space of probability measures or regression functions.

Sufficient conditions for strong unicity of best approximations are often easy to verify.
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1 Introduction

Building on early work of Doob (1934, 1953), Wald (1949), Le Cam (1953), Cramer (1946)

and others that addressed the consistency of maximum likelihood (ML) estimators with inde-

pendently identically distributed (iid) data, the “classic” consistency proof of extremum esti-

mators originated in the well known contributions of Jennrich (1969) and Malinvaud (1970).

These two papers independently addressed the consistency of the least squares estimator in a

nonlinear regression framework. They also seem to be at the origin of much of the research

on the asymptotic properties of extremum estimators that took place during the following

decades. Numerous contributions have since then allowed for the properties of extremum

estimators to be well understood in multivariate dynamic settings, misspecified models and

under heterogeneity and dependence of the data. The list is extensive. See e.g. Burguete

et al. (1982), Amemiya (1983) and Gallant and White (1988) for early reviews of important

contributions, as well as Pötscher and Prucha (1991a,b, 1997) for a more recent and complete

account of the relevant literature.

Despite the diversity, there is an underlying basic structure of conditions and method-

ologies that are common to the great majority of consistency results in this literature. In

particular, the uniform convergence of criterion functions and the identifiable uniqueness of

the argument that minimizes the limit criterion function seem to have pervasive influence,

being present under many guises in most consistency proofs. Here we shall be concerned with

the latter of these two conditions, the identifiable uniqueness, which requires fundamentally

that the extremum estimator’s limit criterion function have a well separated minimum (see

e.g. White (1980a) and Domowitz and White (1982)).

Unfortunately, identifiable uniqueness conditions are sometimes opaque, in the sense that

they do not seem to lend themselves to immediate verification. The suspicion of failure

therefore remains; see e.g. Pötscher and Prucha (1991a, ch.4) for a review of problematic

non-trivial cases where identifiable uniqueness fails to hold.
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The aim of this paper is to lay down a simple yet general methodology that allows the

researcher to verify if the identifiable uniqueness assumption holds true in the context of

possibly misspecified models. To follow the tradition of the “classic” results mentioned above

we shall also adopt the nonlinear regression framework. For clarity, we consider here a simple

prototypical nonlinear regression case that abstracts from the tedious considerations required

by a more general result. It will become however clear that extensions to more general cases

are often straightforward to achieve. Some trivial extensions to “non-regression” problems are

mentioned here. An extension to complex dynamic models is addressed in Blasques (2010).

It should also be made clear from the outset that there is not necessarily a strict relation

between imposing an identifiable uniqueness condition and ensuring that the model at hand

satisfies the well known identification condition (even though this often the case).1 We do not

address the identification condition here, although we discuss the role it plays in the present

problem. An important practical implication of this distinction is that the present theory is

mostly uninteresting for those special cases (typically involving well-specified models, compact

parameter spaces and continuous criterion functions) where model identification implies that

identifiable uniqueness holds on the estimator’s criterion function.

Finally, it is also important to stress that we will be concerned with providing only sufficient

conditions for identifiable uniqueness. Necessity is not addressed here. As such, the conditions

under which the methodology remains of practical interest should be as general as possible.

Indeed, it is not hard to devise restrictive conditions that once verified, imply immediately

identifiable uniqueness (think e.g. of strict convexity of a continuous limit criterion function

on a compact domain). Such conditions are however of very limited applicability and become,

in that sense, uninteresting. The challenge is thus to achieve generality while at the same

time ensuring simple verification.
1The researcher can always construct an extremum estimator (albeit possibly an uninteresting one) that sat-

isfies an identifiable uniqueness condition despite having a model at hand that does not satisfy the fundamental

identification condition, and vice-versa.
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The lack of a general enough methodology allowing researchers to verify if identifiable

uniqueness assumptions hold has lead some authors to discuss the adequacy of this assump-

tion in the context of misspecified models and to propose consistency results that do not

rely on it; see e.g. Pötscher and Prucha (1991a, section 4.6) and references therein. We shall

not follow this trail here.2 We choose to follow instead the literature aimed at the verifica-

tion of uniqueness conditions. Some examples include: (i) Freedman and Diaconis (1982)

analyze inconsistency of redescending M-estimators for location parameters of symmetric dis-

tributions using iid data that is caused by failure of the uniqueness assumption; (ii) Kabaila

(1983) addresses the failure of the uniqueness assumption for estimators of the parameter

vector minimizing the one-step-ahead prediction errors in misspecified ARMA models; (iii)

Clarke (1983) provides verifiable conditions for the uniqueness of ψ-type M-estimators using

iid data that rely on somewhat restrictive conditions involving the Frechet differentiability of

functional solutions; (iv) Rivest (1989) constitutes a failed attempt to prove uniqueness of

robust extremum estimators, see Crisp and Burridge (1993); (v) Ducharme (1995) shows that

the L1-norm minimizer extremum estimator is generally unique in the context of well spec-

ified multivariate response nonlinear-regression models; (vi) Donoho and Liu (1988) observe

pathologies of minimum-distance estimators related to the failure of uniqueness conditions

(these pathologies can be well understood under the general methodology proposed here);

and finally; (vii) Kent and Tyler (2001) provide conditions for local uniqueness of constrained

and redescending M-estimators in the context of well-specified models, by imposing conditions

for the estimator’s criterion function to be locally well behaved.

In what follows we generalize some of the results just mentioned in that we provide condi-

tions for identifiable uniqueness to hold globally and for a large class of extremum estimators

in the context of possibly dependent heterogeneous data and misspecified nonlinear regres-
2It often seems desirable to retain the identifiable uniqueness assumption as it provides the researcher

with a host of useful properties, e.g. continuous mapping theorems for arg max functionals. Furthermore, this

condition seems to play an important role in guaranteeing the economic interpretation of empirical work.
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sion models. In particular, we note that typical identifiable uniqueness assumptions can be

restated in terms of transparent verifiable conditions on the nature of both the estimator and

the model at hand. The idea is to adapt the statistical problem to be amenable to the use of

results stemming from the field of Approximation Theory. These results are applicable to the

class of extremum estimators whose limiting criterion function can be defined as a divergence

on a space probability measures underlying the data. This class includes as a subset the usual

minimum distance estimators. The problem of divergence minimization can also be translated

to the space of regression functions. Building on Approximation Theory’s results, the task of

verifying the identifiable uniqueness of the limit minimizer is then reduced to that of verifying

the strong uniqueness of best approximations in the space of probability measures or regres-

sion functions. Sufficient conditions for strong unicity are often easy to verify, thus giving the

researcher the opportunity to check if identifiable uniqueness holds in various applications.

The rest of the paper is structured as follows. Section 2 contains mainly preliminary

considerations and lays down the foundations for the remaining sections both in terms of

definitions and notation. Section 3 describes briefly the typical framework under which con-

sistency of extremum estimators is obtained. Section 4 restates the estimation exercise in a

more useful way by rewriting the limiting estimation problem as that of divergence minimiza-

tion on the space of probability measures or regression functions. Section 5 introduces some

concepts from Approximation Theory and reviews relevant results in this field highlighting the

conditions under which approximation problems have (strongly) unique solutions. Section 6

derives identifiable uniqueness from this new set of conditions and provides some consistency

results that follow immediately as corollaries. Section 7 illustrates the verification step with

a few simple examples of nonlinear regression models and alternative extremum estimators.

Section 8 offers some final remarks and concludes.

Finally, a word on notation. In what follows, N, Z and R denote the sets of natural,

integer and real numbers. If A is a set, B(A) denotes the Borel σ-algebra over A, and

×t=T
t=1A, often denoted AT , is the Cartesian product of T copies of A. Furthermore, in linear
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spaces, boldfaced letters (e.g. a ∈ A) denote vectors. Note also that := denotes definitional

equivalence, whereas ≡ is used to denote practical equivalence. If f and g are maps, then

f ◦ g := f(g) denotes their composition. The mappings dA and d∗A denote a divergence and

metric defined on the set A ×A respectively, and ‖ · ‖A denotes a norm on A. Finally,

p.m. and a.s. stand for probability measure and almost surely, respectively.

2 Preliminary Considerations

This section is sometimes dense and the casual reader might prefer to use it exclusively as a

reference for notation and definitions, thus proceeding directly to Section 3. Consider the T -

period sequence {xt(ω)}T
t=1, a subset of the realized path of an nx-variate stochastic sequence

x(ω) := {xt(ω), t ∈ Z}, for some ω ∈ Ω the event space. Let xt(ω) ∈ X ⊆ Rnx ∀ (ω, t) ∈ Ω×Z.3

The random sequence x is thus an F/B(X∞)-measurable mapping x : Ω → X∞ ⊆ Rnx
∞ where

Rnx
∞ := ×t=∞

t=−∞Rnx denotes the Cartesian product of infinite copies of Rnx and X∞ = ×t=∞
t=−∞X

with B(X∞) ≡ B(Rnx
∞ ) ∩ X∞ (Billingsley (1995, p.159)) where B(Rnx

∞ ) denotes the Borel σ-

algebra generated by the finite dimensional product cylinders of Rnx
∞ , F denotes a σ-field

defined on the event space Ω, and together with the p.m. P0 on F , the triplet (Ω,F ,P0)

denotes the complete probability space of interest. For every ω ∈ Ω, the stochastic sequence

x(ω) thus lives on the space (X∞,B(X∞),Dx
0 ) where the p.m. Dx

0 is defined over the elements

of B(X∞). Following White (1980b) and Domowitz and White (1982), consider now the

univariate stochastic sequence,

y := {yt = h0(xt), t ∈ Z}

with h0 : X → Y ⊆ R an B(X )/B(Y)-measurable mapping, B(X ) ≡ X ∩ B(Rnx) and

B(Y) ≡ Y ∩ B(R). Blasques (2010) extends the results in this paper to complex high di-

mensional nonlinear dynamic models with unobserved variables and possibly intractable like-
3Properties of the data in terms of dynamics and heterogeneity are addressed in Section 3.
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lihood functions.4 Hence, for every t ∈ Z, h0 ◦ xt : Ω → Y is F/B(Y)-measurable. For every

ω ∈ Ω, the sequence y(ω) thus lives in the space (Y∞,B(Y∞),Dy
0) where Dy

0 is the p.m. in-

duced by h0 on B(Y∞) according to Dy
0(By) = Dx

0 ◦ h−1
0 (By) ∀By ∈ B(Y∞). Define now

the joint process w := {wt = (yt,xt), t ∈ Z}. For every ω ∈ Ω, wt(ω) ∈ W ≡ Y × X

and w(ω) ∈ W∞ ≡ Y∞ × X∞ ⊆ R1+nx
∞ ≡ ×t=∞

t=−∞R1+nx . The sequence thus lives in

(W∞,B(W∞),Dw
0 ) where Dw

0 denotes the measure defined on B(W∞) ≡ W∞ ∩B(R1+nx
∞ ).5

Finally, suppose that for some ω ∈ Ω the T -period sequence wT(ω) := (yT(ω),xT(ω)) is

observed, where yT(ω) := {yt(ω)}t=T
t=1 and xT(ω) := {xt(ω)}t=T

t=1 . Yet, h0 is unknown.

A postulated parametric regression model takes the form ŷt = h(xt;θ) so that the modeled

counterpart of the stochastic sequence y is given by,

ŷ := {ŷt = h(xt;θ),θ ∈ Θ, t ∈ Z}

where h : X × Θ → Y. Here we deviate slightly from standard notation. The use of the

hat over y does not imply that fitted values are obtained at a specific point of Θ (usually

some θ̂T (ω), ω ∈ Ω). In the present context, the hat is used only to distinguish modeled

data from observed data. Also, we allow Θ to be infinite dimensional (although typically

metrizable). By parametric model we just mean a set of p.m.s that is indexed by a parameter

θ ∈ Θ. In this sense, we also deviate somewhat from typical terminology that requires Θ to

be finite dimensional. For every θ ∈ Θ, let h(·,θ) : X → Y be B(X )/B(Y)-measurable, so

that h(xt;θ) : Ω → Y is F/B(Y)-measurable ∀θ ∈ Θ and every t ∈ Z. Define HΘ(X ) :=

{h(·;θ),θ ∈ Θ} as the space of parametric functions defined on X generated by Θ under

the mapping hX : Θ → HΘ(X ) where hX (θ) := h(·;θ) ∈ HΘ(X ) ∀θ ∈ Θ. The mapping

hX : Θ → HΘ(X ) shall be called a parameterization mapping. Immediately, given Dx
0 , for

4Thus the extension covers what is probably the most common formulation of the nonlinear regression

yt = h0(xt) + εt where εt is unobserved. Here we follow White (1980b) in considering an extremely simple

univariate nonlinear regression framework. This allows us to simplify the argument by focusing on what is

really essential, therefore avoiding distractions created by unnecessary considerations.
5B(W∞) = B(X∞)⊗B(Y∞) the product σ-algebra; Dudley (2002, p.119).
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every θ ∈ Θ, h(·,θ) ≡ hX (θ) ∈ HΘ(X ) induces a p.m. Dŷ
θ indexed by θ on B(Y∞) according

to Dŷ
θ(By) = Dx

0 ◦ h−1(By,θ) for every (By,θ) ∈ B(Y∞) × Θ. The triplet (Y∞,B(Y∞),Dŷ
θ)

is thus an element of a family of measure spaces indexed by θ. Now, define accordingly

ŵ := {ŵt = (ŷt,xt), t ∈ Z}, the counterpart of w, with ŵt(ω) ∈ W ∀ t ∈ N and ŵ(ω) ∈ W∞

which lives in (W∞,B(W∞),Dŵ
θ ). As a result, given Dx

0 , for every θ ∈ Θ, hX (θ) induces also

a p.m. Dŵ
θ on B(W∞) so that (W∞,B(W∞),Dŵ

θ ) is also indexed by θ. For clarity, we let D

denote the functional that, given Dx
0 on B(X∞), maps elements of HΘ(X ) onto the space Dŵ

Θ

of p.m.s defined on the sets of B(W∞) and generated by Θ through h, i.e. D : HΘ(X ) → Dŵ
Θ

(with Dŵ
Θ = {D ◦ hX (θ),θ ∈ Θ | Dx

0}) satisfies D ◦ hX (θ) = Dŵ
θ ∀θ ∈ Θ with Dŵ

θ (Bw) ≡

Dŵ
θ (Bx × By) = Dŵ

θ (Bx × Y∞|X∞ × By) · Dŵ
θ (X∞ × By) = I(Bx=h−1(By)) · Dŵ

θ (X∞ × By),

Bx ∈ B(X ) and By ∈ B(X ) with I(Bx=h−1(By)) = 1 when Bx = h−1(By) and I(Bx=h−1(By)) = 0

otherwise.6 Clearly, since there is no guarantee that h0 ∈ HΘ(X ), i.e. that ∃θ0 ∈ Θ :

h(xt(ω);θ0) = h0(xt(ω)) ∀xt(ω) ∈ X , it might well be the case that !θ0 ∈ Θ :D ◦ hX (θ0) =

Dw
0 so that Dw

0 /∈ Dŵ
Θ . Note here that the statement ∃θ0 ∈ Θ : h(xt;θ0) = h0(xt) ∀xt ∈ X

is to be understood in the function equivalence sense (Kolmogorov and Fomin (1975), p.288);

i.e. we write hX (θ0) = h0 if and only if Dx
0{Bx ∈ B(X∞) : h0(Bx) += h(Bx;θ)} ≡ P{ω ∈ Ω :

h0(x(ω)) += h(x(ω);θ)} = 0. The same applies to similar statements throughout the paper.

The sets HΘ(X ) and Θ are thus naturally partitioned into equivalence classes by the mappings

D and hX respectively, with classes taking the form {hX (θ) ∈ HΘ(X ) : D◦hX (θ) = D◦hX (θ′)}

and {θ ∈ Θ : hX (θ) = hX (θ′)} respectively. This framework is convenient as the identification

problem is not the one we which to focus on. We shall address this point later. Finally, let,

θ̂T := arg min
θ∈Θ

QT (yT,xT;θ) ≡ arg min
θ∈Θ

QT (wT;θ)

denote the extremum estimator of interest, a map θ̂T : Ω → Θ. For the moment, let us adopt
6By “given Dx

0” we mean that D : HΘ(X ) → Dŵ
Θ can be obtained from D∗ : Dx ×HΘ(X ) → Dŵ

Θ as D =

D∗(Dx
0 , ·) : HΘ(X ) → Dŵ

Θ where Dx
0 ∈ Dx. Also note that every Bw ∈ B(W∞) takes the form Bw = Bx × By

with Bx ∈ B(X∞) and By ∈ B(Y∞) (Dudley (2002, p.118)); see also Davidson (1994, p.115) for notation.
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this notation to stress that QT is a function of θ ∈ Θ. Hence, we write QT : WT×Θ → R where

WT := YT × XT with YT := ×t=T
t=1 Y and XT := ×t=T

t=1 X so that wT(ω) ∈ WT . Note however

that we could have written QT (xT,h0(xT),h(xT;θ)) where h0(xT) := {h0(xt)}T
t=1 ≡ yT and

h(xT;θ) := {h(xt;θ)}T
t=1 ≡ ŷT to highlight the fact that the criterion QT is a function of

θ through hX , and as a result, that θ̂T depends also on the choice of parameterization. For

simplicity however, since hX is often fixed prior to estimation, an explicit account of this

relation is seldom considered. Clearly, nothing is lost in adopting either notational convention

as long as these considerations are kept in mind.

Finally, note that we can also address the problem of approximating the true distribution

Dy
0 of a random variable yt from a family of parametric distributions Dŷ

θ, simply by taking

Dx
0 to be known. For example, taking x to be independently identically distributed, with

nx = 1 and xt ∼ U([0, 1]) where U([0, 1]) denotes the uniform distribution on [0, 1], implies

that Dy
0 = h−1

0 is the true unknown distribution of yt and that h−1
X (θ) defines the distribution

function Dŷ
θ = h−1(·;θ) of ŷt. Also note that the results in this paper extend trivially to a

formulation of the regression model where yt = h0(xt) + εt whenever the distribution of εt is

known, or more generally to yt = H(h0(xt), εt), εt ∼ Fε whenever H and Fε are known.

3 Standard Formulation

Following White (1980b) and Domowitz and White (1982), consider for simplicity the re-

gression model yt = h0(xt) and a postulated parametric counterpart ŷt = h(xt,θ), θ ∈ Θ.

Existence of an estimator θ̂T as described above follows immediately from lemma 2 of Jen-

nrich (1969) and Pötscher and Prucha (1997, p.20, lemma 3.4); see also e.g. Brown and Purves

(1973) and Stinchcombe and White (1992) for generalizations and extensions.

Assumption 1. Θ is compact and QT (wT(ω); ·) : Θ → R is a continuous function of θ ∈ Θ

for every wT(ω) ∈ WT ,(i.e. every ω ∈ Ω). Also, QT (·;θ) : WT → R is a B(WT )/B(R)-

measurable function of wT for every θ ∈ Θ.
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Lemma 1. (Existence) Let Assumption 1 hold. Then there exists a measurable function

θ̂T : Ω → Θ such that for every ω ∈ Ω we have QT (wT(ω); θ̂T (ω)) = minθ∈Θ QT (wT(ω);θ).7

Consistency of θ̂T has been obtained under conditions that ensure (i) the convergence

of the sequence of continuous functions QT : WT × Θ → R as T → ∞, to a limit de-

terministic function Q∞ : Θ → R, uniformly on Θ, and (ii) the identifiable uniqueness of

θ0 := arg minθ∈Θ Q∞(θ). Definition 1 is adapted from Bates and White (1985).8

Definition 1. (Identifiable Uniqueness) Suppose that θ0 minimizes Q∞ on Θ. Let S0(ε) be

an open ball centered at θ0 with radius ε > 0. Define the neighborhood η0(ε) ≡ S0(ε) ⊂ Θ with

complement η0(ε)c := Θ\η0(ε). Then θ0 is said to be identifiable unique on Θ if and only if

for every ε > 0, infθ∈η0(ε)c [Q∞(θ)−Q∞(θ0)] > 0.

In general, the identifiable uniqueness of θ0 allows for alternative formulations of con-

sistency of extremum estimators in terms of non-compact parameter spaces, discontinuous

criterion functions, as well as for dependence and heterogeneity of the underlying data. In

particular, this condition can be formulated for sequences of minimizers θT
0 of a sequence of

deterministic functions QT
∞ to which the random criterion function QT converges. For the

sake of simplicity however, we shall ignore this possibility. We thus focus only on the case

where QT
∞ ≡ Q∞ ∀T . Lemma 2 below is adapted from Pötscher and Prucha (1997, ch.3).

Assumption 2. supθ∈Θ |QT (wT;θ)−Q∞(θ)| a.s.→ 0.

Assumption 3. Q∞ : Θ → R has an identifiably unique minimizer θ0.

Lemma 2. (Consistency) Let Assumptions 2 and 3 hold. Define θ̂T : Ω → Θ such that

θ̂T := arg minθ∈Θ QT (wT;θ). Then, θ̂T − θ0
a.s.→ 0 as T →∞.

7Assumption 1 and Lemma 1 can be further generalized to accommodate cases under which Q is continuous

on Θ a.s. but not necessarily for all ω ∈ Ω; see e.g. Gallant and White (1988, p.14).
8The uniform convergence condition is typically stronger than required; see e.g. Van der Vaart and Wellner

(1996, p.286) and Pötscher and Prucha (1997, p.24).
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Assumption 1 can be added to Assumptions 2 and 3 in the lemma above to ensure that

θ̂T is a random variable for every T . This however, is not a necessary condition for the

measurability of θ̂T : Ω → Θ, nor is it necessary to obtain θ̂T − θ0
a.s.→ 0 as the lemma itself

testifies. Still, when it is appropriate to work under the influence of Assumption 1, then,

given the compactness of Θ and the continuity of Q∞, the identifiable uniqueness condition

turns out to be satisfied as long as the set arg minθ∈Θ Q∞(θ) is a singleton, i.e. θ0 is unique.

Sometimes, it will be perfectly fine to consider the set of elementary Assumptions 1, 2 and 4

(below), and to work with the following lemma adapted from Amemiya (1985).

Assumption 4. Q∞ : Θ → R attains a unique minimum at θ0.

Lemma 3. (Consistency) Let Assumptions 1, 2 and 4 hold. Define θ̂T : Ω → Θ such that

θ̂T := arg minθ∈Θ QT (wT;θ). Then θ̂T
a.s.→ θ0 as T →∞.

Finally, a few comments on Assumptions 2-4. Well known conditions for supθ∈Θ |QT (·;θ)−

Q∞(θ)|→ 0 a.s. on a totally bounded metric space Θ are (i) QT (·;θ)−Q∞(θ) → 0 a.s. point-

wise for every θ ∈ Θ and (ii) {QT (·,θ), T ∈ N} be strongly asymptotically uniformly stochas-

tically equicontinuous (see e.g. Newey (1991) and Andrews (1992)). When {QT (·,θ), T ∈ N}

is a sequence of normalized partial sums, Assumption 2 boils down to a uniform law of large

numbers. These have been achieved under alternative primitive conditions that allow for vary-

ing degrees of dependence and heterogeneity in the data; see e.g. Gallant and White (1988,

ch.3) and Pötscher and Prucha (1997, ch.5) and references therein.9

Statistical tests have been developed that are aimed at verifying whether (at least a part

of) the host of assumptions involved in these arguments actually hold in practice. To some

extent, this allows researchers to conclude with varying degree of confidence on whether the
9When QT (·; θ) ≡ T−1 PT

t=1 q(wt; θ) uniform convergence is equivalent to Q = {q(·; θ), θ ∈ Θ} being a

class of Glivenko-Cantelli functions. This requires fundamentally the compactness of Θ, continuity of q(wT; ·) :

Θ → R for every wT ∈WT (i.e. every ω ∈ Ω) and that q(·; θ) be dominated by an integrable function for every

θ ∈ Θ.
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consistency of any given extremum estimator holds. Unfortunately, in the context of mis-

specified models, it is often hard to conclude wether the identifiable uniqueness assumption is

satisfied. As mentioned in the introduction, some authors have attempted (often successfully)

to relax this condition and allow for multiple minima. This might be a fruitful approach in

some circumstances, albeit one that we shall not follow here. Below we investigate transpar-

ent primitive conditions on both the estimator and the model at hand that imply identifiable

uniqueness. These conditions take place in a deterministic setting as they pertain to the

limit criterion function. The uniform convergence of the criterion function, established in a

probabilistic setting, will be left unaltered.

4 Limit Divergence Functions

As mentioned before, the functional dependence of QT on the choice of parameterization

mapping hX : Θ → HΘ(X ) is typically omitted for notational convenience. Recall from Section

2 that we could have written QT (xT,h0(xT),h(xT;θ)) ≡ QT (wT, ŵT(θ)) thus having θ̂T =

arg minθ∈Θ QT (wT, ŵT(θ)). This clarifies the reason why the deterministic limit criterion

is often appropriately described as a function QD
∞ of the underlying joint p.m.s of wT and

ŵT (or some of its features, e.g. moments) implicitly defined by the measurable mappings h0

and hX (θ) ∀θ ∈ Θ, given Dx
0 . Below, we shall restrict attention to limit criterion functions

Q∞ : Θ → R that assume the special form Q∞(θ) = QD
∞(Dw

0 ,Dŵ
θ ) ∀θ ∈ Θ where Dw

0 and Dŵ
θ

are the p.m.s of the processes w and ŵ defined in Section 2. When QD
∞ is a divergence on a

space of probability measures containing Dw
0 and Dŵ

θ ∀θ ∈ Θ, then θ0 is, by definition, the

minimizer of that divergence.10 By establishing a bijection between the space of probability
10Given a limit criterion function Q∞ : Θ → R and a flexible definition of divergence (e.g. a pre-metric),

it is often possible to find a divergence QD
∞ on the space of p.m.s satisfying arg minθ∈Θ QD

∞(Dŵ
θ , Dw

0 ) =

arg minθ∈Θ Q∞(θ). In this sense, the results discussed here are generally applicable to a large number of

extremum estimator, even those not initially conceived as minimum divergence estimators.
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measures and the space of regression functions containing h0 and hX (θ) ∀θ ∈ Θ, we translate

the problem of divergence minimization from the space distributions to the space of regression

functions. Finally, we also note that it is possible to simplify the argument when there exists

a strictly increasing function g such that g ◦QD
∞ establishes a metric, norm or inner product

on the space of distributions (and regression functions), in which case θ0 is characterized as

the minimizer of this distance between Dw
0 and Dŵ

θ (or h0 and hX (θ), θ ∈ Θ). In Section

5, we review conditions for (strong) uniqueness of best approximations of Dw
0 by Dŵ

θ in the

space of probability measures (or h0 by hX (θ) in the space of regression functions).

Consider the space H(X ) satisfying HΘ(X ) ⊆ H(X ) and h0 ∈ H(X ). The smallest

H(X ) thus being H(X ) = HΘ(X ) × {h0} when h0 /∈ HΘ(X ) or simply H(X ) = HΘ(X )

when ∃θ0 ∈ Θ : hX (θ0) = h0 which implies h0 ∈ HΘ(X ). Now, define the space of p.m.s

Dw = {D(h), h ∈ H(X )} by extending the functional D encountered before to be defined on

H(X ) instead of HΘ(X ) only; i.e. now D : H(X ) → Dw , so that in general D is such that

D ◦ h = Dw
h with Dw

h satisfying Dw
h (Bw) ≡ Dw

h (By, Bx) ≡ Dy|x
h (By) · Dx

0 (Bx) ≡ Dy|x(By|h) ·

Dx
0 (Bx) ∀ (h, Bw) ∈ H(X ) ×B(W∞). It thus follows that Dw satisfies Dŵ

Θ ⊆ Dw and Dw
0 ∈

D(X ). The smallest Dw corresponding to the smallest H(X ) and defined as Dw = Dŵ
Θ×{Dw

0 }

for misspecified models or simply Dw = Dŵ
Θ when the model is well specified, i.e. when

∃θ0 ∈ Θ :D ◦ hX (θ0) = D ◦ h0 = Dw
0 (which implies Dw

0 ∈ Dŵ
Θ ). Finally, let the following

assumption restrict the class of extremum estimators under consideration.

Assumption 5. The limit criterion Q∞ : Θ → R takes the form Q∞(θ) ≡ QD
∞(Dŵ

θ ,Dw
0 )

∀θ ∈ Θ where QD
∞ : Dw ×Dw → R+

0 is a divergence dD ≡ QD
∞ on Dw ×Dw.

Since under Assumption 5, QD
∞ is a function of θ ∈ Θ only through the p.m. Dŵ

θ ≡

D◦hX (θ) ∈ Dŵ
Θ , we require that !(θ′,θ′′) ∈ Θ×Θ satisfying θ′ += θ′′ and such that D◦hX (θ′) =

D ◦ h(·;θ′′) as a minimal condition for uniqueness. In several contexts, this is called the

identification condition (see e.g. Hsiao (1983)). As mentioned in the introduction, there is

no universal strict relation between identifiable uniqueness and identification. In most cases

13



of interest however, the absence of observationally equivalent elements in Θ is a necessary

condition for identifiable uniqueness to hold. This is also the case in our formulation where

the limit criterion QD
∞ takes the form of a divergence on Dw ×Dw.11

In the present context, for D ◦ hX : Θ → Dw to be injective, a necessary and sufficient

condition is that both hX : Θ → HΘ(X ) and D : H(X ) → Dw be one-to-one. Now, the

injective nature of D is often unverifiable, since it is in the very nature of statistical inference

that the true probability measure Dw
0 be not known. In simple cases, depending on the

complexity of H(X ), it might be possible to find convincing evidence that Dx
0 is rich enough

for D to be injective, based on observed data alone.12 Yet, this is not always the case and

little can be done about it as long as Dw
0 is to remain unknown. There is thus no point in

discussing this issue further and we proceed under the common assumption that the data is

“rich enough” for different elements of H(X ) to be identified as such.13 Clearly, the researcher

might feel more or less comfortable in imposing this assumption depending on the complexity

of H(X ) and on the evidence contained in observed data. Still, imposing some condition on the

richness of the data seems simply unavoidable. As mentioned in Section 2, it is important to

note that this assumption is already embodied in the function equivalence framework adopted

here, so that D : H(X ) → Dw is bijective by construction.

It is thus evident that the one-to-one nature of the composition D ◦ hX : Θ → Dw is to

be understood fundamentally as a restriction on the construction of the model (in particular

on the parameterization mapping hX : Θ → HΘ(X )) as it does not concern the estimation

procedure nor does it involve considerations about the data generating process beyond those

already covered by the function equivalence framework adopted throughout the paper. Also,

note that since the parameterization mapping hX : Θ → HΘ(X ) is surjective by construction,

and D : H(X ) → Dw is bijective (also by construction), the only property of concern to us is
11This would not be the case if the limit criterion was instead defined more generally on e.g. Ω×Θ.
12Think e.g. of a simple linear regression with observed wT providing evidence of a rich Dw

0 .
13A “rich” data setting should exclude e.g. the presence of degenerate and collinear-type random variables.
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that hX be injective. This is generally verifiable for any given class of parametric functions

posited by the researcher, and it is controlled by the researcher, so it should be satisfied by

an appropriate formulation of the regression model and the parameter space Θ.14 Still, we let

the injective nature of hX be sated as an assumption for future reference and verification.

Assumption 6. hX : Θ → HΘ(X ) is injective.

This assumption implies by construction that both hX : Θ → HΘ(X ) and D◦hX : Θ → Dŵ
Θ

are bijective. As a result, we can now identify Θ with HΘ(X ) and Dŵ
Θ . Note also that since

D : H(X ) → Dw is bijective, we can identify H(X ) with Dw.

The fact that Assumption 6 is sufficient for the identification condition to hold has an im-

portant practical implication. Identifiable uniqueness and identification are sometimes equiv-

alent concepts in applications involving well-specified models. For example, when Dŵ
0 ∈ Dw

Θ ,

Θ is compact and QD
∞ is a continuous pre-metric, then identification is both necessary and

sufficient for the identifiable uniqueness of θ0.15 The results discussed here are thus espe-

cially relevant for misspecified models. They are not necessarily interesting otherwise (since

identifiable uniqueness would require only verification of 6).

Indeed, it is precisely when h0 /∈ HΘ(X ) ⇔ Dw
0 /∈ Dŵ

Θ that the present formulation of

the problem becomes advantageous. In particular, it is useful to note that given Dx
0 , then

there exists a functional QH
∞ that maps pairs of elements from H(X ) to R, such that θ0 =

arg minθ∈Θ QD
∞(Dw

0 ,Dŵ
θ ) ≡ arg minθ∈Θ QH

∞(h0, hX (θ)). Writing QH
∞ : H(X ) × H(X ) → R+

0

is convenient because it conveys the notion of the limiting criterion establishing a divergence

dH on H(X ) × H(X ). Clearly, dH is induced by dD on H(X ) × H(X ) through D according

to dH(h1, h2) = dD(D(h1),D(h2)) ∀ (h1, h2) ∈ H(X )×H(X ). Given hX and Dx
0 , the limit θ0

is thus to be seen as the element in Θ that minimizes the divergence dH between h0 ∈ H(X )
14As we shall see in Section 7, verification of Assumption 6 is often a straightforward exercise.
15The pre-metric is associated here with a divergence that satisfying non-negativity dH(h1, h2) ≥

0 ∀ (h1, h2) ∈ H(X ) × H(X ) and identity of indiscernibles dH(h1, h2) = 0 if and only if h1 = h2 ∀ (h1, h2) ∈

H(X )×H(X ).
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and hX (θ) ∈ HΘ(X ) ⊆ H(X ). This is stated concisely as θ0 = arg minθ∈Θ dH(h0, hX (θ))

where dH(h0, hX ) : Θ → R+
0 . The employed notion of divergence can be quite general, such

as e.g. coinciding with that of a pre-metric, pseudo-metric or quasi-metric. As mentioned

before, even though there is no guarantee that h0 ∈ HΘ(X ), we shall see that under certain

conditions ∃θ0 ∈ Θ : dH(h0, hX (θ0)) < dH(h0, hX (θ)) ∀ (θ += θ0) ∈ Θ, and hence, that hX (θ0)

is the unique best approximation from HΘ(X ) to h0 in H(X ) w.r.t. dH. This implies, under

Assumption 6, that θ0 is the unique minimizer of QH
∞.

Finally, we assume that an appropriate transformation of the limit criterion function yields

us with a metric or norm. We emphasize that the only purpose of this assumption is that

of retaining the simplicity of the argument, keeping technical requirements to a minimum

and allowing us to focus on what is essential. This assumption allows us to make use of the

“classical” theorems on existence and uniqueness of best approximations produced in the field

of Approximation Theory, which have been naturally obtained for metric, normed and inner

product spaces; see Cheney (1982) for a detailed list of existence and uniqueness (and other)

accomplishments in the field. Even though equivalent results exist for non-metric divergences

such as e.g. semi-metrics, pseudo-metrics or quasi-norms, clarity dictates that we consider

here only the simpler results available for standard distances.16 A sufficient requirement in

this context is hence that there exists a continuous strictly increasing function g such that

QH
∞ induces a metric on H(X )×H(X ).17

Assumption 7. There exists a continuous strictly increasing function g : R → R+
0 such that

d∗D ≡ g ◦QD
∞ : Dw ×Dw → R+

0 is a metric.

16These results shed some light on the pathologies identified by Donoho and Liu (1988) concerning the

consistency of minimum distance estimators.
17As we shall see in section 7, it is often straightforward to verify if Assumption 7 holds.

16



5 Strong Unicity of Best Approximations

This section reviews some important results stemming from the field of Approximation Theory.

The reader already familiar with this literature might find it preferable to proceed directly to

Section 6. Observe first the following useful definitions available e.g. in Cheney (1974), Ahuja

et al. (1977), Nurberger (1979) and Narang (1981). Let (B, dB) be a linear metric space.

Consider a subset A ⊂ B. A projection mapping is a set valued map PA
dB

: B → 2A satisfying

PA
dB

(b) := {a0 ∈ A : dB(b, a0) ≤ dB(b, a), a ∈ A} ∀b ∈ B, where 2A denotes the power set of A.

Note that PA
dB

(b) is the set of elements of best approximation of b ∈ B in A, under dB. A set

A ⊂ B is then called proximinal if PA
dB

(b) is non-empty for every b ∈ B and semi-Chebyshev

if PA
dB

(b) contains at most one element for every b ∈ B. A set that is both proximinal and

semi-Chebyshev is called Chebyshev. Note furthermore that a metric space (B, dB) is said to

be strongly convex if for every (b1, b2) ∈ B×B and every t ∈ [0, 1] there exists a unique b ∈ B

such that dB(b1, b) = (1− t)dB(b1, b2) and dB(b, b2) = tdB(b1, b2), i.e. each t ∈ [0, 1] determines

a unique element of the segment [b1, b2] := {b ∈ B : dB(b1, b) + dB(b, b2) = d(b1, b2)}. Also, a

strongly convex metric space (B, dB) is said to be strictly convex if for every (b1, b2) ∈ B×B and

r > 0, dB(b1, b0) ≤ r, dB(b2, b0) ≤ r implies dB(b, b0) < r every b ∈ ]b1, b2[:= [b1, b2]\{b1, b2}

and fixed b0 ∈ B.18

When a function g exists that satisfies the properties postulated in Assumption 7, then,

the following lemmas adapted from Cheney (1974), Ahuja et al. (1977), Powell (1981, p.4),

Narang (1981) and Cheney (1982, p.4), are available to judge on the existence and uniqueness

of a best approximation.

Lemma 4. (Existence on Metric Spaces) Let (B, dB) be a metric space and A ⊆ B be compact.

Then A is proximinal; i.e. for every b ∈ B there exists an element a∗ ∈ A, a best approximation

to b from A, satisfying dB(a∗, b) ≤ dB(a, b) ∀a ∈ A.
18In a strictly convex metric space (B, dB) if (b1, b2) ∈ B × B are two points in the boundary of a sphere,

then the open line segment ]b1, b2[ lies strictly inside the sphere.
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Lemma 5. (Uniqueness on Metric Spaces) (i) Let (B, dB) be a strongly convex metric space

and A ⊆ B be convex. Then A is semi-Chebyshev; i.e. there exists at most one element a∗ ∈ A

such that dB(a∗, b) ≤ dB(a, b) ∀a ∈ A. (ii) Let (B, dB) be a strictly convex metric space. Then

A is semi-Chebyshev.

The following lemma then follows from combining Lemmas 4 and 5 above, and theorem 2

in Ahuja et al. (1977).

Lemma 6. (Uniqueness on Metric Spaces) (i) Let (B, dB) be a strongly convex metric space

and A be a compact convex subset of B. Then A is Chebyshev; i.e. there exists a unique

element a∗ ∈ A such that dB(a∗, b) ≤ dB(a, b) ∀a ∈ A. (ii) Let (B, dB) be a strictly convex

metric space and A ⊂ B compact. Then A is Chebyshev.

Given the linearity of the function spaces considered under the usual definition of addition

and multiplication by scalars, it is often beneficial to work on normed vector spaces. Some

estimators might have limiting criterion functions QH
∞ for which g ◦QH

∞ is a metric on H(X )×

H(X ) but not a norm (since the latter requires also homogeneity and translation invariance).

When g ◦ QH
∞ is a norm on H(X ) however, simpler results from Approximation Theory are

available for the uniqueness of best approximations. For this reason the following assumption

is also introduced.

Assumption 8. There exists a continuous strictly increasing function g : R → R+
0 such that

g ◦QD
∞(D,D′) ≡‖ D−D′ ‖D ∀ (D,D′) ∈ Dw ×Dw where ‖ ·‖ D≡: Dw → R+

0 is a norm.

Consider now the natural extensions of the definition of strictly convex metric space to

normed vector spaces. Let (B, ‖ · ‖B) be a normed vector space. Then (B, ‖ · ‖B) is said to

be strictly convex if for every (b1, b2) ∈ B × B satisfying ‖ b1 ‖B=‖ b2 ‖B= 1 the inequality

‖ (1− t)b1 + tb2 ‖B< 1 holds for every t ∈]0, 1[.

The following lemmas, which follow from those above for metric spaces, are adapted from

Powell (1981, p.6,13-15) and Cheney (1982, p.20,23), and establish a few useful results on the

existence and uniqueness of best approximations.
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Lemma 7. (Existence on Normed Spaces) Let (B, ‖ ·‖ B) be a normed space and A a finite-

dimensional subset of B. Then A is proximinal.

Lemma 8. (Uniqueness on Normed Spaces) (i) Let A ⊂ B be a compact and strictly convex

set in a normed linear space (B, ‖ · ‖B). Then A is Chebyshev. (ii) Let A ⊂ B be a convex

set in a strictly convex normed linear space (B, ‖ · ‖B). Then A is semi-Chebyshev. (iii) Let

A ⊂ B be a finite dimensional subspace of (B, ‖ · ‖B). Then A is Chebyshev.

Here it is important to point out that e.g. the well known L1 and sup norms do not satisfy

the strict convexity property of Lemma 8 (nor that of Lemma 5 in the induced metrics).

Fortunately, the well known Haar condition allows us to overcome this limitation.

Definition 2. (Haar Condition) A system of functions {ψ1, ...,ψn} with ψi : A ⊂ R → R,

i = 1, ..., n is said to satisfy the Haar condition on A if each ψi ∈ C(A), the space of continuos

functions on A, for i = 1, ..., n, and if every set of n vectors of the form [ψ1(a), ...,ψn(a)],

a ∈ A is independent; i.e. if for any given collection (a1, ..., an) ∈ ×n
i=1A, ai += aj ∀ i += j, i =

1, ...n, j = 1, ...n, the system has non-vanishing Vandermonde’s determinant.

A subspace HΘ(X ) ⊂ C(X ) of generalized polynomials spanned by a system of functions

{ψ1, ...,ψn} satisfying the Haar condition is called a Haar subspace of C(X ). The following

lemma is adapted from Cheney (1982, p.81,219) and Powell (1981, 80,170). It is suitable for

both L1 and sup norm approximations.

Lemma 9. (Haar’s Unicity theorem) Let HΘ(X ) be a Haar subspace of (C(X ), ‖ ·‖ 1) or

(C(X ), ‖ ·‖ ∞) and X a compact Hausdorff space. Then, HΘ(X ) is Chebyshev.

The Haar condition offers more than just a unicity characterization of best approxi-

mations on normed linear subspaces of C(X ). Under certain conditions, the element of

best approximation from a Haar subspace is characterized by the strong unicity property.

This property is relevant in the present context since the identifiable uniqueness condi-

tion in Assumption 3 can be derived from it. Following Newman and Shapiro (1963) and
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Cheney (2000, p.80), let (B, ‖ · ‖B) be a normed linear space and a ∈ A ⊆ B an ele-

ment of best approximation to b0 ∈ B from A. Then, a is said to be strongly unique if

∃ γ(b0) > 0 : ‖ b0 − a′ ‖>‖ b0 − a ‖ +γ ‖ a− a′ ‖ ∀a′ ∈ A.

Lemma 10. (Strong Unicity in Normed Linear Spaces) Let HΘ(X ) be a Haar subspace of

(C(X ), ‖ ·‖ ∞) and X a compact Hausdorff space. Then, for every h0 ∈ C(X ) the element h ∈

HΘ(X ) of best approximation to h0 ∈ C(X ) is strongly unique; i.e. there exists a generalized

polynomial h ∈ HΘ(X ), h =
∑n

i=1 θiψi where {ψ1, ...,ψn} satisfy the Haar condition, such

that ∃ γ(h0) > 0 : ‖ h0 − h′ ‖∞>‖ h0 − h ‖∞ +γ ‖ h− h′ ‖∞ ∀h′ ∈ HΘ(X ).

Unfortunately, Lemma 10 is available only under the sup norm. Furthermore, it is known

since Wulbert (1971) that strong unicity of elements of best approximation is generally not

available in smooth Banach spaces. This holds in particular in Lp(E ,B(E), µE) spaces, with

1 < p < ∞, where (E ,B(E), µE) is a given measure space. Fortunately, the identifiable

uniqueness property of Assumption 3 can also be derived from the concept of strong unicity of

order α. Following Angelos and Egger (1984) and Lin (1989), let (B, ‖ ·‖ B) be a Banach space

and a ∈ A ⊆ B be an element of best approximation to b0 ∈ B from A. Then, a is said to be

strongly unique of order α (α > 1) if ∃ γ(b0) > 0 : ‖ b0−a′ ‖>‖ b0−a ‖ +γ ‖ a−a′ ‖α ∀a′ ∈ A.

The following lemma, adapted from Angelos and Egger (1984) and Lin (1989), reveals that

this strong unicity property holds for finite-dimensional subspaces of Lp(E ,B(E), µE) smooth

Banach spaces (1 < p < ∞), or general subspaces of uniformly convex Banach spaces of type

p. Note that a Banach space (A, ‖ · ‖) is said to be uniformly convex (Clarkson (1936))

if for every 0 < ε ≤ 2 there exists a δ(ε) > 0 such that having ‖ a1 ‖=‖ a2 ‖= 1 and

‖ a1 − a2 ‖≥ ε implies ‖ (a1 + a2)/2 ‖≤ 1 − δ(ε). The function δ(ε) : (0, 2] → [0, 1] defined

as δ(ε) = inf{1− ‖ a1 + a2 ‖ /2| ‖ a1 ‖≤ 1, ‖ a2 ‖≤ 1, ‖ a1 − a2 ≥ ε} is called the modulus of

convexity of the Banach space (A, ‖ ·‖ ), and this space is said to be uniformly convex of power

type p if there exists ∆ > 0 such that δ(ε) ≥ ∆εp. The following lemma uses also a result of

Hanner (1956) showing that Lp spaces with 1 < p < ∞ are uniformly convex of power type
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max{2, p}, and the fact that strictly convex normed linear spaces are also uniformly convex;

see e.g. Cheney (1974) or Cheney (1982, p.23).

Lemma 11. (Strong Unicity of Order α in Normed Linear Spaces) (i) Let A be a finite-

dimensional subspace of an Lp(E ,B(E), µE) space with 1 < p < ∞ and E ⊆ RnE . Then, the

element a ∈ A of best approximation to b ∈ Lp(E ,B(E), µE), when it exists, is strongly unique

of order α = max{p, 2}. (ii) Let (B, ‖ ·‖ B) be a uniformly convex Banach space of power type

p and let A be a subspace of B. Then, an element a ∈ A of best approximation to b ∈ B, when

it exists, is strongly unique of order p.

Also, similar results to those obtained above are available under weaker conditions on

the employed notion of distance. Examples include Romaguera and Sanchis (2000) that deal

with quasimetric spaces and Cobzas and Mustata (2006) that work with asymmetric normed

linear spaces. While these formulations might offer more generality, we manage to achieve a

significant simplification by restricting ourselves to the former case where QH
∞ induces a metric

or norm on H(X ). The reader should nevertheless bear in mind the limitations introduced by

the simplifying assumption just mentioned. This is important as this restriction might prove

to be relevant in several applications.

6 Consistency Restated

Finally, we are ready to restate the consistency results of Section 3 using alternative conditions.

We note in particular that Assumption 3 (identifiable uniqueness of θ0) and Assumption 4

(uniqueness of θ0) used in Lemmas 2 and 3 to obtain the consistency of θ̂T can now be

substituted by sets of sufficient conditions that make use of the problem formulation discussed

in Section 4 and the lemmas of Section 5 on the unicity of best approximations. Under the

more restrictive assumptions of Lemma 3, which impose the compactness of Θ and continuity

of Q∞, showing the uniqueness of θ0 is enough to obtain the consistency of θ̂T since in this
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setting, a unique θ0 is automatically identifiably unique. In this simpler case, we will need

only to make use of those lemmas establishing the uniqueness of best approximations covered

in Section 5. It is under the less restrictive conditions of Lemma 2 that the results on strong

unicity of best approximations become important since, in that case, Q∞(θ0) must be shown

to be well separated without the aid of the compactness of Θ or the continuity of Q∞.

As we have seen in the previous section, the uniqueness of θ0 can be established either

in the context of metric spaces or that of normed linear spaces. Depending on the problem,

each formulation will be more or less advantageous in terms of verification.19 Assumptions 9

and 10 below establish the conditions from which the uniqueness of θ0 will be derived. These

make use of the fact that every convex proximinal set is Chebyshev and are stated for future

reference. Assumptions 11, 12 and 13 establish useful conditions for directly deriving the

identifiable uniqueness of θ0.

Assumption 9. (i) (H(X ), d∗H) is a strongly convex metric space and HΘ(X ) a compact

convex subset of H(X ); or (ii) (H(X ), d∗H) is a strictly convex metric space and HΘ(X ) a

compact subset of H(X ).

Assumption 10. (i) (H(X ), ‖ ·‖ H) is a normed linear space and HΘ(X ) a compact strictly

convex subset of H(X ); or (ii) (H(X ), ‖ · ‖H) is a strictly convex normed vector space and

HΘ(X ) a finite dimensional convex subset of H(X ).

Assumption 11. (H(X ), ‖ · ‖H) = (C(X ), ‖ · ‖∞) where ‖ · ‖∞ denotes the supremum

norm, and for every θ ∈ Θ, the elements h(·;θ) ∈ HΘ(X ) accept a generalized polynomial

representation h(·,θ) =
∑nh

i=1 θihi where {h1, ..., hn} satisfies the Haar condition.

Assumption 12. (H(X ), ‖ ·‖ H) = Lp(X ,B(X ), µX ) with 1 < p < ∞, so that ‖ ·‖ H satisfies

‖ h ‖H=
( ∫

X |h|
pdµ

)1/p
∀h ∈ H(X ) with 1 < p < ∞. Furthermore, HΘ(X ) is a finite

dimensional subspace of H(X ).
19In particular, while simpler results are available for norms, the limiting criterion QD

∞ that induces a metric

on Dw must also be homogeneous and translation invariant to establish a norm on the vector space.
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Assumption 13. (H(X ), ‖ · ‖H) is a uniformly convex Banach space of power type p and

HΘ(X ) is a closed convex subspace of H(X ).

Finally, we derive the uniqueness of θ0 from the properties of the limiting criterion function

QH
∞ and the space of parametric functions HΘ(X ) implied by both the parameterization

mapping hX and the parameter space Θ. Theorem 1 below addresses uniqueness in the

context of metric-inducing limiting criteria QH
∞.

Theorem 1. (Uniqueness for Metric Limit Criteria) Let Assumptions 5, 6, 7 and 9 hold.

Then Q∞ : Θ → R attains a unique minimum at θ0.

Proof. See Appendix A1.

Now, in light of Lemma 3, the a.s. convergence of θ̂T to θ0 follows immediately as corollary

under the added influence of Assumptions 1 and 2.

Corollary 1. Let Assumptions 1, 2, 5, 6, 7 and 9 hold. Define θ̂T : Ω → Θ such that

θ̂T := arg minθ∈Θ QT (yT,xT;θ). Then θ̂T
a.s.→ θ0 as T →∞.20

Accordingly, Theorem 2 below addresses the uniqueness of θ0 in the context of norm-

inducing limiting criteria QH
∞.

Theorem 2. (Uniqueness for Norm Limit Criteria) Let Assumptions 5, 6, 8 and 10 hold.

Then Q∞ : Θ → R attains a unique minimum at θ0.

Proof. See Appendix A2.

Again, θ̂T
a.s.→ θ0 follows immediately as a corollary when Assumptions 1 and 2 also hold.

20It is well known that standard consistency proofs apply also to approximate extremum estimators, thus

eliminating the need to impose the existence conditions postulated in Assumption 1 and substituting it by

more general conditions for the existence of measurable approximate minimizers of the criterion function of

interest (see e.g. Brown and Purves (1973)).
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Corollary 2. Let Assumptions 1, 2, 5, 6, 8 and 10 hold. Define θ̂T : Ω → Θ such that

θ̂T := arg minθ∈Θ QT (yT,xT;θ). Then θ̂T
a.s.→ θ0 as T →∞.

When the assumptions of Lemma 3 are too restrictive, it is possible to work with those of

Lemma 2 instead by verifying that identifiable uniqueness follows essentially from the stricter

conditions of Assumptions 6 and 8, plus either 11, 12 or 13. In particular, it is possible to

relax the assumptions of compactness of Θ and continuity of Q∞ : Θ → R. This however, is

not to be done without the further qualification stated in Assumption 14 below.

Assumption 14. hX : Θ → HΘ(X ) is an open map.21

The following theorem establishes the relation between the concepts of strong unicity found

in the previous section and that of identifiable uniqueness used in Lemma 2.

Theorem 3. (Strong Unicity Implies Identifiable Uniqueness) Let Assumptions 5, 6, 8 and 14

be satisfied. Then Q∞ : Θ → R has an identifiably unique minimizer θ0 if either Assumption

11, 12 or 13 hold.

Proof. See Appendix A3.

This time θ̂T
a.s.→ θ0 follows immediately as corollary of Theorem 3 and Lemma 2.

Corollary 3. Let Assumptions 2, 5, 6, 8 and 14 be satisfied. Define θ̂T : Ω → Θ such that

θ̂T := arg minθ∈Θ QT (yT,xT;θ). Then θ̂T
a.s.→ θ0 as T → ∞ if either Assumption 11, 12 or

13 hold.

Finally, we use a number of simple examples that illustrate how to verify that the conditions

for uniqueness and identifiable uniqueness postulated in Assumptions 3 and 4 hold.
21A sufficient condition for the openess of hX : Θ → HΘ(X ) is that its inverse h−1

X : HΘ(X ) → Θ be

continuous in h ∈ HΘ(X ). Also, note that (i) the existence of the inverse function h−1
X is assured by the

bijectiveness of hX , and that (ii) in the special case where hX is also continuous, then hX is an homeomorphism.
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7 Some Examples

In the previous sections of this paper we obtained the desired results essentially by decom-

posing the mapping of elements from Θ to R, compounded in the limiting objective func-

tion Q∞ : Θ → R, into three sub-mappings that are easier to handle. We thus obtained a

more transparent account of the structure of the extremum estimation problem in nonlin-

ear regression models. The three sub-maps are: (i) the so-called parameterization mapping

hX : Θ → HΘ(X ), (ii) the probability measure map D : H(X ) → Dw , and finally, (iii) the

divergence criterion function QD
∞ : Dw ×Dw → R+

0 .

Simple conditions on each of these sub-maps, as well as the sets Θ, HΘ(X ) and Dŵ
Θ , were

shown to ensure the identifiable uniqueness of θ0. We now review very briefly simple examples

of regression models and extremum estimators satisfying the above mentioned properties. The

purpose of this section is only that of clarifying the nature of the Assumptions 6 to 14. To

remain short and concise, we discuss only a few cases for which verification is straightforward.

The interesting cases are likely to be those requiring a more intricate argument. These however

are left to be found by researchers having specific applications in mind.

7.1 The Parameterization Mapping: Illustrative Regression Models

Several immediate examples of regression models can be devised for which the injective and

open properties of the parameterization mapping hX hold (Assumptions 6 and 14) and where

properties such as compactness, convexity, closedness, finite dimensionality and Haar charac-

terization of HΘ(X ) (in Assumptions 9, 10, 11, 12 or 13) are trivially satisfied. As we shall

see, it is generally easy to derive the properties of HΘ(X ) from those of Θ, whose qualities

are defined by the researcher in any given application.

Note first that the bijective nature of hX (implied by Assumption 6) is generally easily

derived in this simple regression framework. This is true for instance in models involving

polynomial, exponential, logarithmic, trignometric or power functions, that satisfy simple
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regularity conditions. Note for example that for regression functions that are analytic on

the domain of interest, i.e. hX (θ) ∈ HΘ(X ) ≡ Cω
Θ(X ), the bijective nature of hX follows

immediately from the fact that each element of Cω
Θ(X ) has a power-series representation. The

uniqueness of this representation, and hence the bijective nature of hX : Θ → HΘ(X ), then

follows immediately from the uniqueness of power series.22

The finite dimensionality of HΘ(X ) (stated in Assumptions 10 and 12) is implied by

the finite dimensionality of Θ (which holds in several applications) given the identification

of HΘ(X ) with Θ (a consequence of hX being bijective). This is true e.g. for the case of

polynomial regressions hX (θ) ∈ HΘ(X ) ≡ Pk
Θ, k ∈ N.

The compactness of HΘ(X ) (Assumptions 9 and 10) is easily obtained, for instance, under

the continuity of hX and the compactness of Θ. Here note that, for example, given a regression

model of the form h(xt; θ1, θ2, θ3) = θ1 + θ2 exp(−θ3xt), the continuity of hX : Θ → HΘ(X )

holds for a large class of metric or norm functions with which Θ and HΘ(X ) are possibly

equipped, and it is immediately satisfied for polynomial regression functions hX (θ) ∈ Pk
Θ

regardless of the metric or norm defined on these spaces.

The convexity of HΘ(X ) (used in Assumption 9, 10 and 13) can be easily obtained from

the convexity of Θ for a large class of parameterization mappings. For example, in the case

of a polynomial regression of order k, when hX (θ) ∈ HΘ(X ) ≡ Pk
Θ, we have that, for every

(hX (θ1), hX (θ2)) ∈ HΘ(X ) × HΘ(X ) and every τ ∈ [0, 1], the function (τhX (θ1) + (1 −

τ)hX (θ2)) belongs to HΘ(X ) and takes the form hX (θ3) with θ3 = τθ1 + (1− τ)θ2.

The closedness of HΘ(X ) (used in Assumption 13) can be easily obtained, for instance,

under the closedness of Θ and the continuity of h−1
X : H(X ) → Θ.23 The continuity of the

inverse parameterization mapping h−1
X is easily obtained for a large class of regression models.

22In multi-index notation (see e.g. Krantz and Parks (1992, p.25)), let h(xt; θ) =
P∞

|α|=0 θαxα
t ∀xt ∈ X and

h(xt; θ
′) =

P∞
|α|=0 θ′αxα

t ∀xt ∈ X . Then, h(xt; θ) = h(xt; θ
′) ∀xt ∈ X if and only if θ = θ′.

23Existence of h−1
X is assured by the bijective nature of hX . A bijective map is closed if and only if it is open.

The inverse of a continuous map is open.
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It holds, for example, on regressions models based on power functions h(xt; θ1, θ2) = θ1x
θ2
t

under a large class of norms on Θ and HΘ(X ). Once more, it also holds for polynomial

regressions under arbitrary norms.

The openess of hX : Θ → HΘ(X ) (postulated in Assumption 14) is also implied by the

continuity of the inverse map h−1
X . Hence, the previous argument holds as well.24

The Haar characterization of HΘ(X ) (Assumption 11) has been obtained for large classes

of functions. For example, hX (θ) ∈ Pk
Θ(X ) satisfies trivially the Haar condition.25

7.2 The Limit Divergence Criterion: Illustrative Estimators

We now observe how the properties of the divergence map QH
∞ : H(X )×H(X ) → R implicitly

defined in Assumptions 7, 8 and 9-13 are directly obtained from those of the estimation

procedure employed. In particular, we discuss the verification of the simplifying assumption

that g ◦QH
∞ (g strictly increasing) be a metric or norm, and that it be either, strongly convex,

strictly convex, uniformly convex, of the Lp type (p < ∞), or the supremum norm.

The existence of a metric/norm g ◦ QH
∞ on H(X ) (established in Assumptions 7 and 8

and used in Assumptions 9-13) is immediate for the class of minimum distance estimators

(e.g. the minimum Hellinger distance estimator), since by definition, these estimators are

such that QD
∞ takes the form of a distance on Dw × Dw. As observed in Section 4, a metric

or norm is then induced on H(X ) by the bijective mapping D. For many other estimators,

in particular those that are not directly obtained as distance minimizers, it is often easy to

find a strictly increasing function g such that g ◦ QH
∞ defines a distance on H(X ) × H(X ).

For example, it is well known that under appropriate regularity conditions, the least squares
24An obvious sufficient condition is that hX be a homeomorphism, i.e. that hX be bijective, continuous with

continuous h−1
X . Note that the homeomorphic nature of hX can be obtained by letting (Θ, d∗Θ) be a metric

space with d∗Θ induced by h−1
X so that hX is automatically isometric and also an isometric isomorphism.

25Power monomials satisfy the Haar condition. The system {1,xt, ...,x
k
t } has non-vanishing Vandermonde’s

determinant V D[a1, ..., ak] (= 0 (a1, ..., ak) ∈ ×k
i=1Rnx

i and hence it satisfies the Haar condition.
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estimator,

θ̂
LS
T := arg min

θ∈Θ
QT (yT,xT;θ) := arg min

θ∈Θ

1
T

T∑

t=1

e2
t

with
∑T

t=1 e2
t ≡

∑T
t=1

[
yt − ŷt

]2 ≡
∑T

t=1

[
h0(xt)− h(xt;θ)

]2 is such that,

θLS
0 := arg min

θ∈Θ
Q∞(θ) := arg min

θ∈Θ

∫

X
Dx

0 (xt)
[
h0(xt)− h(xt;θ)

]2
dxt,

see e.g. White (1980b). This implies that θLS
0 = arg minθ∈Θ dH(h0, hX (θ)) where dH is a diver-

gence.26 Immediately, taking g ◦ dH(h1, h2) =
√

dH(h1, h2) ≡‖ h1−h2 ‖H for every (h1, h2) ∈

H(X ) implies that ‖ ·‖ H is the well known L2 norm where ‖ h(x) ‖H=
( ∫

X |h|
2dx

)1/2
.

Hence, Assumption 8 holds (and 7 as well by the induced metric) and θ0 can be described as

minimizer of ‖ h0 − hX (θ) ‖H on (H(X ), ‖ ·‖ H) ≡ (H(X ), L2), i.e.,

θLS
0 = arg min

θ∈Θ
‖ h0 − hX (θ) ‖H= arg min

θ∈Θ

( ∫

X
Dx

0 (xt)
[
h0(xt)− h(xt;θ)

]2
dxt

)1/2
.

The strict convexity of d∗H or ‖ ·‖ H≡ g ◦QH
∞ on HΘ(X ) (Assumption 10) is generally easy

to verify and it holds e.g. for the minimum Hellinger distance and least squares estimators just

mentioned above (see e.g. Donoho and Liu (1988) and Powell (1981) respectively). Note also

that in this case the strong convexity of d∗H ≡ g ◦QH
∞ (used in Assumption 9) is immediately

obtained since the later is by construction implied by the former (see Cheney (1974), Ahuja

et al. (1977) and Narang (1981)). This is also true of uniform convexity of power type p of

‖ · ‖H≡ g ◦ QH
∞ (Assumption 13) and Lp representation of ‖ · ‖H≡ g ◦ QH

∞ (Assumption 12)

in the case of least squares estimation (see Cheney (1974) or Cheney (1982, p.23)).

The supremum representation of ‖ ·‖ H≡ g ◦ QH
∞ (Assumption 11) is considerably more

restrictive (as mentioned before) and holds for minimax estimators.
26The least squares divergence, dH(h0, hX (θ)) satisfies non-negativity dH(h1, h2) ≥ 0 ∀ (h1, h2) ∈ H(X ) ×

H(X ) and identity of indiscernibles dH(h1, h2) = 0 if and only if h1 = h2 ∀ (h1, h2) ∈ H(X ) ×H(X ), but not

symmetry or sub-additivity.
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8 Final Remarks

In this paper we have illustrated the possibility of using results from Approximation Theory

to verify the assumption of identifiable uniqueness commonly used to obtain consistency of

extremum estimators. We made use only of simple intuitive results on the (strong) uniqueness

of best approximations. Clearly, much more can be done in extending these results to a larger

class of extremum estimators and regression models. Here, generality was sacrificed in favor

of conciseness and simplicity, but it should be kept in mind that, in this context, we could

be as general as Approximation Theory allows us to be. In particular, these results extend

immediately to various models outside the regression framework and the notion of distance

function can be easily weakened to include non-metric divergences.

A Proofs

A.1 Theorem 1

Proof. Assumption 5 implies that θ0 = arg minθ∈Θ Q∞(θ) ≡ arg minθ∈Θ QD
∞(Dw

0 ,Dŵ
θ ) and

according to Assumption 7,

θ0 = arg min
θ∈Θ

d∗D(Dw
0 ,Dŵ

θ )

where d∗D : Dw × Dw → R+
0 is a metric defined on Dw × Dw as d∗D ≡ g ◦ QD with g :

R → R+
0 a strictly increasing function. Now given Assumption 6, we have d∗D(Dw

0 ,Dŵ
θ ) ≡

d∗H(h0, h(·,θ)) ∀θ ∈ Θ by construction since d∗H : H(X ) × H(X ) → R+
0 is a metric defined

on H(X ) according to d∗H(h, h′) ≡ d∗D(D(h),D(h′)) ∀ (h, h′) ∈ H(X ) ×H(X ) and hence θ0 =

arg minθ∈Θ d∗H(h0, h(·,θ)) holds true. Finally, according to Lemmas 4, 5 and 6, Assumption

9 implies that for every h0 ∈ H(X ), there exists a unique h ∈ HΘ(X ) satisfying,

d∗H(h0, h) ≤ d∗H(h0, h
′) ∀h′ ∈ HΘ(H).
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Given the bijective nature of the parameterization mapping hX : Θ → HΘ(X ) postulated in

Assumption 6, it follows that there exists a unique θ ∈ Θ satisfying,

d∗H(h0, hX (θ)) ≤ d∗H(h0, h(·;θ′)) ∀θ′ ∈ Θ;

i.e. θ0 = arg minθ∈Θ d∗H(h0, h(·,θ)) ≡ arg minθ∈Θ QD
∞(Dw

0 ,Dŵ
θ ) is unique.

A.2 Theorem 2

Proof. The argument follows essentially that of Theorem 1. Assumption 5 ensures that at-

tention is restricted to the class of extremum estimators satisfying θ0 = arg minθ∈Θ Q∞(θ) ≡

arg minθ∈Θ QD
∞(Dw

0 ,Dŵ
θ ) and by Assumption 8,

θ0 = arg min
θ∈Θ

‖ Dw
0 −Dŵ

θ ‖D

where ‖ ·‖ D: Dw → R+
0 is a norm defined on Dw as ‖ ·‖ D≡ g◦QD

∞ with g : R → R+
0 a strictly

increasing transformation. Now given Assumption 6, we have ‖ Dw
0 −Dŵ

θ ‖D≡‖ h0−h(·,θ) ‖H
∀θ ∈ Θ by construction, since ‖ ·‖ H: H(X ) → R+

0 is a norm defined on H(X ) according to

‖ h ‖H=‖ D(h) ‖D ∀h ∈ H(X ), and hence θ0 = arg minθ∈Θ ‖ h0 − h(·,θ) ‖H holds true.

Finally, according to Lemmas 7 and 8, Assumption 10 implies that for every h0 ∈ H(X ), there

exists a unique h ∈ HΘ(X ) satisfying,

‖ h0 − h ‖H≤‖ h0 − h′ ‖H ∀h′ ∈ HΘ(H).

Given the bijective nature of the parameterization mapping hX : Θ → HΘ(X ) postulated in

Assumption 6, it follows that there exists a unique θ ∈ Θ satisfying,

‖ h0 − hX (θ) ‖H≤‖ h0 − hX (θ′) ‖H ∀θ′ ∈ Θ;

i.e. θ0 = arg minθ∈Θ ‖ h0 − h(·,θ) ‖H≡ arg minθ∈Θ QD
∞(Dw

0 ,Dŵ
θ ) is unique.
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A.3 Theorem 3

Proof. In what follows, we first take some initial steps that are similar to those of Theorems

1 and 2 and then specialize the discussion to the cases of (i) strong unicity obtained under

Assumption 11, and (ii) strong unicity of order α obtained under either Assumption 12 or 13.

As before, Assumption 5 guarantees the formulation,

θ0 = arg min
θ∈Θ

QD
∞(Dw

0 ,Dŵ
θ ).

Furthermore, according to Assumption 8, θ0 also satisfies θ0 = arg minθ∈Θ ‖ Dw
0 − Dŵ

θ ‖D
where ‖ · ‖D: Dw → R+

0 is a norm defined on Dw as ‖ ·‖ D≡ g◦QD
∞ with g : R → R+

0 a strictly

increasing function. Now given Assumption 6, we have ‖ Dw
0 − Dŵ

θ ‖D≡‖ h0 − h(·,θ) ‖H by

construction since ‖ ·‖ H: H(X ) → R+
0 is a norm defined on H(X ) according to ‖ h ‖H≡‖

D(h) ‖D ∀h ∈ H(X ) and hence θ0 = arg minθ∈Θ ‖ h0 − h(·,θ) ‖H holds true. Finally, we

split this proof into three parts and obtain the desired identifiable uniqueness of θ0, under

either Assumption 11, 12 or 13 respectively.

Part I. Let Assumption 11 hold. Then,

θ0 = arg min
θ∈Θ

‖ h0 − h(·,θ) ‖∞ .

Furthermore, for h0 and hX (θ) satisfying the conditions of Assumption 11 we have by Lemma

10 that for every h0 ∈ H(X ), there exists a unique h ∈ HΘ(X ) satisfying the strong unicity

property, ‖ h0 − h′ ‖∞>‖ h0 − h ‖∞ +γ ‖ h − h′ ‖∞ ∀h′ ∈ HΘ(X ), with γ > 0, thus

conveniently restated as,

‖ h0 − hX (θ) ‖∞>‖ h0 − hX (θ0) ‖∞ +γ ‖ hX (θ0)− hX (θ) ‖∞ ∀hX (θ) ∈ HΘ(H)

since every element h ∈ HΘ(X ) has a parametric representation of the form hX (θ),θ ∈ Θ.

Now, clearly, ‖ h0 − hX (θ) ‖∞>‖ h0 − hX (θ0) ‖∞ +γ ‖ hX (θ0)− hX (θ) ‖∞ ⇔

‖ h0 − hX (θ) ‖∞ − ‖ h0 − hX (θ0) ‖∞> γ ‖ hX (θ0) − hX (θ) ‖∞ ∀hX (θ) ∈ HΘ(X ), and
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hence, infθ∈Θ∗ [‖ h0−hX (θ) ‖∞ − ‖ h0−hX (θ0) ‖∞] ≥ infθ∈Θ∗ [γ ‖ hX (θ0)−hX (θ) ‖∞] holds

for any Θ∗ ⊆ Θ. We now show that when Θ∗ = η0(ε)c, then,

inf
θ∈η0(ε)c

[‖ h0 − hX (θ) ‖∞ − ‖ h0 − hX (θ0) ‖∞] ≥ inf
θ∈η0(ε)c

[γ ‖ hX (θ0)− hX (θ) ‖∞] > 0.

Indeed, note first that,

inf
θ∈η0(ε)c

[γ ‖ hX (θ0)− hX (θ) ‖∞] = inf
hX (θ)∈hX (η0(ε)c)

[γ ‖ hX (θ0)− hX (θ) ‖∞]

and hence that it is enough to show that,

inf
hX (θ)∈hX (η0(ε)c)

[γ ‖ hX (θ0)− hX (θ) ‖∞] > 0.

It is elementary that for every γ > 0, having,

γ ‖ hX (θ0)− hX (θ) ‖∞> c > 0 ∀hX (θ) ∈ hX (η0(ε)c)

for some c > 0 independent of θ, implies infhX (θ)∈hX (η0(ε)c) γ ‖ hX (θ0) − hX (θ) ‖∞> 0, and

that, γ ‖ hX (θ0) − hX (θ) ‖∞> c > 0 ∀hX (θ) ∈ hX (η0(ε)c) holds true whenever hX (η0(ε))

is an open set with hX (θ0) ∈ hX (η0(ε)), because then, ∃ δ > 0 such that S(hX (θ0), δ) is

an open ball of radius δ centered at hX (θ0) satisfying S(hX (θ0), δ) ⊆ hX (η0(ε)), and hence,

by definition, ‖ hX (θ0) − hX (θ) ‖∞≥ δ > 0 ∀hX (θ) ∈ S(hX (θ0), δ)c where S(hX (θ0), δ)c :=

HΘ(X )\S(hX (θ0), δ). This implies that, for every γ > 0,

γ ‖ hX (θ0)− hX (θ) ‖∞> c > 0 ∀hX (θ) ∈ S(hX (θ0), δ)c

holds uniformly in θ ∈ Θ for every 0 < c < δ/γ. Thus, the desired result,

inf
θ∈η0(ε)c

[‖ h0 − hX (θ) ‖∞ − ‖ h0 − hX (θ0) ‖∞] > 0

is implied by Assumption 14 which ensures the openess of hX (θ0) ∈ hX (η0(ε)) and hence that

infθ∈η0(ε)c [γ ‖ hX (θ0)− hX (θ) ‖∞] > 0. Finally, since Q∞(θ) ≡ QH
∞(h0, hX (θ)) satisfies,

g ◦QH
∞(h0, h(·;θ)) ≡‖ h0 − h(·;θ) ‖H≡‖ h0 − h(·;θ) ‖∞ ∀θ ∈ Θ
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with strictly increasing g, it follows that,

inf
θ∈η0(ε)c

[‖ h0 − h(·;θ) ‖∞ − ‖ h0 − h(·;θ0) ‖∞] > 0 ⇔ inf
θ∈η0(ε)c

[Q∞(θ)−Q∞(θ0)] > 0.

We thus conclude that strong unicity implies identifiable uniqueness under Assumptions 6, 8,

11 and 14, i.e. that ‖ h0 − hX (θ) ‖∞>‖ h0 − hX (θ0) ‖∞ +γ ‖ h − hX (θ) ‖∞ ∀θ ∈ Θ ⇒

infθ∈η0(ε)c [Q∞(θ)−Q∞(θ0)] > 0 ∀θ ∈ Θ.

Part II. Let Assumption 12 hold instead of 11. Then, except for some trivial minor details,

the same argument holds. In particular, we now have,

θ0 = arg min
θ∈Θ

‖ h0 − h(·,θ) ‖H

where ‖ ·‖ H satisfies,

‖ h ‖H=
( ∫

X
|h|pdµ

)1/p
∀h ∈ H(X )

with 1 < p < ∞. Since h0 ∈ Lp(X ,B(X ), µX ) with 1 < p < ∞ and hX (θ) ∈ HΘ(X )

where HΘ(X ) is a finite dimensional subset of H(X ), we have by Lemma 11 that for every

h0 ∈ H(X ), when there exists a unique best approximation h ∈ HΘ(X ) to h0 ∈ H(X ) then

it is strongly unique of order α = max{p, 2}. In other words, ∃ γ(h0) > 0 : ‖ h0 − h′ ‖H>‖

h0 − h ‖H +γ ‖ h− h′ ‖α
H ∀h′ ∈ HΘ(X ). This property is conveniently restated as

‖ h0 − hX (θ) ‖H>‖ h0 − hX (θ0) ‖H +γ ‖ h− hX (θ) ‖α
H ∀hX (θ) ∈ HΘ(X )

since every element h ∈ HΘ(X ) has a parametric representation of the form hX (θ),θ ∈ Θ.

The existence of an element of best approximation follows from Lemma 7 by noting that every

uniformly convex normed vector space is strictly convex (Cheney (1982, p.23)). As before,

the elementary step h0 − hX (θ) ‖H>‖ h0 − hX (θ0) ‖H +γ ‖ hX (θ0)− hX (θ) ‖α
H ⇔

‖ h0 − hX (θ) ‖H − ‖ h0 − hX (θ0) ‖H> γ ‖ hX (θ0)− hX (θ) ‖α
H ∀hX (θ) ∈ HΘ(X ) implies,

inf
θ∈Θ∗

[‖ h0 − hX (θ) ‖H − ‖ h0 − hX (θ0) ‖H] ≥ inf
θ∈Θ∗

[γ ‖ hX (θ0)− hX (θ) ‖α
H]
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holds for any Θ∗ ⊆ Θ. Again, we are interested in the case Θ∗ = η0(ε)c, and to obtain

inf
θ∈η0(ε)c

[‖ h0 − hX (θ) ‖H − ‖ h0 − hX (θ0) ‖H] > 0

it is enough to show that infhX (θ)∈hX (η0(ε)c)[γ ‖ hX (θ0)−hX (θ) ‖α
H] > 0. Since for every γ > 0

and α > 1, having,

γ ‖ hX (θ0)− hX (θ) ‖α
H> c > 0 ∀hX (θ) ∈ hX (η0(ε)c)

for some c > 0 constant, implies,infhX (θ)∈hX (η0(ε)c) γ ‖ hX (θ0) − hX (θ) ‖α
H> 0, and that,

γ ‖ hX (θ0) − hX (θ) ‖α
H> c > 0 ∀hX (θ) ∈ hX (η0(ε)c) holds true if hX (η0(ε)) is an open set

satisfying hX (θ0) ∈ hX (η0(ε)) for every ε > 0, by the same argument as before. Thus, for

every γ > 0 it holds true that,

γ ‖ hX (θ0)− hX (θ) ‖α
H> c > 0 ∀hX (θ) ∈ S(hX (θ0), δ)c

uniformly in θ ∈ Θ, for every 0 < c < (δ/γ)1/α where S(hX (θ0), δ)c := HΘ(X )\S(hX (θ0), δ).

Hence, infθ∈η0(ε)c [‖ h0−hX (θ) ‖H − ‖ h0−hX (θ0) ‖H] > 0 is implied by Assumption 14 which

ensures the openess of hX (θ0) ∈ hX (η0(ε)) and hence that infθ∈η0(ε)c [γ ‖ hX (θ0)− hX (θ) ‖α
H

] > 0. Finally, since Q∞(θ) ≡ QH
∞(h0, hX (θ)) satisfies,

g ◦QH
∞(h0, h(·;θ)) ≡‖ h0 − h(·;θ) ‖H≡‖ h0 − h(·;θ) ‖H ∀θ ∈ Θ

with strictly increasing g, it follows that,

inf
θ∈η0(ε)c

[‖ h0 − h(·;θ) ‖H − ‖ h0 − h(·;θ0) ‖H] > 0 ⇔ inf
θ∈η0(ε)c

[Q∞(θ)−Q∞(θ0)] > 0.

We thus conclude that strong unicity of order α implies identifiable uniqueness under As-

sumptions 6, 8, 12 and 14, i.e. that ‖ h0 − hX (θ) ‖H>‖ h0 − hX (θ0) ‖H +γ ‖ h − hX (θ) ‖α
H

∀θ ∈ Θ ⇒ infθ∈η0(ε)c [Q∞(θ)−Q∞(θ0)] > 0 ∀θ ∈ Θ.
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Part III. Finally, let Assumption 13 hold instead of 11 or 12. We now have,

θ0 = arg min
θ∈Θ

‖ h0 − h(·,θ) ‖H

where ‖ · ‖H is such that (H(X ), ‖ ·‖ H) is a uniformly convex Banach space of power type

p > 1. Since h0 ∈ H(X ) and hX (θ) ∈ HΘ(X ) where HΘ(X ) is a closed convex subspace

of H(X ), we have by Lemma 11 that for every h0 ∈ H(X ), when there exists a unique best

approximation h ∈ HΘ(X ) to h0 ∈ H(X ), then, it is strongly unique of order p. As we

have already seen, this form of strong unicity implies the identifiable uniqueness of θ0. The

existence of an element of best approximation follows from the fact that a closed convex subset

of a uniformly convex Banach space is proximinal (Cheney (1982, p.22)).
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