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Lung cancer, the most common of malignant tumors, is typically of the non-small cell
(NSCLC) type. T-cell-based immunotherapies are a promising and powerful approach
to treating NSCLCs. To characterize the CD8+ T cells of non-small cell lung cancer,
we re-analyzed the published RNA-Seq gene expression profiles of 36 CD8+ T cell
isolated from tumor (TIL) samples and 32 adjacent uninvolved lung (NTIL) samples.
With an advanced Monte Carlo method of feature selection, we identified the CD8+

TIL specific expression patterns. These patterns revealed the key dysfunctional genes
and pathways in CD8+ TIL and shed light on the molecular mechanisms of immunity
and use of immunotherapy.

Keywords: gene, CD8+ T cell, non-small cell lung cancer, RNA sequencing, feature selection, dysfunctional
pathways

INTRODUCTION

Lung cancer, the most common of malignant tumors, is typically (∼80%) of the non-small cell
(NSCLC) type (Zhan et al., 2017). Current therapies for NSCLC include surgery followed by
adjuvant radiotherapy, chemoradiotherapy, and molecule-targeted therapy; these methods have
produced excellent results (Antonicelli et al., 2013; Martinez et al., 2014; Nascimento et al., 2015).
However, most patients with NSCLC are in the advanced or inoperable stage with limited treatment
options, and the 5-year survival rate is still less than 20% (Siegel et al., 2012; van der Drift
et al., 2012). Thus, innovative therapeutic approaches to achieve long-term disease control without
obvious adverse reactions are needed.

Tumor-infiltrating lymphocytes are considered to play a critical role in the immune response
to many human solid cancers. Most CD8+ T cells are cytotoxic T lymphocytes in the case of
tumor-infiltrating lymphocytes (Farhood et al., 2019). In the immune response to cancer, these
tumor-infiltrating CD8+ T cells have the potential to recognize specific antigens that are presented
by the MHC class I receptor on cancer cells and target them for destruction. Studies have shown
that immune infiltration by CD8+ cytotoxic T cells is significantly correlated with improved clinical
outcome in non-small cell lung cancer (NSCLC) (Johnson et al., 2000; Welsh et al., 2005; Al-
Shibli et al., 2008; Kawai et al., 2008). High density of tumor-infiltrating lymphocytes usually
signified strong prognostic value (Hiraoka et al., 2006; Al-Shibli et al., 2008; Kawai et al., 2008;
Schalper et al., 2015).

Frontiers in Genetics | www.frontiersin.org 1 May 2020 | Volume 11 | Article 352

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00352
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00352
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00352&domain=pdf&date_stamp=2020-05-08
https://www.frontiersin.org/articles/10.3389/fgene.2020.00352/full
http://loop.frontiersin.org/people/552766/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00352 May 8, 2020 Time: 17:28 # 2

Tao et al. Biomarkers for CD8+ T Cells

Currently, T-cell-based immunotherapies are a promising and
innovative approach toward treating NSCLC. The development
of anticancer drugs targeting T cells to enhance the immune
response has shown great clinical benefit in NSCLC (Garon
et al., 2015; Gettinger et al., 2015; Jia et al., 2015). Programmed
death factor-1 (PD-1) expressed in tumor tissue plays a
key role in downregulating T-cell activation and promoting
tumor immune escape by binding to its ligand PD-L1, which
is expressed on the surface of tumor cells (Pardoll, 2012;
Dermani et al., 2019). Nivolumab, a PD-1 immune checkpoint
inhibitor antibody, was recently approved by the United States
Food and Drug Administration for treatment of patients
with metastatic squamous NSCLC (Morgensztern and Herbst,
2016). It disrupts PD-1-mediated signaling and is linked to an
anticancer immune response. Early clinical trials have indicated
that PD-L1 expression on tumor-infiltrating lymphocytes and
tumor cells may increase the response to PD-1-directed therapies
in metastatic NSCLC (Herbst et al., 2014, 2016; Ramalingam
et al., 2016). Therefore, tumor-infiltrating lymphocytes and
the expression of PD-L1 are being considered as biomarkers
capable of screening NSCLC patients most likely to respond to
checkpoint antibody therapy (Johnson et al., 2014).

To identify the markers for CD8+ T cells in lung cancer, we
compared the published RNA-Seq gene expression profiles of 36
CD8+ T cell isolated from tumor (TIL) samples and 32 adjacent
uninvolved lung (NTIL) samples. With a Monte Carlo feature
selection method, we identified the CD8+ TIL-specific expression
patterns, which can accurately predict such cells. The original
study of this published dataset identified 1,403 differentially
expressed genes using DE-Seq with fold change greater than
1.5 and adjusted value of p < 0.05 (Ganesan et al., 2017). This
number of genes is too numerous for use in a biomarker analysis
along with the low expected utility of the set of statistically
significant genes (Simon, 2008). Instead, we used a Monte Carlo
feature selection method, which assembled a series of decision
trees for classification of genes by importance (Draminski et al.,
2008). The usefulness of this method has been evaluated by others
(Li et al., 2019; Chen et al., 2020). The functional analysis of these
genes and the CD8+ TIL signatures are presented in this study
to help understand the molecular mechanisms of immunity and
their possible relevance to immunotherapy.

MATERIALS AND METHODS

The RNA-Seq Gene Expression Profiles
of Non-Small Cell Lung Cancer
We downloaded the gene expression profiles of 36 CD8+ T cells
isolated from tumor (TIL) samples and 32 adjacent uninvolved
lung (NTIL) samples from the Gene Expression Omnibus (GEO)
under accession number GSE90728 (Ganesan et al., 2017). All
lung patients had non-small cell lung cancer (NSCLC). Other
clinical details are available in Ganesan et al. (2017). The gene
expression levels were quantified with HTSeq (Anders et al.,
2015) after the RNA sequencing reads were mapped onto the
human reference genome (hg19) using the TopHat software
(Trapnell et al., 2009) by Ganesan et al. (2017). The processed

matrix of 23,366 genes in 36 TIL samples and 32 NTIL samples
was used to identify the key discriminative genes between TIL
samples and 32 NTIL samples.

The Monte Carlo Feature Selection
Method
There have been many methods for identifying differentially
expressed genes, such as the t-test, significance analysis of
microarrays (SAM) (Tusher et al., 2001), and DESeq2 (Love
et al., 2014). However, they typically only consider the statistical
significance even though the statistically significant genes do
not have discriminative ability (Simon, 2008). Since they do not
consider the relationship between genes, they may be redundant
or without known biological functions. To overcome these
problems, we used a Monte Carlo feature selection method
(Draminski et al., 2008; Cai et al., 2018; Chen et al., 2018a; Pan
et al., 2018) to extract the CD8+ T-cell-specific gene expression
patterns. The Monte Carlo feature selection method is powerful
in discriminating features in a data set and has been widely used
(Chen et al., 2018a, 2020; Chen L. et al., 2019; Chen X. et al., 2019;
Li et al., 2019; Pan et al., 2019).

The Monte Carlo Feature Selection
Algorithm Works as Follows
Let us use d to denote the number of features, i.e., 23,366 genes
in this study. To explain the feature selection algorithm, we used
features instead of the expression level of genes since feature was
a broader concept. The expression levels of genes can be features,
but features can be any numerical vector.

First, m features (m�d) are randomly selected for s times;
Then, t trees for each of the s subsets are constructed;
Last, s · t classification trees will be grouped to calculate a

feature g’s relative importance (RI).
To be more specific, RI of feature g is based on how many

times feature g is selected by the s · t trees and how much feature
g contributes to the classification of the s · t trees. The equation of
RI is

RIg =

st∑
τ=1

(wAcc)u
∑
ng (τ)

IG(ng(τ))
(

no. in ng(τ)

no. in τ

)ν

(1)

in which wAcc is the weighted classification accuracy of decision
tree τ, IG(ng(τ)) is the information gain of node ng(τ), which
is a decision rule of feature g, (no. in ng(τ)) is the number of
samples under node ng(τ), (no. in τ) is the number of samples
in decision tree τ, and u and ν are additional tunable parameters,
which adjust the influence of wAcc and no. in ng (τ)

no. in τ
, respectively

(set to 1 by default).
The Monte Carlo feature selection method is a complex

algorithm when the dataset is large. Therefore, a software called
dmLab (Draminski et al., 2008), which can be downloaded from
http://www.ipipan.eu/staff/m.draminski/mcfs.html was used to
apply the Monte Carlo feature selection method.

After the RI values for all 23,366 genes were calculated, all
these gene features were ranked as

F = [f1, f2 · · · fN] (2)
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in which N is the total number of gene features, i.e.,
23,366 in this study.

The gene features with smaller indices have greater RI value.
In other words, the genes are sorted decreasingly. Since all the
genes were ranked by importance, the top 500 genes are sufficient
for identifying a potential biomarker for practical use. This set of
genes was analyzed in the next step.

The Support Vector Machine Classifier
for CD8+ T Cells
Although all gene features may be ranked by their RI values
(Monte Carlo feature selection), it was difficult to discern how
many top features to select as optimal CD8+ T cell biomarkers.

To determine the number of features required for accurate
classifier, we adopted an incremental feature selection (IFS)
method (Wang S. et al., 2017; Zhang Y. H. et al., 2017; Chen
et al., 2018b,c; Li et al., 2018a). First, 500 different feature sets
F1, F2 · · · F500 were constructed. In these feature sets, feature
set Fi = [f1, f2 · · · fi] included the top i features of f in Eq. (2).
As explained above, features with a smaller index were more
important, and features with a larger index were less important.
These less important genes were more likely to introduce noise
in the classifier and, therefore, decrease the performance of the
classifier. Therefore, we needed to find the balance between signal
(important features with small index) and noise (unimportant
features with large index). For each feature set Fi, a support
vector machine (SVM) classifier was built based on these top i
features, and their performance was evaluated with leave-one-
out cross validation (LOOCV). An svm classifier can predict
whether a cell was TIL based on its expression levels of the top
i features/genes. Using the number of features as x-axis and their
LOOCV accuracy as y-axis, an IFS curve can be plotted. The
accuracy was the number of correctly predicted samples over the
number of total samples. Based on the peak of IFS curve, the
optimal number of gene features can be determined.

In this study, the SVM classifier was built using the R function
svm from package e1017.1 The default parameters of R function
svm were used to train the SVM models.

RESULTS

The Relative Importance of Genes for
CD8+ T Cells
As we described in the methods, the Monte Carlo feature
selection method was adopted to analyze the gene expression
profiles of 36 TIL samples and 32 NTIL samples. The goal
was to identify the discriminative genes between TIL samples
and NTIL samples. The 23,366 genes were ranked based on
their relative importance calculated by the Monte Carlo feature
selection algorithms.

The relative importance value reflected how well and how
often this gene can be used to classify the TIL samples and NTIL
samples in the resampling feature subsets on the decision trees.

1https://cran.r-project.org/web/packages/e1071/

Since relative importance value integrates the information of
many decision trees, it is a robust measurement that will not be
easily influenced by noise. The genes can be ranked based on their
relative importance values.

If a gene is important, it will rank at the top. All 23,366 genes
were ranked, but only the top 500 genes were further analyzed for
biomarker identification.

The Key Genes and Pathways of CD8+ T
Cells
After the genes were ranked based on their relative importance
by the Monte Carlo feature selection, we applied the IFS method
to further optimize the final key gene set that pertains to CD8+
T cells. We constructed 500 gene sets in which each gene sets
included top i genes in the ranked gene list. Based on the
number of genes and their prediction accuracy, we plotted the
IFS curve in Figure 1. It can be seen that with the top 20
genes, the LOOCV accuracy was the highest, 0.971. Therefore,
these 20 genes were considered as the key gene set of CD8+
T cells, and they are listed in Table 1. Even with the top two
genes, SLCO3A1 and PXN, the accuracy was 0.882. Since there
was no similar CD8+ T cell dataset, we searched these two
genes against the CellMarker database (Zhang et al., 2018a).
This curated database has 13,605 cell markers of 467 cell types
among 158 human tissue types, and 9,148 cell markers of 389
cell types among 81 mouse tissue types. Based on the CellMarker
database, SLCO3A1 was a marker for the natural killer T (NKT)

FIGURE 1 | The incremental feature selection (IFS) curve to determine the
optimal number of key genes for CD8+ T cells. The X-axis was the number of
genes used to build the support vector machine (SVM) classifier, while the
Y-axis was the prediction accuracy evaluated with leave-one-out cross
validation (LOOCV). When the top 20 genes were used, the LOOCV accuracy
was the highest, 0.971. These 20 genes were considered to be the key genes
for CD8+ T cells.
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TABLE 1 | The 20 key genes for CD8+ T cells.

Rank Gene Relative importance

1 SLCO3A1 0.387

2 PXN 0.280

3 CKAP2 0.213

4 MGAT3 0.201

5 SFTPC 0.194

6 VCL 0.187

7 RASGRP2 0.182

8 PLAC8 0.170

9 AES 0.129

10 FAM65B 0.121

11 NHSL2 0.100

12 S100A10 0.099

13 RAB3GAP1 0.090

14 WIPF3 0.090

15 OSBPL5 0.089

16 CXCL13 0.089

17 GEM 0.085

18 S1PR1 0.083

19 TAGLN2 0.082

20 C16orf54 0.079

cell; PXN was a cell marker for natural killer, CD4+ cytotoxic
T cell, and effector CD8+ memory T (Tem) cell. All 20 genes
were included in the 1,403 differentially expressed genes as
identified by Ganesan et al. (2017).

To test whether the classification model can affect the feature
selection, we used the decision tree (R package rpart) instead
of SVM, and the peak also appeared at 18, 19, and 20 with the
highest LOOCV accuracy of 0.824. The 20 genes still performed
the best. These results suggested the genes selected by IFS were
robust to classifiers.

To explore the expression pattern of these 20 genes, we plotted
the heatmap of these 20 genes and two classes of samples in
Figure 2. It can be seen that the NTIL samples and TIL samples
were correctly clustered into two groups. Only two samples were
not correctly clustered. Within the 20 genes, RAB3GAP1, WIPF3,
GEM, CKAP2, and C-X-C motif chemokine ligand 13 (CXCL13)
were highly expressed in TIL samples, while the other genes were
lowly expressed in NTIL samples.

To investigate the dysfunctional pathways affected by these
genes, we did KEGG (Kyoto Encyclopedia of Genes and
Genomes) enrichment analysis using WebGestalt (WEB-based
GEneSeTAnaLysis Toolkit) (Wang J. et al., 2017) and found that
hsa04062 chemokine signaling pathway was most significantly
enriched with a p value of 6.12e-04 and odds ratio of 15.99.

DISCUSSION

The Key Dysfunctional Genes in CD8+ T
Cells
Biomarkers are of great significance for the diagnosis and
treatment of cancer. Recent studies have found that in colorectal

cancer, CHGA is more predictive of early diagnosis than other
biomarkers, such as KRAS and TP53 (Zhang et al., 2019).
High expression of DOCK4 is closely related to invasive breast
cancer and subsequent bone metastasis, making it a potentially
useful biomarker to predict the risk of tumor bone metastasis
(Westbrook et al., 2019). In addition, the role of biomarkers
in lung cancer has also been reported. UCK2 may be a
biomarker for early diagnosis and prognosis of lung cancer
(Wu et al., 2019). In NSCLC, the level of serum IDH2 can
be regarded as an effective biomarker for the diagnosis and
prognosis (Li et al., 2018b), and LRP12 DNA methylation
can be used as predictive biomarker for carboplatin resistance
(Grasse et al., 2018).

As shown in Table 1, many of the 20 key genes have shown
significant potential as biomarkers for CD8+ T cells. We will
discuss several high confidence genes and try to show potential
mechanisms of these genes in CD8+ T cells.

Pro-inflammatory protein S100A10, a member of the S100
protein family, is a crucial plasminogen receptor and is reported
to be involved in the regulation of various intracellular processes
such as cell cycle progression, transcription, and differentiation
(Kwon et al., 2005). S100A10 is overexpressed in various cancers
and plays a role in facilitating cell invasiveness by regulating
pericellular proteolysis (Choi et al., 2003; Ji et al., 2004; Zhang
et al., 2004). S100A10 is mainly expressed in regions with strong
proliferation capacity (Petersson et al., 2009). Yang et al. observed
that the reduction of availability of S100A10 had negative impact
on the growth of tumor cells in vitro (Yang et al., 2011), suggesting
the role of S100A10 in regulating cell proliferation. The current
study by Katono et al. (2016) showed that S100A10 expression
was significantly associated with high TNM stage, poor overall
prognosis, and frequent vascular invasion. Moreover, several
studies have shown that up-regulation of S100A11 is significantly
associated with lymph node metastasis in patients with NSCLC
(Tian et al., 2007; Yang et al., 2011; Katono et al., 2016).

CXCL13 (C-X-C motif chemokine ligand 13) is an
antimicrobial peptide and CXC chemokine strongly expressed
in the follicles of the spleen and lymph node. Recent studies
recognized that the CXCR5–CXCL13 axis is involved in tumor
dissemination to lymph nodes (Meijer et al., 2006; Singh et al.,
2014). Analysis of serum CXCL13 levels in both subtypes of
NSCLCs, squamous cell carcinoma (SCC) and adenocarcinoma
(AC), showed that serum CXCL13 levels in ACs were higher
than that in SCCs; this may be associated with patient prognosis
(Singh et al., 2014). These findings of Singh et al. (2014)
indicated that CXCR5 and CXCL13 may be useful as prognostic
biomarkers for NSCLC. Smoke and air pollution are well known
to be associated with lung cancer (Li et al., 2013; Berrandou et al.,
2018), both of which contain polycyclic aromatic hydrocarbons
(PAHs), a carcinogenic substance (Baxter et al., 2014). The
experiments conducted by Wang et al. (2015) showed that
CXCL13 levels of lung epithelial cells, of cancer cells, and of
mice exposed to PAHs led to increased rates of lung cancer in
mice, demonstrating that CXCL13 has an important role in
PAH-induced lung cancers. Thommen et al. (2018) reported
that CXCL13 plays an important role in the recruitment of
lymphocytes to tertiary lymphoid structures.
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FIGURE 2 | The heatmap of the 20 genes in TIL samples and NTIL samples. The sample classes were indicated on the first row: blue for NTIL samples and red for
TIL samples. The two classes of samples were correctly clustered into two groups. Only two samples were not correctly clustered. It can be seen that RAB3GAP1,
WIPF3, GEM, CKAP2, and C-X-C motif chemokine ligand 13 (CXCL13) were highly expressed in TIL samples, while other genes were lowly expressed in NTIL
samples.

S1PR1 is a G-protein-coupled receptor of the bioactive lipid
sphingosine-1-phosphate (S1P) that is abundantly expressed
in endothelial cells and blood (Cantalupo et al., 2017;
Meissner, 2017) and plays a vital role in angiogenesis (Liu
et al., 2000). Angiogenesis is a key process in the early stage
of tumor progression and spread (Metodieva et al., 2011).
Sarkisyan et al. (2014) suggested that S1PR1 signaling could
delay tumor progression by enhancing or destabilizing integrity
of neovasculature. S1PR signaling pathways are also reported
to be involved in the oncogenesis of various cancers including
NSCLC (Zhang et al., 2018b; Zhu et al., 2018). Apolipoprotein
M (ApoM) is a sphingosine 1-phosphate (S1P) carrier, which
is involved in regulating S1P (Duan et al., 2001; Sevvana et al.,
2009). Overexpression of ApoM could promote proliferation,
invasion, and tumor growth of NSCLC cell via upregulation of
S1PR1 (Zhu et al., 2018).

Transgelin 2 (TAGLN2), an actin-binding protein, is
overexpressed in various tumors and thought to be a tumor
suppressor (Zhang et al., 2010; Jin et al., 2016; Han et al.,
2017). Studies suggest that high levels of TAGLN2 in NSCLC
cells were significantly associated with tumor development,
neural invasion, and metastasis (Jin et al., 2016; Kim et al.,
2018). Therefore, it has been considered a crucial diagnostic
biomarker for early diagnosis and treatment guidance of NSCLC

(Rho et al., 2009). Recent studies have focused on investigating
microRNAs targeting TAGLN2 for tumor suppression (Nohata
et al., 2011; Yoshino et al., 2011; Du et al., 2016).

The Key Dysfunctional Pathway in CD8+

T Cells
As previously discussed, the most significantly enriched pathway
of the 20-gene set is the hsa04062 chemokine signaling pathway.
Three of these genes (CXCL13, RASGRP2, and PXN) are involved
in this pathway.

Chemokines, a group of small molecular weight proteins,
play an important role in cell migration, immune surveillance,
and inflammation via binding to chemokine receptors on
cell membranes (Raman et al., 2011). Numerous studies have
shown the role of chemokine and chemokine receptors in the
progression and metastasis of lung cancer (Cavallaro, 2013;
Sarvaiya et al., 2013). The chemokine receptors, like CXCR4
and CCR7, are well studied (Mishan et al., 2016; Pozzobon
et al., 2016). CXCR4 is the most commonly overexpressed and
studied chemokine receptor in many different malignant tumors,
including lung cancer (Balkwill, 2004). Differential expression of
CXCR4 has been reported to be related to the metastatic potential
of non-small cell lung cancer (NSCLC) (Phillips et al., 2003;
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Su et al., 2005). Wang et al. (2014) also revealed that the
high-level CXCR4 expression was associated with brain-specific
metastasis after complete resection of non-small cell lung cancer.
In addition, CXCL12/CXCR4 axis is demonstrated to play a
crucial role in migration and metastasis of NSCLC, and high
expression of CXCL12/CXCR4 is related to poor prognosis in
NSCLC (Suzuki et al., 2008). CCR7, a CC chemokine receptor,
is mainly expressed on naive T cells, B cells, and mature dendritic
cells (DCs) (Xu et al., 2012). Activation of CCR7 has been
also proved to mediate the invasion and progression of NSCLC
in most investigations (Cabioglu et al., 2007; Zhang L. et al.,
2017). There was a correlation between tumor-infiltrating DC
aggregation and apoptosis of NSCLC.

Besides CXCL13 as a chemokine, Paxillin (PXN) encodes
a cytoskeletal protein, which contributes to actin-membrane
attachment in the extracellular matrix. PXN is involved in signal
transduction, which has been shown to be closely correlated
with the oncogenesis and metastasis of NSCLC (Jagadeeswaran
et al., 2008; Wu et al., 2010). Previous studies report that
miR-137 suppressed cell migration and invasion by targeting
PXN, therefore providing a potential therapy for NSCLC by
targeting miRNA expression (Dacic et al., 2010; Bi et al., 2014).
The expression of paxillin has also been observed as closely
associated with the prognosis and the lymph node metastasis
of NSCLC patients (Salgia et al., 1999; Zuo and Li, 2003; Wu
et al., 2010). These studies strongly suggest the role of PXN in
NSCLC, and thus, PXN is recommended as a potential target for
NSCLC treatment.

CONCLUSION

For more effective immunotherapy in the case of non-small cell
lung cancers (NSCLC), we require further knowledge of T-cell
biology. Therefore, we collected the published RNA-Seq gene

expression data of 36 T-cell samples isolated from tumor and
32 adjacent uninvolved lung samples from a publicly available
database. By analyzing them with a Monte Carlo feature selection
method, we identified the discriminative genes between tumor
T cells and adjacent uninvolved lung cells. In addition, we
investigated the expression pattern of these key genes for CD8+ T
cells of non-small cell lung cancer and their biological functions
and pathways. However, tumors are commonly heterogeneous at
the cellular level, and therefore, there are different proportions
of CD8+ T-cell types (Wagner et al., 2019). This is currently an
unresolved question.
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