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Identification and analysis of functional elements in 1% of the

human genome by the ENCODE pilot project

The ENCODE Project Consortium

Abstract

We report the generation and analysis of functional data from multiple, diverse experiments

performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project.

These data have been further integrated and augmented by a number of evolutionary and

computational analyses. Together, our results advance the collective knowledge about human

genome function in several major areas. First, our studies provide convincing evidence that the

genome is pervasively transcribed, such that the majority of its bases can be found in primary

transcripts, including non-protein-coding transcripts, and those that extensively overlap one another.

Second, systematic examination of transcriptional regulation has yielded new understanding about

transcription start sites, including their relationship to specific regulatory sequences and features of

chromatin accessibility and histone modification. Third, a more sophisticated view about chromatin

structure has emerged, including its interrelationship with DNA replication and transcriptional

regulation. Finally, integration of these new sources of information, in particular with respect to

mammalian evolution based on inter- and intra-species sequence comparisons, has yielded novel

mechanistic and evolutionary insights about the functional landscape of the human genome.

Together, these studies are defining a path forward to pursue a more-comprehensive characterisation

of human genome function.

Introduction

The human genome is an elegant but cryptic store of information. Its roughly three billion bases

encode, either directly or indirectly, the instructions for synthesizing nearly all the molecules

that form each human cell, tissue, and organ. Sequencing the human genome1–3 provided

highly accurate DNA sequences for each of the 24 chromosomes. At present, however, we

have an incomplete understanding of the protein-coding portions of the genome, and markedly

less understanding of both non-protein-coding transcripts and genomic elements that

temporally and spatially regulate gene expression. To understand the human genome, and by

extension the biological processes it orchestrates and the ways in which its defects can give

rise to disease, we need a more transparent view of the information it encodes.

The molecular mechanisms by which genomic information directs the synthesis of different

biomolecules has been the focus of much of molecular biology over the last three decades.

Previous studies have typically concentrated on individual genes, with the resulting general

principles then providing insights into, for example, transcription, chromatin remodeling,

mRNA splicing, DNA replication and numerous other genomic processes. Although many

such principles appear valid as additional genes are investigated, they typically have not

provided genome-wide insights about biological function.
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The first genome-wide analyses that shed light on human genome function made use of

observing the actions of evolution. The ever-growing set of vertebrate genome sequences4–

8 is providing increasing power to reveal the genomic regions that have been most and least

acted upon by the forces of evolution. However, while these studies convincingly indicate the

presence of numerous genomic regions under strong evolutionary constraint, they have less

power in identifying the precise bases that are constrained and provide little, if any, insight

into why those bases are biologically important. Further, although we have good models for

how protein-coding regions evolve, our present understanding about the evolution of other

functional genomic regions is poorly developed. Experimental studies that augment what we

learn from evolutionary analyses are key for solidifying our insights about genome function.

The Encyclopedia of DNA Elements (ENCODE) Project9 aims to provide a more biologically

informative representation of the human genome by using high-throughput methods to identify

and catalogue the functional elements it encodes. In its pilot phase, 35 groups provided more

than 200 experimental and computational datasets that examined in unprecedented detail a

targeted 29.998 Mb of the human genome. This roughly 30 Mb— ~1% of the human genome

— is sufficiently large and diverse to allow for rigorous pilot testing of multiple experimental

and computational methods. These 30 Mb are divided among 44 genomic regions; roughly 15

Mb reside in 14 regions for which there is already substantial biological knowledge, while the

other roughly 15 Mb reside in 30 regions chosen by a stratified random-sampling method (see

http://www.genome.gov/10506161).

The highlights of our findings to date include:

• The human genome is pervasively transcribed, such that the majority of its bases are

associated with at least one primary transcript and many transcripts link distal regions

to established protein-coding loci.

• Many novel non-protein-coding transcripts have been identified, with many of these

overlapping protein-coding loci and others located in regions of the genome

previously thought to be transcriptionally silent.

• Numerous previously unrecognised transcription start sites have been identified,

many of which show chromatin structure and sequence-specific protein-binding

properties similar to well-understood promoters.

• Regulatory sequences that surround transcription start sites are symmetrically

distributed, with no bias towards upstream regions.

• Chromatin accessibility and histone-modification patterns are highly predictive of

both the presence and activity of transcription start sites.

• Distal DNaseI hypersensitive sites have characteristic histone modification patterns

that reliably distinguish them from promoters; some of these distal sites show marks

consistent with insulator function.

• DNA-replication timing is correlated with chromatin structure.

• A total of 5% of the bases in the genome can be confidently identified as being under

evolutionary constraint in mammals; for approximately 60% of these constrained

bases, there is evidence of function based on the results of the experimental assays

performed to date.

• While there is general overlap between genomic regions identified as functional by

experimental assays and those under evolutionary constraint, not all bases within these

experimentally-defined regions show evidence of constraint.
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• Different functional elements vary greatly in their sequence variability across the

human population and in their likelihood of residing within a structurally variable

region of the genome.

• To our surprise, many functional elements are seemingly unconstrained across

mammalian evolution. This suggests the possibility of a large pool of neutral elements

that are biologically active but provide no specific benefit to the organism. This pool

may serve as a ‘warehouse’ for natural selection, potentially acting as the source of

lineage-specific elements and functionally conserved but non-orthologous elements

between species.

Below, we first provide an overview of the experimental techniques used for our studies, after

which we describe the insights gained from analyzing and integrating the generated datasets.

We conclude with a perspective of what we have learned to date about this 1% of the human

genome and what we believe the prospects are for a broader and deeper investigation of the

functional elements in the human genome. To aid the reader, Box 1 provides a glossary for

many of the abbreviations used throughout this paper.

Experimental techniques

Table 1 (expanded in Supplementary Information section S1.1) lists the major experimental

techniques used for the studies reported here, relevant acronyms, and references reporting the

generated datasets. These datasets reflect over 400 million experimental data points (603

million data points if one includes comparative sequencing bases). In describing the major

results and initial conclusions, we seek to distinguish biochemical function from biological

role. Biochemical function reflects the direct behaviour of a molecule(s), while biological role

is used to describe the consequence(s) of this function for the organism. Genome-analysis

techniques nearly always focus on biochemical function but not necessarily on biological role.

This is because the former is more amenable to large-scale data-generation methods, while the

latter is more difficult to assay on a large scale.

ENCODE aimed to establish redundancy with respect to the findings represented by different

datasets. In some instances, this involved the intentional use of different assays based on a

similar technique, whereas in other situations, different techniques assayed the same

biochemical function. Such redundancy has allowed methods to be compared and the

generation of consensus datasets, much of which is discussed in companion papers, such as

the ChIP/chip platform comparison10, 11. All ENCODE data have been released after

verification but prior to this publication, as befits a ‘community resource’ project (http://

www.wellcome.ac.uk/doc_wtd003208.html). Verification is defined as when the experiment

is reproducibly confirmed (see Supplementary Information section S1.2). The main portal for

ENCODE data is provided on the UCSC Genome Browser (http://genome.ucsc.edu/

ENCODE/); this is augmented by multiple other web sites (see Supplementary Information

section S1.1).

A common feature of genomic analyses is the need to assess the significance of the co-

occurrence of features or other statistical tests. One confounding factor is the heterogeneity of

the genome, which can produce uninteresting correlations of variables distributed across the

genome. We have developed and used a statistical framework that mitigates many of these

hidden correlations by adjusting the appropriate null distribution of the test statistics. We term

this correction procedure “Genome Structure Correction” (GSC) (see Supplementary

Information section S1.3).

In the next five sections, we detail the various biological insights of the pilot phase of the

ENCODE Project.
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Transcription

Overview

RNA transcripts are involved in many cellular functions, either directly as biologically active

molecules or indirectly by encoding other active molecules. In the conventional view of

genome organisation, sets of RNA transcripts (for example, mRNAs) are encoded by distinct

loci, with each usually dedicated to a single biological role (for example, encoding a specific

protein). However, this picture has substantially grown in complexity in recent years12. Other

forms of RNA molecules (such as snoRNAs and microRNAs) are known to exist, and often

these are encoded by regions that intercalate with protein-coding genes. These observations

are consistent with the well-known discrepancy between the amount of observable mRNAs

and large structural RNAs compared to the total RNA in a cell, suggesting that there are

numerous RNA species yet to be classified13–15. In addition, studies of specific loci have

indicated the presence of RNA transcripts that play a role in chromatin maintenance and other

regulatory control. We sought to assay and analyse transcription comprehensively across the

44 ENCODE regions in an effort to understand the repertoire of encoded RNA molecules.

Transcript maps of the ENCODE regions

We used three methods to identify transcripts emanating from the ENCODE regions:

hybridisation of RNA (either total or polyA-selected) to unbiased tiling arrays (see

Supplementary Information section S2.1), tag sequencing of cap-selected RNA at the 5′ or joint

5′/3′ ends (see Supplementary Information sections S2.2 and S2.3), and integrated annotation

of available cDNA and EST sequences involving computational, manual, and experimental

approaches16 (see Supplementary Information section S2.4). We abbreviate the regions

identified by unbiased tiling arrays as TxFrags (Transcribed Fragments), the cap-selected

RNAs as CAGE/Ditags, and the integrated annotation as GENCODE transcripts. When a

TxFrag does not overlap a GENCODE annotation, we call it an unannotated TxFrag

(Un.TxFrag). Validation of these various studies is described in papers reporting these

datasets17 (see Supplementary Information sections S2.1.4 and S2.1.5).

These methods recapitulate previous findings, but provide enhanced resolution due to the larger

number of tissues sampled and the integration of results across the three approaches. To begin

with, our studies show that 14.7% of the bases represented in the unbiased tiling arrays are

transcribed in at least one tissue sample. Consistent with previous work14, 15, many (63%)

TxFrags reside outside of GENCODE annotations, both in intronic (40.9%) and intergenic

(22.6%) regions. GENCODE annotations are richer than the more-conservative RefSeq or

Ensembl annotations, with 2,608 transcripts clustered into 487 loci, leading to an average of

5.4 transcripts per locus. Finally, extensive testing of predicted protein-coding sequences

outside of GENCODE annotations was positive in only 2% of cases16, suggesting that

GENCODE annotations cover nearly all protein-coding sequences. The GENCODE

annotations are categorised both by likely function (mainly, the presence of an open reading

frame) and by classification evidence (for example, transcripts based solely on ESTs are

distinguished from other scenarios); This classification is not strongly correlated with

expression levels (see Supplementary Information sections S2.4.2 and S2.4.3).

Analyses of more biological samples have allowed a richer description of the transcription

specificity (see Figure 1 and Supplementary Information section S2.5). We found that 40% of

TxFrags are present in only one sample, whereas only 2% are present in all samples. Although

exon-containing TxFrags are more likely (74%) to be expressed in more than one sample, 45%

of unannotated TxFrags are also expressed in multiple samples. GENCODE annotations of

separate loci often (42%) overlap with respect to their genomic coordinates, in particular on

opposite strands (33% of loci). Further analysis of GENCODE-annotated sequences with

Page 4

Nature. Author manuscript; available in PMC 2008 January 24.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



respect to the positions of open read frames revealed that some component exons do not have

the expected synonymous vs non synonymous substitution patterns of protein-coding sequence

(see Supplementary Information section S2.6) and some have deletions incompatible with

protein structure18. Such exons are on average less expressed (25% vs 87% by RT-PCR, see

Supplementary Information section S2.7) than exons involved in more than one transcript (see

Supplementary Information section S2.4.3), but when expressed have a tissue distribution

comparable to well-established genes.

Critical questions are raised by the presence of a large amount of unannotated transcription

with respect to how the corresponding sequences are organised in the genome – do these reflect

longer transcripts that include known loci, do they link known loci, or are they completely

separate from known loci? We further investigated these issues using both computational and

new experimental techniques.

Computational Analysis of Unannotated Trancription

Consistent with previous findings, the Un.TxFrags did not have evidence of encoding proteins

(see Supplementary Information section S2.8). One might expect Un.TxFrags to be linked

within transcripts that exhibit coordinated expression and have similar conservation profiles

across species. To test this, we clustered Un.TxFrags using two methods. The first method19

used expression levels in 11 cell lines or conditions, dinucleotide composition, location relative

to annotated genes, and evolutionary conservation profiles to cluster TxFrags (both

unannotated and annotated). By this method, 14% of Un.TxFrags could be assigned to

annotated loci, and 21% could be clustered into 200 novel loci (with an average of ~7 TxFrags

per locus). We experimentally examined these novel loci to study the connectivity of transcripts

amongst Un.TxFrags and between Un.TxFrags and known exons. Overall, about 40% of the

connections (18 out of 46) were validated by RT-PCR. The second clustering method involved

analysing a time course (0, 2, 8, and 32 hours) of expression changes in HL60 cells following

retinonic-acid stimulation. There is a coordinated program of expression changes from

annotated loci, which can be shown by plotting Pearson correlation values of the expression

levels of exons inside annotated loci versus unrelated exons (see Supplementary Information

section S2.8.2). Similarly, there is coordinated expression of nearby Un.TxFrags, albeit lower,

though still significantly different from randomised sets. Both clustering methods indicate that

there is coordinated behaviour of many Un.TxFrags, consistent with them residing in connected

transcripts.

Investigation of transcript connectivity using RACE and tiling arrays

We used a combination of RACE and tiling arrays20 to investigate the diversity of transcripts

emanating from protein-coding loci. Analogous to TxFrags, we refer to transcripts detected

using RACE followed by hybridization to tiling arrays as “RxFrags.” We performed RACE to

examine 399 protein-coding loci (those loci found entirely in ENCODE regions) using RNA

derived from 12 tissues, and were able to unambiguously detect 4,573 RxFrags for 359 loci

(see Supplementary Information section S2.9). Almost half of these RxFrags (2,324) do not

overlap a GENCODE exon, and most (90%) loci have at least one novel RxFrag, which often

extends a considerable distance beyond the 5′ end of the locus. Figure 2 shows the distribution

of distances between these new RACE-detected ends and the previously-annotated

transcription start site (TSS) of each locus. The average distance of the extensions is between

50 kb and 100 kb, with many extensions (>20%) being more than 200 kb. Consistent with the

known presence of overlapping genes in the human genome, our findings reveal evidence for

an overlapping gene for 224 loci, with transcripts from 180 of these loci (~50% of the RACE-

positive loci) appearing to have incorporated at least one exon from an upstream gene.
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To further characterise the 5′ RxFrag extensions, we performed RT-PCR followed by cloning

and sequencing for 550 of the 5′ RxFrags (including the 261 longest extension identified for

each locus). The approach of mapping RACE products using microarrays is a combination

method previously described and validated in several studies14, 17, 20. Hybridization of the

RT-PCR products to tiling arrays confirmed connectivity in almost 60% of the cases.

Sequenced clones confirmed transcript extensions. Longer extensions were harder to clone and

sequence, but 5 of 18 RT-PCR-positive extensions over 100-kb were verified by sequencing

(see Supplementary Information section S2.9.7 and Denoeud et al17). The detection of

numerous RxFrag extensions coupled with evidence of considerable intronic transcription

indicates that protein-coding loci are more transcriptionally complex than previously thought.

Instead of the traditional view that many genes have one or more alternative transcripts that

code for alternative proteins, our data suggest that a given gene may both encode multiple

protein products as well as produce other transcripts that include sequences from both strands

and from neighbouring loci (often without encoding a different protein). Figure 3 illustrates

such as case, where a new fusion transcript is expressed in the small intestine, and consists of

at least three coding exons from the ATP50 gene and at least two coding exons from the

DONSON gene, with no evidence of sequences from two intervening protein-coding genes

(ITSN1 and CRYZL1).

Pseudogenes

Pseudogenes, reviewed in Balakirev et al21 and Mighell et al22, are generally considered non-

functional copies of genes that are sometimes transcribed and often complicate analysis of

transcription due to close sequence similarity to functional genes. We utilised various

computational methods to identify 201 pseudogenes (124 processed and 77 non processed) in

the ENCODE regions (see Supplementary Information section S2.10 and Zheng et al23).

Tiling-array analysis of 189 of these revealed that 56% overlapped at least one TxFrag.

However, possible cross-hybridisation between the pseudogenes and their corresponding

parent genes may have confounded such analyses. To better assess the extent of pseudogene

transcription, 160 pseudogenes (111 processed and 49 non-processed) were examined for

expression using RACE/tiling-array analysis (see Supplementary Information section S2.9.2).

Transcripts were detected for 14 pseudogenes (8 processed and 6 non-processed) in at least

one of the 12 tested RNA sources, the majority (9) being in testis (see Zheng et al23).

Additionally, there was evidence for the transcription of 25 pseudogenes based on their

proximity (within 100bp of a pseudogene end) to CAGE tags (8), PETs (2), or cDNAs/ESTs

(21). Overall, we estimate that at least 19% of the pseudogenes in the ENCODE regions are

transcribed, which is consistent with previous estimates24, 25.

Non-protein-coding RNA

Non-protein-coding RNAs (ncRNAs) include structural RNAs (for example, tRNAs, rRNAs,

and snRNAs) and more recently-discovered regulatory RNAs (for example, microRNAs).

There are only 8 well-characterised ncRNA genes within the ENCODE regions (U70, ACA36,

ACA56, mir-192, mir-194-2, mir-196, mir-483 and H19), while representatives of other classes,

(for example, box C/D snoRNAs, tRNAs, and functional snRNAs) appear to be completely

absent in the ENCODE regions. Tiling-array data provided evidence for transcription in at least

one of the assayed RNA samples for all of them, with the exception of mir-483 (expression of

mir-483 might be specific to fetal liver, which was not tested). There is also evidence for the

transcription of 6 of 8 pseudogenes of non-protein-coding RNAs (mainly snoRNA-derived).

Similar to the analysis of protein-pseudogenes, the hybridisation results could also originate

from the known snoRNA gene elsewhere in the genome.

Many known ncRNAs are characterised by a well-defined RNA-secondary structure. We

applied two de-novo ncRNA-prediction algorithms – EvoFold and RNAz – to predict structured
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ncRNAs (as well as functional structures in mRNAs) using the multi-species sequence

alignments (see below, Supplementary Information section S2.11, and Washietl et al26). Using

a sensitivity threshold capable of detecting all known miRNAs and snoRNAs, we identified

4986 and 3707 candidate ncRNA loci with EvoFold and RNAz, respectively. Only 268 loci

(5% and 7%, respectively) were found with both programs, representing a 1.6-fold enrichment

over that expected by chance; the lack of more extensive overlap is due to the two programs

having optimal sensitivity at different levels of GC content and conservation. We

experimentally examined 50 of these targets using RACE/tiling-array analysis and brain and

testis tissues (see Supplementary Information sections S2.11 and S2.9.3); the predictions were

validated at a 56%, 65%, and 63% rate for Evofold, RNAz, and dual predictions, respectively.

Primary transcripts

The detection of numerous unannotated transcripts coupled with increasing knowledge of the

general complexity of transcription prompted us to examine the collective span of primary (i.e.,

unspliced) transcripts across the ENCODE regions. Three data sources provide insight about

these primary transcripts: the GENCODE annotation, PET ditags, and RxFrag extensions.

Figure 4 summarizes the fraction of bases in the ENCODE regions that overlap transcripts

identified by these technologies. Remarkably, 93% of bases are represented in a primary

transcript identified by at least two independent observations (but potentially using the same

technology); this figure is reduced to 74% in the case of primary transcripts detected by at least

two different technologies. These increased spans are not mainly due to cell line rearrangements

since they were present in of multiple tissue experiments confirming the spans (see

Supplementary Information section S2.12). These estimates assume that the presence of PET

ditags or RxFrags defining the terminal ends of a transcript imply that the entire intervening

DNA is transcribed and then processed. Other mechanisms, thought to be unlikely in the human

genome, such as trans-splicing or polymerase jumping would also produce these long termini

and potentially should be reconsidered in more detail.

Previous studies have suggested a similar broad amount of transcription across the human14,

15 and mouse27 genomes. Our studies confirm these results, and have investigated the genesis

of these transcripts in greater detail, confirming the presence of substantial intragenic and

intergenic transcription. At the same time, many of the resulting transcripts are neither

traditional protein-coding transcripts nor easily explained as structural non-coding RNAs.

Other studies have noted complex transcription around specific loci or chimeric-gene structures

(for example refs28–30), but these have often been considered exceptions; our data show that

complex intercalated transcription is common at many loci. The results presented in the next

section show extensive amounts of regulatory factors around novel TSSs, which is consistent

with this extensive transcription. The biological relevance of these unannotated transcripts

remains unanswered by these studies. Evolutionary information (detailed below) is mixed in

this regard, for example, it indicates that unannotated transcripts show weaker evolutionary

conservation than many other annotated features. As with other ENCODE-detected elements,

it is difficult to identify clear biological roles for the majority of these transcripts; such

experiments are challenging to perform on a large scale, and furthermore, it seems likely that

many of the corresponding biochemical events may be evolutionarily neutral (see below).

Regulation of transcription

Overview

A significant challenge in biology is to identify the transcriptional regulatory elements that

control the expression of each transcript and to understand how the function of these elements

is coordinated to execute complex cellular processes. A simple, commonplace view of

transcriptional regulation involves five types of cis-acting regulatory sequences— promoters,
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enhancers, silencers, insulators, and locus control regions (LCRs)31. Overall, transcriptional

regulation involves the interplay of multiple components, whereby the availability of specific

transcription factors and the accessibility of specific genomic regions determine whether a

transcript is generated31. However, the current view of transcriptional regulation is known to

be overly simplified, with many details remaining to be established. For example, the consensus

sequences of transcription factor-binding sites (typically 6 to 10 bases) have relatively little

information content and are present numerous times in the genome, with the great majority of

these not participating in transcriptional regulation. Does chromatin structure then determine

whether such a sequence has a regulatory role? Are there complex inter-factor interactions that

integrate the signals from multiple sites? How are signals from different distal regulatory

elements coupled without affecting all neighbouring genes? Meanwhile, our understanding of

the repertoire of transcriptional events is becoming more complex, with an increasing

appreciation of alternative TSSs32, 33 and the presence of non-coding27, 34 and anti-sense

transcripts35, 36.

To better understand transcriptional regulation, we sought to begin cataloguing the regulatory

elements residing within the 44 ENCODE regions. For this pilot project, we mainly focused

on the binding of regulatory proteins and chromatin structure involved in transcriptional

regulation. We analysed over 150 datasets, mainly from ChIP-chip37–39, Chip-PET and

STAGE40, 41 studies (see Supplementary Information sections S3.1 and S3.2). These methods

use chromatin immunoprecipitation (ChIP) with specific antibodies to enrich for DNA in

physical contact with the targeted epitope. This enriched DNA can then be analysed using

either microarrays (ChIP-chip) or high-throughput sequencing (ChIP-PET and STAGE). The

assays included 18 sequence-specific transcription factors and components of the general

transcription machinery [for example, RNA polymerase II (PolII), TAF1, and TFIIB]. In

addition, we tested more than 600 potential promoter fragments for transcriptional activity by

transient-transfection reporter assays that utilized 16 human cell lines33. We also examined

chromatin structure by studying the ENCODE regions for DNaseI sensitivity (via quantitative

PCR42 and tiling arrays43, 44, see Supplementary Information section S3.3), histone

composition45, histone modifications (via ChIP-chip assays)37, 46, and histone displacement

(using FAIRE, see Supplementary Information section 3.4). Below, we detail these analyses,

starting with the efforts to define and classify the 5′ ends of transcripts with respect to their

associated regulatory signals. Following that are summaries of generated data about sequence-

specific transcription-factor binding and clusters of regulatory elements. Finally, we describe

how this information can be integrated to make predictions about transcriptional regulation.

Cataloguing TSSs

We analysed two datasets to catalogue TSSs in the ENCODE regions: the 5′ ends of

GENCODE-annotated transcripts and the combined results of two 5′-end-capture technologies

— CAGE and PET-tagging. The initial results suggested the potential presence of 16,051

unique TSSs. However, in many cases, multiple TSSs resided within a single small segment

(up to ~200 bases); this was due to some promoters containing TSSs with many very close

precise initiation sites 47. To normalise for this effect, we grouped TSSs that were 60 or fewer

bases apart into a single cluster, and in each case considered the most frequent CAGE or PET

tag (or the 5′-most TSS in the case of TSSs identified only from GENCODE data) as that

cluster’s representative for downstream analyses.

The above effort yielded 7,157 TSSs clusters in the ENCODE regions. We classified these

TSSs into three categories: Known (present at the end of GENCODE-defined transcripts),

Novel (supported by other evidence), and Unsupported. The Novel TSSs were further

subdivided based on the nature of the supporting evidence (see Table 3 and Supplementary

Information section S3.5), with all four of the resulting subtypes showing significant overlap
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with experimental evidence using the GSC statistic. Although there is a larger relative

proportion of singleton tags in the Novel category, when analysis is restricted to only singleton

tags, the Novel TSSs continue to have highly significant overlap to supporting evidence (see

Supplementary Information section S3.5.1).

Correlating genomic features with chromatin structure and transcription factor binding

By measuring relative sensitivity to DNaseI digestion (see Supplementary Information section

S3.3), we identified DNaseI Hypersensitive Sites (DHSs) throughout the ENCODE regions.

DHSs and TSSs both reflect genomic regions thought to be enriched for regulatory information

and many DHSs reside at or near TSSs. We partitioned DHSs into those within 2.5kb of a TSS

(958; 46.5%) and remaining classified as distal (1,102; 53.5%). We then cross-analysed the

TSSs and DHSs with datasets relating to histone modifications, chromatin accessibility, and

sequence-specific transcription-factor binding by summarising these signals in aggregate

relative to the distance from TSSs or DHSs. Figure 5 shows representative profiles of specific

histone modifications, PolII, and selected transcription factor binding for the different

categories of TSSs. Further profiles and statistical analysis of these studies can be found in

Supplementary Information section S3.6.

In the case of the three TSS categories (Known, Novel, and Unsupported), Known and Novel

TSSs are both associated with similar signals for multiple factors (ranging from histone

modifications through DNaseI accessibility), whereas Unsupported TSSs are not. The

enrichments seen with chromatin modifications and sequence-specific factors, along with the

significant clustering of this evidence, indicate that the Novel TSSs do not reflect false positives

and likely utilise the same biological machinery as other promoters. Sequence-specific

transcription factors show a marked increase in binding across the broad region that

encompasses each TSS. This increase is notably symmetric, with binding equally likely

upstream or downstream of a TSS (see Supplementary Information section S3.7 for an

explanation of why this symmetrical signal is not an artefact due to the analysis of the signals).

Further, there is enrichment of BAF155 binding (a member of the swi/snf chromatin-modifying

complex), which persists across a broader extent than other factors. The broad signals with this

factor indicate that the ChIP-chip results reflect both specific enrichment at the TSS and broader

enrichments across ~5kb regions; (this is not due to technical issues, see Supplementary

Information section S3.8).

We selected 577 GENCODE-defined TSSs at the 5′ ends of a protein-coding transcript with

over 3 exons to assess expression status. Each transcript was classified as: (1) ’active’ (gene

on) or ‘inactive’ (gene off) based on the unbiased transcript surveys, and (2) residing near a

‘CpG island’ or not near a CpG island (‘non-CpG island’) (see Supplementary Information

section S3.17). As expected, the aggregate signal of histone modifications is mainly attributable

to active TSSs (Figure 5), in particular those near CpG islands. Pronounced doublet peaks at

the TSS can be seen with these large signals, similar to previous work in yeast48, due to the

chromatin accessibility at the TSS. Many of the histone marks and PolII signals are now clearly

asymmetrical, with a persistent level of PolII into the genic region, as expected. However, the

sequence specific factors remain largely symmetrically distributed. TSSs near CpG islands

show a broader distribution of histone marks than those not near CpG islands (see

Supplementary Information section S3.6). The binding of some transcription factors (E2F1,

E2F4, and cMyc) is extensive in the case of active genes, and is lower (or absent) in the case

of inactive genes.

Chromatin signature of distal elements

Distal DHSs show characteristic patterns of histone modification that are the inverse of TSSs,

with high H3K4me1 accompanied by lower levels of H3K4Me3 and H3Ac (Figure 5). Many
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factors with high occupancy at TSSs (for example, E2F4) show little enrichment at distal DHSs,

whereas other factors (for example, cMyc) are enriched at both TSSs and distal DHSs49. A

particularly interesting observation is the relative enrichment of the insulator-associated factor

CTCF50 at both distal DHSs and TSSs; this contrasts with swi/snf components BAF170 and

BAF155, which are TSS-centric. Such differential behaviour of sequence-specific factors

points to distinct biological differences, mediated by transcription factors, between distal

regulatory sites and TSSs.

Unbiased maps of sequence-specific regulatory factor binding

The previous section focused on specific positions defined by TSSs or DHSs. We then analysed

sequence-specific transcription factor-binding data in an unbiased fashion. We refer to regions

with enriched binding of regulatory factors as “Regulatory Factor-Binding Regions” (RFBRs).

RFBRs were identified based on ChIP-chip data in two ways: first, each investigator developed

and used their own analysis method(s) to define high-enrichment regions, and second (and

independently), a stringent False Discovery Rate (FDR) method was applied to analyse all data

using three cut-offs (1%, 5%, and 10%). The laboratory-specific and FDR-based methods were

highly correlated, particularly for regions with strong signals10, 11. For consistency, we used

the results obtained using the FDR-based method (see Supplementary Information section

S3.10). These RFBRs can be used to find sequence motifs (see Supplementary Information

section S3.11).

Many RFBRs are associated with the 5′ ends of transcripts

The distribution of RFBRs is non-random (see Zhang et al10) and correlates with the positions

of TSSs. We examined the distribution of specific RFBRs relative to the Known TSSs.

Different transcription factors and histone modifications vary with respect to their association

with TSSs (Figure 6; see Supplementary Information section S3.12 for modelling random

expectation). Factors whose binding sites are most enriched at the 5′ ends of genes include

histone modifications, TAF1, and RNA PolII with hypo-phosphorylated C terminal domain51

— confirming previous expectations. Surprisingly, we found that E2F1, a sequence-specific

factor that regulates the expression of many genes at the G1 to S transition52, is also tightly

associated with TSSs52; this association is as strong as that of TAF1, the well-known TATA

box-binding protein associated factor 153. These results suggest that E2F1 plays a more general

role in transcription than previously suspected, similar to that for cMyc54–56. for which the

large-scale assays did not support the promoter binding that was found in smaller-scale studies

(for example, on SIRT1 and SPI1 (PU1)).

Integration of data on sequence-specific factors

We expect that regulatory information is not dispersed independently across the genome, but

rather is clustered into distinct regions57. We refer to regions that contain multiple regulatory

elements as “Regulatory Clusters.” We sought to predict the location of regulatory clusters by

cross-integrating data generated using all transcription-factor and histone-modification assays,

including results falling below an arbitrary threshold in individual experiments. Specifically,

we used four complementary methods to integrate the data from 129 ChIP-chip datasets (see

Supplementary Information section S3.13 and Trinklein et al58). These four methods detect

different classes of regulatory clusters and as a whole identified 1,393 clusters. Of these, 344

were identified by all four methods, with another 500 found by three methods (see

Supplementary Information section S3.13.5). 67% of the 344 regulatory clusters identified by

all four methods (or 65% of the full set of 1,393) reside within 2.5 kb of a Known or Novel

TSS (as defined above; see Table 3 and Supplementary Information section S3.14 for a

breakdown by category). Restricting this analysis to previously-annotated TSSs (for example,

RefSeq or Ensembl) reveals that roughly 25% of the regulatory clusters are close to a previously
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identified TSS. These results suggest that many of the regulatory clusters identified by

integrating the ChIP-chip datasets are undiscovered promoters or are somehow associated with

transcription in another fashion. To test these possibilities, sets of 126 and 28 non-GENCODE-

based regulatory clusters were tested for promoter activity (see Supplementary Information

section S3.15) and by RACE, respectively. These studies revealed that 24.6% of the 126 tested

regulatory clusters had promoter activity and that 78.6% of the 28 regulatory clusters analyzed

by RACE yielded products consistent with a TSS58. The ChIP-chip datasets were generated

on a mixture of cell lines, predominantly HeLa and GM06990, and different from the CAGE/

diTag data, meaning that tissue specificity contribute to the presence unique TSSs and

regulatory clusters. The large increase in promoter-proximal regulatory clusters identified by

including the additional Novel TSSs coupled with the positive promoter and RACE assays

suggests that most of the regulatory regions identifiable by these clustering methods represent

bona fide promoters (see Supplementary Information section S3.16). Although the regulatory-

factor assays were more biased towards regions associated with promoters without the more

extensive TSS dataset, many of the sites from these experiments would have previously been

described as distal to promoters. This suggests that commonplace use of RefSeq or Ensembl

based gene definition to define promoter proximity and distal will dramatically over estimate

the number of distal sites.

Predicting TSSs and transcriptional activity based on chromatin structure

The strong association between TSSs and both histone modifications and DHSs prompted us

to investigate whether the location and activity of TSSs could be predicted based solely on

chromatin-structure information. We trained a Support Vector Machine (SVM) by using

histone-modification data anchored around DHSs to discriminate between DHSs near TSSs

and those distant from TSSs. We used a selected 2,573 DHSs, split roughly between TSS-

proximal DHSs and TSS-distal DHSs, as a training set. The SVM performed well, with an

accuracy of 83% (see Supplementary Information section S3.17). Using this SVM, we then

predicted new TSSs using information about DHSs and histone modifications— of 110 high-

scoring predicted TSSs, 81 resided within 2.5 kb of a Novel TSS. As expected, these show a

significant overlap to the novel TSS groups (defined above) but without a strong bias towards

any particular category (see Supplementary Information section 3.17.1.5).

To investigate the relationship between chromatin structure and gene expression, we examined

transcript levels in two cell lines using a transcript-tiling array. We compared this transcript

data with the results of ChIP-chip experiments that measured histone modifications across the

ENCODE regions. From this, we developed a variety of predictors of expression status using

chromatin modifications as variables; these were derived using both Decision Trees and SVMs

(see Supplementary Information section S3.17). The best of these correctly predicts expression

status (transcribed vs. non-transcribed) in 91% of cases. This success rate did not decrease

dramatically when the predicting algorithm incorporated the results from one cell line to predict

the expression status of another cell line. Interestingly, despite the striking difference in

histone-modification enrichments in TSSs residing near versus those more distal to CpG islands

(see Figure 5 and Supplementary Information section S3.6), including information about the

proximity to CpG islands did not improve the predictors. This suggests that despite the marked

differences in histone modifications among these TSS classes, a single predictor can be made,

using the interactions between the different histone modification levels.

In summary, we have integrated many datasets to provide a more complete view of regulatory

information, both around specific sites (TSSs and DHSs) and in an unbiased manner. Based

on analysing multiple datasets, we find 4,491 Known and Novel TSSs in the ENCODE regions,

almost ten-fold more than the number of established genes. This large number of TSSs might

explain the extensive transcription described above; it also begins to change our perspective
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about regulatory information – without such a large TSS catalogue, many of the regulatory

clusters would have been classified as residing distal to promoters. In addition to this revelation

about the abundance of promoter-proximal regulatory elements, we also identified a

considerable number of putative distal regulatory elements, particularly based on the presence

of DHSs. Our study of distal regulatory elements was probably most hindered by the paucity

of data generated using distal element-associated transcription factors; nevertheless, we clearly

detected a set of distal DHS-associated segments bound by CTCF or cMyc. Finally, we showed

that information about chromatin structure alone could be used to make effective predictions

about both the location and activity of TSSs.

Replication

Overview

DNA replication must be carefully coordinated, both across the genome and with respect to

development. On a larger scale, early replication in S phase is broadly correlated with gene

density and transcriptional activity59–66; however, this relationship is not universal, as some

actively transcribed genes replicate late and vice versa61, 64–68. Importantly, the relationship

between transcription and DNA replication emerges only when the signal of transcription is

averaged over a large window (>100 kb)63, suggesting that larger-scale chromosomal

architecture may be more important than the activity of specific genes69.

The ENCODE Project provided an unique opportunity to examine whether individual histone

modifications on human chromatin can be the correlated with the time of replication and

whether such correlations support the general relationship of active, open chromatin with early

replication. Our studies also tested whether segments showing interallelic variation in time of

replication have two different types of histone modifications consistent with an interallelic

variation in chromatin state.

Experimental DNA-replication dataset

We mapped replication timing across the ENCODE regions by analysing Brd-U-labelled

fractions from synchronised HeLa cells (collected at 2-hour intervals throughout S-phase) on

tiling arrays (see Supplementary Information section 4.1). Although the HeLa cell line has a

considerably altered karytope, correlation of this data with other cell line data (see below)

suggests the results are relevant to other cell types. The results are expressed as the time at

which 50% of any given genomic position is replicated (TR50), with higher values signifying

later replication times. In addition to the five ‘activating’ histone marks, we also correlated the

TR50 with H3K27me3, a modification associated with polycomb-mediated transcriptional

repression70–74. To provide a consistent comparison framework, the histone data was

smoothed to 100 kb, and then correlated with the TR50 data by a sliding window correlation

analysis (see Supplementary Information section S4.2). The continuous profiles of the

activating marks, histone H3K4 mono-, di-, and tri-methylation and histone H3 and H4

acetylation, are generally anti-correlated with the TR50 signal (Figure 7a and Supplementary

Information section S4.3). In contrast, H3K27me3 marks show a predominantly positive

correlation with late-replicating segments (Figure 7a; see Supplementary Information section

4.3 for additional analysis).

While most genomic regions replicate in a temporally specific window in S phase other regions

demonstrate an atypical pattern of replication (Pan-S) where replication signals are seen in

multiple parts of S phase. We have suggested that such a pattern of replication stems from

interallelic variation in the chromatin structure59, 75. If one allele is in active chromatin and

the other in repressed chromatin, both types of modified histones are expected to be enriched

in the Pan-S segments. An ENCODE region was classified as non-specific (or Pan-S) regions
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when >60% of the probes in a 10 kb window replicated in multiple intervals in S phase. The

remaining, regions were sub-classified into early, mid, or late replicating based on the average

TR50 of the temporally-specific probes within a 10kb window75. For regions of each class of

replication timing, we determined the relative enrichment of various histone-modification

peaks in HeLa cells (Figure 7b; Supplemental material S4.4). The correlations of activating

and repressing histone-modification peaks with TR50) are confirmed by this analysis (Figure

7b). Intriguingly, the Pan-S segments are unique in being enriched for both activating

(H3K4me2, H3ac, and H4ac) and repressing (H3K27me3) histones, consistent with the

suggestion that the Pan-S replication pattern arises from interallelic variation in chromatin

structure and time of replication75. This observation is also consistent with the Pan-S

replication pattern seen for the H19/IGF2 locus, a known imprinted region with differential

epigenetic modifications across the two alleles76.

The extensive rearrangements in the genome of HeLa cells led us to ask whether the detected

correlations between TR50 and chromatin state are seen with other cell lines. The histone-

modification data with GM06990 cells allowed us to test whether the time of replication of

genomic segments in HeLa cells correlated with the chromatin state in GM06990 cells. Early-

and late-replicating segments in HeLa cells are enriched and depleted, respectively, for

activating marks in GM06990 cells (Figure 7b). Thus, despite the presence of genomic

rearrangements (see Supplementary Information section S2.12), the TR50 and chromatin state

in HeLa cells are not far from a constitutive baseline also seen with a cell line from a different

lineage. The enrichment of multiple activating histone modifications and the depletion of a

repressive modification from segments that replicate early in S phase extends previous work

in the field at a level of detail and scale not attempted before in mammalian cells. The duality

of histone modification patterns in Pan-S areas of the HeLa genome, and the concordance of

chromatin marks and replication time across two disparate cell lines (HeLa and GM06990)

show the coordination of histone modifications with replication in the human genome.

Chromatin architecture and genomic domains

Overview

The packaging of genomic DNA into chromatin is intimately connected with the control of

gene expression and other chromosomal processes. We next examined chromatin structure

over a larger scale to ascertain its relation to transcription and other processes. Large domains

(50 to >200 kb) of generalised DNaseI sensitivity have been detected around developmentally-

regulated gene clusters77, prompting speculation that the genome is organised into ‘open’ and

‘closed’ chromatin territories that represent higher-order functional domains. We explored how

different chromatin features, particularly histone modifications, correlate with chromatin

structure, both over short and long distances.

Chromatin accessibility and histone modification

We used histone modification studies and DNaseI sensitivity datasets introduced above to

examine general chromatin accessibility without focusing on the specific DHS sites (see

Supplementary Information sections S3.1, S3.3, and S3.4). A fundamental difficulty in

analysing continuous data across large genomic regions is determining the appropriate scale

for analysis (e.g, 2 kb, 5 kb, 20 kb, etc.). To address this problem, we developed an approach

based on wavelet analysis, a mathematical tool pioneered in the field of signal processing that

has recently been applied to continuous-value genomic analyses. Wavelet analysis provides a

means for consistently transforming continuous signals into different scales, enabling the

correlation of different phenomena independently at differing scales in a consistent manner.
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Global correlations of chromatin accessibility and histone modifications

We computed the local correlation between DNaseI sensitivity and each histone modification

at multiple scales using a wavelet approach (Figure 8 and Supplementary Information section

S4.2). To make quantitative comparisons between different histone modifications, we

computed histograms of correlation values between DNaseI sensitivity and each histone

modification at several scales and then tested these for significance at specific scales. Figure

8c shows the distribution of correlation values at a 16-kb scale, which is considerably larger

than individual cis-acting regulatory elements. At this scale, H3K4me2, H3K4me3, and H3ac

show similarly high correlation. However, they are significantly distinguished from H3K4me1

and H4ac modifications (P<1.5 ×10-33; see Supplementary Information section S4.5), which

show lower correlation with DNaseI sensitivity. These results suggest that larger-scale

relationships between chromatin accessibility and histone modifications are dominated by sub-

regions in which higher average DNaseI sensitivity is accompanied by high levels of

H3K4me2, H3K4me3, and H3ac modifications.

Local correlations of chromatin accessibility and histone modifications

Narrowing to a scale of ~2 kb revealed a more complex situation, in which H3K4me2 is the

histone modification that is best correlated with DNaseI sensitivity. However, there is no clear

combination of marks that correlate with DNaseI sensitivity in a way that is analogous to that

seen at a larger scale (Supplementary Information section S4.3). One explanation for the

increased complexity at smaller scales is that there is a mixture of different classes of accessible

chromatin regions, each having a different pattern of histone modifications. To examine this,

we computed the degree to which local peaks in histone methylation or acetylation occur at

DHSs (see Supplementary Information section S4.5.1). We found that 84%, 91%, and 93% of

significant peaks in H3K4 mono-, di-, and tri-methylation, respectively, and 93% and 81% of

significant peaks in H3ac and H4ac acetylation, respectively, coincided with DHSs (see

Supplementary Information section S4.5). Conversely, a proportion of DHSs seemed not to be

associated with significant peaks in H3K4 mono-, di-, or tri-methylation (37%, 29%, and 47%,

respectively), nor with peaks in H3 or H4 acetylation (both 57%). Because only a limited

number of histone modification marks were assayed, the possibility remains that some DHSs

harbour other histone modifications. The absence of a more-complete concordance between

DHSs and peaks in histone acetylation is surprising given the widely accepted notion that

histone acetylation plays a central role in mediating chromatin accessibility by disrupting

higher-order chromatin folding.

DNA structure at DHSs

The observation that distinctive hydroxyl radical-cleavage patterns are associated with specific

DNA structures78 prompted us to investigate whether DHS subclasses differed with respect

to their local DNA structure. Conversely, because different DNA sequences can give rise to

similar hydroxyl radical-cleavage patterns79, genomic regions that adopt a particular local

structure do not necessarily have the same nucleotide sequence. Using a Gibbs-sampling

algorithm on hydroxyl radical cleavage patterns of 3,150 DHSs80, we discovered an 8-base

segment with a conserved cleavage signature (CORCS; see Supplementary Information section

S4.6). The underlying DNA sequences that give rise to this pattern have little primary sequence

similarity despite this similar structural pattern. Further, this structural element is strongly

enriched in promoter-proximal DHSs (11.3-fold enrichment compared to the rest of the

ENCODE regions) relative to promoter-distal DHSs (1.5-fold enrichment); this element is

enriched 10.9 fold in CpG islands, but is higher still (26.4 fold) in CpG islands that overlap a

DHS.
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Large-scale domains in the ENCODE regions

The presence of extensive correlations seen between histone modifications, DNaseI sensitivity,

replication, transcript density, and protein factor-binding led us to investigate whether all these

features are organised systematically across the genome. To test this, we performed an

unsupervised training of a two-state hidden Markov model (HMM) with inputs from these

different features (see Supplementary Information section S4.7 and Thurman et al81). No other

information except for the experimental variables was used for the HMM-training routines.

We consistently found that one state (‘active’) generally corresponded to domains with high

levels of H3ac and RNA transcription, low levels of H3K27me3 marks, and early replication

timing, whereas the other state (‘repressed’) reflected domains with low H3ac and RNA, high

H3K27me3, and late replication. (See Figure 9.) In total, we identified 70 active regions

spanning 11.4 Mb and 82 inactive regions spanning 17.8 Mb (median size 136 kb vs 104 kb

respectively). The active domains are markedly enriched for GENCODE TSSs, CpG islands

and Alu repetitive elements (P<0.0001 for each), while repressed regions are significantly

enriched for LINE1 and LTR transposons (P<0.001). Taken together, these results demonstrate

remarkable concordance between ENCODE functional data types and provide a view of higher-

order functional domains defined by a broader range of factors at markedly higher resolution

than previously available82.

Evolutionary and population-genetic insights into genome function

Overview

Functional genomic sequences can also be identified by examining evolutionary changes across

multiple extant species and within the human population. Indeed, such studies complement

experimental assays that identify specific functional elements83–85. Evolutionary constraint

(i.e., the rejection of mutations at a particular location) can be measured by either (i) comparing

observed substitutions to neutral rates calculated from multi-sequence alignments 86–88, or

(ii) determining the presence and frequency of intra-species polymorphisms. Importantly, both

approaches are indifferent to any specific function that the constrained sequence might confer.

Previous studies comparing the human, mouse, rat, and dog genomes examined bulk

evolutionary properties of all nucleotides in the genome, and provided little insight about the

precise positions of constrained bases. Interestingly, these studies indicated that the majority

of constrained bases reside within the non-coding portion of the human genome. Meanwhile,

increasingly rich datasets of polymorphisms across the human genome have been used

extensively to establish connections between genetic variants and disease, but far fewer

analyses have sought to use such data for assessing functional constraint85.

The ENCODE Project provides an excellent opportunity for more fully exploiting inter- and

intra-species sequence comparisons to examine genome function in the context of extensive

experimental studies on the same regions of the genome. We consolidated the experimentally-

derived information about the ENCODE regions and focused our analyses on 11 major classes

of genomic elements. These classes are listed in Table 4 and include two non-experimentally-

derived datasets: Ancient Repeats (ARs; mobile elements that inserted early in the mammalian

lineage, have subsequently become dormant, and are assumed to be neutrally evolving) and

Constrained Sequences (CSs; regions that evolve detectably more slowly than neutral

sequences).

Comparative sequence analysis

We generated 206 Mb of genomic sequence orthologous to the ENCODE regions from 14

mammalian species using a targeted strategy that involved isolating89 and sequencing90

individual bacterial artificial-chromosome (BAC) clones. For an additional 14 vertebrate
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species, we utilised 340 Mb of orthologous genomic sequence derived from genome-wide

sequencing efforts3–8, 91–93. The orthologous sequences were aligned using three alignment

programs: TBA94, MAVID95, and MLAGAN96. Four independent methods that generated

highly concordant results97 were then used to identify sequences under constraint

(PhastCons88, GERP87, SCONE98, and BinCons86). From these analyses, we developed a

high-confidence set of ‘constrained sequences’ that correspond to 4.9% of the nucleotides in

the ENCODE regions. The threshold for determining constraint was set using a fixed false

discovery (FDR) rate of 5% (see Margulies et al97); this level is similar to previous estimates

of the fraction of the human genome under mammalian constraint4, 86–88 but the FDR rate

was not chosen to fit this result. The median length of these constrained sequences is 19 bases,

with the minimum being 8 bases – roughly the size of a typical transcription factor-binding

site. These analyses, therefore, provide a resolution of constrained sequences that is

substantially better than that currently available using only whole-genome vertebrate

sequences99–102.

Intra-species variation studies mainly used single-nucleotide polymorphism (SNP) data from

Phases I and II, and the 10 resequenced regions in ENCODE regions with 48 individuals of

the HapMap Project103, nucleotide insertion or deletion (indel) data were from the SNP

Consortium and HapMap. We also examined the ENCODE regions for the presence of overlaps

with known segmental duplications104 and copy-number variants (CNVs).

Experimentally-identified functional elements and constrained sequences

We first compared the detected constrained sequences with the positions of experimentally-

identified functional elements. A total of 40% of the constrained bases reside within protein-

coding exons and their associated untranslated regions (Figure 10) and, in agreement with

previous genome-wide estimates, the remaining constrained bases do not overlap the mature

transcripts of protein-coding genes4, 5, 88, 105, 106. When we included the other experimental

annotations, we found that an additional 20% of the constrained bases overlap experimentally-

identified non-coding functional regions, although far fewer of these regions overlap

constrained sequences compared to coding exons (see below). Most experimental annotations

are significantly different from a random expectation for both base-pair or element-level

overlaps (using the GSC statistic, see Supplementary Information section S1.3), with a more

striking deviation when considering elements (Figure 11). The exceptions to this are

pseudogenes, Un.TxFrags, and RxFrags. The increase in significance moving from base-pair

measures to the element level suggests that discrete islands of constrained sequence exist within

experimentally-identified functional elements, with the surrounding bases apparently not

showing evolutionary constraint. This notion is discussed in greater detail in Margulies et

al97.

We also examined measures of human variation (heterozygosity, derived allele-frequency

spectra, and indel rates) within the sequences of the experimentally-identified functional

elements (Figure 12). For these studies, ARs were used as a marker for neutrally evolving

sequence. Most experimentally-identified functional elements are associated with lower

heterozygosity compared to ARs, and a few have lower indel rates compared to ARs. Striking

outliers are 3′ UTRs, which have dramatically increased indel rates without an obvious cause.

This is discussed in more depth in Clark et al107.

These findings indicate that the majority of the evolutionarily-constrained, experimentally-

identified functional elements show evidence of negative selection both across mammalian

species and within the human population. Furthermore, we have assigned at least one molecular

function to the majority (60%) of all constrained bases in the ENCODE regions.

Page 16

Nature. Author manuscript; available in PMC 2008 January 24.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Conservation of regulatory elements

The relationship between individual classes of regulatory elements and constrained sequences

varies considerably, ranging from cases where there is strong evolutionary constraint (for

example, pan-vertebrate ultraconserved regions108, 109) to examples of regulatory elements

that are not conserved between orthologous human and mouse genes110. Within the ENCODE

regions, 55% of RFBRs overlap the high-confidence constrained sequences. As expected,

RFBRs have many unconstrained bases, presumably due to the small size of the specific

binding site. We investigated whether the binding sites in RFBRs could be further delimited

using information about evolutionary constraint. For 7 of 17 factors with either known

TRANSFAC or Jaspar motifs, our ChIP-chip data revealed a marked enrichment of the

appropriate motif within the constrained versus the unconstrained portions of the RFBRs (see

Supplementary Information section S5.1). This enrichment was seen for at levels of stringency

used for defining ChIP-chip-positive sites (1% and 5% FDR level), indicating that combining

sequence constraint and ChIP-chip data may provide a highly sensitive means for detecting

factor-binding sites in the human genome.

Genetic variation and experimentally-identified functional elements

The above studies focus on purifying (negative) selection. We used nucleotide variation to

detect potential signals of adaptive (positive) selection. We modified the standard McDonald-

Kreitman test (MK-test111, 112) and the Hudson-Kreitman-Aguade (HKA)113 test

(Supplementary Information section S5.2.1), to examine whether an entire set of sequence

elements shows an excess of polymorphisms or an excess of inter-species divergence. We

found that constrained sequences and coding exons have an excess of polymorphisms

(consistent with purifying selection), while 5′UTRs show evidence of an excess of divergence

(with a portion likely reflecting positive selection). In general, non-coding genomic regions

show more variation, with both a large number of segments that undergo purifying selection

and regions that are fast evolving.

We also examined structural variation (i.e., CNVs, inversions, and translocations114;

Supplementary Information section S5.2.2). Within these polymorphic regions, we

encountered significant overrepresentation of CDSs, TxFrags, and intra-species constrained

sequences (P<10−3, Figure 13), and also detected a statistically significant under-representation

of ARs (P=10−3). A similar over-representation of CDSs and intra-species constrained

sequences was found within non-polymorphic segmental duplications.

Unexplained constrained sequences

Despite the wealth of complementary data, 40% of the ENCODE-region sequences identified

as constrained are not associated with any experimental evidence of function. There no

evidence indicating that mutational cold spots account for this constraint; they have similar

measures of constraint to experimentally-identified elements and harbour equal proportions of

SNPs. To further characterise the unexplained constrained sequences, we examined their

clustering and phylogenetic distribution. These sequences are not uniformly distributed across

most ENCODE regions, and even in most ENCODE regions the distribution is different from

constrained sequences within experimentally-identified functional elements (see

Supplementary Information section S5.3). The large fraction of constrained sequence that does

not match any experimentally-identified elements is not surprising considering that only a

limited set of transcription factors, cell lines, and biological conditions have thus far been

examined.
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Unconstrained experimentally-identified functional elements

In contrast, an unexpectedly large fraction of experimentally-identified functional elements

show no evidence of evolutionary constraint ranging from 93% for Un.TxFrags to 12% for

CDS. For most types of non-coding functional elements, roughly 50% of the individual

elements appeared to be unconstrained across all mammals.

There are two methodological reasons that might explain the apparent excess of unconstrained

experimentally-identified functional elements: the underestimation of sequence constraint or

overestimation of experimentally-identified functional elements. We do not believe that either

of these explanations fully accounts for the large and varied levels of unconstrained

experimentally functional sequences. The set of constrained bases analysed here is highly

accurate and complete due to the depth of the multiple alignment. Both by bulk fitting

procedures and by comparison of SNP frequencies to constraint there is clearly a proportion

of constrained bases not captured in the defined 4.9% of constrained sequences, but it is small

(see Supplementary Information section S5.4 and S5.5). More aggressive schemes to detect

constraint only marginally increase the overlap with experimentally-identified functional

elements, and do so with considerably less specificity. Similarly, all experimental findings

have been independently validated and, for the least constrained experimentally-identified

functional elements (Un.TxFrags and binding sites of sequence-specific factors), there is both

internal validation and cross-validation from different experimental techniques. This suggests

that there is not likely a significant overestimation of experimentally-identified functional

elements. Thus, these two explanations may contribute to the general observation about

unconstrained functional elements, but cannot fully explain it.

Instead, we hypothesize five biological reasons to account for the presence of large amounts

of unconstrained functional elements. The first two are particular to certain biological assays,

where the elements being measured are connected to but do not perfectly coincide with the

analysed region. An example of this is the parent transcript of an miRNA, where the current

assays detect the exons (some of which are not under evolutionary selection), whereas the

intronic miRNA actually harbours the constrained bases. Nevertheless, the transcript sequence

provides the critical coupling between the regulated promoter and the miRNA. The sliding of

transcription factors (which might bind a specific sequence but then migrate along the DNA)

or the processivity of histone modifications across chromatin are more exotic examples of this.

A related, second hypothesis is that delocalised behaviours of the genome, such a general

chromatin accessibility, may be maintained by some biochemical processes (such as

transcription of intergenic regions or specific factor binding) without the requirement for

specific sequence elements. These two explanations of both connected components and diffuse

components related to, but not coincident with, constrained sequences are particularly relevant

for the considerable amount of unannotated and unconstrained transcripts.

The other three hypotheses may be more general. - the presence of neutral (or near neutral)

biochemical elements, of lineage-specific functional elements, and of functionally conserved

but non-orthologous elements. We believe there are a considerable proportion of neutral

biochemically active elements that do not confer a selective advantage or disadvantage to the

organism. This neutral pool of sequence elements may turn over during evolutionary time,

emerging via certain mutations and disappearing by others. The size of the neutral pool would

largely be determined by the rate of emergence and extinction via chance events; low

information-content elements, such as transcription factor-binding sites110 will have larger

neutral pools. Second, from this neutral pool, some elements might occasionally acquire a

biological role and so come under evolutionary selection. The acquisition of a new biological

role would then create a lineage-specific element. Finally, a neutral element from the general

pool could also become a peer of an existing selected functional element and either of the two

elements could then be removed by chance. If the older element is removed, the newer element
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has, in essence, been conserved without using orthologous bases, providing a conserved

function in the absence of constrained sequences. For example, a common HNF4A binding

site in the human and mouse genomes may not reflect orthologous human and mouse bases,

though the presence of an HNF4A site in that region was evolutionarily selected for in both

lineages. Note that both the neutral turnover of elements and the ‘functional peering’ of

elements has been suggested for cis-acting regulatory elements in Drosophila115, 116 and

mammals110. Our data support these hypotheses, and we have generalized this idea over many

different functional elements. The presence of conserved function encoded by conserved

orthologous bases is a commonplace assumption in comparative genomics; our findings

suggest that there could be a sizable set of functionally-conserved but non-orthologous

elements in the human genome, and that these seem unconstrained across mammals. Functional

data akin to the ENCODE Project on other related species, such as mouse, would be critical to

understanding the rate of such functionally-conserved but non-orthologous elements.

Conclusion

The generation and analyses of over 200 experimental datasets from studies examining the 44

ENCODE regions provide a rich source of functional information for 30 Mb of the human

genome. The first conclusion of these efforts is that these data are remarkably informative.

Although there will be on going work to enhance existing assays, invent new techniques, and

develop new data-analysis methods, the generation of genome-wide experimental datasets akin

to the ENCODE pilot phase would provide an impressive platform for future genome-

exploration efforts. This now seems feasible in light of throughput improvements of many of

the assays and the ever-declining costs of whole-genome tiling arrays and DNA sequencing.

Such genome-wide functional data should be acquired and released openly, as has been done

with other large-scale genome projects, to ensure its availability to as a new foundation for all

biologists studying the human genome. It is these biologists who will often provide the critical

link from biochemical function to biological role for the identified elements.

The scale of the pilot phase of the ENCODE Project was also sufficiently large and unbiased

to reveal important principles about the organisation of functional elements in the human

genome. In many cases, these principles agree with current mechanistic models. For example,

trimethylation of H3K4 is enriched near active genes, which we have further refined to the

ability to accurately predict gene activity based on histone modifications. However, we also

uncovered some surprises that challenge the current dogma on biological mechanisms. The

generation of numerous intercalated transcripts spanning the majority of the genome has been

repeatedly suggested13, 14, but this phenomenon has been met with mixed opinions about the

biological importance of these transcripts. Our analyses of numerous orthogonal datasets firmly

establish the presence of these transcripts, and thus the simple view of the genome as having

a defined set of isolated loci transcribed independently does not appear to be accurate. Perhaps

the genome encodes a network of transcripts, many of which are linked to protein-coding

transcripts and the majority of which we cannot (yet) assign a biological role. Our perspective

of transcription and genes may have to evolve and also poses some interesting mechanistic

questions. For example, how are splicing signals coordinated and used when there are so many

overlapping primary transcripts? Similarly, to what extent does this reflect neutral turnover of

reproducible transcripts with no biological role?

We gained subtler but equally important mechanistic findings relating to transcription,

replication, and chromatin modification. Transcription factors previously thought to primarily

bind promoters are more general, and those which do bind to promoters are equally likely to

be downstream of a TSS as upstream. Interestingly, many elements that previously were

classified as distal enhancers are, in fact, close to one of the newly-identified TSSs; only about

35% of sites showing evidence of binding by multiple transcription factors are actually distal
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to a TSS. This need not imply that most regulatory information is confined to classic promoters,

but rather it does suggest that transcription and regulation are coordinated actions beyond just

the traditional promoter sequences. Meanwhile, while distal regulatory elements could be

identified in the ENCODE regions, they are currently difficult to classify, in part due to the

lack of a broad set of transcription factors to use in analyzing such elements. Finally, we now

have a much better appreciation about how DNA replication is coordinated with histone

modifications.

At the outset of the ENCODE Project, many believed that the broad collection of experimental

data would nicely dovetail with the detailed evolutionary information derived from comparing

multiple mammalian sequences to provide a neat ‘dictionary’ of conserved genomic elements,

each with a growing annotation about their biochemical function(s). In one sense, this was

achieved; the majority of constrained bases in the ENCODE regions are now associated with

at least some experimentally-derived information about function. However, we have also

encountered a remarkable excess of unconstrained experimentally-identified functional

elements, and these cannot be dismissed for technical reasons. This is perhaps the biggest

surprise of the pilot phase of the ENCODE Project, and suggests that we take a more ‘neutral’

view of many of the functions conferred by the genome.

Methods

The methods are described in the Supplementary Information, with more technical details for

each experiment often found in the references provided in Table 1. The Supplement sections

are arranged in the same order as the manuscript (with similar headings to facilitate cross-

referencing). The first page of the Supplement also has an index to aid navigation. Raw data

are available in ArrayExpress, GEO, or EMBL/GenBank archive as appropriate, as detailed in

Supplementary Information section S1.1. Processed data are also presented in a user-friendly

manner at the UCSC Genome Browser’s ENCODE portal (http://genome.ucsc.edu/

ENCODE/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1: Frequently used abbreviations in this paper

AR  

Ancient Repeat. A repeat that was inserted into the early mammalian lineage and

has since become dormant. The majority of ancient repeats are thought to be

neutrally evolving.

CAGE tag  

A short sequence from the 5′ end of a transcript

CDS  

Coding sequence. Region of a cDNA or genome which encodes proteins

ChIP-chip  

Chromatin immunoprecipitation followed by detection of the products using a

genomic tiling array

CNV  

‘Copy Number Variants’ Regions of the genome which have large duplications

in some individuals in the human population

CS  

‘Constrained Sequence;’ a genomic region associated with evidence of negative

selection (i.e., rejection of mutations relative to neutral regions)

DHS  

‘DNaseI Hypersensitive Site’ A region of the genome showing a sharply different

sensitivity to DNaseI compared to its immediate locale

EST  

‘Expressed Sequence Tag’ A short sequence of a cDNA indicative of expression

at this point

FAIRE  

‘Formaldehyde Assisted Isolation of Regulatory Elements’ A method to assay

open chromatin using Formaldehyde crosslinking followed by detection of the

products using a genomic tiling array

FDR  

‘False Discovery Rate’ A statistical method for setting thresholds on statistical

tests to correct for multiple testing.

GENCODE  

Integrated annotation of existing cDNA and protein resources to define

transcripts with both manual review and experimental testing procedures

GSC  
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‘Genome Structure Correction’ A method to adapt statistical tests to make fewer

assumptions about the distribution of features on the genome sequence. This

provides a conservative correction to standard tests

HMM  

‘Hidden Markov Model;’ a machine-learning technique that can establish optimal

parameters for a given model to explain the observed data

Indel  

An insertion or deletion; two sequences often show a length differences within

alignments, but it is not always clear whether this reflects a previous insertion or

a deletion

PET tag  

A short sequence that contains both the 5′ and 3′ ends of a transcript

RACE  

‘Rapid Amplification of cDNA Ends;’ a technique for amplifying cDNA

sequences between a known internal position in a transcript and its 5′ end

RFBR  

‘Regulatory Factor Binding Region;’ a genomic region found by a ChIP-chip

assay to be bound by a protein factor

RFBR-Seqsp 

Regulatory Factor Binding Regions which are from sequence specific binding

factors

RT-PCR  

‘Reverse Transcriptase Polymerase Chain Reaction;’ a technique for amplifying

a specific region of a transcript

RxFrag  

A ‘Fragment of a RACE Reaction;’ a genomic region found to be present in a

RACE product via an unbiased tiling-array assay

SNP  

‘Single Nucleotide Polymorphism’ a single base pair change between two

individuals in the human population

STAGE  

‘Sequence Tag Analysis of Genomic Enrichment’ A method similar to Chip/Chip

for detecting protein factor binding regions but utilising short sequence

determination rather than genomic tiling arrays

SVM  

‘Support Vector Machine;’ a machine-learning technique that can establish an

optimal classifier based on labelled training data

TR50  

A measure of replication timing corresponding to the time in the cell cycle when

50% of the cells have replicated their DNA at a specific genomic position

TSS  

‘Transcription Start Site’

TxFrag  
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A ‘Fragment of a Transcript;’ a genomic region found to be present in a transcript

via an unbiased tiling-array assay

Un.TxFrag  

A TxFrag that is not associated with any other functional annotation

UTR  

Untranslated region. Part of a cDNA either at the 5′ or 3′ end which does not

encode a protein sequence
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Figure 1.

Annotated and unannotated TxFrags detected in different cell lines. The proportion of different

types of transcripts detected in the indicated number of cell lines (from 1/11 at the far left to

11/11 at the far right) is shown. The data for annotated and unannotated TxFrags are indicated

separately, and also split into different categories based on GENCODE classification: Exonic,

Intergenic (Proximal being within 5 kb of a gene and Distal being otherwise), Intronic

(Proximal being within 5 kb of an intron and Distal being otherwise), and matching other ESTs

not used in the GENCODE annotation (principally because they were unspliced). The y-axis

indicates the percent of tiling array nucleotides present in that class for that number of tissues.
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Figure 2.

Length of genomic extensions to GENCODE-annotated genes based on RACE experiments

followed by array hybridisations (RxFrags). The indicated bars reflect the frequency of

extension lengths among different length classes. The solid line shows the cumulative

frequency of extensions of that length or greater. Most of the extensions are greater than 50 kb

from the annotated gene (see text for details).
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Figure 3.

Overview of RACE experiments showing a gene fusion. Transcripts emanating from the region

between the DONSON and ATP50 genes. A 330-kb interval of human chromosome 21 (within

ENm005) is shown, which contains four annotated genes: DONSON, CRYZL1, ITSN1, and

ATP50. The 5′ RACE products generated from small intestine RNA and detected by tiling-

array analyses (RxFrags) are shown along the top. Along the bottom is shown the placement

of a cloned and sequenced RT-PCR product that has two exons from the DONSON gene

followed by three exons from the ATP50 gene; these sequences are separated by a 300-kb intron

in the genome. A PET tag shows the termini of a transcript consistent with this RT-PCR

product.
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Figure 4.

Coverage of primary transcripts across ENCODE regions. Three different technologies

[integrated annotation from GENCODE, RACE-array experiments (RxFrags), and PET tags]

were used to assess the presence of a nucleotide in a primary transcript. Use of these

technologies provided the opportunity to have multiple observations of each finding. The

proportion of genomic bases detected in the ENCODE regions associated with each of the

following scenarios is depicted: detected by all three technologies, by two of the three

technologies, by one technology but with multiple observations, and by one technology with

only one observation. Also indicated are genomic bases without any detectable coverage of

primary transcripts.
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Figure 5.

Aggregate signals of tiling-array experiments from either ChIP-chip or chromatin structure

assays, represented for different classes of TSS and DHS. For each plot, the signal was first

normalised with a mean of 0 and standard deviation of 1, and then the normalised scores were

summed at each position for that class of TSS or DHS and smoothed using a kernel density

method (see Supplementary Information section S3.6). For each class of sites there are two

adjacent plots. The left hand plot depicts the data for general factors: FAIRE and DNaseI

sensitivity as assays of chromatin accessibility and H3K4me1, H3K4me2, H3K4me3, H3ac,

and H4ac histone modifications (as indicated); the right hand plot shows the data for additional

factors, namely cMyc, E2F1, E2F4, CTCF, BAF155, and PolII. The columns provide data for

the different classes of TSS class or DHS (unsmoothed data and statistical analysis shown in

Supplementary Information section S3.6).
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Figure 6.

Distribution of RFBRs relative to GENCODE TSSs. Different RFBRs from Sequence Specific

factors (Red) or general factors (Blue) are plotted showing their relative distribution near TSSs.

The x-axis indicates the proportion of TSSs close (within 2.5KB) to the specified factor. The

y-axis indicates the proportion of RFBRs close to TSSs. The size of the circle provides an

indication of the number of RFBRs for each factor. A handful of representative factors are

labelled.
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Figure 7.

Correlation between replication timing and histone modifications. (a) Comparison of two

histone modifications (H3K4me2 and H3K27me3), plotted as enrichment ratio from the Chip-

chip experiments and the time for 50% of the DNA to replicate (TR50), indicated for ENCODE

region ENm006. The colours on the curves reflect the correlation strength in a sliding 250 kb

window. (b) Differing levels of histone modification for different TR50 partitions. The

amounts of enrichment or depletion of different histone modifications in various cell lines are

depicted (indicated along the bottom as ‘Histone mark.Cell line’; GM= GM06990). Asterisks

indicate enrichments/depletions that are not significant based on multiple tests. Each set has

four partitions based on replication timing: Early, Mid, Late, and PanS.
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Figure 8.

Wavelet correlations of histone marks and DNaseI sensitivity. As an example, correlations

between DNaseI sensitivity and H3K4me2 (both in the GM06990 cell line) over a 1.1-Mb

region on chromosome 7 (ENCODE region ENm013) are shown. (a) The relationship between

histone modification H3K4me2 (upper plot) and DNaseI sensitivity (lower plot) is shown for

ENCODE region ENm013. The curves are coloured with the strength of the local correlation

at the 4-kb scale (top dashed line in panel b). (b) The same data as in a are represented as a

wavelet correlation. The y-axis shows the differing scales decomposed by the wavelet analysis

from large to small scale (in kb); the colour at each point in the heatmap represents the level

of correlation at the given scale, measured in a 20-kb window centered at the given position.

(c) Distribution of correlation values at the 16-kb scale between the indicated histone marks

and. The x-axis shows different correlation values. The Y-axis is the density of these correlation

values across ENCODE; all modifications show a peak at a positive-correlation value.
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Figure 9.

Higher-order functional domains in the genome. The general concordance of multiple data

types is illustrated for an illustrative ENCODE region (ENm005). (a) Domains were

determined by simultaneous HMM segmentation of replication time (TR50; black), bulk RNA

transcription (blue), H3K27me3 (purple), H3ac (orange), DHS density (green), and RFBR

density (light blue) measured continuously across the 1.6-Mb ENm005. All data were

generated using HeLa cells. The histone, RNA, DHS, and RFBR signals are wavelet-smoothed

to an approximately 60 kb scale (see Supplementary Information section S4.7). The HMM

segmentation is shown as the blocks labeled “active” and “repressed” and the structure of

GENCODE genes (not used in the training) is shown at the end. (b) Enrichment or depletion

of annotated sequence features (GENCODE TSSs, CpG islands, different types of repetitive

elements, and non-exonic CSs) in active versus repressed domains. Note the marked

enrichment of TSSs, CpG islands, and Alus in active domains, and the enrichment of LINE

and LTRs in repressed domains.
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Figure 10.

Relative proportion of different annotations among constrained sequences. The 4.9% of bases

in the ENCODE regions identified as constrained is subdivided into the portions that reflect

known coding regions, UTRs, other experimentally-annotated regions, and unannotated

sequence.
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Figure 11.

Overlap of constrained sequences and various experimental annotations. (a) A schematic

depiction shows the different tests used for assessing overlap between experimental annotations

and constrained sequences, both for individual bases and for entire regions. (b) Observed

fraction of overlap, depicted separately for bases and regions. The results are shown for selected

experimental annotations. The internal bars indicate 95% confidence intervals of randomised

placement of experimental elements using the GSC methodology to account for heterogeneity

in the datasets. When the bar overlaps the observed value one cannot reject the hypothesis that

these overlaps are consistent with random placements.
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Figure 12.

Relationship between heterozygosity and polymorphic indel rate for a variety of experimental

annotations.. 3′UTRs are an expected outlier for the indel measures due to the presence of low-

complexity sequence (leading to a higher indel rate).

Page 45

Nature. Author manuscript; available in PMC 2008 January 24.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 13.

CNV enrichment. The relative enrichment of different experimental annotations in ENCODE

regions associated with CNVs. CS_non-CDS are constrained sequences outside of coding

regions. A value of 1 or less indicates no enrichment, and values greater than 1 show

enrichment. Starred columns are cases that are significant based on this enrichment being found

in less than 5% of randomisations which matched each element class for length and density of

features.
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Table 1

Summary of types of experimental techniques used in ENCODE
Feature Class Experimental Technique

(s)
Abbreviations References Number of

Experimental
Data Points

Transcription Tiling array, Integrated
annotation

TxFrag, RxFrag, GENCODE Harrow et al 117

Emanuelsson et

al118

Rozowsky et al
19

Kapranov et al
119

63,348,656

5′ Ends of transcripts * Tag sequencing GIS-PET, CAGE Ng et al 121

Carninci et al 13
864,964

Histone modifications Tiling array Histone nomenclature, RFBR† Koch et al 46 4,401,291

Chromatin structure+ QT-PCR, Tiling array DHS, FAIRE Dorschner et al42

Sabo et al43

Crawford et al 44

Giresi et al122

15,318,324

Sequence- specific factors Tiling array, tag
sequencing, Promoter
assays

STAGE, ChIP- Chip, ChIP-
PET, RFBR

Bieda et al 52

Bhinge et al120

Euskirchen et

al11

Rada-Iglesias et

al123

Thurman et al81

Cawley et al 34

Kim et al 41

Kim et al 51

Kim et al 124

Heintzman et

al49

Cooper et al 33

Wei et al 40

324,846,018

Replication Tiling array TR50 Jeon et al 59

Karnani el al75
14,735,740

Computational analysis Computational methods CCI, RFBR Cluster Greenbaum et

al80

Halees & Weng
125

Zhang et al 10

Guigo et al 126

Bajic et al 127

Zheng & Gerstein
128

NA

Comparative sequence

analysis *
Genomic sequencing,
multi- sequence
alignments, computational
analyses

CS Cooper et al 87

Margulies et al 86

Washietl et al26

NA

Polymorphisms* Resequencing, copy
number variation

CNV The International
HapMap

Consortium 103

Stranger et al 129

NA

*
= Not all data generated by ENCODE Project.

+
= Also contains histone modification.

†
= Histone code nomenclature follows the Brno nomenclature as described by Turner130
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Table 2

Bases detected in processed transcripts either as a GENCODE exon, a TxFrag, or as either a GENCODE exon

or a TxFrag.
GENCODE exon TxFrag Either GENCODE exon or TxFrag

Total detectable transcripts 1,776,157 bases (5.9%) 1,369,611 bases (4.6%) 2,519,280 bases (8.4%)
Transcripts detected in tiled regions of
arrays

1,447,192 bases (9.8%) 1,369,611 bases (9.3%) 2,163,303 bases (14.7%)

Percentages are of total bases in ENCODE in the first row and bases tiled in arrays in the second row

Nature. Author manuscript; available in PMC 2008 January 24.
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Table 3

Different categories of TSSs defined on the basis of support from different transcript-survey methods.

Category Transcript survey method No. TSS clusters

(non-redundant)1
P-value2 % singleton clusters3

Known GENCODE 5′ ends 1,730 2e-70 25% (74% overall)
GENCODE sense exons 1,437 6e-39 64%

Novel GENCODE antisense exons 521 3e-8 65%
Unbiased transcription survey 639 7e-63 71%
CpG island 164 4e-90 60%

Unsupported None 2,666 - 83.4%

1
Number of TSS clusters with this support, excluding TSSs from higher categories.

2
Probability of overlap between the transcript support and the Pet/CAGE tags, as calculated by the Genome Structure Correction statistic (see

Supplementary Information section S1.3).

3
Percent of clusters with only one tag. For the Known category this was calculated as the percent of GENCODE 5′ ends with Tag support (25%) or overall

(74%).
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Table 4

Eleven classes of genomic elements subjected to evolutionary and population-genetics analyses.
Abbreviation Description

CDS Coding exons, as annotated by GENCODE

5′UTR 5′ Untranslated region, as annotated by GENCODE

3′ UTR 3′ Untranslated region, as annotated by GENCODE

Un.TxFrag Unannotated region detected by RNA hybridisation to tiling array (i.e., unannotated TxFrag)

RxFrag Region detected by RACE and analysis on tiling array

Pseudogene Pseudogene identified by consensus pseudogene analysis

RFBR Regulatory Factor Binding Region identified by ChIP-chip assay

RFBR-SeqSp Regulatory Factor Binding Region identified only by ChIP-chip assays for factors with known sequence-specificity

DHS DNaseI hypersensitive sites found in multiple tissues

FAIRE Region of open chromatin identified by the FAIRE assay

TSS Transcription start site

AR Ancient repeat inserted early in the mammalian lineage and presumed to be neutrally evolving

CS Constrained sequence identified by analysing multi-sequence alignments

Nature. Author manuscript; available in PMC 2008 January 24.


