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Abstract

Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been
widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins.
The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we
show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in
segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly
conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV
infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and
insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a
replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1
NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8
mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an
important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral
response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates
exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of
the cell.
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Introduction

Bluetongue is a major infectious disease of ruminants caused by

an arbovirus (Bluetongue virus, BTV) transmitted by biting midges

(Culicoides spp.) [1–3]. Historically, bluetongue has been endemic

almost exclusively in temperate and tropical areas of the world

where the climatic conditions favour both the spread of the

susceptible insect vector population and the virus replication cycle

within the vector [4]. However, in the last decade BTV has spread

extensively in several geographical areas including Southern

Europe and also, unexpectedly, in Northern Europe causing a

serious burden to both animal health and the economy [5,6].

From a molecular and structural virology perspective BTV is

one of the best understood animal viruses. BTV is a member of the

Orbivirus genus, within the Reoviridae family, and possesses a double-

stranded RNA genome formed by 10 segments (Seg-1 to Seg-10)

of approximately 19200 base pairs in total [1,3]. Until now, the

BTV genome has been shown to encode for 7 structural and 3

non-structural proteins. The BTV genome is packaged within a

triple layered icosahedral protein capsid of approximately 90 nm

in diameter [1,7–10]. The outer capsid of the virion is composed

by 60 trimers of VP2 and 120 trimers of VP5 [11] and differences

within this outer capsid define the 26 BTV serotypes which have

been described so far [12,13]. The outer capsid proteins, and VP2

in particular, stimulate virus neutralizing antibodies which in

general protect only against the homologous serotype [14]. The

internal core is formed by two layers, constituted by VP3 (sub-

core) and the immunodominant VP7 (intermediate layer) [7].

Three minor enzymatic proteins, VP1 (RNA dependent RNA

polymerase), VP4 (capping enzyme and transmethylase) and VP6

(RNA dependent ATPase and helicase) are contained within the

core that is transcriptionally active in infected cells [15–21].

The BTV genome encodes also 3 non-structural proteins: NS1,

NS2 and NS3/NS3a. NS1 and NS2 are highly expressed viral

proteins and their multimers are morphological features of BTV-

infected cells. Multimers of the NS1 protein form tubules

(approximately 50 nm in diameter and up to 1000 nm in length)

that appear to be linked to cellular cytopathogenicity [22], while

NS2 is the major component of the viral inclusion bodies. NS2

plays a key role in viral replication and assembly as it has a high

affinity for single stranded RNA and possesses phosphohydrolase

activity [23]. NS3/NS3a are glycosylated proteins involved in

BTV exit. There are two isoforms of NS3: NS3 and NS3a with the

latter lacking the N-terminal 13 amino acid residues [24–26].

Therefore, the segmented genome of BTV has been thought to

be monocistronic (i.e. ten genome segments encoding for 10

proteins) for almost three decades [27,28]. Segment 9 however,

contains the open reading frame (ORF) encoding VP6 but also a
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smaller coding sequence in the position +1 reading frame that is

present in BTV and some related Orbiviruses such as African horse

sickness virus and others [29]. Bioinformatic analysis predicts that

the BTV ‘‘ORFX’’ encodes for a protein of 77–79 amino acid

residues. This putative ORFX is subject to functional constraints

at the amino acid level and its level of conservation is higher

compared to that of the overlapping VP6. In addition, the ORFX

putative AUG initiation codon has a strong Kozak context

suggesting that this protein might be translated by leaky scanning

[29]. Alternative reading frames are expressed in a variety of RNA

viruses and they can play fundamental roles in viral replication

and virus-host interaction. In this study, we identified a previously

unknown non-structural protein and characterized its biological

properties.

Materials and Methods

Ethics statement
All experimental procedures carried out in this study are

included in protocol number 5182/2011 of the Istituto G.

Caporale approved by the Italian Ministry of Health (Ministero

della Salute) in accordance with Council Directive 86/609/EEC

of the European Union and the Italian D.Igs 116/92.

Cell cultures
BSR cells (a clone of BHK21, kindly provided by Karl K.

Conzelmann) were grown in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS).

Bovine foetal aorta endothelium (BFAE) cells were obtained from

the Health Protection Agency (HPA) cell culture collection

(catalogue number 87022601), and were grown in Ham’s F12

medium supplemented with 20% FBS. CPT-Tert cells [30] are

sheep choroid plexus cells immortalized with the simian virus 40

(SV40) T antigen and human telomerase reverse transcriptase

(hTERT) and were kindly provided by David Griffiths. CPT-Tert

cells were grown in Iscove’s modified Dulbecco’s medium

(IMDM), supplemented with 10% FBS. Mammalian cell lines

were cultured at 35 to 37uC, in a 5% CO2 humidified atmosphere.

C6/36 cells are mosquitoes cells established from Aedes albopictus

and were kindly provided by Richard Elliott. C6/36 cells were

grown in Leibovitz’s L-15 medium supplemented with 10% FBS

and 10% tryptose phosphate broth. KC cells [31](established from

Culicoides sonorensis larvae) were grown in Schneider’s insect

medium and were supplemented with 10% FBS. Insect cells were

incubated at 28uC.

Plasmids and antisera
Initially, the open reading frame expressing ORFX (NS4) was

amplified by PCR from BTV-10 (GenBank accession number

D00509) and cloned into the pCI Mammalian Expression Vector

(Promega) resulting into pCI-NS4. The BTV-8 NS4 was cloned

into the peGFP-N1 vector (Clontech), resulting in plasmid pNS4-

GFP. pNS47–77-GFP, pNS413–77-GFP and pNS419–77-GFP are

mutants derived from pNS4-GFP expressing NS4 truncated of the

amino terminal 6, 12 and 18 amino acid residues, respectively.

pNS47–77-GFP, pNS413–77-GFP and pNS419–77-GFP maintain the

methionine and valine residues in position 1 and 2 of NS4. Note

that BTV-10 and BTV-1 NS4 are 100% identical at the amino

acid level. While BTV-8 and BTV-1 NS4 differ for a single amino

acid residue in position 6. The set of BTV-1 and BTV-8 plasmids

necessary to rescue these viruses in vitro by reverse genetics were

obtained following the method recently published by Boyce and

colleagues [26]. Briefly, total RNA was extracted from infected

cells using Trizol (Invitrogen) according to the manufacturer’s

instructions. Each BTV genome segment was amplified by RT-

PCR using the AccuScript PfuUltra II RT-PCR Kit (Agilent) from

either BTV-1 or BTV-8 dsRNA preparations and the resulting

PCR products were gel-purified (Qiagen) and cloned into either

pUC57 (Fermentas) or pCI. Each BTV segment was cloned

downstream of a T7 promoter and upstream of a BsaI or SapI

restriction site. All of the mutants described in this study were

obtained using the QuikChange II Site-Directed Mutagenesis Kit

(Stratagene), according to the manufacturer’s instructions. All

plasmids used in this study were completely sequenced before use.

Sequences of PCR primers used in this study are available upon

request. Antisera used in this study included polyclonal rabbit

antisera raised against BTV VP7, NS1, NS2, NS3 and ORFX

(NS4) expressed in bacteria as Glutathione S-transferase (GST)-

tagged recombinant proteins (Proteintech Group, Inc.). Antiserum

against BTV-1 NS4 was raised against a recombinant GST fusion

protein including the entire NS4 protein expressed in bacteria.

Polyclonal rabbit antiserum against BTV VP6 was kindly provided

by Polly Roy as previously described [32]. Antibodies against B23

and c-tubulin were obtained commercially (Sigma Aldrich).

Viruses
BTV-8 (IAH reference collection number NET2006/04) was

originally isolated from a naturally infected sheep during the 2006

outbreak in Northern Europe [33]. The virus was passaged once in

KC cells and once in BHK21 cells. The reference strain of BTV-1

was originally isolated at the ARC – Onderstepoort Veterinary

Institute (IAH reference collection number RSArrrr/01) and was

adapted to cell culture by passaging it twice in embryonated eggs

and 9 times in BHK21 cells. Both viruses were kindly provided by

Peter Mertens. Virus stocks were prepared by infecting BSR cells

at a multiplicity of infection (MOI) of 0.01 and collecting the

supernatant when obvious cytpopathic effect (CPE) was observed.

The supernatants were clarified by centrifugation at 500 g for

5 min and the resulting virus suspensions aliquoted and stored at

4uC for short term usage and at 270uC for long term storage.

Virus titres were determined by standard plaque assays using BSR

or CPT-Tert cells [34].

Author Summary

Bluetongue is a major infectious disease of ruminants
caused by bluetongue virus (BTV), an ‘‘arbovirus’’ trans-
mitted from infected to susceptible hosts by biting
midges. Historically, bluetongue has been endemic almost
exclusively in temperate and tropical areas of the world.
However, in the last decade BTV has spread extensively in
several geographical areas causing a serious burden to
both animal health and the economy. BTV possesses a
double-stranded RNA segmented genome. For over two
decades, it has been widely accepted that the 10 segments
of BTV genome encode for 7 structural and 3 non-
structural proteins. In this study we discovered that BTV
expresses a previously uncharacterized non-structural
protein that we designated NS4. Although BTV replicates
exclusively in the cytoplasm, we found NS4 to localize in
the nucleoli of the infected cells. Our study shows that NS4
is not needed for viral replication both in mammalian and
insect cells, and in mice. However, NS4 confers a
replication advantage to BTV in cells in an antiviral state
induced by interferon. In conclusion, we have elucidated a
possible route by which BTV can counteract the defences
of the host.

A Novel BTV Non-Structural Protein
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Sequence analysis
65 full-length segment 9 sequences representing 24 BTV

serotypes were obtained from GenBank. Amino acid conservation

plots and secondary structure predictions were obtained using the

CLCGenomics Workbench (CLC, Aarhus, Denmark) software and

bioinformatics tools available online (the PSIPRED server [http://

bioinf.cs.ucl.ac.uk/psipred], and the Network Protein Sequence

Analysis (nps@) server, [http://npsa-pbil.ibcp.fr/]).

Reverse genetics
Recombinant BTVs were rescued by reverse genetics as

previously described [26]. Briefly, plasmids containing the genomic

segments of BTV-1 or BTV-8 or resulting mutants were linearized

with the appropriate restriction enzymes and then purified by

phenol-chloroform extraction. Digested plasmids were used as a

template for in vitro transcription using the mMESSAGE mMA-

CHINE T7 Ultra Kit (Ambion), according to the manufacturer’s

instructions. ssRNAs were purified sequentially by phenol/chloro-

form extraction and through Illustra Microspin G25 columns (GE

Healthcare Life Sciences), following the manufacturer’s protocol.

Monolayers of 95% confluent BSR cells grown in 12 well plates

were transfected twice with BTV RNAs using Lipofectamine 2000

(Invitrogen). Firstly, 0.561011 (BTV-1) or 161011 (BTV-8)

molecules of each of the BTV segments encoding VP1, VP3,

VP4, NS1, VP6 and NS2 were diluted in Opti-MEM I Reduced

Serum Medium containing 0.5 U/mL of RNAsin plus (Promega)

and then mixed with Lipofectamine 2000 diluted in Opti-MEM I

Reduced Serum Medium. After 25 min of incubation at room

temperature, the mixture was added to the cells. 16 to 18 h after the

first transfection, the cells were transfected as before but with all 10

BTV segments. 3 to 4 h after the second transfection the cells were

overlaid with 2 ml of minimal essential media containing 1.5%

agarose type VII and 2% FBS, and monitored for development of

plaques. Finally, individual BTV rescued clones were picked

through the agarose overlay and used to infect fresh BSR cells in

order to obtain a virus stock. Where necessary, BTV dsRNA was

extracted from infected cells using Trizol (Invitrogen). The ssRNA

fraction was precipitated using lithium chloride, and the harvested

dsRNA fraction was precipitated using isopropanol in the presence

of sodium acetate.

Virus growth curves
Growth curves of BTV recombinant viruses used in this study

were derived in cells infected at a MOI of 0.05 and testing for the

presence of infectious virus in supernatants collected at 8, 24, 48,

72 and 96 h post-infection. Virus growth was also assessed in cells

in the presence of 1000 antiviral units/ml (AVU/ml) of interferon

Tau (IFNT) or universal type I interferon (UIFN). Recombinant

ovine IFNT was kindly provided by Tom Spencer. IFNT was

produced in Pichia pastoris and purified as described previously

[35]. Universal type I Interferon (UIFN) was obtained from PBL

InterferonSource. BFAE cells and CPT-Tert cells were treated

with 1000 AVU of IFN 20 h prior infection with BTV

recombinants at a MOI of 0.1 (BFAE and CPT-Tert), 0.01 or

0.001 (CPT-Tert). Two hours after infection, the medium was

replaced and the cells maintained in the presence of either IFNT

or UIFN at the original concentration. Cell supernatants were

collected at 24, 48 and 72 h post-infection, centrifuged for 5 min

at 500 g in order to pellet cell debris and virus infectivity was

subsequently titrated by endpoint dilution analysis on BSR cells.

Viral titers were calculated by the method of Reed & Muench and

expressed as log10 TCID50/ml [36]. Each experiment was

performed two to three times, each time in duplicate, using

different stocks for each virus.

Interferon protection assay
CPT-Tert cells were plated in 24-well plates and treated for 20 h

with 1000 AVU/ml of IFNT or UIFN and then infected with either

BTV-1 or BTV-8 at different MOIs (0.1, 0.01 and 0.001). The

medium was replaced 2 h after infection and the cells maintained in

the presence of either IFNT or UIFN at the original concentration.

At 72 h post-infection, the cells were washed once with phosphate

buffered saline (PBS; pH 7.4) and stained for 16 h using a 0.5%

crystal violet/10% formaldehyde solution. We used Image-Pro Plus

(MediaCybernetics), in order to quantify in each well the percentage

of the monolayer that was disrupted after BTV replication. Results

were expressed as the percentage of destroyed monolayer by

calculating for each well the following formula: (number of pixels

above background: total number of pixels times) X 100.

Transfections
BSR cells were transfected with 0.6–1.8 mg of either pCI-NS4,

pNS4-GFP or derived deletion mutants, using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions.

Western blotting
For western blot analyses of intracellular proteins, cells were lysed

by standard techniques as described previously [37]. For viral pellet

analysis, cell supernatants were collected and viral particles

concentrated 200 times by ultracentrifugation as previously

described [38]. Protein expression was assessed by sodium-

dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

and western blotting using the various antisera as indicated above.

Membranes were incubated with a horse radish peroxidase-

conjugated secondary antibody (GE Healthcare Life Sciences) and

developed by chemiluminescence using Amersham ECL Plus

Western Blotting Detection Reagents (GE Healthcare Life Sciences).

Confocal microscopy
Experiments were performed using BSR, BFAE, CPT-Tert or

C6/36 cells cultured in two-well glass chamber slides (Lab-Tek,

Nalge Nunc International). Cells were either transfected with

appropriate plasmids or infected with various BTV strains at a

MOI between 0.01 and 1.5. Cells were washed with PBS and fixed

with 5% formaldehyde for 15 minutes. The fixed cells were then

processed as described previously [39] and incubated with the

appropriate antisera. Secondary antibodies were conjugated with

Alexa Fluor 488 (Invitrogen, Molecular Probes) or Alexa Fluor

594 (Invitrogen, Molecular Probes). Slides were mounted using

VECTASHIELD Mounting Medium with DAPI (49,6-diamidino-

2-phenylindole, Vector Laboratories). Slides were analysed and

images collected using a Leica TCS SP2 confocal microscope.

Electron microscopy
BSR cells were infected with BTV-1, BTV-8 or the corre-

sponding deletion mutants at a MOI of 0.05 in 35 mm dishes. At

24 h post-infection, cells were fixed using cold 2.5% gluteralde-

hyde and 1% osmium tetroxide. Cells were subsequently pelleted

through 1% SeaPlaque agarose (Flowgen), dehydrated using a

graded alcohol series and embedded in Epon 812 resin, followed

by cutting and analysis in a Joel 1200 EX II electron microscope.

In vivo pathogenicity studies
Animal experiments were carried out at the ‘‘Istituto G.

Caporale’’ (Teramo, Italy) following local and national approved

protocols regulating animal experimental use.

Study 1. Litters of 3-day old NIH-Swiss mice (n = 8–12), were

inoculated intra-cerebrally with 103 TCID50 of either BTV-1,

A Novel BTV Non-Structural Protein
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BTV-8, BTV-1DNS4 or BTV-8DNS4. Mock-infected controls

included litters inoculated with tissue culture media. Mice were

euthanized at three weeks p.i. or earlier if showing advanced

clinical signs of encephalitis. For each virus, two litters were

inoculated using two different virus preparations.

Study 2. Age-matched adult transgenic mice, deficient in the

type I interferon (IFN) receptor [IFN Alpha Ro/o IFNAR(2/2)

129/Sv], were inoculated intraperitoneally with 100 PFU of either

BTV-1, BTV-8, BTV-1DNS4 or BTV-8DNS4. For each virus,

two groups (n = 5) of mice were inoculated using two different

virus preparations. Survival plots were constructed using data

collected from two experimental groups (n = 10) with the exception

of a mock infected group that was constituted by a single group of

6 mice. Formalin-fixed and paraffin-embedded brains tissue

sections from inoculated (and mock inoculated) mice were used

in immunohistochemistry. Sections (4–6 mm) were examined for

the presence of BTV NS4 using a polyclonal NS4 antiserum and

the EnVision (DAKO) detection system.

Results

BTV expresses a previously uncharacterized non-
structural protein that localizes in the cell nucleolus
The BTV genome is formed by 10 segments. Segment 9

contains an open reading frame (ORF) between nucleotides 182

and 418 (Figure 1A) in position +1 with respect to the major ORF

expressing VP6 [29]. In silico analysis showed that this extra ORF

is highly conserved and encodes a putative protein of 77–79 amino

acid residues. A stretch of 11 basic amino acid residues is present

in the N terminal portion of the protein (residues 3 to 20). In

Figure 1. BTV expresses a fourth non structural protein (NS4). (A) BTV segment 9 (1049 base pairs). The VP6 protein (dark gray) is encoded by
nucleotides 16 to 1002. The NS4 coding sequence is located in the +1 open reading frame (ORF) between nucleotides 182 to 418. VP6 (residues 57 to
135) and NS4 (residues 1 to 79) amino acid conservation plots are shown. NS4 secondary structure prediction indicated the presence of two putative
a-helices, drawn in blue and red. The N-terminal domain (blue) is highly basic and the C-terminal domain (red) contains a conserved leucine zipper
motif. (B) Western blotting of cellular extracts (lysate) of BSR cells either transfected with 1.8 mg of plasmid expressing NS4 alone (pcI-NS4) or in fusion
with eGFP (peGFP-NS4), or infected by BTV-8 or BTV-1 at a MOI of 0.01. Cells were analyzed 36 h post-transfection or infection and blots were
incubated with NS4 antiserum. (C) Western blots of viral pellets and cell protein extracts of BFAE cells infected by BTV-1 at a MOI of 0.05. Samples
were analyzed at 48 h post-infection by SDS-PAGE and western blotting employing antisera against NS1, VP6, VP7, ORFX (NS4) and c-tubulin as
indicated. (D) Immunohistochemical detection of NS4. Immunohistochemistry was performed as described in Materials and Methods in brain tissue
sections of mice inoculated with BTV-8 72 h post-infection using an antiserum against NS4. Cells expressing NS4 are stained brown as indicated by
white arrows. No expression of NS4 is detected in negative control mice mock-inoculated with cell culture media.
doi:10.1371/journal.ppat.1002477.g001

A Novel BTV Non-Structural Protein
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Figure 2. NS4 localises in the nucleoli of transfected and infected cells. (A) Confocal microscopy of CPT-Tert cells transfected with pCI-NS4
or empty pCI as a control. At 24 h post-transfection, cells were fixed and analyzed by immunofluorescence using antibodies against NS4 and as
indicated the nucleolar marker B23 with the appropriate conjugated secondary antibodies as described in the Materials and Methods. Scale bars
correspond to 18 mm. (B) Confocal microscopy of BSR cells infected by BTV-1 and BTV-8 at a MOI of 0.01. At 24 h post-infection, cells were fixed and
analyzed by immunofluorescence as indicated in A. Scale bars correspond to 14 mm. (C) Confocal microscopy of C6/36 cells infected by BTV-1 and

A Novel BTV Non-Structural Protein
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addition, there are two putative alpha helices. Of note, the C

terminal helix (residues 34 to 75) contains a conserved leucine

zipper domain, with leucine residues at positions 49, 56, 63 and 70

(Figure 1A).

We generated a polyclonal antiserum towards ORFX, in order

to assess whether BTV expressed this previously uncharacterized

protein. We detected ORFX in BSR cells infected with either

BTV-8 or BTV-1 by western blotting (Figure 1B). Controls

included BSR cells transfected with plasmids expressing ORFX

either in its native form, or with eGFP fused to its C terminus.

These data confirm that BTV expresses a protein encoded by an

alternative reading frame located in segment 9.

We subsequently investigated whether ORFX was a structural

or non-structural protein. We infected BFAE cells with BTV-1 and

analysed supernatants (containing viral particles) and total cellular

protein extracts. Unusually for mammalian cell lines, BFAE cells

show very little BTV induced cytopathic effect (CPE), thus

facilitating the efficient discrimination between all BTV proteins

present in the cellular fraction and the structural proteins present

in purified and concentrated viral particles released from infected

cells. By western blotting, we detected NS1 and ORFX in the

cellular fraction, while VP7 was abundantly present in the viral

fraction (concentrated by ultracentrifugation) and barely visible in

the cellular fraction (Figure 1C). We obtained the same results by

infecting C6/36 mosquito cells (data not shown). We detected VP6

in both the cellular and the viral fraction (Figure 1C). Interestingly,

unlike VP7, VP6 appeared to be relatively more abundant in cell

lysates compared to the viral pellets, suggesting that there is an

intracellular pool of this protein that is not incorporated in the

BTV virions.

The absence of ORFX in the viral pellet strongly suggested that

this is a non-structural protein expressed by BTV. In light of these

data, we designated this protein NS4. NS4 was also expressed in

vivo, as shown by immunohistochemistry of brain sections of mice

inoculated intracerebrally with BTV (Figure 1D).

NS4 localises predominantly in the nucleoli of transfected
and infected cells
By confocal microscopy of cells transiently transfected with pCI-

NS4, we observed that NS4 localized mainly in the nucleus

(Figure 2A) where it showed a strong co-localization with the

nucleolar marker B23 [40]. Importantly, cells infected with either

BTV-1 or BTV-8 also showed a strong nuclear co-localisation

between NS4 and B23 [40] (Figure 2B). We also observed NS4 to

localise in the nucleus of the C6/36 insect cells (Figure 2C).

NS4 does not have a canonical nuclear localization signal

(NLS) but possesses a stretch of basic amino acid residues, at the

amino terminus portion of the protein, that could drive nuclear

localization [41] (Figure 2D). We constructed an NS4 expres-

sion plasmid (pNS4-GFP) and a series of deletion mutants

(pNS47–77-eGFP, pNS413–77-eGFP and pNS419–77-eGFP) lack-

ing the 6, 12 and 18 amino terminal residues, respectively.

pNS4-GFP and pNS47–77-eGFP transfected cells showed a

strong nuclear localization of NS4. On the other hand, NS4

showed a predominantly cytoplasmic localization in cells

transfected with either pNS413–77-eGFP or pNS419–77-eGFP.

These data suggest that the amino terminal basic domain of

NS4 may play an important role in the nuclear localization of

this protein.

Interestingly, BFAE cells infected with BTV-1 revealed that

NS4 expression was evident as early as 2 hours post infection,

similar to that observed for other BTV structural and non-

structural proteins (Figure 3).

NS4 is dispensable for BTV replication
The data above clearly show that a previously uncharacterized

BTV protein, here referred to as NS4, is a non-structural protein

that localises to the nucleolus of infected cells. Next, we generated

by reverse genetics BTV NS4 deletion mutants in order to assess

the requirement of this protein for viral replication. We generated

a set of plasmids necessary for the rescue of BTV-1 and BTV-8

and engineered three mutations in the plasmids containing

segment 9 of BTV-1 and BTV-8 such that the NS4 initiation

codon was removed along with the introduction of two stop

codons in the NS4 coding sequence. All the mutations introduced

were designed in order to leave the VP6 amino acid sequence

unaltered (Figure 4A). As a negative control for BTV rescue, we

designed a VP6 deletion mutant with a premature stop codon

incorporated into the VP6 coding sequence (position 79). As

shown in Figure 4B, viable BTV1-DNS4 and BTV8-DNS4 were

rescued with similar efficiency to the respective wild-type (wt)

viruses, upon transfection of RNA transcribed in vitro from the

appropriate plasmids representing the genomic segments of wt or

mutated BTV-1 and BTV-8. As expected, BTV-1DVP6 and

BTV8-DVP6 could not be rescued.

We did not detect any variation in the migration pattern of

dsRNA genomic segments extracted from all the wt or the NS4

deletion mutant viruses (Figure 4C). The RNA profiles of both the

wt and DNS4 rescued viruses were identical to the corresponding

profile of the stock viruses from which the segments were originally

cloned. For each virus, segment 9 was completely sequenced in

order to confirm the presence of the introduced mutations.

We confirmed, by western blotting and confocal microscopy,

that the DNS4 mutants do not express NS4 but express levels of

VP7 and NS2 comparable to the parental wild type viruses. It was

also evident that in BSR cells BTV-8 expresses lower amounts of

NS4 relative to BTV-1 (Figure 4D and not shown). However,

BTV-1 replicates better than BTV-8 in these cells and differences

in the steady-state levels of VP7 between these two viruses were

also observed (Figure 4D). In cells infected by BTV1-DNS4 or

BTV8-DNS4, we found by electron microscopy all the ultrastruc-

tural features of BTV-infected cells (e.g. viral inclusion bodies,

NS1 tubules, viral particles) (Figure 4E).

We next assessed the replication kinetics of the rescued viruses

in a variety of mammalian and insect cell lines, including those

corresponding to the natural hosts (sheep and cattle) and vector

(midges). All subsequent experiments were performed using the

rescued versions of the wt viruses as they represent a more

homogenous population and are therefore more directly compa-

rable to the rescued DNS4 viruses. Cells were infected with a MOI

of 0.05 and supernatants were collected at various times post-

infection (Figure 5). No obvious difference was obtained in the

replication of wt and DNS4 viruses, regardless of the cell lines used

in the assay (Figure 5). Interestingly, the cell adapted BTV-1

viruses consistently grew more efficiently in vitro than the BTV-8

BTV-8 at a MOI of 0.05. At 48 h post-infection, cells were fixed and analyzed by immunofluorescence as for expression of NS4 as indicated in panel A.
Scale bars correspond to 11 mm. (D) Confocal microscopy of CPT-Tert cells transfected with pNS4-GFP or the truncated mutants indicated above each
panel. The red box corresponds to the first two amino terminal amino acid residues of NS4 that were maintained in all mutants. At 24 h post-
transfection, cells were fixed and analyzed by immunofluorescence. Scale bars correspond to 18 mm.
doi:10.1371/journal.ppat.1002477.g002
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Figure 3. NS4 expression profile. Confocal microscopy of BFAE cells infected with BTV-1 at a MOI of 1.5. Cells were fixed before infection (0 h)
and at 0 h30, 2 h, 4 h, 8 h, 16 h and 24 h post-infection and processed for immunofluorescence using antibodies against VP7, NS1, NS2, NS3 and NS4
with an Alexa Fluor 488 secondary antibody as described in the Materials and Methods. Scale bars correspond to 21.16 mm for 0 h to 4 h post-
infection panels, and 13.6 mm for 8 h to 24 h post-infection panels.
doi:10.1371/journal.ppat.1002477.g003
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equivalent, including in cell lines derived from the natural host

(BFAE, CPT-Tert and KC).

BTV NS4 confers a replication advantage to BTV-8, but
not BTV-1, in mammalian cells treated with interferon
BTV, like most RNA viruses, is a strong inducer of interferon,

both in vivo in its natural hosts and in vitro [42–44]. Given that other

RNA viruses express proteins that counteract the innate immunity

of the host, we hypothesised that NS4 might aid BTV replication

in the presence of interferon (IFN). We treated cells with two type I

IFNs: IFN tau (IFNT) and universal IFN (UIFN). IFNT is secreted

by the ruminant conceptus and it is intimately linked to pregnancy

recognition signalling and possesses antiviral activity [45] while

UIFN is an alpha interferon hybrid constructed from recombinant

Human IFNs alpha A and alpha D, and is known to stimulate an

antiviral response in a wide variety of mammalian cells.

CPT-Tert cells were pre-treated with IFNT or UIFN for 20 h

prior to infection with BTV-1 or BTV-8 (or mock infection) with

MOIs ranging from 0.001 to 0.1. Both wt and the DNS4 mutants,

destroyed 80 to 100% (depending on the MOI used) of the

monolayer of infected cells in absence of IFN treatment (Figure 6).

On the other hand, pre-treatment with both types of IFN

significantly reduced BTV-induced CPE. Interestingly, in the

presence of IFN, BTV-8 wt consistently induced a more

pronounced CPE than BTV8-DNS4. Conversely, only minor

differences were observed in the CPE induced by both wt BTV-1

and BTV-1DNS4 in the presence of IFN (Figure 6).

Subsequently, we performed multi-step virus growth curves in

order to further assess the replication of BTV wt and DNS4 in the

presence or absence of IFN. CPT-Tert cells were treated with

interferon, as described above, and infected at a MOI of 0.01 with

wt and mutant viruses. At 24, 48 and 72 h post infection the cell

supernatants were collected and the virus titrated in susceptible

cells.

BTV-8DNS4 consistently reached lower titres (approximately

10 to 25 fold) than wt BTV-8 in cells treated with 1000 AVU/ml

of either IFNT or UIFN (Figure 7). Similar to what was observed

in the IFN protection assays, there was no discernable difference in

the replication growth of BTV-1 and BTV-1DNS4 after treatment

with either IFNT or UIFN. Similar patterns with both BTV-1 and

BTV-8 wt and the DNS4 mutant viruses where observed when the

input viruses were used at a MOI of 0.1 and 0.001 in CPT-Tert

(data not shown), or in BFAE cells treated with UIFN and infected

at a MOI of 0.1 (data not shown).

We next ruled out that the mutations inserted in segment 9 of

BTV-8DNS4 had a negative effect on VP6 expression (the other

protein expressed by segment 9). As shown in Figure 8A, BTV-8

wt and BTV-8DNS4 express similar amounts of VP6, reinforcing

the notion that the biological differences observed between these

two viruses were indeed due to the expression of NS4.

Therefore, the data presented so far suggested that either the

BTV-1 NS4 was somewhat defective or that the influence of this

protein on viral replication in the presence of IFN varies from

strain to strain. In order to discern between these two possibilities,

Figure 4. Generation of DNS4 Bluetongue viruses by reverse genetics. (A) BTV segment 9 open reading frames. VP6 amino acid residues are
written in black, NS4 amino acid residues are written in grey. The nucleotides at positions 183 (T), 252 (G) and 381 (T) were mutated to C, A and A,
respectively (bold). Note that whilst these mutations do not change any amino acid residues of VP6, they remove the initiation codon of NS4
(position182) and introduce two stop codons into the NS4 coding sequence at amino acid positions 24 and 67. (B) Transfected BSR cells with BTV
transcripts generated in vitro (0.561011 molecules per segment for BTV-1 and 161011 molecules per segment for BTV-8). Cell monolayers were
stained using crystal violet at 72 h post-transfection. As negative controls, DVP6 assays correspond to using a segment 9 containing a stop codon at
position 79 in the VP6 gene. (C) Agarose gel (1.5%) of purified BTV genomic dsRNA. BSR cells infected at a MOI of 0.01 were collected at 72 h post
infection and BTV dsRNA was purified as described in the Materials and Methods. 2 mg of dsRNA was loaded in each lane. (D) Western blotting of
cellular extracts (lysate) of BSR cells infected at a MOI of 0.01. Cells were analyzed 36 h post-infection and blots were incubated with antisera against
VP7, NS4 and c-tubulin as indicated. Note that the double NS4 band in the BTV-1 sample is not a feature observed consistently. (E) Electron
microscopy of BSR cells infected by BTV1-DNS4. Note cells display all the major features of BTV-infected cells including NS1 tubules (T), viral inclusion
bodies (VIB) and viral particles (arrows). Scale bar = 1 mm.
doi:10.1371/journal.ppat.1002477.g004
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we derived BTV-8 reassortants containing either segment 9 of

BTV-1 (BTV-8/1S9) or the DNS4 version (BTV-8/1S9DNS4).

Similarly, we derived BTV-1 reassortants containing the wild type

or mutated segment 9 of BTV-8 (BTV-1/8S9 and BTV-1/

8S9DNS4). In addition, we obtained a BTV-8 recombinant (BTV-

8/1NS4) with a single amino acid residue mutated in the NS4 (S to

Figure 5. In vitro growth properties of rescued WT and DNS4 viruses. Growth curves of BTV-8 (dark red, square), BTV8-DNS4 (red, triangle),
BTV-1 (blue, square) and BTV1-DNS4 (light blue, triangle) in cell lines derived from different species. BSR (hamster), BFAE (cattle), CPT-Tert (sheep), C6/
36 (mosquito) and KC (Culicoides) cells were infected at a MOI of 0.05 and supernatants collected at 8, 24, 48, 72 and 96 h after infection. Supernatants
were then titrated on BSR cells by limiting dilution analysis and the virus titers expressed as log10 (TCID50/ml). In parallel, each virus preparation was
also re-titrated by limiting dilution analysis to control that equal amounts of input virus was used in each experiment. Experiments were performed
independently twice, each time in duplicate, using two different virus stocks.
doi:10.1371/journal.ppat.1002477.g005

Figure 6. Cytopathic protection assay of CPT-Tert cells monolayer. CPT-Tert cells were treated or mock treated with 1000 AVU/ml of
interferon (Tau, IFNT or Universal, UIFN) for 20 h prior, and 2 h after, being infected by BTV-8 and BTV-1 (wt and DNS4) viruses at different MOIs (0.1,
0.01 and 0.001). Cell monolayers were stained at 72 h post-infection using crystal violet. Values indicated below each well correspond to the relative
quantification (in percent) of the disrupted monolayer using Image-Pro Plus (MediaCybernetics, Inc.).
doi:10.1371/journal.ppat.1002477.g006
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N in position 6) in order to render this protein identical to the

homologous BTV-1 protein (Figure 8B). Both cytopathic

protection assays and multistep growth assays clearly showed

that BTV-8/1S9 replicated more efficiently than BTV-8/

1S9DNS4 in the presence of IFN (Figure 8C, D). Similar results

were obtained with BTV-8/1NS4, which replicated more

efficiently than BTV-8DNS4 in cells pre-treated with IFN, while

no major differences were observed between BTV-1/8S9 and

BTV-1/8S9DNS4. Collectively, these data strongly indicate that

the NS4 of BTV-1 is not defective and can function within the

context of BTV-8.

DNS4 BTV mutants are pathogenic in mice models of
disease
Next, we assessed the virulence of DNS4 BTV mutants in two

murine models of bluetongue infection [46,47]. 129sv IFNAR(2/2)

mice, which are deficient in the type I IFN receptor, are

susceptible to infection and disease induced by BTV inoculated

by various routes [46,48]. Newborn NIH-Swiss mice inoculated

intracerebrally are also susceptible to BTV infection [47]. These

models have been previously used to assess BTV virulence [47,49].

In this study, we infected 129sv IFNAR(2/2) mice with either

BTV-1, BTV-8 or the corresponding DNS4 mutants. No major

differences were observed in the virulence of wild type and DNS4

viruses; all viruses employed in this study killed 100% of the

inoculated mice by day 8 post-infection (Figure 9). We also

inoculated 3-day old NIH-Swiss mice intracerebrally with the

same viruses as above. Once again, both wild type and DNS4

viruses were able to kill 100% of the inoculated mice with no

major differences in the virulence observed (Figure 9).

Discussion

In this study we have shown that BTV expresses a previously

uncharacterised non- structural protein that favours viral replica-

tion in cells in an antiviral state. By constructing deletion mutants

by reverse genetics, we showed that NS4 is dispensable for viral

replication in vitro, both in mammalian and insect cells, and in vivo

in murine experimental models. However, the coding sequence in

the NS4 reading frame of segment 9 is highly conserved in BTV

and in related Orbiviruses [29,50], suggesting that it must be

essential for the maintenance of BTV in nature. Indeed, we have

found that NS4 confers a replication advantage to BTV-8 in cells

pre-treated with type I IFN.

We found NS4 to have strong nucleolar localization, although it

may shuttle between the nucleolus and cytoplasm and possibly

carry out its biological functions in the latter. The nucleolus is a

dynamic sub-nuclear structure that plays crucial roles in ribosome

subunit biogenesis, the response to cellular stress and cell growth

[51,52]. Several examples of viral proteins targeting the nucleolus

have been discovered in recent years [53]. The retroviral Rev and

Rev-like proteins for example, shuttle between the nucleolus and

cytoplasm, and function as post-transcriptional regulators of viral

gene expression [54–57]. One of the main functions of these

proteins is to facilitate the export of unspliced viral mRNA

(transcribed from the proviral DNA copy of the retroviral genome

Figure 7. In vitro growth properties of rescued WT and DNS4 viruses during interferon treatment. CPT-Tert cells were treated (solid line)
or mock treated (dashed line) with 1000 AVU/ml of interferon (Tau, IFNT or Universal, UIFN) for 20 h prior and 2 h after being infected by BTV-8 (dark
red, square), BTV8-DNS4 (red, triangle), BTV-1 (blue, square) and BTV1-DNS4 (light blue, triangle) viruses. Cells were infected at a MOI of 0.01.
Supernatants were collected at 24, 48 and 72 h after infection, and then titrated on BSR cells by limiting dilution analysis and virus titers expressed as
log10 (TCID50/ml). In parallel, each virus preparation was also re-titrated by limiting dilution analysis to control that equal amounts of input virus was
used in each experiment. This experiment was performed three times, each time in duplicate.
doi:10.1371/journal.ppat.1002477.g007
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stably integrated in the cell genome) by simultaneously binding an

RNA structure in the viral RNA and the karyopherin export factor

Crm1 (chromosome region maintenance 1) [58]. Other RNA

viruses (including those that replicate exclusively in the cytoplasm)

have also been found to possess proteins that target the nucleoli.

Examples include, among others, avian infectious bronchitis virus

[59], porcine reproductive and respiratory syndrome virus [60],

Newcastle disease virus [61], Semliki forest virus [62], dengue

virus [63], West Nile virus [64], influenza virus [65], avian

reovirus [66] and encephalomyocarditis virus [67,68] The reasons

for the nucleolar targeting of many of these proteins have not

always been entirely clear.

Figure 8. The NS4 of BTV-1 displays similar biological properties to the homologous BTV-8 protein. (A) Western blotting of cellular
extracts (lysate) of CPT-Tert cells infected with BTV-8 wt or BTV-8DNS4 at a MOI of 0.01. Cells were analyzed 24 h post-infection and blots were
incubated with antisera against NS1, VP7, VP6, NS4 and c-tubulin as indicated. (B) Schematic diagram of the BTV-8/BTV-1 reassortants and mutants
used in this study. Note that BTV1 and BTV8 segments/proteins are coloured in blue and red, respectively. * indicates a point mutation, while #
indicates the introduction of a stop codon in the NS4 ORF. (C) CPT-Tert cells were treated with 1000 AVU/ml of Universal IFN for 20 h prior, and 2 h
after, being infected by the recombinant viruses indicated in the panel using a MOI of 0.01. Cell monolayers were stained 72 h post-infection using
crystal violet. Values indicated below each well correspond to the relative quantification of the disrupted monolayer using Image-Pro Plus
(MediaCybernetics, Inc.). (D) CPT-Tert cells were treated (solid line) or mock treated (dashed line) with 100 AVU/ml of Universal interferon (UIFN) for
20 h prior and 2 h after being infected by the viruses indicated in the panel. Cells were infected at a MOI of 0.01. Supernatants were collected at 24,
48 and 72 h after infection, and then titrated on BSR cells by limiting dilution analysis and virus titers expressed as log10 (TCID50/ml). In parallel, each
virus preparation was also re-titrated by limiting dilution analysis to control that equal amounts of input virus was used in each experiment. This
experiment was performed two times, each time in duplicate.
doi:10.1371/journal.ppat.1002477.g008
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The avian reovirus sA protein is a structural protein and is a

major component of the inner capsid shell. Although the sA

protein localises mainly in viral factories in the cytoplasm of

infected cells, it also localizes in the nucleoli [66]. sA has a strong

affinity for dsRNA and it may provide protection against the IFN-

induced and dsRNA dependent PKR response. Interestingly, sA

mutants that do not bind dsRNA are also unable to reach the

nucleoli, suggesting that dsRNA binding and nucleolar targeting

may be strictly linked [69].

BTV NS4 may also bind nucleic acids but, unlike the reovirus

sA, we show strong evidence that NS4 is not a structural protein.

Indeed, by western blotting we did not detect NS4 in viral particles

but only in lysates of BTV infected cells. In addition, by confocal

microscopy we did not detect NS4 in viral inclusion bodies but

predominantly in the nucleoli of viral infected cells. We cannot

exclude completely that small amounts of NS4, below the limits of

detection of our western blotting analysis, are present in viral

particles.

The predicted structural features of NS4 resemble those of a

transcription factor of the bZip family with a basic domain

followed by a leucine zipper motif [70]. Thus, NS4 may function

as a nucleic acid binding protein and either repress or enhance

transcription of genes linked directly or indirectly to the IFN

response of the cell. However, a BTV-8 recombinant virus (BTV-

8DLZNS4) expressing an NS4 with all the 4 leucine residues

forming the putative leucine zipper mutated (into either glutamine

or serine) replicated as efficiently as BTV-8 wt in cells pre-treated

with IFN (data not shown). Thus, more studies will be necessary to

explore this possibility.

The organization of VP6/NS4 ORFs in segment 9 of BTV

mirrors that of NSP5/NSP6 in the rotavirus segment 11 [71]. The

rotavirus NSP6 is not essential for virus replication but unlike the

BTV NS4, does not localize in the nucleus of infected cells [72].

To date, limited information is available on the interplay

between BTV and the host innate immune system. BTV has been

recognized as a potent inducer of type I IFN in sheep [42], cattle

[43] and mice [73]. However, limited data have been available on

how BTV induces the IFN response of the cell and, more

importantly, what counteracting measures the virus utilises to

overcome this response. Our data suggest that BTV may use NS4

to defend itself from the innate immune response of the host given

that replication of BTV8-DNS4 in cells treated with IFN is 10 to

25 fold less efficient compared to wild type BTV-8. In addition, the

cytopathic effect in cells treated with IFN is more pronounced

when cells are infected by wild type BTV-8 compared to cells

infected by BTV8-DNS4.

Viruses have evolved a variety of strategies to evade the host

innate immunity [74]. Other dsRNA viruses such as rotaviruses,

use different mechanisms (which vary between strains and the type

of infected cells) to modulate the type I IFN response. For

example, rotaviruses use NSP1 protein to promote the protea-

some-dependent degradation of IRF proteins [75–77] and mediate

repression of NF-kB, resulting in a reduction of IFN induction

[78]. Rotaviruses also induce shut off of cellular protein synthesis

resulting from the detection of dsRNA by PKR which, in turn is

responsible for phosphorylation and consequent inhibition of the

eukaryotic translation initiation factor eIF2a [79]. The blocking of

host cell protein synthesis is another likely strategy used by some

RNA viruses to counteract the IFN response [67,68]. BTV also

blocks host cell protein synthesis early after infection, although the

mechanisms underlying this phenomenon are not clear [27].

Interestingly, we found that BTV1-DNS4 replicated as

efficiently as wild type BTV-1, even in cells treated with IFN.

However, the NS4 of BTV-1 appears to possess the same

biological properties of the NS4 of BTV-8. Indeed, a BTV-8

reassortant containing the entire segment 9 of BTV-1 (BTV-8/

1S9) or a recombinant BTV-8 expressing an NS4 100% identical

to the homologous BTV-1 protein (BTV-8/1NS4), maintained the

phenotype of wt BTV-8. Thus, it is possible that the role played by

NS4 in counteracting the IFN response of the host could vary

between different virus strains. It is important to stress that the

strain of BTV-8 that we used in this study has been passaged only

a few times in culture (once in KC cells and three times in BHK21

cells) after isolation from blood of an infected animal. On the other

hand, BTV-1 was derived from the ‘‘reference’’ South African

strain passaged twice in embryonated eggs and 9 times in BHK21.

Figure 9. Experimental infection of Swiss new born and
IFNAR(2/2) adult mice with wt and DNS4 viruses. Survival plots
of either 3-days old mice inoculated intracerebrally or adult sv129
IFNAR(2/2) inoculated intraperitoneally with the following viruses: BTV-
8 (dark red, square), BTV8-DNS4 (red, triangle), BTV-1 (blue, square) and
BTV1-DNS4 (light blue, triangle) viruses. Mock-infected mice are shown
in gray, circle. Mice were killed at two weeks post-inoculation, or earlier,
if showing advanced clinical signs of systemic disease.
doi:10.1371/journal.ppat.1002477.g009
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BTV-1 appears to grow slightly faster than BTV-8 in culture,

especially at the early time points post infection. Thus, faster

replication may help BTV1-DNS4 to escape the IFN response of

the cell more efficiently, as already suggested for some strains of

influenza, and this may render NS4 less critical in these in vitro

assays [80].

More in vivo experiments will be needed in order to determine

the role of NS4 in the interplay with the natural host of BTV

infection. We observed no differences between wild type BTV-8

and BTV8-DNS4 in experimental mouse models, although it

remains possible that differences could be identified in sheep. It is

possible that NS4 is required for viral replication in insects,

although we have established in this study that no differences are

observed on the replication of the DNS4 mutants in insect cells in

vitro.

In conclusion, in the present study we have identified a

previously uncharacterized non-structural protein of BTV. The

identification of this highly conserved protein opens the way to

understand finer details of virus-host interaction and pathogenesis.

In addition, the distinct nucleolar localization, in a virus that

replicates exclusively in the cytoplasm will offer new avenues to

understand the various roles played by these organelles in the

biology of the cell.
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