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Background:Hepatocellular carcinoma remains the thirdmost common cause

of cancer-related deaths worldwide. Although great achievements have been

made in resection, chemical therapies and immunotherapies, the pathogenesis

andmechanism of HCC initiation and progression still need further exploration.

Necroptosis genes have been reported to play an important role in HCC

malignant activities, thus it is of great importance to comprehensively

explore necroptosis-associated genes in HCC.

Methods:We chose the LIHC cohort from the TCGA, ICGC and GEO databases

for this study. ConsensusClusterPlus was adopted to identify the necroptosis

genes-based clusters, and LASSO cox regression was applied to construct the

prognostic model based on necroptosis signatures. The GSEA and CIBERSORT

algorithms were applied to evaluate the immune cell infiltration level. QPCR

was also applied in this study to evaluate the expression level of genes in HCC.

Results:We identified three clusters, C1, C2 and C3. Compared with C2 and C3,

the C1 cluster had the shortest overall survival time and highest immune score.

The C1 was samples were significantly enriched in cell cycle pathways, some

tumor epithelial-mesenchymal transition related signaling pathways, among

others. The DEGs between the 3 clusters showed that C1 was enriched in cell

cycle, DNA replication, cellular senescence, and p53 signaling pathways. The

LASSO cox regression identified KPNA2, SLC1A5 and RAMP3 as prognostic

model hub genes. The high risk-score subgroup had an elevated expression

level of immune checkpoint genes and a higher TIDE score, which suggested

that the high risk-score subgroup had a lower efficiency of immunotherapies.

We also validated that the necroptosis signatures-based risk-score model had

powerful prognosis prediction ability.
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Conclusion: Based on necroptosis-related genes, we classified patients into 3

clusters, among which C1 had significantly shorter overall survival times. The

proposed necroptosis signatures-based prognosis prediction model provides a

novel approach in HCC survival prediction and clinical evaluation.
KEYWORDS

necroptosis, hepatocellular carcinoma, prognostic model, immunotherapy
evaluation, target therapy
Introduction

Primary liver cancer is ranked the sixth most commonly

diagnosed cancer with almost 906,000 new cases each year.

HCC is the third leading cause of cancer-related death in

2020, responsible for approximately 830,000 deaths

worldwide (1). Hepatocellular carcinoma (HCC), which

accounts for 75%-85% of all primary liver cancer cases, is a

malignant tumor with rapid growth, high mortality and high

recurrence rate after resection (2). Given the high incidence

of HCC, prevention and early diagnosis in the early stage is of

utmost importance (3). It is also urgent for researchers to

investigate novel biomarkers that can help early diagnosis in

the clinic, risk assessment, and the evaluation of therapies

before and after resection.

Necroptosis is a novel type of caspase (cysteinyl aspartate

specific proteinase)-independent programmed cell death that is

mediated by mixed lineage kinase domain-like protein

necrosomes (4), which are comprised of mixed lineage kinase

domain-like protein, receptor-interacting protein kinases 1

(RIPK1) and RIPK3 (5). In this process, the tumor necrosis factor

binds to its receptor (TNFR1), and RIPK1 is activated, which forms

a complex with receptor-interacting serine-threonine kinase 3

(RIPK3) (6). Necroptosis is a series of pathological processes

causing the swelling of organelles, cell membrane perforation

membrane bleb formation and rupture, and the release of

cytoplasmic contents (7), chromatin condensation and

intranucleosomal DNA fragmentation. A growing body of

literatures have reported that necroptosis is also involved in

cancer initiation, progression, immunity, and chemoresistance (8).

Accumulating evidence has revealed that necroptosis genes

play an important role in cancer initiation and progression (9,

10). Necroptosis genes are also involved in tumorigenesis,

distant metastasis and immunosuppression (11). Therefore, a

comprehensive understanding of the mechanism of necroptosis

genes is essential to explore novel approaches for HCC diagnosis

and therapies.

In this analysis, we adopted bioinformatics methods on

necroptosis genes and discovered 3 hub genes linked to
02
necroptosis associated with HCC. A prognostic prediction

model was built based on necroptosis signature-related genes.

Furthermore, we evaluated the clinical characteristics, the

expression level of immune-related genes, and the efficiency

of chemical therapies and immunotherapies between high

and low risk-score subgroups. We also adjusted the

necroptosis gene signature-based prognosis and survival

model, which showed powerful prognosis prediction

efficiency. Our model paves novel ways to establish proper

treatments for HCC clinical evaluation, and offers valuable

assistance with selecting properclinical treatments.
Materials and methods

The Cancer Genome Atlas (TCGA) features genomic,

epigenomic, transcriptomic, and proteomic data, providing

useful information for the discovery of new tumor biological

indicators and anticancer drug targets. We adopted the TCGA

GDC API to fetch the RNA-seq data of liver hepatocellular

carcinoma (LIHC) genomic profiles and corresponding clinical

information (https://tcga-data.nci.nih.gov/tcga/), from which

343 samples were selected. We also downloaded the GSE14520

data from the gene expression omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo), from which 212 LIHC samples

were selected. In addition, we used the International Cancer

Genome Consortium (ICGC)-LIRI-JP (https://www.icgc.gov/)

cohort comprised of 212 LIHC samples. The dataset from

TCGA was treated as the training set, and the LIHC cohort

from ICGC and GSE14520 functioned as verification sets.
Selection of necroptosis-related genes

We identified 74 necroptosis-related genes from the

Molecular Signatures database (MSigDB) (http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp) and the reported literatures.
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Data processing

The transcription RNA-seq data from the TCGA database

were processed by removing the samples that were without (1)

clinical follow-up information (2), clinical survival outcome

information (3), clinical pathological status information and

(4) survival time of less than 30 days. The ensembles were

transformed into gene symbols, and they were averaged by

multiple gene symbol expression. For the GEO dataset, we

downloaded the annotations from the chip platform. The

corresponding gene symbol and the expression level were

averaged over multiple probes mapped to the same gene

symbol based on the platform information.
ConsensusClusterPlus

In order to identify the clusters, we adopted the

ConsensusClusterPlus package on necroptosis genes-based

expression profiles data. The PAM algorithm (http://www-stat.

stanford.edu/tibs/PAM/index.html) and 1-Spearman

correlation” were used as the distance metrics. We applied 500

bootstraps as replicates, and the bootstraps contained 80% of

patients in the training set. The k value was set as 2 to 10. The

optimal classification was identified by calculating the

consistency matrix and consistency cumulative distribution

function. Finally, we determined 3 clusters based on the

expression level of necroptosis genes in the TCGA-LIHC cohort.
Construction of the least absolute
shrinkage and selection operator (LASSO)
Cox regression model

We identified the differently expressed genes (DEGs)

between necroptosis-based clusters with false discovery rate

(FDR)<0.01 and |log2FC|>1. The significant DEGs were

selected (p<0.01). The LASSO cox regression analysis was

adopted to narrow down the range of prognostic genes. In

addition, we calculated the risk-score of each patient by risk-

score=∑bi x Exp i. All patients were classified into high and low

risk-score subgroups.
Kaplan-Meier analysis

We utilized the Kaplan-Meier analysis to evaluate the overall

survival of each patient. For the Kaplan-Meier plotter analysis,

all cohorts of LIHC patients were evaluated by the Kaplan-Meier

plotter (http://kmplot.com/analysis/). The log‐rank tests were
Frontiers in Immunology 03
applied determine to significant differences among the

survival curves.
Tumor immune dysfunction and
rejection (TIDE) algorithm

The TIDE algorithm (http://tide.dfci.harvard.edu/) was

applied to predict the HCC cancer immunotherapy efficiency

to checkpoint blockade based on the gene expression profiles

(12). We evaluated the tumor associated fibroblasts (CAF),

myeloid derived suppressor cells (MDSCs), and the tumor

associated macrophages (TAM), which limit T cell infiltration

in tumors. We also calculated the tumor immune escape

indicators, such as tumor infiltration cytotoxic T lymphocyte

(CTL) dysfunction, and the rejection score of CTLs by

immunosuppressive factors (exclusion).
Gene set enrichment analysis (GSEA)

We adopted the Java-based GSEA (https://www.

broadlnstitute.org/gsea/) application to detect changes in the

expression of target genes, which contains valuable information

about the biological characteristics of genes, the relationships

between gene regulatory networks, and the function and

significance of genes between DEGs. The hallmark database

was adopted to further analyze the enriched signaling pathways

based on DEGs between different subgroups (13).
CIBERSORT and ESTIMATE algorithm

We further employed the CIBERSORT deconvolution

algorithm (https://cibersort.stanford.edu/) to qualify the

abundance of specific immune cells types based on the

transcriptional data of the TCGA-LIHC cohort. The Estimate-,

Immune- and Stromal scores of LIHC samples were calculated

by the ESTIMATE algorithm (https://bioinformatics.

mdanderson.org/estimate/)
Analysis of enriched signaling pathways

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is

a bioinformatics resource pool for linking genomes to biological

functions. To comprehensively explore the molecular functions

of DEGs, we utilized the KEGG analysis on DEGs between

different clusters and recognized the most enriched signaling

pathways. This analysis was performed using the R package
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“clusterProfi ler” (https://bioconductor.org/packages/

clusterProfiler/).
QPCR analysis

Furthermore, genes were determined by real-time qPCR. The

gene sequences were illustrated in supplementary table 1. LO2 and

HepG2 cells lines were cultured at 37°C under 5% CO2 in Dulbecco’s

modified eagle medium with 10% fetal bovine serum, and penicillin-

streptomycin solution (1X). The total RNA was extracted from

human liver cancer cell lines HepG2 and LO2 by the RNeasy mini

kit (QIAGEN, Germany). Total RNA was further reverse transcribed

to cDNA using the HiScript III 1st Strand cDNA Synthesis Kit

(Vazyme, China) according to the manufacturer’s instructions. We

also utilized the ChamQ Universal SYBR qPCR Master Mix kit

(Vazyme, China) and applied biosystems (Quant Studio TMDx).

Next, qPCR was utilized by a fluorescence qPCR instrument (ABI,

Quant Studio TMDx, Thermo Fisher Scientific, Inc.). The target gene

primers were applied in fluorescence quantitative qPCR analysis. The

relative expression of target genes was calculated by fold

change=2-△△CT.
Statistical analysis

We applied the R 4.1.0 (https://www.r-project.org/) to

present the results. We also adopted the Wilcoxon test and

Kruskal–Wallis test to compare the clusters difference. In

addition, we also performed the spearman for correlation

analysis. In the Kaplan-Meier survival analysis, we conducted

the log-rank test. For comparing the different signatures, we

applied the chi-square test and Fisher’s exact test.
Results

Necroptosis-associated genes were
classified into three subgroups with
significant differences

In order to link the necroptosis-associated genes with their

expression, we downloaded the genomic expression information

from the TCGA-LIHC dataset. To comprehensively screen out

the prognosis-associated genes, we adopted the univariate cox

regression analysis on necroptosis genes and identified 25 genes

implicated in HCC prognosis with hazard ratio (HR) and 95%

confidence interval (CI) (Figure 1A). Furthermore, to categorize

these genes according to the prognosis signature, we adopted the

consistent clustering analysis of the expression profiles of 25

prognosis-related necrosis genes included in TCGA-LIHC

samples. The cumulative distribution function plots and the

relative changes in area cumulative distribution function (CDF)
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curve results showed that k=3 could find the optimal grouping

(Figures 1B, C). The plots (k=2 and k=4) in the supplement

figures to confirm that k=3 is optimal (Supplementary

Figures 1A, B). Furthermore, we drew the heatmaps based on

the multiplied relative expression levels in 3 clusters, clusters 1

(C1), cluster 2 (C1), and cluster 3 (C3) (Figure 1D). We further

compared the overall survival time between the 3 clusters, and

figured out that C1 had the shortest survival time compared with

C2 and C3 (p<0.0001) (Figure 1E). We also found out that C1

had the poorest survival compared with C2 and C3 (p<0.0001) in

ICGC dataset and GSE14520 dataset (Figures 1F, G). In

addition, we compared the plotted 25 prognosis-related

necrosis genes in C1, C2 and C3. The results suggested that 22

risk factor genes were highly expressed in C1, which

corresponded with the poorest survival in C1. Three protective

genes were remarkably enriched in C3, which were linked to

longer survival compared with C2 and C3 (Figure 1H). These

results indicated that some of necroptosis genes were prognosis

risk genes and others were prognosis protective genes, which

might function as key regulators in HCC, aiding

prognosis evaluation.
Clinicopathological characteristics
between the 3 clusters

In order to comprehensively describe the distribution of

clinical and pathological features between the 3 clusters, we

evaluated the clinico-pathologic staging information. For the T

stage, C1 showed a significant difference compared with C3

(p<0.0001) and a remarkable difference compared with C2

(p<0.01) (Figure 2A). This phenomenon was also seen for the

pathologic stage (Figure 2B), grade (Figure 2C), age (<60 years

and >60 years) (Figure 2D), gender (Figure 2E), clinical status

(Figure 2F), and clinical stage (Figure 2G). In addition, we found

out that C2 and C3 were significantly different in alcohol

consumption (Figure 2H). We also figured out that the 3

clusters showed no significant difference in N stage, M stage,

viral et iology, fibrosis , v ira l et iology, and fibrosis

(Supplementary Figures 2A−F). We further evaluated the

clinical signatures between the 3 clusters for the ICGA dataset.

The results indicated that the status in C3 was significantly

different compared with C1 (p<0.01) (Supplementary

Figure 2G). There was no significant difference between the 3

clusters in smoking, age or gender (Supplementary

Figures 2H−J).
Association between subtypes and
mutational signatures

In order to better explore the genomic profiles between the 3

clusters, we adopted the tumor molecular signatures across 33
frontiersin.org
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cancers from the TCGA cohort (14), and identified that C1 had a

remarkably higher aneuploidy score (Figure 3A), homologous

recombination defects (Figure 3B), fraction altered (Figure 3C),

and number of segments (Figure 3D), as compared with C3. The

tumor mutation burden was higher in C3 than C2 (Figure 3E).

In addition, we classified patients into five clusters according to

the immune signatures, named as A, B, C, D, and E clusters. We

also compared the proportion difference of the 5 clusters, which

was significantly different in C3 compared with C1 (Figure 3F).

To gain further insights into the correlation between tumor

mutations and tumor subgroups, we evaluated the clusters for

mutations and found abundant somatic mutations, such as

TP53, CTNNB1, CACNA1E, and RB1. The TP53 obtained

higher mutation frequency in C1 (Figure 3G).
Immune signatures and enriched
signaling pathways between the 3
clusters

In order to clarify the differences in the immune

microenvironment between the 3 clusters, we assessed the
Frontiers in Immunology 05
gene expression of immune cells to evaluate their infiltration

level. The CIBERSORT tool was employed to calculate the

relative abundance of immune cells in the 3 clusters. The

results demonstrated that naive B cells, memory B cells,

resting memory CD4+T cells, activated memory CD4+T cells,

helper follicular T cells, Tregs (regulatory T cells), gamma delta

T cells, resting NK cells, monocytes, M0 macrophages, M1

macrophages, M2 macrophages, resting mast cells, and

eosinophils were significantly differently expressed in the 3

clusters in the TCGA-LIHC cohort (Figure 4A). The estimated

proportion of immune score was significantly different between

C1, C2 and C3 in the TCGA-LIHC cohort, and C1 had higher

immune score (Figure 4B). A similar situation occurred in the

ICGC-LIHC cohort (Figures 4C, D). We adopted the GSEA

analysis based on the 3 clusters. We selected candidate genes

from the “Hallmark” database and settled the FDR<0.05

threshold as significantly enriched. The C1 vs C3 were

enriched in 21 signaling pathways, such as myc targets, E2F

targets, G2M checkpoint, and others in the TCGA database

(Supplementary Figure 3A). There were also 25 signaling

pathways that were remarkably enriched in C1 compared with

C3 (Supplementary Figures 3B, C). We further investigated the
A B D

E F

H

C

G

FIGURE 1

Expression landscape of necroptosis-based genes in the TCGA-LIHC cohort. (A) Forest map of necroptosis-related genes with prognostic
significance in the TCGA-LIHC cohort. (B) CDF curve of the TCGA-LIHC cohort samples. (C) Delta area curve of consensus clustering, which
indicates the relative change in area under the CDF curve for each category number k = 2 to k = 10. (D) Heatmap of consensus matrix k = 3 in
the TCGA-LIHC cohort. (E) KM curve of overall survival in three clusters of the TCGA-LIHC cohort. (F) KM curve of overall survival in three
clusters of the ICGC cohort. (G) KM curve of overall survival in three clusters in GSE14520 dataset. (H) Heatmap of expression of necroptosis
genes in 3 clusters of the TCGA-LIHC cohort.
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difference in signaling pathways between the 3 clusters. The

results showed that C1 was almost enriched in cell cycle

activation signaling pathway, thus, we inferred that the

necroptosis genes in C1 were significantly activated in cell

cycle signaling pathways and tumor microenvironment

regulation (Supplementary Figure 3D).
Identification of differently expressed
genes (DEGs) between the 3 clusters and
necroptosis-related hub genes

In order to investigate the DEGs between the 3 clusters, we

employed the “limma” package (FDR<0.01 and |log2FC|>1). We

identified 159 upregulated DEGs and 209 downregulated genes

between C1 and C2. We also recognized 431 upregulated DEGs

and 339 downregulated DEGs between C1 and C3. There were

65 upregulated genes and 46 downregulated genes between C1

and C2 (Figure 5A). Furthermore, we applied the R package

“clusterprofiler” for the genes selected in the previous step. The

KEGG analysis showed that the upregulated DEGs between C1

and C2 were abundantly enriched in cell cycle, DNA replication,

cellular senescence, P53 signaling pathway, and so on. The

upregulated DEGs between C1 and C3 were mainly enriched

in cell cycle signaling pathways and metabolic signaling

pathways. The upregulated DEGs between C2 and C3 were

remarkably enriched in inflammation-associated signaling
Frontiers in Immunology 06
pathways such as IL-17 signaling pathways, NF-kappa B

signaling pathway, viral protein interaction with cytokine and

cytokine receptor, Toll-like receptor signaling pathway, etc.

(Figure 5B). To identify the significant necroptosis DEGs

between the 3 clusters, we used the “limma” package and

ultimately identified 836 genes. Furthermore, we applied

univariate regression analysis and recognized 426 prognosis-

related genes, which included 285 risk factor genes and 141

protective genes (Figure 5C). The LASSO regression analysis was

adopted to process these prognosis-related genes. The trajectory

changes of these independent variable coefficients were shown in

Figure 5D. We obtained 8 genes that could reach the optimal

model (Lambda=0.1041). Then, we performed multivariate

analysis using stepwise logistic regression analysis. Finally, we

identified three prognosis-related necroptosis hub genes:

KPNA2, SLC1A5, and RAMP3 (Figures 5E, F). We

subsequently evaluated their mRNA expression level by qPCR.

The results showed that these genes were highly expressed in the

HepG2 cell line compared with LO2 (Figure 5G).
Necroptosis-related prognosis risk score
evaluation, model construction and
validation

According to the risk assessment score formula, we

calculated the cellular senescence-related signature score of
A B D

E F G H

C

FIGURE 2

Clinicopathological characteristics between 3 clusters in the TCGA and ICGC cohorts (A−F). Clinicopathological features between 3 clusters in
the TCGA-LIHC cohort. The upper part of the tables represents the distribution difference between clusters. The lower part represents
proportions. (G, H). Clinicopathological characteristics of 3 clusters in the ICGC cohort. The upper part of the tables represents the distribution
difference between clusters. The lower part represents proportions. *P<0.05.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.973649
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2022.973649
each sample and normalized them. The risk scores of all samples

in the TCHA-LIHC cohort were listed in Figure 6A. The ROC

analysis of risk-score-based classification showed that the

necroptosis prognostic signature had good predictive capability

and efficiency for the one-year (AUC=0.84), three-year

(AUC=0.73), and five-year (AUC=0.72) periods (Figure 6B).

The high and low risk-score subgroups exhibited significantly

different prognosis; the high risk-score group had poor

prognosis compared with the low risk-score group (p<0.0001)

(Figure 6C). To verify the stability of this model, we performed

the risk score model on the ICGC and GSE14520 cohorts, and

the ROC curves and overall survival curves were illustrated in

Figures 6D−G. We found out that the higher risk-score

subgroup had shorter overall survival time compared with the

lower risk-score subgroup.
Frontiers in Immunology 07
Evaluation of clinicopathological features
between the high and low risk-score
subgroups

The risk score was significantly different for T stage (p=2e-7),

stage (p=6.9e-7), grade (1.7e-8), viral etiology (p=0.0087), status

(p=1.3e-7), and cluster (2.8e-36) (Figures 7A−F). There was no

significant difference in N stage, M stage, fibrosis, age, and

gender (Supplementary Figures 4A−E). Next, we explored the

overall survival time between the high and low risk-score

subgroups for different backgrounds of clinicopathological

characteristics. The results showed that the prognosis of the

high risk-score subgroup is worse than the low risk-score

subgroup for stage I/II, stage III/IV, grade I/II, grade III/IV,

age less than 60 years, age more than 60 years, and male gender.
A B

D E F

G

C

FIGURE 3

Landscapes and genomic mutation features between C1, C2 and C3 in the TCGA-LIHC cohort. (A) Aneuploidy score difference between 3
clusters. (B) Difference in homologous recombination defects between 3 clusters. (C) Fraction-altered percentage difference between 3
clusters. (D) Differences in the number of segments between 3 clusters. (E) Difference in the tumor mutational burden in 3 clusters. (F)
Comparison of the proportions of three molecular subtypes and immune signature-based subtypes A–E clusters in the 3 clusters. (G) Somatic
mutations in the three molecular subtypes (Chi-square test). *P<0.05; **P<0.01; ***P<0.001.
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There was no remarkable difference between the 2 subgroups in

female gender (Figure 7G).
Exploration of differences in
immunotherapies and chemical therapies
between the two subgroups

We further compared the differences in therapies and the

expression of immune checkpoint genes in the TCGA-LIHC

cohort. We found out that the immune checkpoint genes were

significantly highly expressed in the high risk-score subgroup

compared with the low risk-score subgroup (Figure 7H). The

high risk-score subgroup had higher MDSC, exclusion and TIDE

score, which indicated higher tumor immune escape probability

and lower benefits of immune therapies. The CAF and

Dysfunction were much higher in the low risk-score group,

and the TAM.M2 showed no difference between the two

subgroups (Figure 7I). We also investigated the therapy

response between the high and low risk-score subgroups, and

the results showed that the high risk-score subgroup had higher

therapy response rates and therapies sensitive to docetaxel,

cisplatin, cytarabine, and bortezomib (Figure 7J). The

estimated IC50 of paclitaxel was significantly higher in the

high risk-score subgroup compared with the low risk-score

subgroup (Figure 7J). We also explored the relative proportion

of 22 types of immune cells between the 2 subgroups, and the
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results showed that most of the immune cells were significantly

differently expressed in the high risk-score subgroup compared

to the low risk-score subgroup (Supplementary Figure 5A). The

stromal score and ESTIMATE score had higher estimated

proportion in the high risk-score subgroup than the low risk-

score group (Supplementary Figure 5B). The risk-score

subgroups were significantly associated with the immune cell

infiltration numbers (Supplementary Figure 5C). The KEGG

analysis between the high and low risk-score subgroups revealed

that these enriched signaling pathways were positively associated

with cell cycle-related pathways, and they were negatively

correlated with metabolic-associated pathways (Supplementary

Figure 5D). In addition, we also evaluated the correlation ships

between risk score and different drugs estimated IC50, the results

demonstrated that the IC50 of docetaxel, cisplatin, cytarabine,

and bortezomib were significantly negatively correlated with

riskscore. The IC50 of Paclitaxel was positively correlated with

riskscore. However, there was no significant difference between

risk score and Getitinib IC50 (Supplementary Figure 6).
Improvement of prognostic model based
on risk score

In order to quantify the risk assessment and survival

probability of HCC patients, we combined the risk score and

other clinicopathological features to establish a nomogram. The
A B

DC

FIGURE 4

Comparisons of immune cell infiltration level in 3 clusters (A) The infiltration levels of 22 immune cell types between 3 clusters in the TCGA-
LIHC cohort. (B) The ESTIMATE proportion of stromal score, immune score, and ESTIMATE score between 3 clusters in the TCGA-LIHC cohort.
(C) The infiltration level of 22 immune cell types between 3 clusters in the ICGC cohort. (D) The ESTIMATE proportion of stromal score, immune
score, and ESTIMATE score between 3 clusters in the ICGC cohort. *P<0.05; **P<0.01; ***P<0.001.
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results showed that the risk score showed the strongest impact

on survival rate prediction (Figures 8A−C). The calibration

curve estimation model demonstrated that the predictive

capacity of this model for the one-year, three-year and five-

year periods coincided with the standard curve. These results
Frontiers in Immunology 09
indicated that this nomogram possessed powerful survival

prediction ability (Figure 8D). We also adopted the DCA to

estimate the efficiency of this model, and the results suggested

that the risk score and nomogram had a strong ability to predict

overall mortality (Figure 8E).
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FIGURE 5

The DEGs and their enriched signaling pathways between 3 clusters, and DEG-based prognostic model construction (A) Volcano plot of DEGs
between C1 vs C2, C1 vs C3, and C2 vs C3. (B) The upregulated DEGs based enriched signaling pathways in 3 clusters. (C) The volcano plot
showed promising candidates among DEGs between 3 clusters. (D) The trajectory of each independent variable with the change of lambda. (E)
The confidence interval varying under lambda. (F) The LASSO cox regression identified 3 necroptosis-related gene signatures. (G) The qPCR
results showed that the 3 necroptosis-related genes were differently expressed in LO2 and HepG2. The LO2 cell lines and HepG2 cell line were
obtained from ATCC (https://www.atcc.org/). *P<0.05; ***P<0.001.
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Discussion

The initiation and development of HCC is a multistep

process, which includes early virus infection, fibrosis and

hepatic cirrhosis, and eventually HCC (15). Necroptosis has

been reported as a crucial event in cell death that is under

pathophysiological regulation (16). It constitutes a cascade of

reactions, which is triggered by the activation of receptor

interacting protein kinase 3 (RIPK3) and a series of mixed

lineage kinase-like domains (MLKL), which play vital roles in

injury repair, pathological remodeling, chronic inflammation

response, and cancer progression (16). This process, which is a
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form of inflammation-related programmed cell death, may have

evolved into the innate immune mechanism that complements

apoptosis to eliminate pathogens (17, 18). Studies have

uncovered that necroptosis might also be involved in the

innate immune mechanism that achieves cell death to

eliminate pathogens (19). The transformation of apoptosis into

necroptosis has the potential to lead to apoptosis resistance.

Growing studies have reported that necroptosis combined with

immune checkpoint inhibitors (ICIs) remarkably augmented

antitumor capability, even in ICI-resistant tumors (20), where

they play important roles in the tumor microenvironment.

Sirtuin 3 functions as an important mitochondrial stress-
A B

D E F G

C

FIGURE 6

Clinical features and prognosis evaluation between the high and low risk-score subgroups (A) The risk score, living status, and expression landscape of 3
genes (SLC1A5, RAMP3, and KPNA2) in the TCGA-LIHC cohort. (B) Prognosis prediction model based on the 1-year, 3-year and 5-year AUC curves of
these 3 genes (SLC1A5, RAMP3, and KPNA2). (C) Overall survival curves between the high and low risk-score subgroups in the TCGA-LIHC cohort (D−G).
AUC curves and KM curve of different risk scores between different clinicopathological subgroups in ICGC, GSE14520.
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FIGURE 7

Clinical features, prognosis prediction, expression of immune checkpoint genes, immune infiltration score evaluation, and therapeutic response
between the high and low risk-score subgroups (A−F). Risk score difference between the various clinical feature backgrounds (G). Overall
survival prognosis difference between the high and low risk-score subgroups under different clinical backgrounds (H). The immunological
checkpoints genes were differentially expressed between the high and low risk-score subgroups in the TCGA-LIHC cohort (I). Difference in TIDE
score evaluation between the high and low risk-score subgroups in the TCGA-LIHC cohort (J). Box plots of the estimated IC50 for docetaxel,
paclitaxel, cisplatin, cytarabine, bortezomib, and gefitinib between the high and low risk-score subgroups in TCGA-LIHC. *P<0.05; **P<0.01;
***P<0.001; ns, not significant.
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reactive protein, which facilitates necroptosis through the

deacetylation process of mutant TP53 in small cell lung cancer

(21). Necroptosis-related core proteins are involved in multiple

functions, directly connecting necroptosis and cell cycles (22).

Although necroptosis has been explored extensively in

cancers, prognostic models based on necroptosis-related

DEGs have not been fully discovered. Wu et al. also adopted

the public database and bioinformation analysis methods to

analysis the necroptosis genes signatures in PAAD. They found

that ten PAAD prognostic markers, such as MET, AM25C,

MROH9, MYEOV, FAM111B, Y6D, and PPP2R3A, were

overexpressed in high-risk subgroup. They observed that

CASKIN2, TLE2, USP20, SPRN, ARSG, MIR106B, and

MIR98 were substantially expressed in low risk score

subgroup (23). Their results were different with our results.

Wang et al. also validated the necroptosis-related prognostic

model in uveal melanoma (24). They classified patients into

high and low clinical significance of necroptosis subgroups.

The high necroptosis genes expression subgroup had a poor

prognosis compared with low necroptosis genes subgroup (24).

In addition, Xie et al. identified the necroptosis-related long

noncoding RNAs in triple-negative breast cancer, and the

subgroup with high nine necroptosis-related long noncoding

RNAs signature score had poor prognosis (25). In this study,

we constructed a novel prognostic model based on necroptosis-
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associated genes KPNA2, SLC1A5, and RAMP3. KPNA2 (26),

a nuclear import factor, functions as an oncogene in cervical

squamous cell carcinoma (27) and nasopharyngeal carcinoma

(28, 29). In addition, SLC1A5 acts as a high-affinity transporter

of L-glutamine to enhance the growth of epithelial and tumor

cells in culture (30). It activates the ROS-scavenging enzyme

glutathione peroxidase in cancer proliferation and migration

(31). SLC1A5 (32) belongs to the Na+-dependent apoptosis-

related specific protein family of amino acid transporters in

lung cancer cells. It has roles in glutamine uptake and

supporting the cell malignant capabilities of lung cancer cells’

RAMP3 function as a single transmembrane-spanning protein

(33), which acts as molecular chaperone and allosteric

modulator of G-protein-coupled receptors and their signaling

pathways (34). Studies have reported that RAMP3 is highly

expressed in a number of cancers, such as glioblastoma, renal

carcinoma and breast cancer. Researchers have also highlighted

that RAMP3 could mediate pramlintide-induced glycolysis

inhibition and induce reactive oxygen species and apoptosis

in p53 deficient thymic lymphomas (35). In the current

analysis, we adopted the DEGs associated with necroptosis

signatures, and constructed a KPNA2, SLC1A5 and RAMP3

model to evaluate the clinical features and prognosis in HCC,

which provide key clues for acknowledging the role of

necroptosis-related DEGs in HCC.
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FIGURE 8

Prognostic model modification based on clinical features (A, B). Univariate and multivariate cox analysis of risk-score and clinicopathological
features (C) Nomogram showing the patient risk assessment and probability of survival in combination with the risk score and clinical
characteristics. (D) Calibration curves of the 1, 3 and 5 years of the line graph. (E) Decision curve of the line graph. ***P<0.001.
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Obviously, there are some limitations of this analysis, as

we adopted bioinformation methods based on a public

database. It is also of great importance for researchers to

deeply explore the mechanisms of necroptosis and

HCC progression.

Overall, in this analysis, we deciphered that this model could

not only precisely predict the survival probability of HCC but

also highlight the key roles of antitumor immunity and

drug sensitivity.
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SUPPLEMENTARY FIGURE 1

(A, B) Consistent clustering analysis showed that the plot of k=2 and k=4,
samples were classified into two or four clusters.

SUPPLEMENTARY FIGURE 2

(A−D). The clinical pathological features, N stage, M stage, viral etiology,

and fibrosis between the 3 clusters showed no significant differences in
the TCGA-LIHC cohort. (E−J). Viral etiology and fibrosis condition,

smoking, age, gender, and status between 3 clusters in the ICGC cohort.

SUPPLEMENTARY FIGURE 3

The enriched signaling pathways between 3 clusters (A). The GSEA
analysis showed that the enriched signaling pathways between C1 and

C3 were cell cycle and associated signaling pathways in the TCGA-LIHC
cohort (B). Bar plot illustrating the enriched signaling pathways between

C1 and C3 in the TCGA-LIHC and ICGC cohorts. (C). GSEA analysis
showing the enriched activated signaling pathways between 3 clusters

in the TCGA-LIHC cohort (D). GSEA analysis illustrating the enriched

activated signaling pathways between 3 clusters in the ICGC cohort.

SUPPLEMENTARY FIGURE 4

Risk score difference between different clinical feature-based subgroups

(A−E). Risk score difference between subgroups based on N-stage, M-
stage, fibrosis, age, and gender.

SUPPLEMENTARY FIGURE 5

Comparison of immune microenvironment between the high and low

risk-score subgroups (A).The infiltration level of 22 types of immune cells
between the high and low risk-score subgroups (B). The estimated

immune proportion of stromal score, immune score, and estimate
score between the high and low risk-score subgroups (C). Correlation
between 22 immune cell types and risk score (D). Correlation analysis

between risk score and their corresponding enriched signaling pathways.

SUPPLEMENTARY FIGURE 6

The correlation analysis between the IC50 of different drugs and

risk score.
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