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Brain regions in the mammalian cerebral cortex are linked by a complex network of fiber bundles. These inter-regional

networks have previously been analyzed in terms of their node degree, structural motif, path length and clustering coefficient

distributions. In this paper we focus on the identification and classification of hub regions, which are thought to play pivotal

roles in the coordination of information flow. We identify hubs and characterize their network contributions by examining

motif fingerprints and centrality indices for all regions within the cerebral cortices of both the cat and the macaque. Motif

fingerprints capture the statistics of local connection patterns, while measures of centrality identify regions that lie on many of

the shortest paths between parts of the network. Within both cat and macaque networks, we find that a combination of

degree, motif participation, betweenness centrality and closeness centrality allows for reliable identification of hub regions,

many of which have previously been functionally classified as polysensory or multimodal. We then classify hubs as either

provincial (intra-cluster) hubs or connector (inter-cluster) hubs, and proceed to show that lesioning hubs of each type from the

network produces opposite effects on the small-world index. Our study presents an approach to the identification and

classification of putative hub regions in brain networks on the basis of multiple network attributes and charts potential links

between the structural embedding of such regions and their functional roles.
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INTRODUCTION
Large-scale cortical networks, comprising anatomically distinct

regions and inter-regional pathways [1–3], exhibit specific non-

random connection patterns [4]. The structural (i.e. topological)

features of large-scale cortical networks are of special interest as they

may be linked to aspects of brain function. Structural analyses have

utilized a wide spectrum of graph theoretic measures [5,6] including

clustering coefficients and the distributions of node degrees, path

lengths and structural motifs. Brain networks have been found to

exhibit high levels of clustering combined with short average path

lengths, a pattern indicative of a small-world architecture [7–11]. It

has further been argued that the structural characteristics of brain

networks contribute to their functional organization by promoting

functional segregation and integration [12,13], high neural com-

plexity [8,14], the minimization of processing steps [15], efficient

wiring [16] and synchronizability [17].

Global structural parameters can reveal the organization of an

entire network, but they cannot capture the contributions of

individual network elements (e.g. brain regions). The manner in

which individual brain regions are embedded within the overall

processing architecture may determine how they participate within

the dynamics of the network. Passingham et al. [18] formulated the

hypothesis that the connectional fingerprint of a brain area (i.e. its

specific pattern of efferent and afferent connections within the

network) might define its functional role. Network participation

indices capturing some local statistics of degree distributions (density,

transmission, and symmetry; [19]) revealed significant differences

across brain regions in macaque cortex and highlighted the relations

between their individual topological and functional characteristics.

An analysis of the contributions of individual brain regions to the

global distribution of structural motifs within macaque visual cortex

identified significant differences among individual brain regions [20].

Several EEG, MEG and fMRI studies have collected functional

network indices of individual brain regions [21,22], revealing

changes in regional network indices in response to experimental

perturbation [22,23]. In recent work with a large-scale cortical

model [24] we observed that structurally central brain regions

tended also to have elevated centrality within corresponding

functional networks. Some hub regions appeared to link multiple

functional clusters (e.g. visual and sensorimotor) while others

occupied central positions within a single functional cluster.

In this paper we aim to more fully characterize the structural

embedding of both types of hub regions in brain networks and to

determine whether our results can be extended beyond the brain

of a single species. Examining large-scale connection matrices for

macaque and cat cortex we focus on structural motif distributions

and centrality measures of vertices with high degree because of

their potential for relating local processing characteristics to global

functional interactions and robustness in these networks. Motifs

are classes of subgraphs from which larger networks can be

composed [25,26]. Centrality measures, in general, capture the

structural importance of a vertex with respect to the rest of the

network [27]. While hubs are often identified solely on the basis of

their high degree, the relationships between degree, motif

contributions as well as betweenness centrality and closeness
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centrality of individual brain regions have not previously been

investigated in detail. We show that the intersection of node

degree, motif fingerprint, betweenness and closeness allows the

identification of hub regions, many of which have previously been

classified as polysensory or multimodal. We then classify these hub

regions into provincial and connector hubs [22,28], a distinction

that is based on whether they tend to link other vertices within

a single module or whether they link different modules to one

another. We show that lesioning of provincial hubs decreases the

small world index while lesioning connector hubs produces the

opposite effect.

METHODS

Data Sets
We examine two data sets, to be referred to in this paper as ‘‘macaque

cortex‘‘ and ‘‘cat cortex’’. Macaque cortex and cat cortex contain

predominantly isocortical brain regions. All data sets consist of binary

connection matrices of brain regions connected by inter-regional

pathways. Diagrams of the connectionmatrices are shown in Figure 1,

area names and abbreviations are provides in the Supporting

Information (Text S1). Data sets can be also be downloaded at

http://www.indiana.edu/,cortex/connectivity.html.

Macaque cortex is an updated network matrix generated

following the parcellation scheme of Felleman and Van Essen [1],

including visual, somatosensory and motor cortical regions as well

as their interconnections [24]. The data were manually collated in

the CoCoMac database from published tracing studies according

to standard procedures [29,30]. Subsequently, all relevant data

were translated algorithmically to the Felleman and Van Essen

map using coordinate-independent mapping [9,31]. Following

resolution of redundant and inconsistent results a binary connec-

tion matrix with N=47 and K=505 was generated. To estimate

projection lengths we calculated distances between center-of-mass

coordinates for each connected pair of brain regions using the

Caret macaque cortex surface map (http://brainmap.wustl.edu/

caret; [32]), as previously described [15].

Cat cortex is derived from the matrix published by Scannell et

al. [2]. We discarded area Hipp (hippocampus) and all thalamic

regions and thalamo-cortical pathways. The resulting matrix was

converted to binary format and has N= 52 and K= 818.

Graph Theory Methods
Graphs are composed of vertices (or nodes, here equivalent to brain

regions) and edges (or connections, here equivalent to inter-regional

pathways). The connectivity structure of a graph is represented by its

adjacency matrix, here an asymmetric binary matrix representing

directed but unweighted edges. Paths are ordered sequences of edges

linking pairs of vertices (a source and a target). The distance between

two vertices corresponds to the length (number of edges) of the

shortest path between them. The distance matrix of a graph

comprises all pair-wise distances. Its maximum corresponds to the

graph diameter, its minimum to the graph radius, and its average to

the graph’s characteristic path length.

Basic graph measures such as connection density, proportion of

reciprocal connections, degree distributions, measures derived from

the distance matrix (diameter, radius, path length), and clustering

coefficients were calculated using standard graph theory methods,

reviewed in detail elsewhere ([5]; a Matlab (Mathworks, Natick, MA)

toolbox as well as other files related to this paper can be downloaded

at http://www.indiana.edu/,cortex/connectivity.html).

Network topology may be said to correspond to a ‘‘small world’’

[33] if the network’s clustering coefficient is much greater than

that of equivalent random controls c..crandom, while their path

lengths are comparable l<lrandom. The small-world index ssw,

introduced by Humphries et al [34], is defined as:

ssw~
c=crandom
l=lrandom

Comparisons are carried out against populations of n = 1000

degree-matched random networks (see below).

Motif Detection
Structural motifs (or subgraphs) of size M consist of M vertices and

a set of edges (maximally M2
2M, for directed graphs, minimally

M21 with connectedness ensured). For each motif size M there is

a limited set of distinct motif classes. For example, there are 13

motif classes for motif size M=3. A Matlab toolbox for detecting

and counting motifs of sizes 2#M#5 is available at http://

www.indiana.edu/,cortex/connectivity.html.

When assessing motif contributions (cf. [20]), we carried out a dual

comparison to two different random models that jointly control for

the effect of degree sequences and potential neighborhood relations.

Two populations of control networks (both with n= 100 exemplars)

were constructed, using a Markov switching algorithm that preserves

degree sequences [35]. The first population of controls, the

‘Random’ (randomized) networks, preserved the number of network

vertices and edges as well as their degree sequences. For each

random network, 26106 switches were carried out. The second

population of controls, ‘Lattice’ (latticized) networks, were con-

structed like random networks, but in addition edges are

redistributed such that they lie close to the main diagonal of the

connection matrix (after an initial random permutation of the

vertices). This approach tends to generate randomized networks that

incorporate nearest-neighbor connectivity as found in a ring or

lattice topology. Thus, lattice networks incorporate a variant of local

aggregation or neighborhood relations between vertices, a feature

not captured by the random null hypothesis [36]. Motif counts were

considered statistically significant if z-scores exceeded+2, +3, or

higher values for comparisons to both random controls as well as

lattice control networks (n= 100).

Centrality Measures
Central vertices in a network are those that have structural or

functional importance, for example by serving as waystations for

network traffic (analogous to bridges or connectors) or by

influencing many other vertices through short and direct paths.

Several concepts and measures of centrality have been proposed

[27] that capture the degree of ‘‘betweenness’’ [37] or ‘‘closeness’’

[38] of a vertex within the overall network architecture. The

closeness centrality of vertex i is calculated as the inverse of the

average distance from this vertex to all other vertices in the

network (i.e. the inverse of the row mean of the distance matrix):

CC
i ~

N{1
P

j[G dij
:

The definition is suitable if the graph G is fully connected, as is

the case for all data sets considered in this study. Note that our

definition of closeness centrality uses the lengths of all outgoing

shortest paths starting from a central vertex; other definitions of

closeness centrality are possible based on the lengths of incoming

shortest paths (‘‘in-closeness centrality’’), or all distances. It is also

worth noting that closeness centrality is directly proportional
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(scaled up by a factor N(N-1)2) to the local ‘‘efficiency’’ that was

later defined in [39] and employed in the analysis of functional

brain networks [23].

The betweenness centrality of a vertex is here defined as the

fraction of shortest paths between any pair of vertices that travel

through the vertex [37]. The betweenness centrality of a vertex i is

given as

CB
i ~

1

N(N{1)

X

s=i=t

rst(i)

rst

where rst(i) is the total number of shortest paths between a source

vertex s and a target vertex t that pass through i, and rst is the total
number of all shortest paths linking s to t. To calculate betweenness

centrality we applied an efficient Matlab algorithm developed by

Gleich [40].

Community Structure and Hub Classification
To identify modules (communities) within each network, we apply

a variant of a spectral community detection algorithm [41]. As

inputs to the algorithm we used matrices of matching indices [6],

Figure 1. Connection matrices and matching index matrices for data sets examined in this study. Plots show structural connections (left panels)
and matching index (right panels). Connection patterns are represented as binary connection matrices Cij, with existing connections (edges)
indicated by a filled (black) square (cij= 1). No distinction is made between connections that have been shown to be absent and connections that are
unknown; all are represented by a white square (cij=0). Main diagonals are indicated in grey and self-connections are excluded (cii= 0). From top to
bottom: (A) Macaque cortex (N= 47, K = 505). (B) Cat cortex (N= 52, K = 820). Panels on the right show the matching index matrix Mij calculated from
the connection matrix following Hilgetag et al. [6]. The matching index scales between 0 (no match) and 1 (perfect match), and mij=mji. The
arrangement of brain regions for each of the four matrices was arrived at as follows. The Mij matrix was converted to a distance matrix, from which
a hierarchical cluster tree was computed using a consecutive linking procedure based on farthest inter-cluster distances. This resulted in a linear
ordering of areas based on cluster membership and inter-cluster distances. The ordering was rotated such that visual areas appear topmost.
doi:10.1371/journal.pone.0001049.g001
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which express the similarity of connection patterns for each pair of

vertices (Figure 1). Once modules were detected, different solutions

were ranked according to a cost function and the optimal

modularity (out of 10000 solutions for a range of between 2 and

6 modules) was used as the basis for hub classification. To classify

hubs we calculated each vertex’s participation index P [28,42],

which expresses its distribution of intra- versus intra-module

connections. P of vertex i is defined as

Pi~1{
X

NM

s~1

kis

ki

� �2

where NM is the number of identified modules, ki is the degree of

node i, and kis is the number of edges from the ith node to nodes

within module s.

Considering only high-degree vertices (i.e. vertices with a degree

at least one standard deviation above the network mean) we

classify vertices with a participation coefficient P,0.3 as provincial

hubs, and nodes with P.0.3 as connector hubs. Since P cannot

exceed 0.5 for two-module networks and 0.67 for three-module

networks, kinless hubs (i.e. nodes with P.0.8 [32c]) cannot occur

in these mammalian cortical networks.

RESULTS
We calculated network measures and motif distributions for two

mammalian connectivity data sets, macaque cortex and cat cortex

(see Methods). The connectivity data sets are shown in Figure 1, with

brain areas arranged according to a cluster analysis based on the

matching indices [6] for all area pairs. Thematching index quantifies

the overlap in afferent and efferent connections between two areas,

and previous studies have suggested that areas with low pair-wise

similarity in their patterns of afferents and efferents tend to have

different functional properties [18]. The matching index matrix,

when subjected to cluster analysis, then serves to group areas. For

macaque and cat cortex, the resulting arrangement of areas

resembles the major functional subdivisions (e.g. visual, sensorimo-

tor, auditory, prefrontal) of mammalian cerebral cortex, confirming

that groups of functionally related areas share connection patterns.

The connection matrices for macaque and cat cortex were of

similar size and density. Both matrices contained a high fraction of

reciprocal pathways (0.76 in the macaque cortex, 0.74 in the cat

cortex). Vertex degrees for each matrix are shown in Figure 2. In

both matrices, degrees varied over a broad range without

presenting evidence of a scale-free organization. For the remainder

of this paper all areas with a degree that is at least one standard

deviation greater than the mean are termed ‘‘high-degree areas’’

(Figure 2). Both networks were fully connected, and the maximal

distances (diameter) did not exceed four edges. Average path

lengths and clustering coefficients indicated that macaque and cat

cortex exhibit small-world attributes, confirming several earlier

reports on similar data sets (reviewed in [10]). The degree to which

each network resembles a small world can be quantified by the

small-world index [34], found to be ssw=1.4551 (60.0408) for

macaque cortex and ssw=1.3153 (60.0148) for cat cortex (mean

and s.d., n = 1000 random networks).

Figure 2. Degree of areas in macaque and cat cortex. The degree of each area of macaque cortex (A) and cat cortex (B) is calculated as the sum over
all row and column entries for that area in the matrix of structural connections (Fig. 1). High-degree areas are all areas with a degree greater than the
network mean plus one standard deviation. In this, and in all subsequent figures in this paper, these high-degree areas are labeled in yellow.
doi:10.1371/journal.pone.0001049.g002
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We derived structural motif frequency spectra for motifs of size

M= 3 for both connection matrices (data not shown). Confirming

earlier results for similar connection patterns [20], motif spectra

for macaque and cat cortex were highly correlated (r2=0.88,

p,1025) and both data sets exhibited an overabundance of a single

motif class, here denoted M3
9 (see Figure 3). Overabundance was

assessed by computing z-scores for comparisons to n = 100

equivalent control networks (random and lattice, see Methods).

A motif was considered ‘‘significantly increased’’ if, relative to both

random and lattice control networks, its z-scores exceeded z = 3.

We note that lattice controls have near-equal proportions of

reciprocal edges as compared to the actual data sets, indicating

that a high proportion of reciprocal edges alone does not explain

the overabundance of motif M3
9 . Motif analysis for larger motifs

(M=4, M=5) identified several motif classes as significantly

increased over both random and lattice controls, including various

tilings of motif M3
9 into ring and star patterns (data not

shown).

Figure 3. Statistical significance of motif participation for individual brain regions. (A) Macaque cortex. (B) Cat cortex. Each plot shows z-scores
(half circles, light blue = relative to random networks, dark blue= relative to lattice networks) for each individual area. Areas with significantly positive
z-scores for both comparisons are marked in shades of red (see legend). These areas are marked identically in Fig. 4. High-degree areas are marked by
yellow arrows. Motif classes of size M=3 are shown at the upper right of the plot.
doi:10.1371/journal.pone.0001049.g003
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Individual brain regions make specific contributions to the

overall motif distribution of the network. Specifically, we sought to

identify regions that disproportionately contribute to motif class

M3
9 in macaque and cat cortex. To pinpoint locations where

aggregations of specific motifs might occur we examined all the

participating individual areas in particular structural motifs. The

preservation of degree sequences for random and lattice control

networks allowed the identification of control vertices that

corresponded to those in the real data set, which enabled us to

perform statistical comparisons of motif participation on a

vertex-by-vertex basis. Figure 3 shows significance profiles for

individual brain regions in macaque and cat cortex, revealing that

individual brain regions made very different contributions to the

global motif frequency spectrum. In macaque and cat cortex the

majority of significantly increased contributions involved motif

M3
9 . In the macaque, motifs with participation significantly

increased from both random and lattice networks were M3
9 (for

11 vertices) and M3
12 (for 3 vertices), while in the cat significant

increases were observed in M3
4 (for 4 vertices), M3

8 (for 3 vertices),

M3
9 (for 17 vertices), and M3

11 (for 4 vertices). In macaque areas

with increased contributions to M3
9 participated in the majority in

the dorsal stream of visual processing (MSTd, DP) or in

polysensory integration (7a, 7b, STPp, 46, Ig), with the notable

exception of areas VP and V4 that are believed to be components

of the ventral visual processing stream. Significantly increased

motif M3
9 in the cat also occurred among a subset of polysensory

regions (PLLS, 20a, EPp, PFCL, Ia, CGp, RS), notably extending

also to ‘higher’ motor (area 6 m) and sensory (visual: area 19;

somatosensory: SII, SIV) regions.

Motif fingerprints summarize the participation of individual

brain regions in specific motif classes [20]. We derived motif

fingerprints for all brain areas of macaque and cat cortex and then

performed hierarchical cluster analysis and principal components

analysis on these fingerprints to reveal clusters of brain regions

with similar motif fingerprints (Figure 4). We found that macaque

and cat motif fingerprints formed approximately equal numbers of

clusters, and that several of the average motif fingerprints of these

clusters shared substantial similarity. The two main clusters for

macaque and cat (labeled ‘‘c’’ and ‘‘f’’ in Fig. 4A,B) yielded highly

similar average motif fingerprints. Following principal components

analysis these two patterns were placed in close proximity

(Figure 4). All areas with significantly increased participation for

motif M3
9 were found within these two clusters (with the exception

of area PLLS in cat cortex). The cluster structure observed in cat

and macaque cortex did not appear if cluster analysis was carried

out on degree-matched random or lattice control networks.

Area V4 participates in 136 instances (out of 721) of motif M3
9 ,

the largest contribution of any area in macaque cortex. In 96 of

these instances area V4 is found at the central apex of this motif

(Fig. 5A, inset). We define the apex ratio as the fraction of apex

locations out of all instances of motif M3
9 , yielding an apex ratio of

0.701 for area V4 (random placement would yield an apex ratio of

1/3). Apex ratios for all areas in macaque and cat cortex are

shown in Figure 5A. In both species, all high-degree areas exhibit

high apex ratios for motif M3
9 . High contributions to motif class

M3
9 , combined with a high apex ratio, should be associated with

low values for the clustering coefficient, as only a relatively small

fraction of neighbors are connected with one another. Figure 5B

shows that clustering coefficients are indeed found to be below the

network mean for all high-degree areas.

Apex ratios and clustering coefficients suggest that brain regions

with significantly increased contributions to motif M3
9 form

topological hubs of reciprocal edges, linking many diverse vertices.

We might expect that these local waystations have high network

centrality. Of the numerous available centrality measures we

calculated two: betweenness centrality ([37]; Fig. 6A) and closeness

centrality ([38]; Figure 6B). Betweenness centrality captures the

degree to which a given brain region participates in the set of

shortest paths between any pair of vertices in the network.

Closeness centrality captures the average closeness (defined as the

inverse of the shortest path length) to all other vertices. In macaque

cortex, areas V4, 46, 7a and 7b (previously identified as making

significantly increased contributions to motif M3
9 , and having high

apex ratios as well as low clustering coefficients) are among those

with the highest betweenness centrality as well as closeness

centrality. In cat cortex, areas CGp, EPp, Ia, and 20a share the

same characteristics. Without exception, and in both species, areas

with high degree have greater than average centrality.

All of the measures considered so far are interrelated, primarily

through the most basic characteristic of each vertex, its degree. As

expected, degree and clustering coefficient (r2=0.44 in macaque,

r2=0.67 in cat) and degree and betweenness (r2=0.68 in

macaque, r2=0.68 in cat) are moderately cross-correlated. Among

motif classes, centrality is on average most strongly correlated with

motif M3
9 (r2=0.55 in macaque cortex, r2=0.67 in cat cortex)

while other highly connected motifs (e.g. M3
13) reach comparable

levels. Tables 1 and 2 summarize our analysis for all high-degree

nodes in macaque and cat cortex. On the basis of several

intersecting criteria, we can identify areas V4, FEF, 46, 7a, TF, 5,

and 7b as the strongest candidates for hub regions in macaque

cortex, while areas CGp, 35, AES, Ia, 20a and EPp are the

strongest candidates for hub regions in cat cortex.

Once network hubs have been identified, hubs may be classified

on the basis of whether their connections are distributed mostly

within or mostly between network modules [28,42]. Hubs may

also be classified on the basis of their spatial embedding, e.g. the

distribution of the metric lengths of their projections [22]. We

pursued both approaches to hub classification. We applied

a spectral community detection algorithm [41] to identify modules

within macaque and cat cortex. We extracted optimal community

structures with 2 (macaque) and 3 modules (cat). Figure 7A plots

the participation coefficient P, which expresses, for each area, the

balance between connections that are made within and between

modules. Following a previously published classification scheme

[28,42], we denote high-degree areas with P.0.3 as connector

hubs, while high-degree areas with P,0.3 are denoted as

provincial hubs (Table 1,2). In macaque cortex, the majority of

hubs are connectors, while areas V4 and MT, as well as the less

highly connected yet highly central area SII are classified as

provincial hubs. In cat cortex, all high-degree areas are classified

as connector hubs. The absence of clearly defined provincial hubs

may point to a difference in the structural organization of network

modules in the two species.

To visualize the structural embedding of a provincial and

a connector hub, we plotted two submatrices of macaque visual

cortex, comprising area V4 (a provincial hub) and area 46 (a

connector hub) together with their immediate topological

neighbors (Figure 7B,C). The V4 submatrix (Figure 7B, left) and

a corresponding cortical surface representation (Figure 7B, right)

indicates that virtually all of V4’s neighbors are located within

visual cortex, with most of V4’s inter-regional connections

spanning relatively short distances (17.09 mm69.60 mm s.d.).

Of its 42 connections with other areas, 23 are shorter than the

network’s mean connection length of 18 mm (Table 1). The graph

structure of the V4 submatrix (Figure 7B, middle) suggests that V4

mediates information flow between two groups of areas, one

belonging predominantly to the dorsal visual stream (with the

exception of area VP) and the other belonging to the ventral visual

Hubs in Cortical Networks
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stream (with the exception of area 46, a connector hub). In

contrast, corresponding plots for area 46 (Figure 7C) reveal that

this area maintains a more diverse set of projections, including

visual, somatosensory and motor regions. Many of the connections

of area 46 were found to span long distances (33.41 mm6

10.58 mm s.d.; significantly different from those of V4, p,0.0001,

with 35 of its 39 connections longer than 18 mm), although we

note that some short projections are likely missing because other

prefrontal regions were not included in the connection matrix.

Connector hubs are very highly interconnected amongst them-

selves, forming ‘‘hub complexes’’ with a connection density of 0.81

(macaque) and 0.85 (cat). For comparison, submatrices of areas

with identical degrees sampled from randomized control networks

have connection densities of 0.6960.06 (n= 1000, p,0.02) in

macaque and 0.7660.03 (n= 1000, p,0.01) in cat cortex.

Lesions of hubs may be expected to have unusually large

consequences on information flow and communication within the

remaining network. Such consequences may structurally be

assessed by plotting changes in the network’s path length and

clustering coefficient following the lesion. Our analysis shows that

the effect of lesioning a single area on the network’s small-world

index is just as likely to be positive as negative. Figure 8

summarizes the impact of single area lesions on the small-world

index for macaque cortex and cat cortex. In macaque cortex,

lesions of connector hubs such as FEF, 46, 7a, 7b (or more

generally, areas with high participation coefficient) resulted in

large increases in the small-world index relative to the unlesioned

network. This effect is due to an increase in cluster distance

(expressed in an increase in path length) as well as an increase in

their segregation from each other (expressed in an even greater

increase in clustering). In contrast, lesions of provincial hubs (e.g.

area V4) or more generally of areas with low participation

coefficient (e.g. area SII) resulted in decreases of the small-world

index. This decrease is due to a decrease in clustering

Figure 4. Hierarchical cluster analysis of motif fingerprints for individual brain regions. (A) Dendrogram and clustered motif fingerprints for
macaque cortex (top) and cat cortex (bottom). The dendrogram was constructed from the Pearson correlations between all pairs of motif fingerprints
(normalized) using a consecutive linking procedure based on farthest inter-cluster distances. This results in a dendrogram with smaller distances for
areas with more similar motif fingerprints. Stippled lines mark 2/3-maximal distance, at which cluster boundaries were drawn for subsequent analysis.
Motif fingerprints for individual brain regions are arranged vertically by hierarchical cluster distance. Four distinct clusters per network are delineated
and clusters with more than 2 members are marked ‘‘a’’, ‘‘b’’, ‘‘c’’ for macaque cortex, and ‘‘d’’, ‘‘e’’, ‘‘f’’ for cat cortex. (B) The average motif fingerprints
for these six clusters are used to perform principal components analysis (PCA); a PCA plot spanning the two largest principal axes is shown. Average
motif fingerprints are plotted as segmented circles, with circle size proportional to the number of contributing areas within the cluster, and motif
classes represented around the circle (see inset). Note the proximity of several regional clusters with highly similar average motif fingerprints,
especially clusters ‘‘c’’ (macaque cortex) and ‘‘f’’ (cat cortex).
doi:10.1371/journal.pone.0001049.g004
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Figure 5. Apex ratio for motif M3
9 and clustering coefficients in macaque and cat cortex. The apex ratio (A) reflects the incidence of a given brain

region at the apex (central node) of all motifs of class M3
9 that the region participates in (see inset). Areas are displayed in decreasing order. High-

degree areas are displayed with yellow bars, others are displayed with gray bars. Horizontal lines mark the mean apex ratio (solid line) and the mean
plus one standard deviation (dashed line). Panel B shows the ranked clustering coefficient for each area of macaque and cat cortex, with high-degree
areas once again shown in yellow. Horizontal lines mark the mean clustering coefficient (solid line) and the mean minus one standard deviation
(dashed line).
doi:10.1371/journal.pone.0001049.g005
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Figure 6. Centrality measures in macaque and cat cortex. (A) Betweenness centrality, calculated as the fraction of all shortest paths traveling
through a given vertex (see Methods). (B) Closeness centrality, calculated as the inverse of the average length of the shortest paths linking a given
vertex to all others in the network (see Methods). Areas are ranked in decreasing order, with high-degree areas shown in yellow. Horizontal lines mark
mean centrality (solid line) and mean plus one standard deviation (dashed line).
doi:10.1371/journal.pone.0001049.g006
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accompanied by a smaller effect (an increase or a decrease) in the

path length. Similar patterns were found in cat cortex, with lesions

of high-degree connector hubs such as Ia and CGp resulting in

a higher small-world index, while lesioning of areas with lower

participation coefficient had the opposite effect. In both, macaque

and cat cortex, distributions of small-world lesion effects and

participation coefficients over all areas are highly and significantly

correlated (see Text S1). These results indicate that lesions of hub

regions belonging to different classes may have differential effects

on the small-world structure of the remaining network.

DISCUSSION
In this paper, we have examined the structural contributions of

individual cortical areas to large-scale cortical networks of the cat

and the macaque monkey. Earlier studies have provided evidence

for a high degree of clustering and short path lengths within

cortical networks of cat and macaque [7,8,10]. Such small-world

networks likely contain a subset of areas that act as hubs or bridges

which should be identifiable based on structural attributes that

relate to their functional roles. Using multiple structural measures

we identified sets of such areas in both cat and macaque cortex

and demonstrated marked similarities across brain functional

systems and species. High degree regions made significantly

increased contributions to structural motif M3
9 and also tended to

have high centrality. We separated hub regions into provincial and

connector classes, and showed that lesions of the two types of hubs

had opposite effects on the small-world organization of the

remaining network.

Table 1. Summary of results for hub identification and hub classification for high-degree areas in macaque cortex.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

area name hub identification hub classification

k M3
9 ap c CB

i CC
i P$0.3 P,0.3 l$s l,s les+ les–

V4 1 .3 1 1 1 8 N N N

FEF 2 7 6 5 N N N

46 3 .3 3 6 3 4 N N

7a 4 .3 7 7 3 N N N

TF 5 6 2 4 6 N N

5 6 5 3 2 1 N N

7b 7 .3 4 5 2 N N

FST 8 .2 N N N

MT 9 9 N N

SII 2 8 10 N N N

Measures listed under ‘hub identification’’: k=degree (Figure 2), M3
9 = z-score relative to random and lattice controls (Figure 3), ap= apex ratio

(Figure 5A), c= clustering coefficient (Figure 5B), CB
i =betweenness centrality (Figure 6A), CC

i = closeness centrality (Figure 6B). For
all measures summarized under hub identification (except motif z-scores), table entries refer to rank within the respective
distribution. No rank is given if the measure deviated by less than one standard deviation from the mean. Measures listed under
hub classification refer to the participation index P (Fig. 7A), the number of long versus short connections (long connections are
defined as having a length greater than the network average of 18 mm), and the direction of the lesion effect on the small-world
index (les+and les-, respectively) refer to an increase or a decrease over the small-world index of the unlesioned matrix by more
than one standard deviation; see Figure 8.
doi:10.1371/journal.pone.0001049.t001..
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Table 2. Summary of results for hub identification and hub classification for high-degree areas in cat cortex.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

area name hub identification hub classification

k M3
9 ap c CB

i CC
i P$0.3 P,0.3 l.s l,s les+ les–

CGp 1 .2 1 7 4 1 N not available N

35 2 2 2 1 9 N N

AES 3 3 5 2 2 N N

36 4 4 1 3 N N

Ia 5 .2 5 3 6 3 N N

Ig 6 4 8 N N

7 7 .2 7 10 N N

6 m 8 .2 9 7 N N

5Al 9 .3 8 4 N N

20a 10 .4 6 8 7 5 N

EPp 11 .4 6 5 6 N N

All symbols are as for Table 1.
doi:10.1371/journal.pone.0001049.t002..
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Figure 7. Hub classification. (A) Distribution of participation coefficients (see Methods) for each area of macaque and cat cortex, ranked in decreasing
magnitude, with high-degree areas shown in yellow. (B,C) Area V4 and area 46 submatrices and projection length distributions. (B, left) Area V4 submatrix,
comprised of the subset of areas and connections of the macaque cortex directly connected to area V4. Areas are arranged such that connections are
optimally contracted towards the main diagonal, resulting in two clusters containing mostly dorsal (upper left) and mostly ventral (lower right) areas. V4
afferents and efferents are shaded in dark gray. (B, middle) Graph rendering of the V4 submatrix shows that this subnetwork comprises two component
clusters with V4 in a central position. Rendering of the graph was performed in Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/; [69]) using the
Kamada-Kawai layout algorithm [70]. V4 is marked by a blue dot, members of cluster 1 (mostly dorsal stream visual areas) are marked in white, and
members of cluster 2 (mostly ventral stream visual areas) are marked in gray. (B, right) Surface representation of V4 (shaded in blue) and its direct
neighbors (shaded in light blue). Histogram shows the distribution of the connection lengths between area V4 and its immediate neighbors. The mean
connection length is 17.09 mm (S.D. = 9.60 mm). (C, left) Area 46 submatrix. (C, middle) Pajek plot for area 46 submatrix. Clusters linked by area 46 appear
less segregated than those for area V4 and contain a mixture of visual, sensorimotor and multimodal areas. (C, right) Surface representation of area 46 and
its neighbors, and histogram of area 46 connection lengths (mean=33.41 mm, S.D. = 10.58 mm).
doi:10.1371/journal.pone.0001049.g007
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To reliably identify hubs in brain networks, we used multiple

structural measures, including vertex degree, motif participation

and betweenness and closeness centrality. While hubs are most

often identified solely on the basis of their high degree, the

relationship of degree to other aspects of their structural

embedding is less well understood. While clearly interrelated,

each of the measures we apply in this study captures a distinct way

in which an area participates in the structure of the whole network.

In our combined analysis of motif contributions and centrality we

noted that, for high-degree nodes, motif M3
9 appears to be

associated with high centrality. Many high-degree nodes with high

M3
9 contributions and centrality correspond to brain regions that

are functionally classified as ‘‘polysensory’’, or ‘‘multimodal

association areas’’, including several parietal and dorsolateral

prefrontal cortical regions, in addition to posterior cingulate cortex

and the insula. The remaining, apparently unimodal, sensory

regions are not found at lower hierarchical levels but may be

classified as ‘higher’ areas (e.g. area 19 in visual cortex and area 5

in somatosensory cortex). It is well known that these areas receive

direct projections from other sensory modalities, and functional

responses to crossmodal stimuli have been demonstrated [43–45].

Furthermore, the correspondence we find between structural

centrality and polymodality is consistent with recent human fMRI

studies [23] which showed that association cortices have the

highest regional efficiency (or, equivalently, the highest closeness

centrality) within brain functional networks, regardless of the age

of subjects.

Following the notion that function is an expression of structural

connectivity suggested by Passingham et al. [18], areas become

polysensory or multimodal because of the way in which they

participate and are embedded in the larger network. Contribution

analysis as employed in this study may provide a method for the

classification of brain regions that is complementary to the more

commonly used categories (sensory/motor, unimodal/multimodal,

primary/secondary), and which is based on an objective

quantification of inter-regional connectivity.

We find a strong link between increased contribution to motif

M3
9 , high centrality, and the impact of lesions on global network

measures that are thought to relate to information flow and

integration. This link makes predictions about the role of M3
9 and

centrality in robustness of other brain networks and suggests that

network recovery might involve the substitution of vertices with

high M3
9 and centrality, to ensure high transmission while main-

taining segregation. Previous studies [46,47], investigated the

vulnerability of large-scale cortical networks by analyzing the

structural impact of deleting individual edges or vertices.

The frequency with which an edge occurred in all shortest paths

(a measure related to ‘‘edge betweenness’’; [46]) was found to be

highly correlated with vulnerability.

Hubs may be classified as provincial or connectors [28], with

provincial hubs linking vertices primarily within a single cluster,

and with connector hubs linking multiple clusters to one another.

Building on this topological classification scheme, recent functional

connectivity studies [22] have suggested that brain regions with

Figure 8. Impact of single area lesion on small-world index. Areas are sorted in decreasing order and high-degree areas are shown in yellow.
Horizontal lines mark the mean small-world index of the intact macaque (A) and cat (B) network (solid lines) as well as their respective standard
deviations (dashed lines). Error bars show the standard deviations of the distributions of ssw after the lesion was made. All distributions for ssw were
derived from n=1000 comparisons to degree-matched random networks. Differences at the ends of the spectrum were highly significant (p,10216);
non-significant differences are marked with a cross (6).
doi:10.1371/journal.pone.0001049.g008
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high centrality may either link to other regions within a more local

neighborhood (i.e. likely forming a single functional cluster) or

interconnect to regions over longer distances (i.e. likely members

of different functional clusters). A recent simulation study of

functional connectivity in macaque visual cortex noted that some

functional hub regions appeared to integrate information within

a single cluster, e.g. visual (V4) or sensorimotor (SII), while other

regions (46, 7a, 7b) appeared to connect visual and sensorimotor

clusters to one another [24]. The present paper allows us to

differentiate these two types of functional hubs on the basis of their

structural embedding. Figure 7B,C shows the distribution of

connection lengths for a provincial hub (area V4) and a connector

hub (area 46), suggesting that these hub types map onto the

distinction proposed for functional connectivity [22]. Connector

hubs constitute a large proportion of the long-range intra-

hemispheric pathways within the cortical system, underscoring

their potential importance for minimizing the number of pro-

cessing steps [15].

We find that the deletion of provincial hubs and the deletion of

connector hubs have distinctly different effects on the small-world

structure of the remaining network (Figure 8). Deletion of connector

hubs disconnects functional clusters, rendering them at the same

time more remote and more distinct, thus resulting in a relative

increase in the small-world index. Instead, deletion of provincial

hubs disturbs the functional integration of the cluster to which they

belong, which then renders the remaining network less segregated.

Our analysis suggests a special status for area V4 in macaque

visual cortex. We find that V4 makes the largest single

contribution to motif M3
9 in its parent network, exhibits the

highest apex ratio and betweenness centrality, and acting as

a provincial hub its deletion diminishes the small-world architec-

ture of the remaining network. Do these structural features reflect

known functional characteristics of area V4? Numerous physio-

logical studies of monkey V4 have suggested that V4 is involved in

a broad range of complex visual functions, not limited to one

visual modality, including color, texture and form vision [48].

Lesions of V4 result in deficits in visual tasks that do not rely on

a single visual modality [48], including in visual recognition [49]

and in attentional processing [50]. The abundance of functional

evidence suggesting a central role for V4 in the integration of

information from different components of the visual system is

consistent with its structural embedding as reported in this study.

Macaque area 46, which was identified here as a paradigmatic

connector hub, and which has previously been found to serve

a connecting functional role in large-scale cortical modeling [24],

is a key region receiving polysensory inputs from posterior cortex,

integrating external information with internal goals, and keeping

this information online over time for action [51–53]. This complex

function underlies what is variously described as, for example,

working memory, spatial (dorsal) or object (ventral) cognition,

selective attention or the ‘‘central executive’’ [51,53–55] and the

prediction of future reward [56]. Lesions in this cortical region

lead to a typical dorsolateral syndrome with the hallmark of a lack

of drive and awareness [53]. Area 46 also has an unusually large

number of connections to spatially distant parietal regions.

Assuming that axonal conduction delays increase with projection

length, this suggests that area 46 has to process information on

a wider variety of time scales than most other brain regions. This

structural observation is in accord with the finding that neurons in

this area perform ‘active maintenance’ during delay tasks [55].

The frontal eye fields (FEF), which also send and receive many

long-range pathways, have also been found to maintain and

transmit delayed signals [57]. One of the most prominent

differences in the connection profiles of prefrontal area 46 and

the FEF is that the latter sends efferents to areas V2, V3, V3A and

V4t while the former communicates only with area V4. Thus,

while areas 46 and FEF are both connector hubs, the function of

FEF is more tightly related to the visual modality, as was noted by

previous structural analyses [58].

The use of data sets from two different mammalian species

(macaque monkey and cat) invites comparisons between these

structures in terms of a broad range of graph theoretical measures,

including small-world attributes, motif composition and centrality.

Cross-species comparisons of brain connectivity patterns are made

difficult by the fact that only very few comprehensive data sets

collated from anatomical tract tracing studies are currently

available. Other potential problems include differences in size

and density of connection matrices, the use of different parcella-

tion schemes, data sources, anatomical tracing methods, spatial

resolution, inclusion or lack of thalamic regions, and uncertain

regional homologies. Despite these problems we suggest that

graph-theoretical descriptors have the potential to provide

significant new insights into patterns of brain evolution [59] going

beyond the consideration of brain size, average connectedness, or

wiring length. Future anatomical data bases enlarging the range of

species may be constructed from genetic markers [60], selectively

activated viral tracers [61], novel optical imaging techniques [62]

or from diffusion imaging of brain tissue [63,64]. These data sets

would provide ‘‘connectomes’’ [65] or ‘‘projectomes’’ [66] at high

spatial resolution and allow much more fine-grained analyses of

complex brain networks, and would thus provide new insights into

functionally relevant patterns that are conserved or elaborated

during brain evolution.

Our aim was to link aspects of functional specificity and

performance of brain regions, in particular of network hubs, to

their structural embedding within cortical networks. Many

extensions and refinements of this work are possible. These

include the analysis of data on strengths or density of connections,

the investigation of refined partitioning schemes in different

cortical functional systems, the spatial embedding of brain regions

and pathways (e.g. [15]), the consideration of hierarchical network

measures (e.g. [67]) and application of the graph theory

framework to functional connectivity data (e.g. [21,22,24]). With

the arrival of new structural imaging methods, it is now feasible to

apply network analysis to human anatomical data [64,68], and

thereby to further our understanding of how human brain

anatomy relates to cognition.

SUPPORTING INFORMATION

Text S1

Found at: doi:10.1371/journal.pone.0001049.s001 (0.49 MB

DOC)
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