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Abstract

Background: MicroRNAs (miRNAs) play an important role in the regulation of many fundamental biological processes. So far
miRNAs have been only identified in a few fish species, although there are over 30,000 fish species living under different
environmental conditions on the earth. Here, we described an approach to identify conserved miRNAs and characterized
their expression patterns in different tissues for the first time in a food fish species Asian seabass (Lates calcarifer).

Methodology/Principal Findings: By combining a bioinformatics analysis with an approach of homolog-based PCR
amplification and sequencing, 63 novel miRNAs belonging to 29 conserved miRNA families were identified. Of which, 59
miRNAs were conserved across 10–86 species (E value#1024) and 4 miRNAs were conserved only in fish species. qRT-PCR
analysis showed that miR-29, miR-103, miR-125 and several let-7 family members were strongly and ubiquitously expressed
in all tissues tested. Interestingly, miR-1, miR-21, miR-183, miR-184 and miR-192 showed highly conserved tissue-specific
expression patterns. Exposure of the Asian seabass to lipopolysaccharide (LPS) resulted in up-regulation of over 50% of the
identified miRNAs in spleen suggesting the importance of the miRNAs in acute inflammatory immune responses.

Conclusions/Significance: The approach used in this study is highly effective for identification of conserved miRNAs. The
identification of 63 miRNAs and determination of the spatial expression patterns of these miRNAs are valuable resources for
further studies on post-transcriptional gene regulation in Asian seabass and other fish species. Further identification of the
target genes of these miRNAs would shed new light on their regulatory roles of microRNAs in fish.
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Introduction

MicroRNAs (miRNAs) are short, endogenous noncoding RNAs

(,22 nucleotides in length) found in animals, plants and virus

[1,2,3]. miRNA expression can be regulated at transcriptional and

post-transcriptional levels during RNA biogenesis [4]. Recent

studies showed that miRNAs might have potentially enormous

importance in the regulation of many fundamental biological

processes, such as cardiogenesis and myogenesis [5,6,7], neuro-

genesis [8,9], hematopoiesis [10], stem cells, regeneration and

homeostasis [11,12,13,14], proliferation, differentiation, cell fate

determination, apoptosis, signal transduction, organ development

[15,16,17,18,19,20,21], immunological and inflammatory disor-

ders [22,23,24]. The down-regulation of the expression of specific

mRNA targets by miRNAs accounted for the approximately 70%

detectable changes at the mRNA levels of all regulated proteins,

either by directing the cleavage of mRNAs or interfering with

translation [2,25,26]. miRNAs make up 1–5% of all genes making

them the most abundant class of regulators in genome [27,28].

Several approaches have been used to identify miRNAs. The

first approach was through forward genetics such as the discovery

of lin-4 in Caenorhabditis elegans [29,30]. The second was directional

cloning and sequencing by constructing a cDNA library, which

has been used in Arabidopsis thaliana [31], rice Oryza sativa [32],

rainbow trout Oncorhynchus mykiss [33] and zebrafish Danio rerio

[34]. However, miRNAs expressing at a low level or only in a

specific condition or specific cell types would be difficult to find

with this approach [4]. Recently high-throughput sequencing

strategies had greatly expanded the depth of small RNA cloning

coverage [35,36]. However, the sequencing data from these

strategies were not yet saturated, as reflected by many of the new

identified miRNAs that were represented only once in the

sequence database. Furthermore, since some libraries were derived

from a limited amount of tissues, some miRNAs that were only

expressed in specific adult tissues were not available [34,37].

Bioinformatics prediction was genome-wide and sequence-based

computational predictions. This method was based largely on the

phylogenetic conservation and the structural characteristics of

miRNA precursors (pre-miRNA) [38] and/or known miRNA

genes [39,40], enabling one to overcome the problem in directly

cloning. On the other hand, the process required knowledge of the

complete genome sequence, species-specific miRNAs could not be

accurately identified without this information [37] and bioinfor-

matically predicted miRNAs should be validated for their

expression by northern blotting or sequencing. Over the past

few years, thousands of miRNAs had been identified. With release
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14, the miRBase sequence database had broken through the

10000 entries (http://www.mirbase.org/). Further studies showed

that most of the miRNA sequences and the stems of miRNA

hairpins were highly conserved across species although a number

of lineage-specific miRNAs and species-specific miRNAs had been

identified [39,41,42,43]. These studies suggested that the cloning

of miRNAs for a particular species was plausible based on the

conserved homologs among pre-miRNAs and/or mature miRNAs

originating from related species.

There are over 30,000 fish species on the earth, representing

50% of all vertebrates [44]. Currently, the cloning and

characterization of miRNAs from fishes have been carried out

only for two model fish species (medaka Oryzias latipes [45] and

zebrafish [34]) and one food fish species, rainbow trout [33]. The

Asian seabass Lates calcarifer belonging to the family Latidae of the

order Perciformes, is an important food resource in Southeast

Asia. As a food fish species, the Asian seabass could be an excellent

model organism for aquaculture-genomic studies due to its

compact genome (700 Mb) and extremely high fecundity (1.7

million eggs/spawning) [46]. Therefore, the Asian seabass might

offer a good system for understanding of fish biology, such as in

infectious diseases, growth and organ development under aquatic

environment. Recently massive mortalities of seabass caused by

bacterial or viral infections had caused seriously economic losses

[47,48,49]. Unfortunately, an effective approach to protect the fish

from infections is still not developed to date. miRNAs might

potentially have an enormous impact in the regulation of

immunological and inflammatory disorders as well as growth

development [16,22,23,24]. Identification of miRNAs and their

target genes was an important step toward understanding the

regulatory networks, gene silencing mechanisms and for practical

use for gene manipulations in the Asian seabass. To date, no

miRNA is available for the Asian seabass. Conserved miRNAs

likely played an important role in regulating basic cellular and

developmental pathways from lower to higher organisms [41].

Nevertheless, in comparison to model fish species with a fully

sequenced genome, e.g., zebrafish, the in silico identification of

conserved miRNAs families in the Asian seabass was not possible

due to the absence of whole genomic information for the species.

We attempted to clone and identify conserved miRNAs from

the Asian seabass as the first step toward understanding the

regulatory roles of miRNAs in fish living under different

environmental conditions. To identify conserved miRNAs,

bioinformatics analysis of the conservation and structural similarity

of pre-miRNA sequences across related model species was

performed first. Then an approach of homolog-based PCR

amplification and sequencing were carried out. In this study, 63

novel miRNAs in the Asian seabass were identified. The approach

developed in this study was highly effective for identification of

conserved miRNAs. Quantitative real-time RT-PCR (qRT-PCR)

revealed differential expressions of these miRNAs in 8 organs (gill,

brain, eye, muscle, liver, intestine, heart and kidney) and in spleen

of the Asian seabass before and post a challenge with

lipopolysaccharide (LPS). Our data supply the basis for the

understanding of the functions of miRNAs in fish.

Results and Discussion

1. Identification of pre-miRNAs and mature miRNAs in
the Asian seabass

To find conserved homlogs among fish species 623 pre-miRNA

sequences from zebrafish (360), Fugu, Fugu rubripes (131) and

Tetraodon nigroviridis (132) were retrieved from miRBase (the

microRNA database; www.mirbase.org/). The conserved homo-

logs of the pre-miRNAs were investigated using commercial

software Sequencher. One hundred and six pairs of primers (Table

S1) were designed based on the conserved fragments among

species. For cloning less conserved pre-miRNAs, additional 47

pairs of primers were designed only based on the zebrafish pre-

miRNA sequences since no countparts were found in Fugu and

Tetraodon releases (Table S1).

Based on a Switching Mechanism At 59 end of RNA Transcript

(SMART) -based method for cDNA library construction [50], one

full-length cDNA library using pooled mRNAs from 9 tissues was

constructed and used as template in following PCR reactions for

amplification of putative pre-miRNAs. This library provided a

good tool to identify miRNAs differentially expressed in these

tissues. Eight hundred clones were sequenced and 786 reads were

obtained after trimming of end and vector sequences and

screening to eliminate sequences with low quality. These

sequences were further clustered to identify unique sequences.

Finally 322 unique sequences (Table S2) were obtained.

Sequence analyses using the BLASTn program revealed that

107 of the unique sequences showed high conservation (E

value#e24) with known pre-miRNAs (Table S2). By plotting

blasted E value of the small RNAs against total number of unique

sequences (Figure 1), we found that the most common conserva-

tion intervals were ,e22 (123 sequences), between e22 and e23 (63

sequences) and followed by ,e28 (48 sequences). Prediction of

fold-back structures and energies performed with the DINAMelt

server indicated that the stem-loop structure for many sequences

were stable (with low folding energy) (Table S2) and lacked large

internal loops or bulges. This is suggestive of the general

characteristics of pre-miRNAs. One of the examples is shown in

Figure 2. However, most of the unique sequences could not form a

good stem-loop structure which might result from sequence

artifacts (PCR errors) due to the formation of heteroduplex

molecules, the error of Taq DNA polymerase [51] and/or nature

of sequences since only partials of the pre-miRNAs were obtained

in this study.

The unique sequences considered as putative seabass pre-

miRNAs were then searched against the miRBase database to

predict conserved mature miRNAs in the Asian seabass (desig-

nated as lcal-miRNAs). Based on the phylogenetic conservation

with known pre-miRNAs and miRNAs and their stability of

folding stem-loop structures, 108 sequences [64 unique sequences

with high conservation (E value#e24) and 44 with less

conservation (E value.e24)] were selected to predict conserved

Figure 1. The distribution of the seabass miRNA precursor
candidates in various E value intervals as identified by the
BLASTn program showing conservation with known pre-
miRNAs. Conservation of the 322 unique sequences that cloned from
the seabass cDNA library with known pre-miRNAs was identified by the
BLASTn program (E value). The most common conservation intervals
were ,e22 (123 sequences), between e22 and e23 (63 sequences) and
followed by ,e28 (48 sequences).
doi:10.1371/journal.pone.0017537.g001

MicroRNAs in the Asian Seabass
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mature miRNAs in the Asian seabass. These miRNAs might

represent two classes of conserved miRNAs, i.e., miRNAs in broad

conservation families and poor conservation families. Fold-back

structures could be predicted for some of the putative pre-miRNAs

in the Asian seabass.

To identify the nucleotides at the very 59 and 39 ends of the

putative miRNAs by PCR, an adaptor-ligated miRNA cDNA

library was constructed and used as template. The miRNA

sequence-specific primers and universal primers (Table S1)were

used in following PCR reactions. Five hundreds of clones were

sequenced. Finally, the nucleotides at the very 59 or 39 ends were

validated for 151 putative conserved mature miRNAs. Of which,

112 miRNAs with the very 39 end and 102 miRNAs with the very

59 end were identified. Upon combined the data, 63 miRNAs with

the nucleotides at both of the very ends were confirmed,

representing novel mature miRNAs identified in the Asian seabass

Figure 2. Conservation of the miR-29 family in Pisces. Predicted fold-back structures of mir-29 precursors from Lates calcarifer, Danio rerio,
Fugu rubripes, Tetraodon nigroviridis and the folding energy (dG) for each fold-back structure are presented. The shadow in each precursor structure
indicates the mature miR-29 sequence in the species.
doi:10.1371/journal.pone.0017537.g002

MicroRNAs in the Asian Seabass

PLoS ONE | www.plosone.org 3 March 2011 | Volume 6 | Issue 3 | e17537



(Table S3). The sizes of the 63 miRNAs were ranged from 19 to 25

bases. Of the 63 newly identified miRNAs, 48 began with a 59

uridine, which was a characteristic feature of miRNAs, 11 began

with a 59 A, 2 began with a 59 C and G. Names of the seabass

miRNAs were assigned based on the homologies between the

miRNA and published miRNA sequences in the Sanger database;

the isoforms from one family were labeled in alphabetical order

(Table S3).

2. Conservation and evolution of the identified miRNAs
Many miRNAs were highly conserved among organisms [52].

For example, at least a third of C. elegans miRNAs had homologs in

humans [53]. The conservation among species suggests that

miRNAs represent a relatively old and important regulatory

pathway [54]. miRNAs conservation could be used to identify the

novel miRNAs for species without reference genome sequences.

Based on the sequence conservation between the lcal-miRNAs and

published miRNA sequences in Sanger database, the 63 novel lcal-

miRNAs were classified into 29 conserved miRNA families with a

range of 1 to 15 loci per family (Table S4). Since the mature

miRNA sequences from one family were highly conserved, the

PCR product amplified with one primer pair possibly contained

several similar miRNAs from one family. We identified 15

members of let-7 family and 4 members of miR-124 family in

the Asian seabass. To date, 18 let-7 isoforms were identified in the

zebrafish, and 10 let-7 isoforms for the Tetraodon and the Fugu

respectively according to the miRBase database (release 14).

Additionally, six miR-124 isoforms in zebrafish and three isoforms

in Tetraodon and Fugu respectively were registered in the

miRBase. The identified numbers for these two miRNA families

in this study were comparable to the numbers in model species. In

animals and plants, miRNAs exist as multigene families [37],

therefore, it was not surprising to get so many isoforms for these

families in the study.

A sequence logo in bioinformatics was a graphical representa-

tion of the sequence conservation of nucleotides [55]. The

sequence logos for 15 lcal-miRNA families with multiple miRNA

sequences ($2) were presented in Figure 3. Some of the sequences

were found to have slight shifts in their 59 and 39 ends, such as

family mir-21, mir-124, mir-126, mir-183, and mir-184, which is a

common phenomenon in miRNA cloning and could be attributed

to processing shifts or enzymatic modifications of miRNAs such as

RNA editing, 39 nucleotide additions or sequencing artifacts [37].

Some miRNAs from one family differed only by a few base pairs

not only on either side, but also in the middle region, e.g., let-7,

mir-23, mir-29, mir-101 and mir-128. The two members in mir-

199 family were highly divergent, since the two miRNAs might be

produced from the 59 arm and the 39 arm of a pre-miRNA,

respectively. Sequence logos showed most of the bases for miRNAs

in one family were highly conserved.

Sequence similarity searches against the central miRNA registry

also showed that most of the miRNAs were conserved across many

species (Figure 4). Of which, 59 miRNAs were conserved across

10–86 species according to our conservation criteria (a blast E

value#1024 for mature miRNA and precursor). For example, lcal-

miR-20 was conserved in all lineages of Vertebrata, including

Amphibia, Mammalia, Pisces and Aves. lcal-miR-29a,b and many

members of the lcal-let-7 family were conserved in Bilateria,

including Deuterostoma, Lophotrochozoa and Ecdysozoa. High

conservation of the miRNA families suggested an evolutionary

conserved function.

A number of lineage-specific miRNAs and species-specific

miRNAs were discovered recently. For example, many miRNAs

that were recently discovered in human and chimpanzee were not

conserved beyond mammals, and ,10% were taxon-specific [39].

In our study we have also cloned some miRNAs that only

conserved among closely related species. For example, 4 miRNAs

(lcal-let-7l, lcal-miR-21a, lcal-miR-101b and lcal-miR-724a) were

conserved only in fish species (E value#1024), indicating these

miRNAs were fish-specific and might play a key role in the

evolutionary process of fish.

3. Expression patterns of the Asian seabass miRNAs
Information about the expression of a miRNA is useful for the

understanding of its functions [56]. The expression of miRNAs

was tightly regulated both in time and space [37]. Hence, to

validate expression and assist with the determination of functions,

the expression for the 63 miRNAs in 8 different organs (gill, brain,

eye, muscle, liver, intestine, heart and kidney) and in spleen

following 24 h post-challenge with LPS and control sample were

examined by qRT-PCR (Figure 5). Each reaction was performed

in triplicate. We selected lcal-miR103 as the reference gene in the

analysis as suggested in Peltier et al. [57]. Six (lcal-miR-199a, lcal-

miR-152, lcal-let-7a, b, c and d) of sequencing validated miRNAs

did not provide positive results in all of the evaluated tissues. These

might represent miRNAs with low abundance or expressed only in

few cells or tissues or resulted from the low quality of primers used.

Based on miRNA abundance, hierarchical clustering analysis

showed that the expression profiles between brain and eye and

between kidney and intestine were more similar (Figure 5).

Many of the conserved miRNAs were expressed ubiquitously in

rainbow trout [33]. In the Asian seabass, miR-29, miR-103, miR-

125 and several let-7 family members were strongly and

ubiquitously expressed in all tissues tested (Figure 5). Our results

suggest these miRNAs might play an important role in the

regulation of constitutive processes in diverse tissues. However,

miRNAs were also expressed in a tissue-specific manner which

provided clues about their physiological functions [2]. For

example, in zebrafish, many miRNAs were highly expressed at

later stages of development [34,58]. In our study many miRNAs

showed highly conserved tissue-specific expression patterns

(Figure 5). For example, interesting expression was observed for

miR-183-1 and miR-183-2, which were highly specifically

expressed in eye and barely detectable in remaining tissues. Some

studies demonstrated that miR-183 family members were

expressed abundantly in specific sensory cell types in the eye,

nose, and inner ear and contributed specifically to neurosensory

development or function [59,60]. Previous studies had shown that

miR-1 was one of the highly conserved miRNAs and was

abundantly and specifically expressed in the heart and other

muscular tissues in fish [5,27,61,62], C. elegans [63] and mouse

[64]. Our study also showed that miR-1 was strongly expressed in

muscle and heart, and weakly expressed in eye and intestine of the

Asian seabass. Like other studies, our study suggests that miR-1

play an important role in regulation of muscle gene expression in

the Asian seabass. In addition, miR-192 was highly expressed in

intestine but moderate in liver and kidney. miR-184-1 and miR-

184-2 were strongly expressed in eye and moderately expressed in

muscle. Our expression data provide a basis for further

understanding of regulatory roles of miRNAs in fish living under

different aquatic conditions.

4. Potential functions of the identified miRNAs in an
acute inflammatory response induced by LPS and vibrio
bacteria

Our previous study had shown that exposure of Asian seabass at

the age of 35 days post hatchery (dph) to LPS led to a dramatic

MicroRNAs in the Asian Seabass
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Figure 3. Sequence logos showing the most conserved bases for miRNAs in one family. The miRNA sequence logos for 15 lcal-miRNA
families with multiple sequences ($2) are presented. Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height
of the stack indicates the sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each
nucleotide at that position. Some miRNAs from one family differ only by a few base pairs on either side and/or in the middle (e.g. let-7, mir-9, mir-21, mir-124
and mir-126); the mir-199 family is highly divergent, since the two miRNAs in that might be from the 59 arm and from the 39 arm of a pre-miRNA, respectively.
doi:10.1371/journal.pone.0017537.g003
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increase of the expression of 25 immune-related genes in spleen by

inducing an acute inflammatory response at 24 h post challenge

[65]. This study showed that 14 of the 63 miRNAs were found to

express at a very low levels (,1/100 fold of the reference gene;

Figure 5) in spleen. Examination of the mean expression changes

among the rest 49 miRNAs showed that exposure to LPS resulted

in a general elevation in mature miRNA levels. A similar result

was found in Moschos et al. [66]. Following LPS challenge, they

observed rapid and transient increase in both the mean (4.3-fold)

and individual levels of miRNA expression (46 of 104 miRNAs) in

mouse lung. In this study, the expression for 34 of the 63 miRNAs

(54%) was increased and only 12 of the 63 miRNA genes (19%)

were down-regulated in spleen of the Asian seabass. Highly

differentiated expression (.1.5fold) was summarized in Table 1.

The miR-21 was highly up-regulated and miR-101 was highly

down-regulated after exposure to LPS.

Vibrio infection of fish can cause significant mortality in fish

mariculture, e.g., seabass [67]. To explore the function of

identified miRNAs in an acute inflammatory response caused by

vibrio bacteria, the temporal expression patterns of lcal-miR-21a

in three immune-related organs, the spleen, kidney and liver of

Vibrio harveyi-challenged seabass were examined by qRT-PCR.

Interleukin-1 beta (IL-1b) is an important mediator of the

inflammatory response [68,69]. It was evident that the high level

expression of IL-1b was caused by the presence of the pathogen in

kidney (179 fold increased) at 1–3 hours post injection (hpi) and in

spleen (234 fold increased) and liver (143 fold increased) at 6 hpi

(Figure S1). This data indicated that an acute inflammatory

response was induced in the challenged fish within 1 hpi. Further

study by qRT-PCR analysis indicated that the miR-21 gene was

also remarkably elevated in kidney (1.71 fold) at 3 hpi, spleen (2.21

fold) at 12 hpi and liver (4.65 fold) at 24 hpi (Figure S2).

The miR-21, being one of the most abundant miRNAs, was

functioned as an anti-apoptotic factor and oncogene related to cell

growth [33,70,71,72,73,74]. In our study the miR-21 was highly

expressed in several tissues and highly up-regulated in spleen at

24 hour post challenge by LPS and in three immune-related

organs of Vibrio harveyi-challenged seabass. These results were

consistent with the findings of previous studies [72,73,74,75]

demonstrating the importance of the miRNAs in acute inflam-

matory immune responses with protection against pathogen.

Conclusions
By combining a bioinformatics analysis with an approach of

homolog-based PCR amplification and sequencing, 107 unique

sequences showing high conservation with known pre-miRNAs

were obtained; and 63 novel miRNAs belonging to 29 conserved

miRNA families were identified for the first time in the Asian

seabass. The methods used in this study were effective in

identifying a large number of highly conserved miRNAs as well

as less conserved miRNAs, and could be applied to identify

conserved miRNAs expressed at a low level that were difficult to

clone by traditional methods in other fish species.

The pre-miRNAs cloned in this study provide the basis for

future cloning of primary miRNAs and conducting functional

analysis. The determination of the spatial expression patterns of

these miRNAs is a valuable resource for further study on post-

transcriptional gene regulation in Asian seabass and other fish

species. Further identification of the target genes of these

miRNAs could shed new light on their regulatory roles of

miRNAs in fish.

Materials and Methods

Ethics statement
All handling of fishes was conducted in accordance with the

guidelines on the care and use of animals for scientific purposes set

up by the Institutional Animal Care and Use Committee (IACUC)

of the Temasek Life Sciences Laboratory, Singapore.

Fish, LPS and Vibrio harveyi challenge and sampling
One hundred of individuals of small Asian seabass (15 dph)

were transported from a commercial fish farm to the animal house

at the Temasek Life Sciences Laboratory. The fishes were

maintained in a large tank containing 500 L seawater at 25uC
for three weeks of acclimation. Fishes were fed twice daily with

pelleted feed (Zhongshan Tongyi, Taiwan). One day prior to

challenge, 16 of healthy fishes of average weight 5 g were

transferred to two smaller tanks holding 10 L of seawater. For 8

fishes in tank 1 each fish were injected intraperitoneally with

0.1 ml of 2 mg/ml of Escherichia coli LPS (Sigma-Aldrich, MO,

USA) by dilution with phosphate buffered saline at room

temperature. In tank 2 (control), a total of 8 fishes was received

an intraperitoneal injection of 0.1 ml of phosphate buffered saline

for each fish. Just before injection and sampling, the fishes were

anaesthetized using AQUI-SH with a concentration of 15 mg/L

(AQUI-S New Zealand Ltd, Lower Hutt, New Zealand). Eight

fishes from each tank were sacrificed at 24 h post challenge.

Spleen was taken for each fish from each tank and kept in Trizol

reagent (Invitrogen, CA, USA) at 280uC until use. In addition,

tissues including gill, brain, eye, muscle, liver, intestine, heart,

spleen and kidney of 5 untreated seabass fishes were also taken and

kept at 280uC.

To explore the temporal expression patterns of lcal-miR-21a

in three immune-related organs, thirty Asian seabass (at the age

of three months) were transferred to two tanks holding 200 L of

seawater. For 15 fishes in test tank each fish were injected

intraperitoneally with 0.1 ml of phosphate buffered saline

dissolved culture pellet of Vibrio harveyi (,e10 copy/ml) at room

temperature. In control tank, a total of 15 fishes was received an

intraperitoneal injection of 0.1 ml of phosphate buffered saline

for each fish. Just before injection and sampling, the fishes were

anaesthetized using AQUI-SH with a concentration of 15 mg/L

(AQUI-S New Zealand Ltd, Lower Hutt, New Zealand). Three

fishes from each tank were sacrificed at 1, 3, 6, 12, 24 hpi.

Spleen, kidney and liver were taken for each fish from each tank

and kept in Trizol reagent (Invitrogen, CA, USA) at 280uC
until use.

Figure 4. Conservation of the seabass mature miRNAs across
species. The 63 miRNAs validated by PCR and sequencing for the Asian
seabass were searched against the miRBase database to identify the
conservation across species. Of which, 59 miRNAs were conserved
across 10–86 species and 4 miRNAs were found to be conserved less
than 4 species according to our conservation criteria (E value#1024).
Each small black rhombus represents an identified miRNA.
doi:10.1371/journal.pone.0017537.g004

MicroRNAs in the Asian Seabass
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Figure 5. Expressions of the 57 conserved mature miRNAs in eight organs of the Asian seabass. The expression of 63 miRNA was
determined in 8 organs (gill, brain, eye, muscle, liver, intestine, heart and kidney) and in spleen sampled at 24 hour post challenge with LPS and

MicroRNAs in the Asian Seabass
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Construction of a full-length cDNA library and a miRNA
library

Total RNA was isolated separately from gill, brain, eye, muscle,

liver, intestine, heart, spleen and kidney of the Asian seabass using

TRIzol (Invitrogen, CA, USA) according to the manufacturer’s

instructions. Purification of mRNA from total RNA was carried

out using Oligotex mRNA Midi Kit (Qiagen, CA, USA). The

resulting mRNA from 9 tissues of 5 fishes was mixed with equal

quantity separately. One mg of the mixed mRNAs were used for

cDNA library construction using a SMART-based method. The

reverse transcription was carried out with PowerScript reverse

transcriptase following the manufacturer’s protocol (Clontech, CA,

USA). A oligo(dT) primer [CDS III/39 PCR Primer 59-AAG CAG

TGG TAT CAA CGC AGA GTA C(T)30-39] was used to prime

the first-strand synthesis reaction, and the SMART IV Oligo (59-

AAG CAG TGG TAT CAA CGC AGA GTA CGC rGrGrG-39)

served as a short, extended template at the 59 end of the mRNA.

The resulting single strand cDNAs serving as a template was

amplified by SMART-Oligo-IIA-primer (59-AAG CAG TGG

TAT CAA CGC AGA GT-39) and the PCR products were kept at

280uC till use.

A miRNA library was constructed as described [76] with slight

modification. In brief, enrichment of small RNAs from total RNA

was performed with mirVanaTM miRNA isolation kit (Ambion, CA,

USA) following the instruction manual and then was separated on a

denaturing 15% polyacrylamide gel. The nucleotides from positions

18–25 bp were size fractionated. RNA was eluted overnight with

0.4 M NaCl at 4uC and recovered by ethanol precipitation with

glycogen. The purified small RNAs were then ligated to a 39

adaptor [59-(Pu)uu AAC CGC GAA TTC CAG (idT)-39; where

lowercase letters indicate RNA, uppercase letters indicate DNA, Pu

denotes 59-phosphorylated uridine, and idT represents 39-inverted

deoxythymidine.] and a 59 adaptor (59-GAC CAC GCG TAT

CGG GCA CCA CGT ATG CTA TCG ATC GTG AGA TGG

G-39). Reverse transcription was performed with PowerScript

reverse transcriptase (Clontech, CA, USA) and RT primer (59-

GAC TAG CTG GAA TTC GCG GTT AAA-39). The resulting

1st strand cDNA was kept at 280uC till use.

Design of degenerate primers and amplification of
pre-miRNA sequences

Pre-miRNA sequences of zebrafish (360), fugu (131) and

Tetraodon (132) were retrieved from miRBase (the microRNA

database release 14; http://www.mirbase.org/). All of the

sequences were aligned with software Sequencher 4.9 (Gene

Codes, MI, USA). The conserved fragments were used to design

degenerate primers with the EditSeq program in DNAstar 7

(DNASTAR, WI, USA). The melting temperatures for these

primers were designed at around 60uC.

For amplification of pre-miRNA sequences 153 pairs of

degenerate primers (Table S1) were used. Single strand cDNA

diluted 20 times was used as DNA template for PCR. The

resulting PCR products were directly inserted into a pGEM-T

vector (Promega, WI, USA) and transformed into E. coli strain XL-

1 (Stratagene, CA, USA). For each product 4–6 clones were

sequenced using BigDye chemicals and ABI 3730xl Genetic

Analyzer (Applied Biosystems, CA, USA).

Prediction and determination of putative seabass
pre-miRNAs

Trimming of vector sequences and low-quality regions from

source sequences was performed using commercial software

Sequencher 4.9 (Gene Codes, MI, USA). All trimmed sequences

were used to form contigs. Singletons and consensus sequences of

each contig were referred as unique sequences and were used to

search the miRBase (the microRNA database release 14; http://

www.mirbase.org/ ) [77,78,79] with parameters (BLASTn and

stem-loop sequences) to find conservation of putative pre-miRNA

sequences. Prediction of fold-back structures and energies were

performed with the DINAMelt server (Prediction of Melting Profiles

for Nucleic Acids; http://frontend.bioinfo.rpi.edu/applications/

hybrid/quikfold.php) and with RNA 3.0 as energy rule. Based on

these analyses, sequences with low folding energy (stable stem-loop

structure) and conservation with known pre-miRNAs were

considered as putative seabass pre-miRNAs and were then searched

against the miRBase database (release 14) with parameters

(BLASTn and mature miRNAs sequences) to predict conserved

mature miRNAs in Asian seabass (designated as lcal-miRNAs).

Mapping boundary ends of putative miRNAs by PCR and
sequencing

Sequence-specific primers with partial coverage of the putative

miRNA sequences (Table S1) and general primers that matched to

the adaptor sequences were used in the following PCR reactions.

For mapping the 59 end to the very nucleotide by PCR, gene-

specific primers specific to the 39 ends of putative miRNAs and a

mRAP-59 PCR primer (59-GCG TAT CGG GCA CCA CGT

ATG C-39) were used; for mapping the 39 end to the very

Table 1. Differential expression (.1.5 fold) of lcal-miRNAs in
spleen of the Asian seabass at 24 h post challenge with LPS as
revealed by real-time PCR.

miRNA
expression Folds of differential expression

1.5–2.0 fold 2.0–2.5 fold 2.5–3.0 fold .3.0 fold

Up regulated lcal-miR-192 lcal-miR-21c lcal-miR-21a

lcal-miR-27 lcal-miR-21b

lcal-miR-124a

lcal-miR-124b

lcal-miR-124c

lcal-miR-124d

lcal-miR-222a

Down regulated lcal-miR-199b lcal-miR-101a

lcal-miR-16a

lcal-miR-9a

lcal-miR-9b

lcal-miR-128c

doi:10.1371/journal.pone.0017537.t001

control samples by real-time PCR. Six (lcal-miR-199a, lcal-miR-152, lcal-let-7a,b,c,d) of the sequencing validated miRNAs without positive results in all
of the evaluated tissues were deleted from the data. Data were presented on a logarithmic scale. The relative expression of each gene shown in the
figure was the average of triplicate real-time PCR reactions, normalized to lcal-miR-103 gene expression. Yellow shading indicated increased levels of
expression, and gray shading represented decreased levels of expression relative to the center. Blue color denoted undetectable expression in tissues.
doi:10.1371/journal.pone.0017537.g005
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nucleotide by PCR, gene specific primers specific to the 59 ends of

putative miRNAs and a mRAP-39 PCR primer (59-GAC TAG

CTT GGT GCC GAA TTC GCG GTT AAA-39) were used.

Briefly, 25 ml of reaction including 0.5 U HotStar Taq DNA

Polymerase (Qiagen, CA, USA), 16PCR Buffer, 100 mm dNTPs,

200 nmol of each primer and 1 ml diluted 1st strand miRNA

cDNA solution was initially denaturated at 95uC for 15 min, then

amplified for 35 cycles (95uC, 30 s, 60uC, 30 s and 72uC, 20 s).

The PCR products were separated on a 10% polyacrylamide gel.

The fragments were size fractionated, purified and inserted into a

pGEM-T vector (Promega, WI, USA) for sequencing. Automated

base calling of the raw sequences for mapping of boundary ends of

putative conserved miRNAs and removal of vector and adaptor

sequences were performed with commercial software Sequencher

4.9. All trimmed sequences were used to search against the

miRBase database (release 14) with BLASTn to find the

conservation of putative miRNA sequences. Sequences between

19 and 25 bp in length with a blast E value,e24 were considered

as miRNAs in Asian seabass. The miRNA sequence logos for 15

miRNA families with multiple miRNA sequences ($2) were

produced with program WebLogo Version 2.8 [55,80].

Analysis of expression of mature miRNAs through
quantitative real-time RT-PCR (qRT-PCR) in Asian seabass

Gene-specific RT primers (Table S1) for 63 identified lcal-

miRNAs were designed according to their mature miRNA

sequences. Primers (lca-IL1b) for IL-1b gene were designed based

on the seabass IL-1b EST sequence (Genbank acc.

No. EX468370). The gene-specific RT primers were equally

mixed used as RT primers for first strand cDNA synthesis. In brief,

total RNA was isolated from gill, brain, eye, muscle, liver,

intestine, heart and kidney of 3 seabass fishes and spleen from 3

LPS-challenged fishes and 3 PBS-treated fishes (control group)

using TRIzol (Invitrogen, CA, USA). The concentration and

purity of total RNA were examined using a NanoDrop ND-1000

Spectrophotometer (NanoDrop Technologies, NC, USA). Around

2 mg total RNA for each sample was treated with RNase-free

DNase I (Promega, WI, USA) following the manufacturer’s

protocol. Reverse transcription was performed at 25uC for

10 minutes, then 42uC for 60 minutes with a final incubation at

75uC for 15 minutes using gene-specific RT primer cocktail listed

in the supplementary material (Table S1), a 59 adaptor (59-GAC

CAC GCG TAT CGG GCA CCA CGT ATG CTA TCG ATC

GTG AGA TGG G-39) and PowerScript reverse transcriptase

(Clontech, DB, USA). The remaining reagents (buffer, dNTPs,

dithiothreitol, RNase inhibitor, Thermoscript] were added as

specified in the Thermoscript protocol. The reverse transcription

of the tRNA from the spleen, kidney and liver of three Vibrio

harveyi-challenged fishes and three control fishes sampled at each

time point (1, 3, 6, 12, 24 hpi) were performed as above, but using

a mixture of gene-specific RT primers and hexamer primers as RT

primers for first strand cDNA synthesis.

Real-time quantitative PCR was performed with the iQ SYBR

Green Supermix (Bio-Rad, CA, USA) as described by the

manufacturer in an iQTM5 Real-Time PCR Detection Systems

(Bio-Rad, CA, USA). PCR amplicons for gene-specific qRT-PCR

primer pairs (Table S1) were validated by the presence of one peak

as shown by the melting curve. The curve was generated by the

thermal denaturing protocol that followed each real-time PCR run.

Briefly, 25 ml of reaction including 12.5 ml SYBR Green Supermix,

200 nmol each primer and 1 ml 10-times-diluted 1st strand cDNA

solution was initially denaturated at 95uC for 3 min, then amplified

for 40 cycles (95uC, 5 s, 60uC, 10 s and 72uC, 20 s). PCR was

performed in triplicates. Values shown in Figure 5 were the average

of triplicate real-time PCR reactions, normalized to lcal-miR-103

gene expression. Gene expression datasets were analyzed by Cluster

3.0 which was originally developed by Michael Eisen, with

parameters as hierarchical clustering, uncentered correlation,

complete linkage (http://bonsai.ims.u-tokyo.ac.jp/,mdehoon/

software/cluster/software.htm#ctv), and visualized in software

Java TreeView [81]. Values shown in Figure S1 and S2 were the

average of triplicate real-time PCR reactions, normalized to the test

gene expression in the control at the respective time points.
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Figure S1 IL-1ß expression pattern in three immune-
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seabass at different time points.
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Table S3 Novel miRNAs in the Asian seabass that are
homologous to known miRNAs from other species.

(XLS)

Table S4 Classification of the 63 newly cloned miRNAs
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