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Abstract

Background: Alternative exon usage (AEU) is an important component of gene regulation. Exon expression
platforms allow the detection of associations between AEU and phenotypes such as cancer. Numerous studies have
identified associations between gene expression and the brain cancer glioblastoma multiforme (GBM). The few
consistent gene expression biomarkers of GBM that have been reported may be due to the limited consideration of
AEU and the analytical approaches used. The objectives of this study were to develop a model that accounts for
the variations in expression present between the exons within a gene and to identify AEU biomarkers of GBM
survival.

Methods: The expression of exons corresponding to 25,403 genes was related to the survival of 250 individuals
diagnosed with GBM in a training data set. Genes exhibiting AEU in the training data set were confirmed in an
independent validation data set of 78 patients. A hierarchical mixed model that allows the consideration of
covariation between exons within a gene and of the effect of the epidemiological characteristics of the patients
was developed to identify associations between exon expression and patient survival. This general model describes
all three possible scenarios: multi-exon genes with and without AEU, and single-exon genes.

Results: AEU associated with GBM survival was identified on 2477 genes (P-value < 5.0E-04 or FDR-adjusted
P-value < 0.05). G-protein coupled receptor 98 (Gpr98) and epidermal growth factor (Egf) were among the genes
exhibiting AEU with 30 and 9 exons associated with GBM survival, respectively. Pathways enriched among the
AEU genes included focal adhesion, ECM-receptor interaction, ABC transporters and pathways in cancer. In addition,
24 multi-exon genes without AEU and 8 single-exon genes were associated with GBM survival (FDR-adjusted
P-value < 0.05).

Conclusions: The inferred patterns of AEU were consistent with in silico AS models. The hierarchical model used
offered a flexible and simple way to interpret and identify associations between survival that accommodates
multi-exon genes with or without AEU and single exon genes. Our results indicate that differential expression of
AEU could be used as biomarker for GBM and potentially other cancers.
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Background
Alternative splicing (AS) is characterized by the forma-
tion of different mRNA isoforms as a result of including
or excluding different exonic or intronic segments. This
process is responsible for generating protein diversity
from a finite number of genes [1-3]. Alternative splicing
can be divided into three broad categories; intron reten-
tion, cryptic splice-site usage, and alternative exon usage
(AEU) or exon skipping. Alternative exon usage includes
cassette exons, which are discrete exons that can be in-
dependently included or excluded, and mutually exclu-
sive splicing, which involves the selection of one from a
group of exon variants [2]. Approximately 75% of multi-
exon genes exhibit AS in humans [4]. The human gen-
ome includes approximately 28,526 annotated genes that
express approximately 120,145 transcripts, of which
80,932 are protein coding and 39,213 are non-coding
transcripts [5]. The identification of "exon-level" expres-
sion profiles and characterization of AS events has be-
come possible with the availability of exon platforms (e.
g. GeneChip Exon Array). The brain exhibits particularly
high rates of AS [6] and the highest number of AEU
events [7]. Regulation of gene expression due to splicing
has been associated with cancer. Many AEU events have
been associated with disordered cell differentiation and
signaling that contribute to stem cell like proliferation of
cancer cells [8].
Glioblastoma multiforme (GBM) is an aggressive type

of brain cancer and the role of genes and AEU on GBM
survival is still not completely understood [9-11]. Most
work on AS and GBM studied individual genes or com-
pared AS between GBM and control (e.g. blood) sam-
ples. The relationship between AS and the survival of
individuals diagnosed with GBM has not been studied.
Understanding of the factors influencing survival is par-
ticularly important in GBM cases because the median
survival after diagnosis is approximately one year
[12,13]. Furthermore, several epidemiological factors
influence GBM survival including gender, race and
treatment [14]. Thus, a more accurate understanding of
the relationship between AS and GBM survival must
consider epidemiological factors and inter-individual
variability.
Several approaches to identify AS events have been

proposed. However, most approaches have limitations
that can bias the identification and characterization of
AEU. For example, Su et al. developed an individual
exon approach that does not model the covariation be-
tween exons within a gene [15]. Purdom et al. used the
residuals from probe level analysis to identify AEU on a
per-sample level [16]. The sample-level analysis chal-
lenges the detection of AEU events or the identification
of common patterns across patients receiving the same
treatment or from the same epidemiological strata.
Laderas et al. and Zheng et al. proposed group compari-
son using linear models to overcome the limitations of
the previous approach [2,17]. However, group compari-
son is not suited to identify AEU associated with other
conditions such as survival or time-to-event. In addition,
the previous implementation does not account for corre-
lations between exons measured on the same sample.
Cline et al. formulated an ANalysis Of Splice VAriation
approach that cannot be used in genes that produced
more than one splice form [18].
The main goal of this study is to demonstrate an

exon-based, gene-centric model to detect AEU events
associated with GBM survival. We developed an analyt-
ical method that addresses the limitations of previous
approaches by modeling the exon-level expression pro-
files within genes from all samples across all treatments
or conditions studied. Our approach accommodates the
dependencies between exons within a gene and patient
and allows testing the hypothesis of differential exon ex-
pression or usage between treatment groups. A unique
advantage of our flexible approach is that one model
encompasses all scenarios: i) multi-exon genes that have
AEU, ii) multi-exon genes that do not have AEU, and iii)
single-exon genes. A supporting goal is the three-fold as-
sessment of the approach that encompassed; 1) the use
separate training and validation data sets, 2) gene set en-
richment and gene functional analyses of the results,
and 3) comparison of predicted and reported AS events.

Methods
Training data set
Survival, clinical and exon expression information from
250 patients diagnosed with GBM was obtained from
The Cancer Genome Atlas repository, May 2011 data
freeze (https://tcga-data.nci.nih.gov/tcga/). Surgical sam-
ples had a minimum of 80% tumor nuclei and maximum
of 50% necrosis. The clinical or epidemiological varia-
bles considered in the analysis of exon expression
included treatment (levels: chemo-radiation-targeted
[CRT], chemo-radiation-non targeted [CRnT], radiation
[R], other therapies [OTHER], and no therapy [NONE]);
racial ethnicity (white Caucasian and others); and gender
(male and female). These clinical factors were previously
found to be associated with survival [9]. The survival in-
dicator was the time from diagnosis to death, expressed
in months.
Exon expression measurements from a frozen sample

from each patient were obtained using the Affymetrix-
GeneChipW Human Exon 1.0 ST Array (Affymetrix,
Santa Clara, CA). This platform includes information
from 1,432,143 probe sets representing known and pre-
dicted exons on both strands of the genome that have
been mapped to more than 25,000 genes. Intensity data
was log-2 transformed and normalized using quantile
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and RMA normalization at the probe level following
the procedures described in Beehive (http://stagbeetle.
animal.uiuc.edu/Beehive). Probes sets within exons were
collapsed using a Tukey biweight function that provides
an iterative reweighed measure of central tendency. This
robust statistic provides a single exon expression that is
not heavily influenced by extreme probe expression
levels [19].

Model
Three specifications of this model accommodated three
groups of genes: 1) multi-exon genes exhibiting AEU, 2)
multi-exon genes with no evidence of AEU, and 3)
single-exon genes. The first, second and third model
specifications correspond to equations [[1]], [[2]] and
[[3]], respectively. Within gene, a general exon expres-
sion mixed model was developed to describe the associ-
ation between and exon expression and GBM survival
adjusted for other clinical factors:

yijklmn ¼ μþ Gi þ Rj þ Tk þ b2Sl þ Xm

þ b3m SXð Þlm þ Pn þ eijklmn ð½1�Þ

yijklmn ¼ μþ Gi þ Rj þ Tk þ b4Sl þ Xm þ Pn

þ eijklmn ð½2�Þ

yijklmn ¼ μþ Gi þ Rj þ Tk þ b5Sl þ Pn þ eijklmn ð½3�Þ

where yijklmn denotes the expression of the mth exon
(Xm), recorded on the nth patient (Pn) that has the ith

gender (Gi), j
th race/ethnicity (Rj), and received the kth

therapy (Tk). Survival after diagnosis (Sl), expressed in
months, was fitted as a covariate. The parameters b2, b4,
and b5 describe the overall change in expression per
additional survival month across all exons, and b3m
descrbe the deviation in change in expression per add-
itional survival month for the mth exon in multi-exon
genes that have AEU. In addition, eijklmn is the residual
associated with the yijklmn observation, and SX denotes
the interaction between survival and exon. In this model
the fixed effects were; gender, race/ethnicity, therapy,
and survival after diagnosis. The random effects exon,
interaction between survival and exon, and patient were
assumed to be independent and follow a Gaussian distri-
bution with mean zero and its own variance.
A significant interaction between survival and exon ef-

fect constitutes evidence of an AEU scenario and, thus,
differential survival across exons (group 1 genes). This
model can be used to identify AS biomarkers of GBM
survival that exhibit AEU. A significant survival after
diagnosis effect together with a non-significant inter-
action between survival and exon effect constitutes evi-
dence of a general association between gene expression
and survival, regardless of exon (group 2 genes). This
result can be used to identify multi-exon biomarkers of
GBM survival that do not exhibit AEU.
The specification for the single-exon genes (group 3

genes) is a reduced version of the full multi-exon model
that excludes exon and interaction between survival and
exon. A significant survival effect is evidence of associ-
ation between the single-exon gene expression and sur-
vival and can be used to identify single-exon biomarkers
of GBM survival.
The hierarchical structure of the model used to iden-

tify AEU and gene expression associations with survival
stems from the presence of two type of descriptive para-
meters: general or population-level and group-level para-
meters. There is a general or population-level
association between exon expression and survival across
all the exons of the gene, and group-level exon-specific
deviations from the overall association that reveal alter-
native exon usage. A second hierarchical structure stems
from a population-level exon expression, and patient-
specific deviations from the overall expression level. The
within-gene analysis supported a gene-centric strategy to
uncover expression profiles associated with survival. The
analysis of all exon information within a gene-allowed
accounting for the covariance between exon expression
within a gene and the hierarchical nature of the model
allows the inclusion of the covariance between exon-
expression within a patient. The analysis of expression
data at the exon level permitted the identification of
AEU by testing the null hypothesis of no differential as-
sociation between expression and survival across exons
within a gene.
False Discovery Rate adjustment (FDR) of the P-values

allowed controlling for multiple testing [20]. In addition,
a more stringent P-value threshold was considered for
the detection of AEU associations with a significant
interaction between survival and exon) than the main
survival effect in the multi-exon scenarios. The more
stringent P-values required for detection of AEU
accounted for the multiple comparisons of the survival-
expression associations among potentially numerous
exons. A separate FDR adjustment of the P-values from
the single-exon analysis was implemented because of the
different number of parameters between the multi- and
single-exon models. In this study, the significance
threshold P-value < 5.0E-4 corresponds to a FDR-
adjusted P-value < 0.05 or multi exon genes and to a
FDR adjusted P-value < 0.1 for genes with single exon.
The mixed effects model was evaluated in a restricted
maximum-likelihood framework using the SAS 9.2
MIXED procedure (http://www.sas.com/).
Thus, three types of evidence were used to identify

AEU: a) significant variations in the associations between
exon expression and survival across a gene, b) consistent
(over or under-expressed) differential expression in more
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than two consecutive exons, and c) a minimum exon dif-
ferential expression (< 0.995 or > 1.005 fold change /
additional survival month). Consistent patterns of ex-
pression across consecutive exons were identified using
a moving average analysis [21]. A moving average ana-
lysis that computes the average expression across mul-
tiple exons at a time was used to predict a continuous
trajectory of exon expression across the gene. This mov-
ing average trend of exon expression across the gene
facilitated the identification of consistent changes in the
pattern of over or under-expression across the exons
within a gene.
Functional and pathway analyses of the genes exhibit-

ing significant evidence (P-value < 5.0E-4) of AEU asso-
ciated with GBM survival used hypergeometric tests and
was implemented in DAVID [22,23]. Gene set enrich-
ment analysis (GSEA) of the association between expres-
sion and GBM survival among all the genes studied in
the platform followed the approach described by Subra-
manian et al. [24] implemented in BABELOMICS 4.3
[25]. For this analysis, the association between each gene
and survival was characterized by the estimate of change
in expression per additional survival month standardized
by the standard error of the estimate. The enrichment of
Gene Ontology (GO; http://www.geneontology.org/) bio-
logical processes, molecular functions, and KEGG
(http://www.genome.jp/kegg/pathway.html) pathways
was investigated. Finally, P-values of the enriched cat-
egories were adjusted for multiple testing using the FDR
correction.
The exon expression estimates and the moving average

trajectory of the estimates across individual genes were
aligned to known or predicted alternative transcript var-
iants reported in the AceView database (http://www.
ncbi.nlm.nih.gov/IEB/Research/Acembly/) that are avail-
able through the UCSC Genome Browser (http://
genome.ucsc.edu). This visualization strategy facili-
tated the interpretation of results and the AS mod-
els offered an independent in silico confirmation of
the AEU events identified.

Validation dataset
Genes exhibiting AEU in the training data set were con-
firmed in an independent set of 78 patients obtained
from TCGA (May 2011 data freeze). The reliability of
the exon expression profiles associated with survival
identified in the training data set was assessed using a
two-stage approach. First, the parameter estimates (i.e.
changes in exon expression per one additional month of
survival) that were obtained from the analysis of the
training data set were applied to the covariate informa-
tion from the patients in the validation data set, and pre-
dictions of exon expression were obtained. Second, the
predicted exon expression values were compared to the
corresponding observed expression values. The perform-
ance of the training estimates was evaluated using the
coefficient of determination (R2) that represents the frac-
tion of the total variation of the expression associated
with survival, exon and the rest of the model terms [26].
High R2 on the validation data set based on the training
data set estimates indicate the reliability of the exon ex-
pression patterns identified.

Results and discussion
Expression measurements of 269,951 exons from 25,403
genes were analyzed. Of these, 2,857, 20,288, 1,965 and
293 genes had 1, 2 to 24, 25 to 49, and 50 or more
exons, respectively. The number of exons per gene ran-
ged from 1 to 191 and averaged 10.75 exons per gene.
Table 1 summarizes the distribution of the 250 and 78
individuals diagnosed with GBM analyzed in the training
and validation data sets respectively, across clinical fac-
tors, and survival descriptive statistics. The distribution
of observations across clinical factors was consistent
across data sets.

Multi-exon genes exhibiting exon-dependent association
with glioblastoma multiforme survival
At a FDR-adjusted P-value < 0.05 (approximately equiva-
lent to an unadjusted P-value < 5.0E-4) threshold, 2477
multi-exon genes exhibited AEU associated with survival
(group 1 genes), 24 multi-exon genes exhibited expres-
sion associated with survival albeit no evidence of AEU
(group 2 genes), and 8 single-exon genes exhibited ex-
pression associated with survival (group 3 genes). A
similar number (1,478) of differentially expressed genes
was associated short- versus long-term glioblastoma sur-
vival [27]. The higher number of associations detected in
the present study could be attributed to the analysis of
exon-level profiles instead of gene-level profiles. At un-
adjusted P-value < 1.0E-5, P-value < 1.0E-6 (approxi-
mately equivalent to a FDR-adjusted P-value < 1.0E-2),
P-value < 1.0E-7, P-value < 1.0E-8 (approximately
equivalent to a FDR-adjusted P-value < 5.0E-4), the
number of genes exhibiting AEU (group 1 genes) were
592, 313, 201, and 129 respectively.
Table 2 summarizes the 36 multi-exon genes that have

the most significant (P-value < 0.11) AEU or exon-
dependent association with GBM survival (group 1
genes). Additional file 1: Table S1 lists the results for
the 129 multi-exon genes that exhibit evidence of AEU
at P-value < 1.0E-8.
The nature of the association between expression and

GBM was characterized by the sign and value of the ex-
pression change per additional month in survival.
Tables 2, 3 and 4 include a general, exon-independent,
gene-wise estimate of expression fold change per add-
itional survival month for completeness. The meaning of

http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/
http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/
http://genome.ucsc.edu
http://genome.ucsc.edu


Table 1 Distribution of patients across clinical factors by data set

Training data set Validation data set

Number Percentage Number Percentage

Patients 250 76.22 78 23.78

Race1 Caucasian 222 88.80 71 91.03

Other 28 11.20 07 8.97

Gender Females 94 37.60 29 37.18

Males 156 62.40 49 62.82

Therapy2 R 63 25.20 21 26.92

CRT 27 10.80 07 8.97

CRnT 99 39.60 31 39.74

OTHER 35 14.00 10 12.82

NONE 26 10.40 09 11.54

Survival (months) 17.46 0.16 - 128 15.02 0.10 – 77.57
1Race: White Caucasian, and all other race-ethnicity groups.
2Therapy; R: radiation therapy alone; CRnT: chemotherapy plus radiation and no targeted therapy; CRT: chemotherapy plus radiation and targeted therapy;
OTHER: all other therapies; None: no therapy.
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this fold change estimate is straightforward for genes in
groups 2 and 3 because these genes exhibit a single, gen-
eral, and exon-independent association with GBM sur-
vival. The general fold change estimate for group 1
genes must be considered in the context that these genes
have an exon-dependent association with GBM.
The top 36 genes exhibiting significant evidence of

AEU had a minimum of 90 exons (Table 2). This result
suggests that genes with high number of exons are more
likely to experience AEU events that influence GBM sur-
vival than genes with few exons. It is unlikely that high
number of exons biased the identification of AEU due to
the stringent P-value threshold used.
Most of the 36 genes that had significant AEU associ-

ation with GBM survival have been associated with can-
cer. Relevant literature references are summarized in
Table 2. There were 10 genes including titin (Ttn), poly-
cystic kidney disease 1 (Pkd1), spectrin repeat contain-
ing, nuclear envelope 1 (Syne1), small nuclear
ribinucleoprotein (Snrpn), phosphodiesterase 4D inter-
acting protein (Pde4dip), obscurin (Obscn), dystonin
(Dst), microtubule-actin cross-linking factor 1 (Macf1),
ryanodine receptor 1 (Ryr1), and ryanodine receptor 2
(Ryr2), that had been previously associated with GBM.
Additionally, 13 genes have been previously associated
to cancers other than GBM including; Smg-1 homolog
(Smg1), Nebulin (Neb), TBC1 domain family, member 3
(Tbc1d3), Anaphase promoting complex subunit 1
(Anapc1), Spectrin repeat containing, nuclear envelope 1
(Syne2), Neuroblastoma breakpoint family, member 10
(Nbpf10), Mucin 19 (Muc19), Collagen, type VII, alpha 1
(Col7a1), Ubiquitin protein ligase E3 component n-
recognin 4 (Ubr4), Hemicentin 1 (Hmcn1), Collagen,
type IV, alpha 5 (Col4a5), Ryanodine receptor 3 (Ryr3),
and G protein-coupled receptor 98 (Gpr98).
Previous reports confirmed the overall relationship be-
tween the top genes exhibiting AEU and GBM identified
in this study. Reports on the overall relationship between
genes and GBM are hereby reviewed since the AEU pat-
tern for these genes has not been previously described.
The TTN protein is encoded by Ttn, and is responsible
for the passive elasticity of cells. A mutation resulting in
an altered TTN was associated with GBM [28]. Pkd1
was over-expressed during the progression of low-grade
to high-grade gliomas [32]. Syne1 has been associated
with increased GBM survival [9]. Under-expression of
Snrnp was observed in older GBM patients compared to
younger patients [33]. Pde4dip is down-regulated in gli-
oma cell lines treated with dB-cAMP that reduces the
invasiveness, proliferation and migratory properties of
glioma cells and increases the survival of glioma cells
lines compared to untreated cell lines [35]. The muta-
tion R4558H in Obscn has been associated with GBM
[28]. Likewise, a mutation in Dst that indirectly regulates
the expression of Otub1 (through regulation of mir-15b
has been associated with GBM [44]. Reduced expression
of Macf1 has been observed in glioma cells treated with
IL-13 cytotoxin that causes the cells to undergo necrosis.
Thus, down-regulation of the expression of Macf1 was
associated with increased GBM survival [53]. Ryr1 was
under-expressed in high-grade gliomas relative to pri-
mary (low-grade) gliomas [57]. On the other hand, Ryr2
was over-expressed in invasive GBM cells compared to
normal control cells [51].

Functional and pathway analyses of the multi-exon genes
exhibiting exon-independent association with
glioblastoma multiforme survival
The 2,477 genes exhibiting significant evidence of AEU
associated with GBM survival were further investigated



Table 2 Top 36 multi-exon genes that have significant alternative exon usage associated with glioblastoma multiforme
survival

Gene Symbol Estimate1 SE2 P-value AEU3 Fold change4 Exon Count5 Literature6

Ttn 0.0007 0.0001 4.2E-38 0.9993 340 [28] G

Smg1 0.0017 0.0002 2.0E-24 1.0001 209 [29] AS

Neb 0.0007 0.0001 3.2E-21 0.9973 180 [30,31]C, AS

Pkd1 0.0010 0.0001 2.0E-19 1.0018 163 [32] G, AS

Herc2p2 0.0008 0.0001 2.3E-19 1.0012 163 NA

Syne1 0.0018 0.0002 3.0E-18 0.9984 152 [9] G

Snrpn 0.0018 0.0002 3.8E-18 1.0020 151 [33,34]G, AS

Pde4dip 0.0016 0.0002 1.3E-17 0.9993 146 [35,36]G, AS

Golga8c 0.0031 0.0004 4.2E-17 1.0005 141 NA

Sspo 0.0009 0.0001 1.2E-16 1.0003 137 NA

Ankrd36 0.0026 0.0003 1.3E-16 1.0018 137 NA

Tbc1d3 0.0008 0.0001 2.4E-16 1.0026 135 [37]C

Flj45340 0.0018 0.0002 5.5E-16 1.0007 131 NA

Anapc1 0.0009 0.0001 5.8E-15 0.9990 122 [38,39]C, AS

Syne2 0.0012 0.0002 6.2E-15 1.0017 115 [40]C, AS

Nbpf10 0.0035 0.0005 1.3E-14 0.9992 118 [41] C, AS

Muc19 0.0015 0.0002 1.4E-14 1.0001 118 [42]C, AS

Obscn 0.0006 0.0001 1.5E-14 0.9999 118 [28,43]G, AS

Npipl3 0.0019 0.0003 4.1E-14 1.0014 114 NA

Dst 0.0013 0.0002 9.4E-14 0.9997 111 [44,45]G, AS

Col7a1 0.0011 0.0001 1.4E-13 1.0001 109 [46,47]C, AS

Ubr4 0.0011 0.0001 1.4E-13 0.9994 109 [48,49]C, AS

Hmcn1 0.0006 0.0001 2.0E-13 0.9975 109 [50]C, AS

Ryr2 0.0011 0.0001 2.7E-13 0.9974 107 [51,52]G, AS

Macf1 0.0011 0.0002 3.1E-13 0.9975 106 [53,54]G, AS

Mdn1 0.0006 0.0001 3.5E-13 0.9993 106 NA

Col4a5 0.0008 0.0001 3.5E-13 0.9992 106 [55,56]C, AS

Ryr1 0.0007 0.0001 4.2E-13 0.9998 105 [31,57,58]G, AS

Golga6l5 0.0013 0.0002 5.2E-13 1.0021 104 NA

Ryr3 0.0009 0.0001 1.3E-12 0.9962 102 [59]C, AS

Dnah14 0.0007 0.0001 2.0E-12 0.9990 99 NA

Herc2 0.0006 0.0001 3.1E-12 1.0003 97 [60]AS

Dnah8 0.0005 0.0001 4.7E-12 0.9997 96 NA

Nomo1 0.0007 0.0001 4.9E-12 0.9996 95 NA

Gpr98 0.0016 0.0002 5.9E-12 0.9948 95 [61]C, AS

Golga6a 0.0017 0.0002 7.8E-12 1.0009 93 NA
1Estimate: exon-survival interaction variance indicator of alternative exon usage.
2SE: standard error of the estimate.
3P-value AEU: unadjusted P-value of alternative exon usage or exon-dependent association between expression and glioblastoma multiforme survival.
4Fold change: fold change in average exon expression per additional survival month.
5Exon Count: number of exons in the gene.
6Literature: review of studies that reported associations of the gene with cancers:
G: reported association of gene with glioblastoma multiforme,
C: reported association of gene with cancer other than glioblastoma multiforme,
AS: identification of different variants due to alternative splicing (AS) event,
NA: not available.
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Table 3 Ten most significant KEGG and GO categories enriched among the genes displaying alternative exon usage

Source Category Gene Count1 FDR P-value2

KEGG Pathway (hsa04510) focal adhesion 86 3.2E-21

(hsa04512) ecm-receptor interaction 51 8.5E-20

(hsa02010) abc transporters 30 2.5E-12

(hsa04810) regulation of actin cytoskeleton 66 1.7E-07

(hsa05412) arrhythmogenic right ventricular cardiomyopathy 32 5.9E-06

(hsa05414) dilated cardiomyopathy 37 1.3E-06

(hsa04070) phosphatidylinositol signaling system 31 1.2E-05

(hsa05222) small cell lung cancer 31 3.6E-04

(hsa05410) hypertrophic cardiomyopathy 32 1.3E-04

(hsa05200) pathways in cancer 73 3.0E-02

GO Biological Process (GO:0051056) regulation of small GTPase mediated signal transduction 105 0.055

(GO:0022610) biological adhesion 197 2.7E-22

(GO:0007155) cell adhesion 197 2.3E-22

(GO:0046578) regulation of Ras protein signal transduction 79 5.0E-15

(GO:0035023) regulation of Rho protein signal transduction 51 1.7E-15

(GO:0007010) cytoskeleton organization 129 1.3E-15

(GO:0030029) actin filament-based process 85 2.3E-14

(GO:0007018) microtubule-based movement 51 2.1E-12

(GO:0016568) chromatin modification 89 1.9E-12

(GO:0051276) chromosome organization 132 1.4E-12

GO Molecular Function (GO:0030554) adenyl nucleotide binding 451 9.9E-59

(GO:0005524) ATP binding 433 2.2E-59

(GO:0032559) adenyl ribonucleotide binding 437 2.0E-59

(GO:0001882) nucleoside binding 456 6.3E-58

(GO:0001883) purine nucleoside binding 451 1.5E-56

(GO:0017076) purine nucleotide binding 480 5.2E-44

(GO:0032555) purine ribonucleotide binding 466 2.9E-44

(GO:0032553) ribonucleotide binding 466 2.9E-44

(GO:0000166) nucleotide binding 523 7.4E-39

(GO:0003774) motor activity 86 1.3E-34
1Gene Count: number of genes that have significant alternative exon usage within category.
2FDR-adjusted P-value: False discovery rate adjusted P-value of the hypergeometric test of category enrichment.
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using functional and pathway analyses. At FDR-
adjusted P-value < 0.05, 15 KEGG pathways, 87 GO
biological processes, and 70 GO molecular functions
were enriched. The top 10 pathways, biological pro-
cesses and molecular functions are summarized in
Table 3. Additional file 1: Table S2 lists all KEGG
pathways and GO categories with FDR-adjusted P-
value < 0.05. Among the 15 pathways significantly
enriched, focal adhesion was the most significant path-
way encompassing 86 genes. This result was consistent
with many reports of the critical role of focal adhesion
and gliomas [66-68]. The enrichment of the extra-
cellular matrix- (ECM-) receptor interaction pathway
detected in this study has been reported in other
cancers [69,70]. The ATP-binding cassette (ABC)
transporter pathway has been associated with gliomas
[71]. Our finding of small cell lung carcinoma path-
ways enrichment associated with GBM was consistent
with the multiple studies that have identified common-
alities among these cancers [72]. The most enriched
biological process among the AEU genes associated
with GBM survival included regulation of small
GTPase mediated signal transduction (RSGST), and
neuron development that has been associated with
neuroblastoma [73]. The enrichment of biological ad-
hesion confirms our focal adhesion results. Among the
top 70 GO molecular functions significantly enriched
were adenyl ribonucleotide binding, ATP binding,



Table 4 Top 5 multi-exon genes that have significant exon-independent association with glioblastoma multiforme
survival

Gene Symbol Estimate1 SE2 Fold Change3 P-value4 P-value AEU5 Exon Count6 Literature7

Sirt2 0.0337 0.0092 1.0236 3.2E-04 2.5E-03 17 [62]G

Six1 0.0056 0.0015 1.0039 3.3E-04 2.7E-01 5 [63]C

Loc100289627 0.0079 0.0022 1.0055 3.8E-04 4.3E-01 2 NA

Sema3e −0.0256 0.0066 0.9824 1.3E-04 2.4E-03 18 [64]C

Golga8j −0.0536 0.0141 0.9635 1.7E-04 1.1E-03 20 [65]C

1Estimate: change in average exon expression per additional survival month (in log2 units).
2SE: standard error of the estimate.
3Fold change: fold change in average exon expression per additional survival month.
4P-value: unadjusted P-value of the change in average exon expression per additional survival month.
5P-value AEU: non-significant (P-value > 1.0E-03) evidence of alternative exon usage.
6Exon Count: number of exons in the gene.
7Literature: review of studies that reported associations of the gene with cancers:
G: reported association of gene with glioblastoma multiforme,
C: reported association of gene with cancer other than glioblastoma multiforme,
NA: not available.
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nucleotide binding and helicase activity. These related
nucleotide binding functions have been associated with
GBM [74].

Multi-exon genes exhibiting exon-independent
association with glioblastoma multiforme survival
At unadjusted P-value < 5.0E-4, 24 multi-exon genes
exhibited exon-independent association with GBM sur-
vival (group 2 genes). In other words, there was no evi-
dence of AEU in these genes because the expressions of
all the exons were consistently associated with GBM sur-
vival and a single general or overall association between
the gene and survival can be identified. Table 4 lists the
top five multi-exon genes that have the most significant
exon-independent association with GBM survival. Add-
itional file 1: Table S3 lists the results for the 24 multi-
exon genes exhibiting expression associated with sur-
vival albeit no evidence of AEU at P-value < 5.0E-4.
Among the 24 multi-exon genes that were associated

with GBM survival on a general, exon-independent
manner, the five genes that have the lower AEU evidence
(AEU unadjusted P-value > 1.0E-3, approximately FDR
adjusted P-value > 0.1) are listed in Table 4. The expres-
sion of three of these genes increased with increasing
survival. Noteworthy was the low number of exons in
these genes, relative to the higher number of exons in
genes exhibiting evidence of AEU.
Four of five multi-exon genes have been associated to

different cancers in studies listed in Table 4, and the
remaining gene (LOC100289627) is similar to Guanine
nucleotide-binding protein subunit beta-2-like 1. Sir-
tuin2 (Sirt2) has been associated with GBM while the
other three genes golgin subfamily A member 8J (Gol-
ga8j), semaphorin 3E (Sema3e) and SIX homeobox 1
(SIX1) were associated with other cancers. Under-
expression of Sirt2 has been reported in glioma cells
relative to control cells [62]. This result is also consistent
with our findings that higher levels of Sirt2 were asso-
ciated with higher GBM survival Golga8j has been asso-
ciated with pancreatic cancer and the trend is consistent
with our finding of lower GBM survival with higher ex-
pression levels of this gene [65]. Sema3e promotes inva-
siveness and metastatic ability of the cancerous cells
[64]. Sema3e is associated with many cancers like pros-
tate cancer colon cancer and lung adenocarcinoma [75].
This result is consistent with our findings that higher
levels of Sema3e were associated with lower GBM sur-
vival. The gene Six1 is associated with lower survival in
cancerous cells [63]. This result is inconsistent with our
results showing an increase in Six1 expression associated
with an increase in GBM survival.

Single-exon genes associated with glioblastoma
multiforme survival
Eight single-exon genes were associated with GBM sur-
vival (group 3 genes) at unadjusted P-value < 5.0E-4
(Table 5). Among these, three genes had a negative rela-
tionship such that lower expression levels were asso-
ciated with higher survival. Four members of the family
of small nucleolar RNA CD box (Snord) genes were
associated with GBM survival, and three had a positive
association such that higher expression levels were asso-
ciated with higher survival. Snord are a type of small nu-
cleolar RNA (SnoRNA) that guides the methylation of
rRNAs and snRNAs. These snoRNAs can target other
RNAs and are associated with carcinogenesis. Reduced
and dysregulated expression of snoRNAs have been
associated with progression of many human malignan-
cies [78]. Along with their loss in brain tumorigenesis,
snoRNAs have been also linked to other cancers such
as prostate, breast and lung cancer [76,78]. In this
study, a positive association between the levels of H1
histone family member 0 (H1f0) and GBM survival was
identified. The expression of H1f0 was high in breast



Table 5 Single-exon genes associated with glioblastoma multiforme survival

Gene symbol Estimate1 SE2 Fold Change3 P-value4 Literature5

Hist1h1t 0.0118 0.0024 1.0082 2.5E-06 NA

Snord116-11 0.0101 0.0025 1.0070 9.7E-05 [76]C

Loc729852 −0.0074 0.0018 0.9949 5.8E-05 NA

Snord123 −0.0087 0.0025 0.9940 4.8E-04 [76]C

Snord104 0.0067 0.0019 1.0047 4.1E-04 [76]C

Dkfzp779l1853 −0.0083 0.0023 0.9943 3.9E-04 NA

H1f0 0.0062 0.0017 1.0043 2.3E-04 [77]C

Snord28 0.0166 0.0044 1.0116 1.8E-04 [76]C

1Estimate: change in gene expression per additional survival month (in log2 units).
2SE: standard error of the estimate.
3Fold change: fold change in gene expression per additional survival month.
4P-value: unadjusted P-value of the change in average exon expression per additional survival month;
5Literature: review of studies that reported associations of the gene with cancers:
C: reported association of gene with cancers other than glioblastoma multiforme,
NA: not available.
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tumor cells, and decreased when the breast tumor cell
lines were reverted-back into normal ME carcinoma
cells [77].

Gene set enrichment analyses of all genes in
consideration of their association with glioblastoma
multiforme survival
Gene set enrichment analysis considered the level and
sign of association between the expression of all
the genes studied and GBM survival. At FDR-adjusted
P-value < 0.05, 94 KEGG pathways, 402 GO biological
processes, and 203 GO molecular functions were
enriched. Results from the top 10 most significant path-
ways, biological processes and molecular functions
are summarized in Tables 6, 7 and 8. Additional file 1:
Table S4, S5 and S6 lists all biological processes,
Table 6 Ten most significant GO biological processes from th

GO Identifier GO Biological Process Over-Expressed

GO:0046907 intracellular transport 357

GO:0034613 cellular protein localization 245

GO:0043067 regulation of programmed cell death 351

GO:0016192 vesicle-mediated transport 271

GO:0006629 lipid metabolic process 424

GO:0044265 cellular macromolecule catabolic process 373

GO:0044255 cellular lipid metabolic process 346

GO:0050793 regulation of developmental process 442

GO:0007049 cell cycle 418

GO:0009966 regulation of signal transduction 414
1Over-Expressed Genes: number of genes that have a positive association between
2Under-Expressed Genes: number of genes that have a negative association betwee
3Log Odds Ratio: indicates whether the category is more enriched among the gene
the enrichment among the genes that have a negative association between expres
loge odds ratio). Extreme values indicate higher difference in the enrichment perce
values close to zero indicate similar enrichment percentages between positive and
4FDR-adjusted P-value: False discovery rate adjusted P-value of the log odds ratio te
molecular functions and pathways respectively that have
FDR-adjusted P-value < 0.05. Pathways and GO categor-
ies are characterized in GSEA by the number of genes
that have a positive or negative association between ex-
pression and GBM survival, by the log odds ratio indi-
cating whether the category is more enriched among the
genes that have a positive or negative association and
the corresponding P-value.
Noteworthy was that all top ten results had negative

log odds ratio indicating that the categories were more
enriched among the genes that have a negative associ-
ation between expression and survival relative to the en-
richment among the genes that have a positive
association between expression and GBM survival.
Negative loge odds ratio indicates that the enrichment
was higher among the genes with negative association
e gene set enrichment analysis of the genome

Gene1 Under-Expressed Genes2 Log Odds Ratio3 FDR P-value4

560 −0.7338 3.79E-24

433 −0.8490 4.78E-24

490 −0.6110 1.68E-15

400 −0.6639 1.16E-14

538 −0.5148 1.30E-12

485 −0.5379 2.10E-12

457 −0.5528 2.41E-12

549 −0.4932 4.27E-12

522 −0.4978 1.11E-11

509 −0.4812 9.93E-11

expression and glioblastoma multiforme survival.
n expression and glioblastoma multiforme survival.
s that have a positive association between expression and survival relative to
sion and glioblastoma survival (positive loge odds ratio) or vice versa (negative
ntages between the positive and negative association groups meanwhile
negative association groups.
st.



Table 7 Ten most significant GO molecular functions from the gene set enrichment analysis

GO
Identifier

GO Molecular Function Over-Expressed
Gene1

Under-Expressed
Genes2

Log Odds
Ratio3

FDR P-
value4

GO:0000287 magnesium ion binding 196 300 −0.6962 3.23E-11

GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus
containing anhydrides

419 521 −0.4933 5.21E-11

GO:0016462 pyrophosphatase activity 417 520 −0.4962 5.21E-11

GO:0016817 hydrolase activity, acting on acid anhydrides 428 527 −0.4834 9.62E-11

GO:0016773 phosphotransferase activity, alcohol group as acceptor 393 475 −0.4624 5.64E-09

GO:0016301 kinase activity 421 501 −0.4473 5.64E-09

GO:0016788 hydrolase activity, acting on ester bonds 349 429 −0.4781 9.84E-09

GO:0003723 RNA binding 357 437 −0.4741 9.84E-09

GO:0030695 GTPase regulator activity 193 260 −0.5651 4.10E-07

GO:0016874 ligase activity 205 272 −0.5501 4.10E-07
1Over-Expressed Genes: number of genes that have a positive association between expression and glioblastoma multiforme survival.
2Under-Expressed Genes: number of genes that have a negative association between expression and glioblastoma multiforme survival.
3Log Odds Ratio: indicates whether the category is more enriched among the genes that have a positive association between expression and survival relative to
the enrichment among the genes that have a negative association between expression and glioblastoma survival (positive loge odds ratio) or vice versa (negative
loge odds ratio). Extreme values indicate higher difference in the enrichment percentages between the positive and negative association groups meanwhile
values close to zero indicate similar enrichment percentages between positive and negative association groups.
4FDR-adjusted P-value: False discovery rate adjusted P-value of the log odds ratio test.
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with GBM survival. Positive log odds ratios were
observed for less significant (P-value < 0.05) pathways
and categories. The more extreme log odds ratios
observed in the GSEA of KEGG pathways indicate
higher difference between the enrichment percentages
in the positive and negative association groups mean-
while values close to zero in the GSEA of GO categor-
ies indicate lower differences in the enrichment
percentages between positive and negative association
groups.
Table 8 Ten most significant KEGG pathways from the gene s

KEGG
Identifier

KEGG Pathway Over-Expr
Gene

hsa03010 ribosome 119

hsa00010 glycolysis / gluconeogenesis 57

hsa00190 oxidative phosphorylation 103

hsa05212 pancreatic cancer 54

hsa05130 pathogenic escherichia coli infection 44

hsa00240 pyrimidine metabolism 42

hsa03050 proteasome 33

hsa00280 valine, leucine and isoleucine
degradation

20

hsa04662 b cell receptor signaling pathway 34

hsa05223 non-small cell lung cancer 25
1Over-Expressed Genes: number of genes that have a positive association between
2Under-Expressed Genes: number of genes that have a negative association betwee
3Log Odds Ratio: indicates whether the category is more enriched among the gene
the enrichment among the genes that have a negative association between expres
loge odds ratio). Extreme values indicate higher difference in the enrichment perce
values close to zero indicate similar enrichment percentages between positive and
4FDR-adjusted P-value: False discovery rate adjusted P-value of the log odds ratio te
Among the most differentially enriched pathways
(Table 6) were the pancreatic and non-small cell lung
cancer pathways. Additional pathways identified in this
study that have been associated with gliomas include
glycolysis/gluconeogenesis [79] and oxidative phosphor-
ylation [80]. Among the top enriched GO biological pro-
cesses, lipid metabolism and cell cycle have been
associated with glioma [81,82]. Likewise, the GO mo-
lecular functions of hydrolase and ligase activity have
been linked to glioma [83,84].
et enrichment analysis of the genome

essed
1

Under-Expressed
Genes2

Log Odds
Ratio3

FDR P-
value4

16 −2.4779 9.7E-10

27 −1.1614 3.6E-04

39 −0.9392 3.6E-04

45 −0.9460 4.7E-04

41 −1.0575 4.7E-04

78 −0.8800 5.0E-04

32 −1.0965 7.2E-04

48 −1.1353 8.5E-04

65 −0.9084 8.5E-04

52 −0.9922 9.0E-04

expression and glioblastoma multiforme survival.
n expression and glioblastoma multiforme survival.
s that have a positive association between expression and survival relative to
sion and glioblastoma survival (positive loge odds ratio) or vice versa (negative
ntages between the positive and negative association groups meanwhile
negative association groups.
st.
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Demonstration of alternative exon usage
The identification of patterns of differential exon expres-
sion across a gene and comparison against predicted AS
models helped to confirm associations between AS and
survival. Figures 1 and 2 depict patterns of exon expres-
sion associated with GBM survival and reported AS gene
models for two genes that exhibited significant AEU
associated with GBM survival. The patterns of two other
genes that exhibited AEU are presented in Additional
file 2: Figures S1 and S2. The two genes depicted in
Figures 1 and 2 are G-protein coupled receptor 98
(Gpr98) and epidermal growth factor (Egf ), respectively:
The two genes depicted in the Additional file 2:
Figures S1 and S2 are anaphase promoting complex sub-
unit 1 (Anapc1) and HECT domain and RLD domain
containing E3 ubiquitin protein ligase 2 (Herc2), respect-
ively. The parallel alignment of estimated exon expres-
sion resulting from our analysis, the moving average
trend, and the AS prediction from AceView offered in
silico verification of the identified AEU [2]. The AS
models are denoted by lines parallel to the x-axis and
identify the corresponding exons. However, no expres-
sion values should be assigned to the AS model lines
and experimental confirmation of the AEU cases identi-
fied in this study is necessary.
Gpr98 is located on chromosome 5 and is highly

expressed in the central nervous system (CNS) [85]. This
gene has been associated with Usher syndrome
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characterized by hearing loss and progressive vision loss
and Familial Febrile seizures [86,87]. Gpr98 has been
linked to cancer [88] and smaller variants of Gpr98, pro-
duced due to AS, have been associated with increased
survival against lymphoblastic leukemia [61]. Gpr98
exhibited AEU in this study and the expression of ap-
proximately 30 exons (out of 90 exons) exhibited signifi-
cant association with GBM survival (Figure 1). Several
over-expressed exons detected by our model are consist-
ent with AS gene models including Mass1b, Mass1f,
Mass1e, and Mass1c. Conversely, some under-expressed
exons identified in our study are supported by gene
models including Mass1d and Mass1g. These results are
consistent with previous studies that indicated associ-
ation of smaller transcripts of Gpr98 with cancer sur-
vival by inducing apoptosis in cancerous cells [61]. In
agreement with our GO analyses, Gpr98 is affiliated to
the enriched GO biological processes of cell adhesion,
neuron development and sensory perception of mechan-
ical stimulus. Additionally, Gpr98 has the GO molecular
function of cytoskeletal protein binding and ion binding.
For Gpr98, the relative difference in R2 between the
training and validation data sets was 18.1%. The Pearson
correlation of the exon-survival associations between the
training and validation data sets was 83.2%.
Egf is located on HAS 4 and over-expression of Egf

has been associated with tumor progression and lower
GBM survival [89]. Egf exhibited AEU and of the 24
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exons analyzed, nine exons had significant associations
with GBM survival. Several over-expressed exons
detected in our analysis correspond to AS gene models
including jdec03 and hdec03 (Figure 2). In accord with
the pathway and functional analyses, Egf is part of many
enriched KEGG pathways including focal adhesion,
regulation of actin cytoskeleton, and cancer pathways.
For Egf, the relative difference in R2 between the training
and validation data sets was 24.9%. The Pearson correl-
ation of the exon-survival associations between the
training and validation data sets was 76.6%.

Validation
The R2 is the percentage of the variation of the observa-
tions explained by the exon-based, gene-centric ap-
proach. Simply put, the R2 is an indicator of the
correlation between exon expression and patient sur-
vival, adjusting for therapy, ethnicity, gender, among all
terms accounted for in our model). The median R2 in
the training and validation data sets were 75.7% and
63.4% for the multi- and single-exon genes significantly
associated with survival. The relative difference in R2 be-
tween the training and validation data sets was 16.2%.
The small drop in median R2 between the training and
validating data set is a first, global indicator of the simi-
lar exon-survival relationship identified in both inde-
pendent data sets. A difference between training and
validating data is expected due to simple sampling
effects such as between-subject variation.
Additional insight into the validation of associations
detected in the training data sets was gained from the
study of the correlation of the exons-survival association
(e.g. estimated solution or slope) between training and
validation data sets. For the multi- and single-exon
genes significantly associated with survival, the median
Pearson and Spearman correlations of the exon-survival
associations between the training and validation data
sets were 89.7% and 85.9%, respectively. The high correl-
ation of the exon-survival associations relative to the
drop in R2 model fit between training and validation
data sets suggests that the exon associations with sur-
vival detected are more consistent or have lower noise
than the other model terms including race, gender and
therapy.

Conclusions
In conclusion, AEU is a complex process and, thus, the
detection and characterization of AEU associated with
survival is challenging. The hierarchical model devel-
oped in this study allowed the simultaneous detection of
differential expression of exons within a gene and differ-
entially expressed genes associated with survival. From a
total of 25,403 genes investigated, 2,477 multi-exon and
13 single exon genes were associated with GBM. Most
of the significant genes detected by the model have been
previously associated to GBM (27.78%) or other types of
cancer (36.11%). This suggests that differential expres-
sion associated with AEU could be used as biomarkers
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for GBM and potentially other cancers. The AEU events
detected for several genes (Egf, Herc2, Gpr98 and
Anapc1) were consistent with AS models in AceView.
The approach used to identify alternative exon usage

and gene expression associated with survival adjusted
for race, gender, and therapy differences among the
patients analyzed. Thus, prognostic biomarkers of glio-
blastoma survival were identified. Stratified analyses of
the patients by age, race, therapy, and gender or evalu-
ation of potential interactions between exons and clinical
factors could uncover predictive biomarkers and offer
additional insights into the alternative exon usage asso-
ciations that can lead to more personalized treatments
and predictive tools.
Extensions to the hierarchical model proposed in this

study to identify AEU can be considered. First, the
model can incorporate information of the mapping of
the exons to the gene. In addition, the distance between
the exons can be accommodated on the variance-
covariance matrix. This would allow modeling of po-
tentially higher dependencies between proximal exons
relative to distant exons. Second, the model can incorp-
orate information on different splicing scenarios [2]. The
hierarchical model can be applied to other cancer types
and to indicators other than survival.
In this study, the vast majority of the exons within a

gene mapped to one strand and few exons mapped to
the other strand. Thus, AEU was studied among the
exons that mapped to the most frequent strand. When
sufficient information on both strands within a gene is
available, our model allows the consideration of informa-
tion across strands. This model would allow the study of
sense-antisense gene overlap and its impact on AS and
regulation of gene expression following the work of Sor-
ana Morrissy et al [90]. Their work suggested an anti-
sense transcription-mediated mechanism of splicing
regulation in human cells.
A simple yet comprehensive analytical strategy for

in silico identification of survival-associated alternative
exon usage and general gene expression was demon-
strated. The findings from this strategy and stringent
biological and statistical thresholds were validated on an
independent group of patients. Our approach can be
used as a first step in the identification of cancer mo-
lecular biomarkers. A subsequent step is the experimen-
tal validation of the identified alternative exon usage and
patterns of association between exons series or cassettes
and survival. Experimental confirmation can be obtained
from exon expression studies of the proliferation and sur-
vival of glioblastoma cell lines [91] or from studies of pri-
mary glioblastoma sphere cultures (gliomaspheres), an
established in vitro model for cancer stem cell expansion
[92]. Furthermore, the proposed analytical strategy can be
applied to next-generation sequencing data, allowing a
thorough investigation of the expression pattern associated
with cancer survival and other complex phenotypes.
Further validation of alternative exon usage biomar-

kers can be carried out using Reverse Transcriptase-
quantitative Polymerase Chain Reaction (RT-qPCR)
assays or RNA-Seq technologies as new samples become
available. Confirmation of results using RNA-Seq offers
various advantages. Unlike exon arrays that require
probe design and annotations, RNA-Seq can detect both
known and previously unreported alternative splicing
events and yet to be annotated transcripts. RNA-Seq has
substantially better coverage for differentially expressed
genes compared to arrays. The enhanced exon coverage
and increased sensitivity to detect alternative splicing
sites and differentially expressed exons constitutes a
robust tool that can substantially enhance the under-
standing of alternative exon usage associated with com-
plex phenotypes. The clinical benefit of alternative exon
usage and associated exon cassettes or transcripts will be
most valuable in cases when these biomarkers provide a
significant improvement in the precision to predict sur-
vival over routinely available clinical tests and overall
gene expression-based biomarkers. As a result, the im-
pact of the superior biomarkers will likely be greatest in
diseases with short average post-diagnostic survival such
as glioblastoma multiforme. Likewise, alternative exon
usage-based biomarkers have the potential to be helpful
to predict phenotypes not accurately predicted by gen-
eral gene-expression profiles. For several cancer types
the recurrence of metastasis is the most compelling as-
sessment of the efficacy of therapy. In these cases, accur-
ate and replicable exon-based prognostic tools offer the
most advantage and can complement available clinical
tests.
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Additional file 1: Table S1. Lists the results for the 129 multi-exon
genes that exhibit evidence of AEU at P-value < 1.0E-8. Lists the results
for the 129 multi-exon genes that exhibit evidence of AEU at P-value <
1.0E-8. Table S2: Significant KEGG and GO categories enriched among the
genes displaying alternative exon usage. Lists all KEGG pathways, GO
Biological Processes and GO Molecular Function categories at FDR-
adjusted P-value < 0.05.Table S3: Multi-exon genes that have significant
exon-independent association with glioblastoma multiforme survival. Lists
the results for the 24 multi-exon genes exhibiting expression associated
with survival albeit no evidence of AEU at
P-value < 5.0E-4. Table S4: Significant GO biological processes (levels 3-6)
from the gene set enrichment analysis of the genome. Lists all biological
processes at FDR-adjusted P-value < 0.05. Table S5: Significant GO
molecular functions (levels 3-6) from the gene set enrichment analysis of
the genome. Lists all molecular functions at FDR-adjusted P-value < 0.05.
Table S6: Significant KEGG pathways (levels 3-6) from the gene set
enrichment analysis of the genome. Lists all pathways at FDR-adjusted
P-value < 0.05.

Additional file 2: Figure S1. Anapc1 exon expression, moving average,
and alternative splicing models. Depicts the alternative exon expression,
moving average and alternative splicing models for anaphase promoting

http://www.biomedcentral.com/content/supplementary/1755-8794-5-59-S1.pdf
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complex subunit 1. Figure S2. Herc2 exon expression, moving average,
and alternative splicing models. Depicts the alternative exon expression,
moving average and alternative splicing models for HECT domain and
RLD domain containing E3 ubiquitin protein ligase 2.
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