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Abstract 

A protein secondary structure prediction method from multiply aligned homologous sequences is presented with an 
overall per residue three-state accuracy of 70.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%. There are two aims: to obtain high accuracy by identification of a set 
of concepts important for prediction followed by use of linear statistics; and to provide insight into the folding process. 
The important concepts in secondary structure prediction are identified as: residue conformational propensities, se- 
quence edge effects, moments of hydrophobicity, position of insertions and deletions in aligned homologous sequence, 
moments of conservation, auto-correlation, residue ratios, secondary structure feedback effects, and filtering. Explicit 
use of edge effects, moments of conservation, and auto-correlation are new to this paper. The relative importance of the 
concepts used  in prediction was analyzed by stepwise addition of information and examination of weights in the 
discrimination function. The simple and explicit structure of the prediction allows the method to be reimplemented 
easily. The accuracy of a prediction is predictable a priori. This permits evaluation of the utility of the prediction: 10% 
of the chains predicted were identified correctly as having a mean accuracy of >80%. Existing high-accuracy prediction 
methods are “black-box” predictors based on complex nonlinear statistics (e.g., neural networks in PHD: Rost & Sander, 
1993a). For medium- to short-length chains ( 2 9 0  residues and <I70 residues), the prediction method is significantly 
more accurate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( P  < 0.01) than the PHD algorithm (probably the most commonly used algorithm). In combination with 
the PHD, an algorithm is formed that is significantly more accurate than either method, with an estimated overall 
three-state accuracy of 72.4%, the highest accuracy reported for any prediction method. 
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The relationship between protein amino acid sequence and sec- 
ondary structure is complex, reflecting the intricate thermodynamic 
and kinetic process of protein folding. Yet most, if not all, of the 
information necessary to predict secondary structure lies in the 
primary structure. The problem in secondary structure prediction is 
to extract the maximum information from the primary sequence in 
the absence of a tertiary structure model. 

There are two broad approaches to tackling complex prediction 
problems in science. The traditional approach is to transform the 
representation of the problem so as to decompose it into discrete 
understandable features that can be combined simply for predic- 
tion. This approach has been taken by a number of secondary 
structure prediction methods (Chou & Fasman, 1974; Lim, 1974b; 
Robson, 1976; Cohen et al., 1983; King & Sternberg, 1990; Muggle- 
ton et al., 1992). The alternative approach is to use sophisticated 
nonlinear statistical methods for prediction, and to omit an explicit 
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understanding of the problem. Most of the currently successful 
secondary structure prediction programs take the nonlinear statis- 
tical approach. They are often based on neural network (e.g., Qian 
& Sejnowski, 1988; Kneller et al., 1990; Rost & Sander, 1993a) or 
k-nearest-neighbor (e.g., Biou et al., 1988; Zhang et al., 1992; Yi 
& Lander, 1993; Geourjon & Deleage, 1994; Salamov & So- 
lovyev, 1995). The best such prediction methods use  very compli- 
cated statistical procedures (elaborate architectures and distance 
measures) and have Q3 accuracies of -70% (see Materials and 
methods) on  a standard database of aligned sequences (Rost & 
Sander, 1993a; Salamov & Solovyev, 1995). These nonlinear pre- 
diction methods are “black-box” predictors (Michie  et al., 1994; 
King et al., 1995). They do not make the basis of their prediction 
explicit, nor do they provide insight into the principles governing 
the formation of secondary structure. A separation has occurred 
between the understanding and the prediction of protein structure. 

This criticism of “black-box” predictors is echoed in the work of 
Benner et al., who complain that there is no explanation “why” 
neural network predictions work (Benner & Gerloff, 1993). Ben- 
ner et al. take a different approach to prediction based on hand- 
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crafted predictions on individual proteins by experts on protein 
structure, e.g., Benner and Gerloff (1990) and Benner et al. (1992). 
The evaluation of the success of this work is complicated by the 
subjective nature of the prediction method, but comparable  accu- 
racies to the best automatic algorithms can be obtained. One prob- 
lem of extending this approach for general use is that it is notoriously 
difficult for experts in a field to articulate the reasons for many of 
their judgments  (Michie, 1986). 

To produce understandable predictions, it is therefore essential 
to avoid use of both complicated nonlinear statistical techniques 
and human intervention in prediction. However, statistical tech- 
niques that produce understandable predictions have not been pow- 
erful enough to achieve high accuracy (Chou zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Fasman, 1974; 
Gibrat et  al.,  1987;  Dowe  et al., 1993; Solovyev & Salamov, 1994). 
Consequently, to produce understandable and accurate predictions, 
it is necessary to transform the representation of the problem from 
one based solely on simple sequences of residues, to one based on 
the important underlying concepts. These  are the concepts that are 
implicitly used by human experts and nonlinear statistical meth- 
ods. This transformation would allow simple statistical methods to 
be accurate and provide insight. 

What then are the important concepts in secondary structure 
prediction? The most basic concept is the propensity of particular 
residues for particular secondary structures, e.g., it has long been 
recognized that alanine residues favor formation of a-helices. Res- 
idues are also associated with certain positions within secondary 
structures (Richardson & Richardson, 1988; Wako & Blundell, 
1994). At a higher level, it has been recognized that patterns of 
hydrophobicity are important. Lim (1974a, 1974b) identified pat- 
terns of hydrophobicity associated with different types of second- 
ary structure. Eisenberg (1984) identified hydrophobic moment as 
an important component in structure prediction. The introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the idea of using aligned homologous sequences in secondary 
structure prediction (Zvelebil et al., 1987) allows the incorporation 
of other types of information. The use of aligned sequence allows 

better application of residue propensities and identification of pat- 
terns of conservation. The position of insertions and deletions also 
gives valuable information, because the tolerance of such muta- 
tions varies with secondary structures class. Secondary structure is 
also auto-correlated, that is, discrete secondary structure elements 
occur (knowing the state of position i - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, helps to predict posi- 
tion i ) .  

In this paper, a transparent, accurate, and reliable protein sec- 
ondary structure prediction method, Discrimination of Secondary 
structure Class (DSC), is described and evaluated. DSC is based 
on decomposing secondary structure prediction into the basic con- 
cepts and then using simple and linear statistical methods to com- 
bine the concepts for prediction. This makes the prediction method 
comprehensible and allows the relative importance of the different 
sources of information used to be measured. 

The DSC prediction method is summarized in Figure 1. For 
every residue position, the following are calculated: mean GOR 
potential for each secondary structure class, distance to end of 
chain, mean moment of hydrophobicity assuming cy-helix and 
p-strand, existence of insertions and deletions, and the mean mo- 
ment of conservation assuming a-helix and p-strand. These attributes 
are then smoothed and a linear discrimination function is applied 
to make a level-one prediction for each residue position. The frac- 
tion of residues predicted to be a-helix and p-strand per protein 
were then calculated, as well as the fractional content of certain 
residues. This information is then used, with the level-one infor- 
mation, to make a refined prediction using a second linear dis- 
crimination function. The prediction is then filtered to give a final 
prediction (Tables 1, 2). 

Results 

DSC results 

The estimated values of residue propensities for secondary struc- 
ture class calculated from all 126 proteins are given in Tables 3, 

Residue  based  Attributes  Sequence  based  Attributes 
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Fig. 1. DSC prediction method. For the aligned sequence: S is the observed secondary structure of the primary sequence, p. The residue 
at position 0 is predicted (circled). 
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Table 1. Accuracy obtained using different sources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof informationa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Method Q3 Acc.%  Qa%  Qb%  Qc%  Ma Mb Mc 

Runl: Standard GOR on aligned sequences 63.5 68.4 61.3 61.1 0.48 0.43 0.43 
Run2: GOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ attributes 67.8 67.2 60.9 70.1 0.53 0.46 0.47 
Run3: GOR + attributes + smoothing 68.3 67.9 62.0 70.1 0.54 0.47 0.48 
Run4: GOR + attributes + smoothing + feedback 69.4 69.7 64.2 71.2 0.56 0.50 0.48 
Run5: DSC 70.1 73.5 64.9 70.3 0.58 0.51 0.48 

'Q3 is the predicted (3 state) accuracy. Qa, Qb, and Qc are the accuracy for a-helix, P-strand, and coil, respectively. Ma,  Mb, and 
Mc are the correlation coefficients for cy-helix, P-strand, and coil, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4,5 (predictions  were  made  out  using leave-one-out cross-validated 
versions of the tables). The  results  obtained  are  broadly  similar 
to those found  by  Gibrat et al. (1987), but  they  vary on  many 
specifics. 

The  relative  importance of the  different  attributes  for  prediction 
can  be assessed using the  learned discrimination functions 
(Tables 6,7,8,  and 9). The functions shown were  formed  using  the 
attribute vectors  from  all 126 proteins.  Actual  prediction was done 
using functions learned  using leave-one-out cross-validation. 

The per residue Q3 accuracy of DSC is  70.1%  (see Tables 1 
and 2), and  the distribution of accuracies is given in Figure 2. Only 
two other  prediction  methods  have  comparably high prediction 
accuracies,  Profile network  from Heidelberg (PHD) (Rost & Sander, 
1993a) and Nearest Neighbor Secondary Structure Prediction 
(NNSSP) (Salamov & Solovyev, 1995). The  recent  paper  by Me- 
hta et al. (1995), which reports  an  accuracy of 70.9%,  is for  a  much 
smaller data set of sequences with  large  amounts of aligned se- 
quences. On exactly the same set of proteins,  the  PHD  method had 

Table 2. Q, accuracy and predicted  accuracy for the 126 protein chains used in this study 

Pred. 
ID Acc.%  Acc.% 

1 acx 
lak3-a 
1 azu 
1 bbp-a 
I bds 
Ibmv-l 
1 bmv-2 
lcbh 
lcc5 
lcd4 
1 cdt-a 
I cm 
Icse-i 
I eca 
letu 
1 fc2-c 
1 fdl-h 
1 fdx 
1 fkf 
lfxi-a 
Igdl-o 
Igpl-a 
1 hip 
li18-a 
1158 
1 lap 
1 lrd-3 
Imcp-1 
l m r t  
I ovo-a 
1 paz 

1 PPt 

72.9 63.3 
78.5 73.1 
66.1 68. I 
64.7 65.2 
74.4 74.8 
76.2 73.2 
67.6 63.7 
63.9 59.4 
67.5 77.4 
68.8 69.8 
68.3 75.0 
58.7 67.8 
76.2 78.1 
78.7 84.9 
75.3 71.0 
60.5 59.9 
80.3 80.8 
75.9 85.3 
78.5 73.7 
85.4 73.6 
63.8 70.4 
71.0 70.2 
52.9 66.4 
73.2 70.4 
76.2 72.2 
71.0 67.5 
75.9 79.9 
80.0 76.0 
83.9 71.3 
55.4 73.6 
83.3 81.1 
97.2 86.8 

Pred. 
ID Acc.% Acc. % 

IPYP 
1 m - 2  
1 rbp 
lrhd 
I so1 
1 sdh-a 
Ish1 
1 tgs-i 
1 tnf-a 
1 ubq 
1 wsy-a 
I wsy-b 
256b-a 
2aat 
2alp 
2cab 
2ccy-a 

2fnr 
2fxb 

2CY P 

2gbP 
2gcr 
2gls-a 
2gn5 
2hmz-a 
2ilb 
21h4 
21hb 
2ltn-a 
2ltn-b 
2mev-4 
2mhu 

65.0 67.1 
63.1 64.8 
59.8 63.6 
68.3 68. I 
73.1 72.8 
81.5 76.6 
47.9 65.5 
62.5 74.6 
68.4 68.7 
69.7 66.3 
83.5 74.6 
71.7 71.8 
84.0 81.2 
71.2 68.3 
69.7 62.4 
73.4 70.6 
93.7 79.2 
62.5 65.8 
73.3 71.8 
76.5 70.9 
66.7 67.6 
71.1 67.8 
70.5 68.9 
39.1 76.3 
83.3 74.6 
80.4 75.5 
82.4 83.3 
79.9 73.4 
81.8 76.7 
74.5 73.0 
46.6 65.2 
90.0 80.1 

ID 

20r 1-1 
2pab-a 

2phh 
2rsp-a 
2sns 
2sod-0 
2stv 
2tgp-i 
2tmv-p 
2tsc-a 
2utg-a 
2wrp-r 
3ait 
3b5c 
3blm 
3cla 
3cln 
3ebx 
3gap-a 
3hmg-a 
3hmg-b 
3icb 

2PCY 

3pgm 
3mt 
3tim-a 
4bp2 
4cms 
4cpa-i 

4fxn 
4CPV 

Ace.% 

82.5 
59.6 
81.8 
56.5 
67.0 
62.4 
85.4 
69.6 
77.6 
63.6 
65.2 
82.9 
89.4 
81.1 
62.4 
64.2 
67.6 
85.3 
71.0 
60.1 
65.2 
60.6 
85.3 
68.7 
75.0 
82.3 
59.3 
65.1 
75.7 
88.9 
82.6 

___ 

Pred. 
Acc.% 

77.0 
69.6 
83.7 
67.8 
70.2 
67.8 
78. I 
61.2 
63.7 
65.4 
62.6 
79.6 
74.6 
77.2 
70.4 
69.6 
58.9 
87.5 
75.2 
67.8 
72. I 
67.7 
83.5 
68.0 
64.0 
71.2 
60.1 
67.3 
73.8 
80.0 
74.7 

ID 
Pred. 

Acc.% Acc.% 

4grl 

4rhv- 1 
4rhv-3 
4rhv-4 
4rxn 
4sgb-i 
4ts 1 -a 
4xia-a 
5cyt-r 
5er2-e 
5hvp-a 
51dh 

4Pfi 

51yz 
6acn 
6cpa 

6cts 
6dfr 
6hir 
6tmn-e 
7cat-a 
7icd 
7rsa 
8abp 
8adh 
Yapi-a 
9api-b 
9ins-b 

6CPP 

9PaP 
9wga-a 

69.4 
75.2 
69.2 
75.8 
30.0 
63.0 
82.4 
71.6 
75.6 
73.8 
66.4 
78.8 
60.7 
66.7 
62.9 
73.6 
57.0 
79. I 
67.7 
75.5 
63.0 
67.3 
71.0 
68.5 
63.9 
66.0 
54.9 
83.3 
83.3 
7 I .7 
66.7 

68.1 
70.3 
70.4 
68.5 
64.3 
77.1 
75.3 
69. I 
71.6 
66.4 
67.3 
69.7 
69.9 
62.5 
65.5 
64.4 
68.0 
67.5 
72.9 
80.7 
61.2 
67.9 
68.4 
75.6 
69.2 
71 .O 
68.5 
76.8 
68.9 
74.3 
78. I 

aID, Brookhaven identity and chain; Acc., actual accuracy obtained; Red. Acc., accuracy predicted using regression. 
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le 3. Directional informational parameters: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(Sj = x:d; Rj + m) for  residue position 
us residue type for  cY-helicesa 

i - 8   i - 7  1 -6   i - 5  i -4  1-3   i - 2  i-1 i i + 1   i + 2   i + 3   i + 4   i + 5   i + 6   1 + 7   i + 8  
19   21  22  24  34  36 44 47  60  60  53  50 44 40 31  23  24 

-47  -45 -44 -47 -44 -36 -44 -55  -56  -58  -54  -55  -58  -58  -59  -53  -66 
14  15 14  15  17  21  15  17  -7 -11 -31  -42  -28  -12  -8 1 -5  
14  16 15  20  26  27  34  52  62  57  32  15  19  12 6 7 9 

-19  -14 -10 -4 -2 -1 6 -1 10  10  12  12 -4 -5  2 0 2 
5 2 1 -5 -22  -30  -50  -70  -92  -52  -28  -21  -13  -17 -8 -6  -6 

-22  -20 -9  -10  -19  -10  -14  -7 -11 -4 0 -3  -2 2 6 11 12 
7 7 0 0 1 1  2 - 5   1 2   1 7 - 6 - 3 1 0  8 6 

-2 -1 -1 -1 -6 -9 -6 5 17  17  21  27  35  33  21  22  23 
0 -1 0 6 9 16 30 33  45  47  51  53  37  32 30 25  18 
4 3 15  23  30 30  39  36 45  54  57  53 44 29  30  14 1 
2 3 2 -5  -9 -10 -16  -17  -31  -16  -17  -16 -9 -8  -9  -10 -5 

-12  -15 -14  -19  -23  -25  -30  -48  -82-195-145-104  -67  -49  -43  -33  -17 
-4 3 7 4 13 8 10  24  35  32  31  21  18  18 9 8 6 
5 3 6 13  7 13  19  27  34  32  36  41  33  29  23  21  18 

-10  -7 -10  -10  -16  -17  -25  -21  -39  -35  -39  -41  -32  -35  -34  -35  -33 
1 -1 -6  -8  -6 -11 -16  -25  -48 -47 -48 -46 -34 -31  -34  -26  -24 

-5  -12 -13  -14  -13  -19  -17  -20  -15  -22  -22  -20  -26  -19  -15  -10  -5 
0 -4 -12  -19  -7  14  16  12  18  17  12 8 1 -6 1 3 -13 

-22  -19 -17  -20  -16  -21  -30  -32  -8  -10 -4 -12  -17 -9 -10  -14  -15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aNote that the convention used is the reverse of that adopted by (Gamier  et al., 1978), for example the first entry for alanine at 

position j-8 is the amount of information that an alanine residue eight positions toward the N terminus has for predicting an a-helix 
at position j. 
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an estimated per residue Q3 accuracy of 70.8% (which has been and NNSSP  because  the  individual  residue  predictions  are  not 
subsequently upgraded to 71.6%), and NNSSP has an estimated available. If they were  available,  each  residue  prediction would 
per residue Q3 accuracy of 72.2%. It is difficult to test if there is a not be independent, making the correct statistical test difficult to 
significant statistical difference in accuracy between DSC, PHD, determine. 

Table 4. Directional informational parameters for residue position versus residue type for P-strands 

l i - 8   1 - 7   i - 6   i - 5   i - 4   i - 3   i - 2  i -1 i i + l   i + 2   i + 3   i + 4   i + 5   i + 6   i + 7   i + 8  
a1 -8  -7  -13  -17  -23  -33  -26  -32  -43  -37  -30  -30  -26  -27  -26  -25  -25 
c 

-9  -20  -32  -34  -30  -12  24 44 49  39 24 2 -9  -23  -24  -29  -23 f 

-14  -5  -5 -11 -21  -27  -45 -44  -57  -54  -46  -29  -25  -12  -12  -2 0 e 
-7  -5 0 -9 -4 -14  -42  -73  -83  -59  -21  10  22  24  16 11 13 d 
3 13  -9  -20  -15  -3 9 33  47  51  21  19 9 -5  7 -5  -14 

g 
6 11 17  22  12  16 0 -2 3 -2 5 3 8 4 -1 1 -3 h 

-3 9 24  29  34 30 18  -23  -48  -27 6 27  39  38  33  23  23 

-21  -30  -31  -21  -12  -3  26  58  76  64  33 11 -14  -24  -20  -14 -11 i 
k 

m 
-2  -10  -18  -27  -30  -27  -6  15  27  21 2 -19  -31  -29  -28  -26  -25 1 
20  12  15  14 8 4 -8  -14  -25 -40 -39  -27  -20  -24  -20  -15  -15 

-22  -26  -29 -40 -31  -17  -7  23  24  28  17 2 -15  -31  -53  -36  -16 
n 1 8 14  5 0 -6  -30  -65  -62  -28  -6 11 18  21   16   10  3 
p 

6 8 14  15  16  21  19  25  31  22  13 9 12  25 34  34  34 t 
16  14  17  19  14 5 -3  -13  -15 -4 15  27  32  32  31  28  21 s 

6 12 8 16 8 -5  -22  -27  -30  -52  -49  -34  -22  -17  -9 2 20 
Q 

9 7 12  24  20 8 -22  -65-108  -64  -8  17  25  30  32  31  21 

r o 8 3 -3 5 2 1 -14  -26  -32  -30  -35  -27  -26  -25  -25  -21 

v 
-8  -8  -28  -19  -9 5 23 44 45  30  13  -18  -22 -40 -15  -7  -9 W' 

1 -11 -15 -11 4 25  51  75  91  81  49  19  -6  -12  -16 -11 -11 

y 13  13  4 14  12  20  24  37 48  31  20 -1 2 11 7 o -4 
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i-8  i-7  i-6 i-5  i-4  i-3  i-2 i-1 i i+l i+2  i+3 i+4 i+5 i+6  i+7 i+8 
-12 -15 -12 -12 -17 -13  -25 -24 -32 -35 -32 -29 -24 -20 -12  -5 -6 

~ 36  26 41 50 45 31 29 19 7 5 27 29  38 48 41 45 59 

1 -8 
-10 -13 -8 -13 -10 12 25 50 43 39 27 7 -7 -4 -9 -5 
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-3 -8 -18 -17 -7 2 26 68 97 58 19 -2 -18 -14 -18 -11 -11 
15 9 -4 -7 8 -2 12 8 8 5 -4 1 -3 -5 -5 -10 -9 
7 12 19 14 7 1 -21 -42 -66 -55 -26 -14 14 18 4 2 1 

-12 -7 -10 -9 -1 5 11 5 0 9 5 -8 -20 -15 -7 -10 -12 
2 8 11 11 11 2 -23 -42 -65 -63 -52 -39 -15 -11 -10 -6 0 
11 14 4 3 -9 -16 -33 -52 -62 -77 -71 -54 -32 -7 3 9 9 
-2 -8 -11 1 8 12 32 51 61 31 18 6 -6 -8 -4 2 2 
4 8 4 -1 5 15 39 76 120 159 98 59 32 17 11 3 0 
-1 -11 -12 -15 -17 -4 5 -5 -13 1 1 2 -2 -5 -1 -9 -20 
-4 -9 -8 -10 -10 -13 -18 -16 -14 -9 -14 -16 -14 -11 -5 -3 -2 
-3 -4 -4 -4 4 11 22 26 41 31 20 13 3 5 4 8 11 
-5 -5 -5 -4 -7 -5 0 2 15 21 29 30 19 7 3 -4 -5 
3 17 20 20 8 -2 -26 -46 -68 -51 -20 3 25 24 23 15 11 
5 9 28 28 12 -16 -32 -46 -53 -38 -20 5 13 30 9 2 16 
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Fig. 2. Histogram of Q 3  accuracies  obtained  using DSC. 

A few proteins sequences have low Q3 accuracy: 2gn5 (gene V 
protein), 4rhv-4 (fourth chain in rhinovirus coat protein), 2mev-4 
(fourth chain in cardia picornavirus coat protein), and lshl (sea 
anemone neurotoxin 1) all have a Q3 < 50%. Protein 2gn5 is an 

incorrect structure, and the structure lbgdh has replaced it. The 
true Q3 accuracy of DSC on gene V protein is 73.6% (the structure 
of 2gn5 had only two P-stands of length two, lbgdh has 7 strands). 
The two viral coat protein chains are not globular and probably 
should not have been included in the data set. Removal of the  two 
viral coat protein and replacement of 2gn5 with 1 bgdh increases 
the overall Q3 accuracy of DSC to 70.3%. The protein lshl is an 
averaged NMR structure; it has a small disulfide-rich structure 
with an unusually large amount of P-strand. 

Comparison with the PHD prediction  method 

The prediction accuracies for the PHD prediction method (Rost & 
Sander, 1993a) based only on the nonredundant database of 126 
protein chains were obtained from the authors. This allowed a 
direct comparison of DSC with the popular PHD algorithm. A 
comparison with predictions obtained from the  PHD  e-mail  server 
would have been biased against DSC, because the server uses 
information from more proteins (including the test proteins). Un- 
fortunately, it was not possible to obtain the actual residue predic- 
tions made by PHD. This would have allowed a more sensitive 
statistical comparison to have been made, although care would 
have had to be taken in interpreting such results because residues 
within a particular protein are far from being statistically indepen- 
dent of each other. This is not a problem when comparisons are 
done at the chain level. 

On a protein by protein basis, DSC had a mean chain accuracy 
of 71.3%, and PHD has an accuracy of 71.7%. The standard de- 
viation of chain accuracy for DSC is 10.5%, that of PHD, 8.9%; 
the two prediction measures have a correlation of 0.72. There was 
no statistical difference at P < 0.05 in the accuracies of the two 
methods (using a two-tail binomial test based on greater prediction 
accuracy and a normal approximation). Removal of the incorrect 
structure 2gn5  and the two nonglobular viral chains increases the 
chain accuracy of DSC to 72.1% and that of PHD to 72.0%. 
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For medium-length chains (290  residues and <170 residues), 

DSC was more accurate than PHD (P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0.01). For short chains 
(<90 residues), there is no significant difference between the meth- 
ods, and for  long  chains (2170 residues), PHD is significantly 
more accurate than DSC (P < 0.01). It is not understood why there 
should be differences in prediction accuracy based on chain length, 
It may have to do with differences in residue frequency (White, 
1992), or it may be that the decomposition of concepts used by 
DSC does not take into account domain boundaries. 

The combined DSC-PHD prediction algorithm: if medium length, 
then run DSC, else run PHD, has an overall three-state accuracy of 
72.4%-the highest accuracy reported for any prediction method. 
This prediction method has a mean accuracy of 72.9% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor protein 
chains and standard deviation of 9.2%. 

Predictive  accuracy with increasing information 

Secondary structure prediction was conducted using successively 
more information (Table 1). This step-by-step addition of  new 
information allowed estimation of the relative importance of the 
different concepts and sources of information used (all accuracy 
estimates were made using leave-one-out cross-validation). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. 

2. 

3. 

4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. 

Prediction was performed using residue propensities from aligned 
homologous sequence information (Runl). This is the standard 
COR method extended for homologous sequences. This has an 
estimated Q3 of 63.5%. 

Linear discrimination was then applied using the following 
attributes: residue propensities, distance from chain, hydropho- 
bic moments, insertions, deletions, and conservation moments 
(Run2). This increased the estimated Q3 accuracy to 67.8%. 

Auto-correlation of protein structure was taken into account by 
using smoothed residues (Run3). Auto-correlation is when neigh- 
boring states are correlated, e.g., in an a-helix. This increased 
the estimated Q3 accuracy by 0.5 percentage points to 68.3%. 

The fractions of residues predicted to be a-helix and P-strand 
secondary structure are then added, along with the fraction of 
residues of type histidine, glutamate, glutamine, aspartate, and 
arginine (Run4). This increased estimated Q3 accuracy to 69.4%. 
The residues were selected using stepwise linear regression; 
note that they are all highly hydrophilic residues. The attributes 
in step four are full-sequence based, not individual-residue based. 

The predictions were finally filtered to produce the final pre- 
dictions with an estimated Q3 accuracy of 70.1% (RunS). 

Prediction of expected accuracy 

It was investigated whether it was possible to predict the likely 
accuracy of a secondary structure prediction. This would allow the 
accuracy and hence usefulness of a prediction to be assessed be- 
fore use. 

Standard stepwise linear regression was used with the dependent 
variable being accuracy, and the independent variables selected 
were: mean difference in probability (Dp), fraction of residues that 
are valine (Rv), and fraction of residues that are glutamic acid 
(Re). The mean difference in probability for a protein is defined to 
be the mean difference between the probability of the most likely 
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state and the second most likely state at each residue. This pro- 
duced the simple regression equation: 

Predicted accuracy = 0.713 + (0.0612 * Dp) 

+ (0.0236 * Rv) + (0.0180 * Re). 

This equation predicts accuracy quite well, with a correlation of 
0.58 (Fig. 3). The predicted accuracies, along with the actual ac- 
curacies, are given in Table 2. The residue frequencies used in the 
equation are "centered  to show their relative importance ( s e e  
below). The constant in the equation is the mean accuracy, and the 
most important variable is Dp. Valine has the highest propensity of 
any residue for P-strands and glutamic acid has the highest pro- 
pensity of any residue for a-helices (see Tables 3 and 4). 

Proteins that are predicted to have an accuracy 280% have an 
average accuracy of 82.4% (6% of the database); proteins that are 
predicted to have an accuracy 275% have an average accuracy of 
77.6% (20% of the database); and proteins that are predicted to 
have an accuracy 270% have an average accuracy of 72.7% (52% 
of the database). 

It is  also interesting to note that proteins that are predicted to 
have low ratios of P-strand (<3%) have an average accuracy of 
80% (10% of database). Such proteins are likely to have alpha-type 
domains. A number of authors have noted that it is possible to 
predict  alpha-type  domain  proteins with an  accuracy -80% 
(Muggleton et al., 1992; Rost & Sander, 1993b). However, such 
work was based on a priori knowledge of the domain type before 
prediction. The present accuracy of 80% was obtained without 
knowledge of domain type. 

The proteins with Q3 accuracy < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50% (2gn5, 4rhv-4,  2mev-4, 
and Ishl) are identified as outliers in the regression equation (see 
above). It might be possible to use gross discrepancy between 
predicted secondary structure accuracy and actual accuracy to iden- 
tify errors in structure. The true 4 3  accuracy of  DSC on 2gn5 (gene 
V protein) is 73.6%, close to the predicted accuracy of 76.4%. 
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Fig. 3. Scatter diagram of actual Q 3  accuracy versus predicted accuracy. 
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Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Relative importance of the amino acid residues for prediction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The  Gamier Osguthorpe Robson (GOR) method (Gibrat et al., 
1987) generates information tables that can be interpreted to pro- 
vide information about the relative importance of the different 
residues in formation of secondary structure (Tables 3,  4, 5). This 
method of representing specificity for initiating and terminating 
particular secondary structures differs from the technique used 
most commonly of calculating the propensity of a residue for being 
at the start or end of a particular secondary structure (e.g., Rich- 
ardson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Richardson, 1988; Wako & Blundell, 1994). However, 
such studies have problems in defining where the beginnings and 
ends occur and in gathering enough statistical data. They also do 
not take into account neighborhood effect. The GOR approach 
takes into account such effects and works well for structures 1 1 7  
residues long ( i  - 8 to i + 8). For longer structures, there is 
overlap between central regions of structure and initiation and 
termination regions. 

The residues that most strongly favor  and disfavor particular 
states are given in Table 6. Histidine is the least informative res- 
idue, i.e., the residue that has the lowest mean preference for any 
one particular secondary structure. This means that, for  a protein of 
unknown structure, mutating a residue into a histidine is the least 
likely to disrupt the secondary structure of the protein. It is inter- 
esting that a number of the residues that disrupt P-strand confor- 
mation (p, d, n, g) only do so locally ( i  - 2 to i + 2), and that these 
residues favor P-strand conformation in more distant residues (prob- 
ably by formation of turns). Note also the large role that charged 
residues play in initiating and terminating secondary structure. 
This role seems to be reversed between a-helices and P-strands, 
with histidine and lysine terminating a-helix conformation and 
initiating 0-strand conformation, and aspartic acid initiating a-helix 
conformation and terminating P-strand conformation. The results 
for  a-helices are explained by existence of a  dipole with the 
N-terminus being negative. The reason for the P-strand results are 
unclear, but similar results are found in Colloc’h and Cohen (1991). 

It is interesting to compare the information measures with re- 
sults obtained investigating residue a-helix propensities (Bryson 
et  al., 1995), both previous statistical work (e.g., Gibrat et al., 
1987; Williams et al., 1987),  and the larger literature based on 
direct experimentation, e.g., using directed mutagenesis (Horovitz 
et al., 1992; Blaber et  al.,  1993)  and model peptides (Padmanabhan 
et al., 1990). The correlation of the DSC intraresidue information 
for the 20 residues with a-helix propensities of the other methods 
is: Gibrat et al. (1987),  0.94; Williams et al. (1987), 0.93; Blaber 
et al. (1993), 0.81; Horovitz et  al. (1992), 0.67 (19 values); and 
Padmanabhan et al. (1990), 0.87 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5  values). The use of statistical 

Table 6. Residues that favor and disfavor  particular 
secondary structure classes 

a-Helix P-Strand 

Favor e, a, 1, m v, i ,  f, y, c 

Disfavor p. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, c, t p. d, n, e,  g, a 
N-Cap d h, k, f 
C-Cap k, r, h P. d 

R.D. King and M.J.E. Stemberg 

surveys has the advantage over physical-based methods in being 
based on many more proteins, and thus averaged over all types of 
protein environment. This allows greater confidence that the re- 
sults obtained will hold for new proteins, and that they are not the 
indirect effect of some peculiarity of the protein under study. The 
larger amount of data used also has the advantage that higher level 
correlations (such as between pairs of residues) can be investi- 
gated, not just the simple relationship between residue type and 
secondary structure. Statistical analysis has the disadvantage that it 
is harder to discern direct physical mechanisms for propensities 
and dissect out tertiary from secondary structure effects. 

Relative importance of the different predictive  attributes 

In a discrimination function, the larger the modulus of a weight, 
the more important (informative) the attribute is for predicting a 
particular secondary structure. Positive values favor a particular 
prediction state, and negative values disfavor  a state. To allow 
direct comparison between the different attribute types, all the- 
attributes values were centered on  a standard scale. This is  done  for 
an attribute type by subtracting from each value the mean of the 
attribute values and dividing by the standard deviation. Centering 
does not affect the predictions of linear discrimination. The  con- 
stants in the function correspond to the logs of the prior probabil- 
ities of the different states. If no observations have been made 
about a residue, then the residue is  a priori most likely to be  in coil 
conformation and least likely to be in P-strand conformation. The 
prior probabilities are given to the system. 

1. 

2. 

3. 

4. 

5.  

The most important attributes are the COR information param- 
eters with values of -0.7 for a-helix and P-strands. This  shows 
that the first two terms of the COR decomposition captures 
most of the information used in prediction. 

Residues close to the end of a chain are most likely to be in 
chain conformation (note that distance is calculated away from 
the edge).  The termini residues are charged, and the terminal 
regions are generally more mobile and more variable in se- 
quence than other parts of the sequence (Thornton & Sibanda, 
1983). Terminal residues probably have difficulty in tightly 
packing to the core and in forming hydrogen bonds. 

The hydrophobic moment pattern of a-helices is more pro- 
nounced than that of P-strand. This may be because there are 
two distinct types of P-strand, those fully buried and those that 
show amphipathic behavior (see Lim, 1974b). There  are rela- 
tively few fully buried helices. As expected, the hydrophobic 
moment discriminates mainly between a-helices  and P-strands 
(the weights are near zero for coil). 

Insertions and deletions, as expected, favor coil conformation. 
Insertions favor coil more than deletions do (i.e., they are more 
informative)-this is not an artifact of their slightly different 
coding. It is also interesting that deletions disrupt a-helix struc- 
ture much less than insertions, whereas they are equally dis- 
ruptive of P-strand. The more disruptive nature of insertions 
suggests that mutations causing insertions may be less likely 
than deletions, and insertions and deletions should not have the 
same weighting in homologous alignment (see below). 

The conservation moment pattern of a-helices and @strands is 
about equal; it discriminates mainly between a-helices and 
@strands. 
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6. Smoothing has the most effect on P-strand formation,  and this 

can be explained by cooperative effects in P-strand formation. 
The hydrophobic moment  and conservation moment are  the 
attributes most effected by smoothing. 

7. The residue fractions that were identified as being most impor- 
tant are glutamate and arginine. 

8. The strongest feedback effect from predicted fraction of sec- 
ondary structure is for P-strands to negatively feedback the 
formation of a-helices and to positively feedback formation of 
P-strands. This, like the smoothing effects, can be explained by 
cooperative effects in P-strand formation. 

Consensus predictions 

Many workers use aligned homologous sequences to make con- 
sensus secondary structure prediction (Russell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Barton, 1993; 
Jenny & Benner, 1994; Rost et al., 1994). That  is, they make some 
form of average structural prediction for  the aligned sequences. 
This  is the correct procedure if the prediction is of some structural 
property of all the sequences, for example, the fold type of the 
sequences. It is not appropriate if interest is focused on  one par- 
ticular sequence,  for  example, in modeling a protein. 

In the present work, we are interested in predicting the second- 
ary structures of particular protein chains, not in making consensus 
predictions. Two homologous sequences may have variable sec- 
ondary structure and, consequently, it has been suggested that there 
is a lower limit on Q3 accuracy than 100%. This  is correct for 
consensus predictions, but does not apply for the prediction of 
single sequences using aligned sequences. Because homologous 
sequences may have different secondary structures, it is to be 
expected and hoped that homologous sequences can have different 
predicted secondary structures. This  is the case with the DSC 
program. To see why this is so, consider the simple case of two 
aligned sequences: 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7  

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAETARACCAYREVSICSD 
B ETARACCA.REVSICSD 

The  attribute vectors formed for these residues will be different. 
The calculated COR potentials will be different because the se- 
quences  are different, e.g., in sequence A for position 8, the i + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
residue is a tyrosine, and for sequence B, it is an arginine. With 
respect to sequence A, sequence B has a deletion at position 9; and 
with respect to sequence B, sequence A has an insertion at posi- 
tion 8. All the other attributes will differ as well. 

The same argument extends to the alignment of sequences. If the 
role of the alignment is for predicting a single sequence, it might 
be better to form  an alignment optimized for that particular se- 
quence, not an overall optimization, i.e., different alignments would 
be formed depending  on which protein was chosen  as seed. 

Measures of prediction success 

Many alternative methods of measuring the success of prediction 
have been proposed (Schulz & Schirmer, 1979; Rost & Sander, 
1993a; Rost et al., 1994; King, 1996). These methods, like pre- 
diction accuracy, are based on the assumptions that there exists a 
single true secondary structure assignment for all residues and we 
know what the assignment is. These assumptions are incorrect. In 
protein structures, there are intermediate and difficult-to-classify 

regions and  these residues cannot be assigned unambiguously 
to any one  class of secondary structure (Colloc’h et al., 1993). 
Secondary structure assignment should be probabilistic-with prob- 
abilities near 1.0 for well-defined secondary structures and high- 
resolution coordinates, and correspondingly lower probabilities for 
the edges of secondary structures in lower resolution structures. 
Prediction of secondary structure should also be probabilistic, be- 
cause this gives the user of the prediction more information. The 
PHD prediction algorithm produces a “reliability” measure from 0 
to 9, which can be interpreted as a probability. The DSC prediction 
method makes full probabilistic predictions. 

If both assignment and prediction of secondary structure are 
probabilistic, there is natural measure of prediction success. 

N is the number of residues, a the difference between actual and 
predicted probability for an a-helix, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb the difference for P-strands, 
and c the difference for coil (1  of a, b, or c is redundant). The 
minimum this function can take is 0 (optimal prediction) and the 
maximum 3. 

This measure gives, for the DSC predictions, a value of 1.07 
(0.495 from a-helix, 0.234 from P-strand, and 0.347 from coil). 
This is a large overestimate because it is based on all assigned 
secondary structures having a probability of 1 .O. 

The prediction measure could also be simply extended to take 
into account differing costs of predictive error. This could be done 
by multiplying the costs by the squared difference in probabilities. 
Differing costs would be important if different types of error were 
considered to make successful conformational prediction less likely 
(Jenny & Benner, 1994; King, 1996). 

GOR information 

The possibility of using the next term in COR decomposition was 
investigated. This term refers to information a residue caries about 
another residue’s secondary structure, which depends on the other 
residues type, (side-chain-side-chain interactions) (Robson, 1976). 
This type of information was used by Gibrat et al. (1987). Fol- 
lowing their procedure, 915 pairs of side-chain-side-chains were 
found to be significant of 20,400 (20 * 20 * 3 * 17) possible pairs 
at (P  < 0.01) using a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx’ test. It was not found possible to improve 
overall predictive accuracy by inclusion of side-chain-side-chain 
information-even when resampling and Bayesian statistical meth- 
ods were used to try to better estimate the information values. The 
reasons for this are unclear. 

Conclusions 

The DSC prediction method is simple, accurate, and can be pro- 
grammed easily. This combination is achieved by identification of 
a set of concepts important for prediction followed by the use of 
linear statistics, allowing the relative importance of the different 
features used to be compared and measured. 

The general DSC approach of identifying important concepts 
and using linear discrimination for prediction could be extended 
easily to include new features that are considered important. For 
example, if CD information was available, this could be added as 
two new attributes in the attribute vector, and the relative useful- 
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ness of this feature measured against that of the other features. Any 
other relevant feature could be treated similarly. 

The DSC prediction method compares favorably with existing 
methods based on expert manual intervention or complex nonlin- 
ear statistics. Compared with manual intervention methods, DSC 
can be  used by non-experts and its results are fully reproducible. 
Many of the concepts used by experts in protein structure predic- 
tion are quantified and made explicit in DSC. The DSC prediction 
method is much simpler than those based on nonlinear statistical 
prediction  methods. The DSC method  has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,OOO variables, whereas 
the neural-network PHD method (Rost & Sander, 1993a) has 
-25,000 variables, and the nearest-neighbor NNSSP method (Sala- 
mov & Solovyev, 1995) requires use of the whole data set, -500,000 
aligned residues. 

The simplicity of DSC makes it possible to reimplement the 
method directly from the information in this paper.  It is not much 
more complicated to implement than the COR method, which is 
used widely in molecular biology software packages. The com- 
plete reimplementation of a secondary structure prediction method 
is desirable if the prediction method is to be employed in a larger 
program, for example, as  a module in a threading algorithm (Wodak 
& Rooman, 1993), hence progressing from secondary to tertiary 
structure prediction. 

Materials  and  methods 

Data 

The protein data set used in this study was the 126 representative 
globular protein chains used  in the study of Rost and Sander (1993a); 
we did not include the four membrane protein chains considered 
by Rost and Sander. This data set was also used by Salamov and 
Solovyev (1995).  The protein chains have less than 25% pairwise 
similarity for lengths >80. There are 23,336 residues, 7,409 (31.7%) 
in a-helix conformation, 5,044 residues (21.6%) in P-strand con- 
formation, and 10,883 (46.7%) in coil conformation (see Rost & 
Sander, 1993a for details of assignment of secondary structure). 
Each protein chain has associated with it zero or more aligned 
sequences. These  derive from the database of Homology-derived 
Structures and Sequence alignments of Proteins (HSSP) (Sander & 
Schneider, 1991) and were used in the predictions of Rost and 
Sander (l993a) and Salamov and Solovyev (1995). 

Prediction measurements 

The main measure of prediction success was standard per residue 
Q3 prediction accuracy. This is defined as ((number of residues 
correctly predicted)/number of residues] * 100. This measures the 
expected accuracy of predicting an unknown residue. A more rel- 
evant variant of this measure is mean per protein Q3 accuracy. In 
this measure, the mean of the Q3 accuracies for each individual 
protein is taken. This measures the expected accuracy of predicting 
an unknown protein. The accuracy of prediction for the three types 
of secondary structure was also measured, and, in addition, the 
Matthews’ correlation coefficient (Matthews, 1975) was calculated 
for each secondary structure type: 

nn - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuo 

with p being the number of residues correctly positively predicted, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n being the number of residues correctly negatively predicted, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 
the number of false negatives, and o the number of false positives. 

The measures of success were estimated using leave-one-out 
cross-validation (jack-knifing).  This method was also used by Sala- 
mov  and Solovyev (1995). It is less biased than sevenfold cross- 
validation, the method adopted by Rost and Sander (1993a) to 
estimate the accuracy of the PHD algorithm (chosen because of the 
slow training speeds of neural networks). 

Residue propensities and GOR 

The simplest concepts used in prediction were the propensities of 
residues for particular secondary structure states. These residue 
propensities were calculated using the method developed in the 
COR secondary structure prediction method (Robson & Suzuki, 
1976; Gamier et al., 1978; Gibrat et al., 1987). The COR method 
provides an elegant technique of decomposing the various ways 
residues can interact to form secondary structure by order of 
simplicity-single residues, pairs, etc. 

Ideally, the secondary structure of a residue would  be calculated 
using the propensities (information terms) from all possible terms 
in the decomposition: this would be equivalent to calculating the 
Bayesian optimal prediction rule (Weiss & Kulikowski, 1991). 
However, this is unfeasible because it would require a vast amount 
of structural information to estimate accurately all the terms in the 
decomposition. Currently, there is only enough data to use the first 
two terms in the decomposition. These are: (1) information a res- 
idue carries about its own secondary structure-intraresidue infor- 
mation, (side-chain4wn backbone interaction); and (2) information 
a residue carries about another residue’s secondary structure that 
does not depend on the other residue’s type4irectional informa- 
tion (Robson & Suzuki, 1976). Ignoring the other terms can be 
thought of as assuming that residues do not interact in any other 
way in forming secondary structure. The COR method can prob- 
ably be best understood as  a variety of the “naive” Bayesian sta- 
tistical method (Weiss & Kulikowski, 1991 ). 

The directional information measures were calculated using the 
data set of 126 chains (information from the aligned sequences was 
not used for this because it is not statistically independent). As in 
the COR method (Gamier  et al., 1978), information parameters 
were calculated for the 20 residues for the three conformation 
states at positions i - 8 to i + 8, giving 20 * 3 * 17 = 1,020 
parameters. The information measures were estimated directly from 
frequencies, because the sample size is large enough to preclude 
the need for a Bayesian estimation method (as recommended orig- 
inally [Robson & Suzuki, 19761). These information measures are 
closely related to probabilities, but they have the advantage of 
being simply additive (because the decomposition ensures that the 
same information is not counted twice and they are based on logs). 
To predict the secondary structure of a residue, the relevant infor- 
mation terms are gathered together and summed, and the second- 
ary structure with the highest information is then predicted. 

Other  residue-based  concepts in prediction 

Apart from the first two terms in the COR decomposition of res- 
idue interaction, it was possible to identify two other concepts 
based on primary structure that are important for prediction of 
secondary structure. These are: distance from the end of the chain, 
and the moments of hydrophobicity. The distance to the end of 
chain is important because residues near the end of a chain have 
fewer structural constraints, allowing greater flexibility. This con- 
cept has, to our knowledge, not been explicitly used i n  secondary 
structure before. 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADistance from end of chain is calculated as the number of 

resides (to a maximum of 5) to the nearest end of chain. 

2. The moment of hydrophobicity (Eisenberg,  1984) is calculated 
for each residue under the assumption that it, and the  three 
neighboring residues in each direction, are in a-helix confor- 
mation (100”); the Eisenberg hydrophobicity scale is used. The 
moment of hydrophobicity is also calculated assuming j3-strand 
conformation (1  80”).  This is informative because, if the hydro- 
phobicity profile suits a particular secondary structure confor- 
mation, a large value will be produced. Similar information is 
calculated  in Wako and Blundell (1994). 

Information from aligned sequences 

Aligning homologous sequences provides additional information 
for predicting secondary structure. The simplest way this informa- 
tion was used was to calculate the mean of the summed COR 
information terms for aligned residues. This  is equivalent to ex- 
tending the COR prediction method to include homologous infor- 
mation (Zvelebil et al., 1987). It may have been possible to produce 
more accurate results by a more sophisticated method of combin- 
ing the information in the sequence (Russell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Barton, 1993). The 
moment of hydrophobicity was also simply extended for aligned 
sequences by taking the mean value for the sequences. 

Three other ways of using aligned sequence information were 
identified. These are: aligned deletions, aligned insertions, and the 
moments of conservation for a-helix and j3-sheet. 

1. Deletions are relative to the predicted primary structure, i.e., the 
homologous sequence has a missing residue. Deletions are treated 
as “indicator” variables, represented by “1” if an insertion is 
observed at that position in any homologous sequence, and by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“0” if no insertions are observed. 

2. Insertions are  also relative to the predicted primary structure, 
i.e., the homologous sequence has one or more extra residues. 
Insertions are treated in a similar way to deletions, with an 
indicator of “1” for the residue where the insertion starts and 
“0.5” for its direct neighbors. 

3.  The moment of conservation is calculated in an analogous man- 
ner  with moment of hydropathy, with the conservation measure 
of entropy used in place of hydrophobicity. Entropy is a robust 
measure of the  degree of variability of residue type at a posi- 
tion. Entropy is defined as -xpr  * 10g2(pr) (where p r  is the 
probability of a residue type  at the position). The moment of 
conservation is a quantification of  the important concept used in 
visual inspection of multiple sequences. This concept has, to 
our knowledge, not been used explicitly in secondary structure 
before. 

a-helix, j3-strand, coil. The high value for coil indicates that, using 
the COR prediction measure, the residue is predicted to be in coil 
conformation. The residue is at the edge (position 1).  The hydro- 
phobic moment assuming a-helix is 1.21334, assuming P-strand is 
0.5480. There  are  no insertions or deletions at this position, and  the 
conservation  moment  assuming a-helix is  1.88054;  assuming 
P-strand, is 0.72193. Centering the attributes produces the vector: 

[-0.83046,  -0.72167, 1.04627, -5.2387, -0.59548, 

- 1.06786. -0.0967, -0.41774,0.65233, -0.689561. 

Linear discrimination 

Prediction of secondary structure was made from the attribute 
vectors using linear discrimination (Weiss & Kulikowski, 1991; 
Michie et al., 1994) (Fig. 1). The secondary structure of each 
position was predicted using a leave-one-out cross-validated linear 
discrimination function. The equivalent functions formed using all 
126 chains are given in Tables 7, 8, and 9. The Minitab statistical 
package was used to apply linear discrimination (Minitab Inc., 
Pennsylvania State University, Pa). 

Linear discrimination is probably the most commonly used sta- 
tistical prediction method. It is robust and it produces simple-to- 
understand output (King  et al., 1995). In linear discrimination, as 
the name suggests, a linear combination of evidence  (the attributes) 
is used to separate or discriminate between classes and to assign a 
new example. For a problem involving n features, this means that 
the separating surface between the classes will be a (n - 1) di- 
mensional hyperplane. The general form of classifier is: w l e l  + 
w2e2 + ... +w,e, + wo. This discrimination function is optimal 
assuming a multivariate normal distribution and pooled covariance 
matrix (Weiss & Kulikowski, 1991). For each class to be discrim- 
inated, a number is calculated (related to a probability using the 
linear function and the attribute vector. For example, the number A 
for  a-helix using the above centered attribute vector and the  func- 
tion in Table 7 would be calculated: 

A = -1.5862 + (0.6589 * -0.83046) + (-0.1734 * -0.72167) 

+ (-0.2274 * 1.04627) + (0.1903 * -5.23387) 

+ (0.2848 * -0.59548) + (-0.1881 * -1.06786) 

+ (-0.0815* -0.0967) + (-0.2319 * -0.41774) 

+ (0.1600 * 0.65233)+  (-0.0477 * -0.68956). 

Table 7 .  Discrimination function for rhe three secondary 
structure classes formed in the  Run2 predictions 

Parameters a-Helix @-Strand Coil 

Attribute vectors 

For each residue position, an “attribute vector” was formed using 
the information from the different calculated quantities. For exam- 
ple, in the first residue in protein lacx (actinoxathnin), the attribute 
vector for Run2 is, before centering: 

[-2.170409, -0.30941, 1.31876, I ,  1.21334, 

0.5480,0, 0, 1.88054,0.72193]. 

The first three values are the summed COR predicted information 
measures (averaged  over all homologous sequences), in  order 

Constant 
Mean potential for a-helix 
Mean potential for @-strand 
Mean potential for coil 
Distance to edge 
Hydrophobic moment a-helix 
Hydrophobic moment @-strand 
Deletions 
Insertions 
Conservation moment a-helix 
Conservation moment @-strand 

- 1.5862 
0.6589 

-0.1734 
-0.2274 

0.1903 
0.2848 

-0.1881 
-0.0815 
-0.2319 

0.16OO 
-0.0477 

-2.0802 
-0.4006 

0.7275 
-0.5236 

0.1528 
-0.3173 

0.2107 
-0.1483 
-0.1655 
-0.1520 

0.1301 

-0.9931 
-0.2629 
-0.2629 

0.3975 
-0.2004 
-0.0468 

0.0304 
0.1242 
0.2346 

-0.0385 
-0.0279 
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Table 8. Discrimination function for the three secondary 
structure classes formed in the Run3 predictions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Parameters a-Helix  0-Strand Coil 

Constant 
Mean potential for a-helix 
Mean potential for 0-strand 
Mean potential for coil 
Distance to  edge 
Hydrophobic moment a-helix 
Hydrophobic moment 0-strand 
Deletions 
Insertions 
Conservation moment a-helix 
Conservation moment P-strand 
Smoothed mean potential for 

Smoothed mean potential for 

Smoothed mean potential for coil 
Smoothed distance to edge 
Smoothed hydrophobic moment 

Smoothed hydrophobic moment 

Smoothed deletions 
Smoothed insertions 
Smoothed conservation moment 

a-helix 

P-strand 

a-helix 

P-strand 

a-helix 
Smoothed conservation moment 

P-strand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 1.6109 
0.5093 

-0.0612 
-0.2205 

0.1526 
-0.0936 

0.0339 
-0.1763 
-0.1295 
-0.0211 
-0.0078 

0.2637 

-0.0308 
0.1162 
0.3445 

0.4178 

-0.2461 
0.1 136 

-0.1081 

0.2222 

-0.0841 

-2.1138 
-0.5412 
-0.0787 
-0.6998 

0.3724 
-0.0359 
-0.05 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 
-0.1259 
-0.2019 
-0.0288 

0.0190 

0.0181 

0.7174 
0.0039 

-0.2241 

-0.3148 

0.2892 
-0.0296 

0.0287 

-0.1794 

0.1930 

-0.9969 
-0.0959 

0.0781 
0.4744 

-0.0687 
0.0803 
0.0006 
0. I784 
0.1818 
0.0277 

-0.0035 

-0.1879 

-0.31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI5 
-0.0809 
-0.1307 

-0.1385 

0.0335 
-0.0636 

0.0603 

-0.0681 

-0.0322 

The  class with the largest number from its function is predicted to 
be present. 

Post-processing 

A linear discrimination function cannot capture all information 
necessary for prediction. In particular, it cannot directly include 
auto-correlation, secondary structure feedback effects, and neigh- 
borhood constraints on secondary structures. For this reason, the 
predictions from the second-level linear discrimination function 
were filtered to produce the final predictions. 

During the folding process, stretches of secondary structure in- 
teract and affect the formation of other secondary structures. These 
interactions may be positive or negative. Such feedback inter- 
actions cannot be captured in a linear model based on the attributes 
described above. Therefore, feedback was modeled in  two stages, 
by use of smoothed attributes and by use of the fraction of residues 
predicted to be in cy-helix and P-strand conformation (the ratio of 
coil is redundant because it is linearly dependent on the ratios of 
cy-helix and P-strand). The smoothing method used was the stan- 
dard one in the Minitab statistical package. It consists of a running 
median of 4, then 2, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  then 3, followed by a Hanning smooth 
((0.25 * i - 1) + (0.5 * i )  + (0.25 * i + 1)). 

The fraction of residues of particular types has been recognized 
previously to have a role in secondary structure prediction (Rost & 
Sander, 1994). The role of these types seems to be in determining 
the structural class of the chain. The fractional content of not all 
residues are important. The important ones were determined by 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. Discrimination function for the  three secondary 
structure classes  formed in  the Run4 predictions 

Parameters 

Constant 
Mean potential for a-helix 
Mean potential for P-strand 
Mean potential for coil 
Distance to edge 
Hydrophobic moment a-helix 
Hydrophobic moment P-strand 
Deletions 
Insertions 
Conservation moment a-helix 
Conservation moment 0-strand 

Smoothed mean potential for 

Smoothed mean potential for 

Smoothed mean potential for coil 
Smoothed distance to edge 
Smoothed hydrophobic moment 

Smoothed hydrophobic moment 

Smoothed deletions 
Smoothed insertions 
Smoothed conservation moment 

a-helix 

0-strand 

a-helix 

P-strand 

a-helix 
Smoothed conservation moment 

0-strand 

Fraction predicted a-helix 
Fraction predicted P-strand 
Fraction of residues histidine 
Fraction of residues glutamate 
Fraction of residues glutamine 
Fraction of residues aspartate 
Fraction of residues arginine 

a-Helix 

-1.6910 
0.6587 

-0.0253 
-0.0801 
-0.2635 
-0.0904 

0.0236 
-0.1690 
-0.1359 
-0.0127 
- 0.0097 

0.2982 

0.0707 
0.1674 
0.4765 

0.4 186 

- 0.227 1 
0.0787 

- 0.0954 

0.1820 

-0.0588 

0.1 175 
-0.4374 

0.0040 
-0.2106 
-0.0701 
-0.0953 
-0.1 I98 

P-Strand Coil 

-2.2278 
-0.7654 
-0.1277 
-0.8902 

0.41  83 
-0.0418 
-0.0394 
-0.1341 
-0.1892 
-0.0381 

0.02 15 

-0.0068 

0.5340 
-0.1170 
-0.2852 

-0.3070 

0.2737 
-0.0046 
-0.0010 

-0.1425 

0.1532 

-0.2487 
0.4402 

-0.0488 
0.1  835 
0.0616 
0.0902 
0. I094 

- 1.oO04 
-0.0937 

0.0764 
0.467 1 

-0.0144 
0.0809 
0.0022 
0.1772 
0.1802 
0.0263 

-0.0034 

-0.1998 

-0.2956 
-0.0597 
-0.1922 

-0.1427 

0.0277 
-0.0515 

0.0654 

-0.0579 

-0.03 I 

0.0353 
0.0938 
0.0 199 
0.0584 
0.0192 
0.023 1 
0.0308 

stepwise linear regression and are: histidine, glutamate, glutamine, 
aspartate, and arginine. All these residues are highly hydrophilic. 
All these residues, with the exception of histidine, favor P-strand 
formation. 

The final predictions were filteredsmoothed to make them more 
realistic by removing physically unlikely sequences of conforma- 
tion. Filtering is now standard in secondary structure prediction, 
and is used in the most successful methods (Rost & Sander, 1993a; 
Salamov & Solovyev, 1995). The following if-then rewrite rules 
were used for filtering: 

[Ta,-a, c, b, *,-b] + c 

[ la,  *, *, a, b] -+ b 

[-a, *, *, a, c] -+ c 

[ a, *, *, a, c, * , x ]  -+ c 

[-a,la, a, a, c , ~ a ]  -+ c 
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[ la,  c, lc, a, a, c,-a] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ c 

[-a, c,  c, a, a,-.b,la] -+ c 

[a, c, *, a, a, a,la] + c 

[*, c, *, a, a, b,-.a] + c 

[c, *, a, a,-a,  a] + c 

a = a-helix, b = P-strand, c = coil, * = wildcard (a-helix or 
P-strand or coil), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 = not. 

If the pattern on  the left is met in a prediction, then the second- 
ary structure in bold on  the left is rewritten as the secondary 
structure on the right of the rule. For example: 

[b, b, b, a, cl -+ [b, b, b, c, cl 

The  filtering rules were found using the machine learning algo- 
rithm CART with 10-fold cross-validation (Breiman  et al., 1984); 
as  in  other prediction methods, the rules were taken as given a 
priori (Rost & Sander, 1993a; Salamov & Solovyev, 1995). It is 
interesting that a-helix structure is the type of structure most in 
need of filtering. 

Availability 

The DSC program for protein secondary structure prediction is 
available via a server  on the Internet: http://www.icnet.ukmm/ 
dsc-read-align.html. The DSC program (with small manual and 
source  code in C) is  also freely available from ftp://ftp.icnet.uk/ 
icrf-public/bmm/king/dsc; this allows use of DSC without recourse 
to the Internet. The  databases used to develop  DSC are available on 
request from rd-king@icrf.icnet.uk, allowing re-implementations of 
the algorithm. 
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