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Stripe rust and leaf rust with similar symptoms are two important wheat diseases. In this study, to investigate a method to identify
and assess the two diseases, the canopy hyperspectral data of healthy wheat, wheat in incubation period, and wheat in diseased
period of the diseases were collected, respectively. A	er data preprocessing, three support vectormachine (SVM)models for disease
identi
cation and six support vector regression (SVR) models for disease index (DI) inversion were built. �e results showed that
the SVM model based on wavelet packet decomposition coe�cients with the overall identi
cation accuracy of the training set
equal to 99.67% and that of the testing set equal to 82.00% was better than the other two models. To improve the identi
cation
accuracy, it was suggested that a combination model could be constructed with one SVM model and two models built using K-
nearest neighbors (KNN) method. Using the DI inversion SVR models, the satisfactory results were obtained for the two diseases.
�e results demonstrated that identi
cation andDI inversion of stripe rust and leaf rust can be implemented based on hyperspectral
data at the canopy level.

1. Introduction

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst)
and leaf rust caused by P. recondita f. sp. tritici (Prt) are
two devastating wheat diseases worldwide [1]. �ey occur
widely in wheat growing regions in China and they are the
major obstacles to stable and high yield wheat production
[1–3]. In China, a couple of severe epidemics of the two
diseases occurred and destructive yield losses of wheat were
caused [1–3]. �ese two diseases are easily confused with
each other because of the similar disease symptoms. So it
is di�cult to make an accurate diagnosis and monitoring
of the diseases under 
eld conditions. �us timely man-
agement of the diseases may be a�ected. Traditionally, the
identi
cation and assessment of the two diseases mainly
rely on the naked-eye 
eld observation and investigation of
the visible disease symptoms conducted by plant protection
technical personnel. But this method is labor-consuming

and time-costing, and it easily results in errors. �erefore,
it is of great signi
cance to explore a method for rapid and
accurate identi
cation and quantitative assessment of these
two diseases.

�e rapid development of remote sensing technology
provides strong technical support for the monitoring of plant
diseases. �e real-time, objective, rapid, and nondestructive
methods for identifying, detecting, and monitoring plant
diseases may be developed based on remote sensing tech-
nology. Remote sensing techniques have been applied in the
studies on identifying and monitoring plant diseases [4–
6]. Remote sensing technology, especially the hyperspectral
remote sensing technology, has been applied to remote
sensing monitoring of wheat stripe rust [7]. Detection and
identi
cation of wheat stripe rust via remote sensing at the
individual wheat leaves [8–10], monitoring of the disease via
ground remote sensing [11–13], aerial remote sensing [14–16],
and space remote sensing [17–19] have been investigated.
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Few studies on the detection and disease severity estimation
of wheat leaf rust using the spectral re�ectance data were
carried out at the leaf scale [20, 21]. At this present time,
remote sensing techniques are mostly used in the studies
on detecting and monitoring of single plant disease, and
there are only few studies on the identi
cation and mon-
itoring of two or more than two kinds of plant diseases.
�ere are few reports focusing on the distinction between
wheat stripe rust and other wheat diseases based on remote
sensing technology. Devadas et al. [22] evaluated ten widely
used spectral vegetation indices for discriminating individual
wheat leaves infected with stripe rust, leaf rust, and stem rust
caused by the pathogen Puccinia graminis f. sp. tritici (Pgt).
�e results showed that no single index could discriminate
the three kinds of wheat rusts from each other. However,
a method for discriminating the three wheat rusts was
provided. Firstly, the anthocyanin re�ectance index (ARI)
could be used to discriminate healthy leaves, leaves infected
with stripe rust, and mixed leaves infected with stem rust
and leaf rust, and the transformed chlorophyll absorption and
re�ectance index (TCARI) could then be used to discriminate
the leaves infected with leaf rust and those infected with
stem rust. In a study conducted by Yuan et al. [23], based
on the spectra of individual wheat leaves infected with stripe
rust and powdery mildew (caused by Blumeria graminis f.
sp. tritici), the model for discriminating the two diseases
with the overall accuracy more than 80% was developed
using the selected spectral bands and spectral features, and
the retrieving model of disease severity for each disease
with the root-mean-square error (RMSE) less than 15% was
also built. �e study on identi
cation of damage symptoms
caused by powdery mildew, stripe rust, and wheat aphid on
winter wheat was conducted by Qiao et al. [24] based on
the canopy hyperspectral remote sensing data. �e results
showed that, a	er logarithmic-di�erential transformation of
the original spectra, the three kinds of wheat pests were
well identi
ed with the accuracies more than 90% by using
stepwise discriminate analysis and hierarchical clustering,
respectively. Based on the near-infrared spectral data of
individual wheat leaves, Li et al. [25] investigated the early
diagnosis of stripe rust and leaf rust in incubation period and
diseased period using near-infrared re�ectance spectroscopy
(NIRS) technology.�e results showed that the identi
cation
accuracy of the training set was 97.00% and the identi
cation
accuracy of the testing set was 96.00% for the optimal model
to identify the diseases built by using distinguished partial
least squares (DPLS). To the best of our knowledge, at the
present time, there are no reports about identifying wheat
stripe rust and wheat leaf rust by using hyperspectral remote
sensing technology at the wheat canopy level, and there are
also no reports about the assessment of wheat leaf rust by
using hyperspectral remote sensing technology at the canopy
level.

In this study, through the 
eld experiment, identi
cation
and disease index inversion of wheat stripe rust and wheat
leaf rust were investigated by using hyperspectral remote
sensing technology at the canopy level. �e aim of this study
was to provide a method for monitoring and evaluating the
two diseases.

2. Materials and Methods

2.1. Field Experiment Design and Arti
cial Spray Inoculation.
Field experiment was conducted in Kaifeng Experimental
Station of China Agricultural University, Kaifeng, Henan
Province, China. Beijing 0045, a wheat variety which is
moderately susceptible to Pst and Prt, was selected as the
experimental cultivar. �e seeds of the cultivar were sown in
the autumn of 2013. �e experimental 
eld was divided into
two large zones. One zone was designed as the experimental
zone of wheat stripe rust, and another was designed as the
experimental zone of wheat leaf rust. Each zone was divided
into 18 experimental plots. �e size of each plot was 3m ×
4m. Wheat variety Nongda 195 was planted as protective
belts in the areas between the plots. To get di�erent disease
prevalence ofwheat stripe rust andwheat leaf rust in the plots,
the spore suspensions at 
ve concentrations were prepared
for arti
cial spray inoculation of Pst and Prt, respectively.
�e concentrations of Pst spore suspensions were 100mg/L,
80mg/L, 60mg/L, 40mg/L, and 20mg/L, respectively, and
those of Prt spore suspensions were 50mg/L, 40mg/L,
30mg/L, 20mg/L, and 10mg/L, respectively.�e control plots
were not inoculated using the pathogens. Each treatment was
replicated three times.�e experiments were performed with
randomized block design. Late in the a	ernoon in April 2014,
the plots that need to be inoculatedwere evenly sprayed using
spore suspensions. For moisturizing the wheat leaves, a	er
inoculation, the plots were covered with plastic 
lm that was
sprayed with water, and then the edges of the plastic 
lmwere
covered with earth. Between 8:00 and 9:00 (Beijing Time) in
the next day, the plastic 
lm was unveiled.

2.2. Acquisition of Hyperspectral Data. �e canopy hyper-
spectral data of wheat were measured by using an ASD
spectrometer (ASD FieldSpec HandHeld 2) (ASD Inc., Boul-
der, CO, USA) with a wavelength range of 325–1075 nm,
a wavelength accuracy of ±1 nm, a spectral resolution of
<3 nmat 700 nm, 25∘ 
eld-of-view, andminimum integration
time of 8.5ms. �e hyperspectral data were acquired before
inoculation (wheat was healthy) and in incubation period
of the diseases (wheat has been infected with the pathogen
spores, but no disease symptoms were visible) and also
were acquired in diseased period (in this period, the data
acquisition was conducted twice on April 14, 2014, and on
April 29, 2014, resp.). All measurements of hyperspectral data
were carried out on clear, sunny days between 10:00 and 14:00
(Beijing Time). In each experimental plot, 5 points (
ve-
point sampling) were marked and treated as 
xed points for
hyperspectral measurements. �e spectrum average was set
as 15. �ree spectra were measured for the wheat canopy
at each marked point, and the average value was treated as
the canopy spectrum at the point. When the hyperspectral
measurement was taken, the sensor of the spectrometer
was vertically positioned at a height of 1.3m above ground.
White board correction was performed before hyperspectral
measurements in each plot. A total of 602 re�ectance spectra
were used for subsequent analysis. �e spectra included 210
canopy spectra of healthy wheat (90 spectra obtained in the
experimental zone of wheat stripe rust before inoculation,
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90 spectra obtained in the experimental zone of wheat leaf
rust before inoculation, 15 spectra obtained in the control
plot of wheat stripe rust in incubation period, and 15 spectra
obtained in the control plot of wheat leaf rust in incubation
period), 75 canopy spectra of wheat in incubation period of
stripe rust, 75 canopy spectra of wheat in incubation period
of leaf rust, 92 canopy spectra of wheat in diseased period
of stripe rust, and 150 canopy spectra of wheat in diseased
period of leaf rust. In the diseased period of stripe rust,
150 canopy spectra of the inoculated wheat were obtained.
To avoid the e�ects of the spectra with the disease indices
equal to 0 on disease identi
cation and assessment, 92 spectra
with the disease indices greater than 0 were used for the
corresponding analysis. In the diseased period of leaf rust, 150
canopy spectra of the inoculated wheat were also obtained.
�e corresponding disease indices were all greater than 0, so
all of the spectra of the diseased wheat infected with leaf rust
were used for the corresponding analysis.

At the same time as the spectra were acquired, wheat
stripe rust and leaf rust were assessed according to the
Rules for Monitoring and Forecast of the Wheat Stripe Rust
(Puccinia striiformisWest.) (National Standard of the People’s
Republic of China, GB/T 15795-2011) and the Rules for the
Investigation and Forecast of Wheat Leaf Rust (Puccinia
recondita Rob. et Desm.) (Agricultural Industry Standard of
the People’s Republic of China, NY/T 617-2002), respectively.
For wheat stripe rust and leaf rust, disease severity of the
diseased leaf was estimated as 1%, 5%, 10%, 20%, 40%, 60%,
80%, or 100%. Disease index (DI) at each marked point was
calculated by using the following formula:

DI = � × � × 100, (1)

where � was disease incidence and � was average disease

severity. � was calculated by using the following formula:

� = ∑ (� × ��)� × 100, (2)

where � was average disease severity, � was disease severity, �
was the total number of diseased leaves, and �1, �2, �3, . . . , �8
were the number of diseased leaves with disease severity as
1%, 5%, 10%, . . ., 100%, respectively.

2.3. Preprocessing Methods of Hyperspectral Data. To mine
information from the acquired hyperspectral data, the 
rst
derivatives and the second derivatives of the original spectral
re�ectance data were calculated by using the Savitzky-Golay
method [32] with the polynomial degree equal to 3 and the
span equal to 7. And then the original spectral re�ectance
data, the Savitzky-Golay 
rst derivatives, and the Savitzky-
Golay second derivatives were regarded as the 
rst group of
spectral features. Wavelet packet analysis (WPA) was used as
a method for spectral data preprocessing in this study. As a
time-frequency analysis method, WPA is better than wavelet
analysis method, and using the former, high frequency
signals and low frequency signals can be simultaneously
decomposed [33]. So full-channel signal decomposition can
be implemented using WPA. In this study, two-level wavelet

packet decomposition of the original spectral re�ectance
data, the Savitzky-Golay 
rst derivatives, and the Savitzky-
Golay second derivatives were simultaneously performed by
using db5 wavelet. And then a total of 2328 coe�cients of the
second level wavelet packet decomposition were chosen as
the second group of spectral features. Based on the original
canopy spectral data of wheat, a total of 25 feature parameters
(as shown in Table 1) were obtained and then were regarded
as the third group of spectral features. Considering there were
great di�erences between the magnitudes of the di�erent
feature parameters in the third group, the feature parameters
were normalized to 0-1 by using the formula �� = (	� −
	min)/(	max −	min), where �� was the parameter value a	er
normalization, 	� was the parameter value before normal-
ization, 	min was the minimum value of the parameter, and
	max was the maximum value of the parameter. And the
normalized values were then used for modeling.

2.4. Identi
cation of Wheat Stripe Rust and Leaf Rust Based
on Canopy Hyperspectral Data. �e canopy spectral data of
healthy wheat, wheat in incubation period of stripe rust,
wheat in diseased period of stripe rust, wheat in incubation
period of leaf rust, and wheat in diseased period of leaf
rust were treated as one category, respectively. �us the
spectral data were divided into 
ve categories. �e Kennard-
Stone method [34] was used to choose samples to constitute
training set and testing set for modeling. With the point
nearest to the center point as the starting point and the
Euclidean distance as the dissimilarity measure, 30 samples
were selected from each category to set up testing set, and the
rest were treated as training set. In particular, for the third
group of spectral features, the dimension of the training set
was reduced to four using linear discriminant analysis (LDA),
and, based on the obtained means and score matrix of the
training set, the dimension of the testing set was also reduced
to four. �en the establishment of disease identi
cation
model was conducted.

In this study, disease identi
cation modeling was con-
ducted using support vector machine (SVM) based on the
three groups of spectral features, respectively. SVM can
satisfactorily solve the small sample, nonlinear problems,
high dimension, local minimum points, and other practical
issues, and it has high generalization ability [35]. SVMmodels
for disease identi
cation were established with radial basis
function (RBF) as the kernel function by using C-SVM in
LIBSVM package developed by Chih-Jen Lin Group from
Taiwan, China [36]. For each SVM model, both the optimal
penalty parameter 
 and the optimal kernel function param-
eter � were searched using grid search algorithm in the range

2−10–210 with the searching step equal to 1. Identi
cation
accuracies were calculated at all points within the grid and the
values of 
 and � were selected as the optimal parameters as
the identi
cation accuracy of the training set was the highest.
�en the SVM models built based on each group of spectral
features, respectively, were used to identify the categories of
canopy hyperspectral data. �e identi
cation accuracy for
each category and the overall identi
cation accuracy for all
categories were used to evaluate each SVMmodel.
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Table 1: �e feature parameters in the third group of spectral features.

Feature parameter De
nition or calculation formula Reference

�b �e maximum of 
rst derivatives within blue edge (490–530 nm) [4]


b Wavelength at the position of�b (nm) [4]

�y �e maximum of 
rst derivatives within yellow edge (550–582 nm) [4]


y Wavelength at the position of�y (nm) [4]

�r �e maximum of 
rst derivatives within red edge (680–780 nm) [4]


r Wavelength at the position of�r (nm) [4]

�g �e maximum re�ectance in 510–560 nm [4]


g Wavelength at the position of �g (nm) [4]

�r �e minimum re�ectance in 640–680 nm [4]


0 Wavelength at the position of �r (nm) [4]

��b Sum of 
rst derivatives within blue edge (490–530 nm) [4]

��y Sum of 
rst derivatives within yellow edge (550–582 nm) [4]

��r Sum of 
rst derivatives within red edge (680–780 nm) [4]

�g/�r �e ratio of �g to �r [4]

(�g − �r)/(�g + �r) �e normalized value of �g and �r [4]

��r/��b �e ratio of ��r to ��b [4]

��r/��y �e ratio of ��r to ��y [4]

(��r − ��b)/(��r + ��b) �e normalized value of ��r and ��b [4]

(��r − ��y)/(��r + ��y) �e normalized value of ��r and ��y [4]

Anthocyanin re�ectance index (ARI) ARI = (�
550
)−1 − (�

700
)−1 [26]

Chlorophyll absorption ratio index (CARI)
CARI = |(� × 670 + �670 + �)|√�2 + 1

× �700�
670

in which, � = (�700 − �550)
150

, � = �
550
− (� × 550)

[27]

Photochemical re�ectance index (PRI) PRI = (�531 − �570)(�
531
+ �

570
) [28]

Plant senescence re�ectance index (PSRI) PSRI = (�678 − �500)�
750

[29]

Triangular vegetation index (TVI) TVI = 0.5 × [120 × (�
750
− �

550
) − 200 × (�

670
− �

550
)] [30]

Water index (WI) WI = �900�
970

[31]

In this study, if the satisfactory identi
cation accuracies
for the SVM models were not obtained, an attempt of �-
nearest neighbors (�NN) method for disease identi
cation
modeling would be conducted. As a nonparametric machine
learning algorithm, �NN method has good classi
cation
ability and generalization performance [37]. Using �NN
method, the classi
cation is performed based on local
information. Compared with SVM, �NN method is more
suitable for solving the classi
cation problems with local
characteristics.

2.5. DI Inversion of Wheat Stripe Rust and Leaf Rust Based on
Canopy Hyperspectral Data. DI inversion models were built
by using support vector regression (SVR) forwheat stripe rust
and leaf rust, respectively.�e spectrawith the disease indices
greater than 0 acquired in the diseased period of wheat stripe
rust or leaf rust were used for building the DI inversion SVR
model. �e content-grads method [32] was used to choose
samples to constitute training set and testing set formodeling.

For the DI inversion SVR model of wheat stripe rust or leaf
rust, the ratio of training set to testing set was about 3 : 1. For
the SVR model of wheat stripe rust, the training set included
69 spectra and the testing set included 23 spectra. For the SVR
model of wheat leaf rust, the training set included 113 spectra
and the testing set included 37 spectra.

�e DI inversion models of wheat stripe rust were built
by using �-SVR with RBF as the kernel function based on the

rst group of spectral features, the second group of spectral
features, and the third group of spectral features, respectively.
In the same way, the DI inversion models of wheat leaf rust
were also built. For each SVRmodel, both the optimal penalty
parameter 
 and the optimal kernel function parameter �
were searched using grid search algorithm in the searching

range 2−8–28 with the searching step equal to 0.8. Mean
squared errors (MSE) were calculated at all points within the
grid, and the values of 
 and � were selected as the optimal
parameters as the minimum MSE of the training set was
obtained.
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Figure 1: �e canopy spectra of di�erent categories of wheat.

3. Results

3.1. Wheat Canopy Spectra. A	er averaging the canopy spec-
tral data of healthy wheat, wheat in incubation period of
stripe rust, wheat in diseased period of stripe rust, wheat in
incubation period of leaf rust, and wheat in diseased period
of leaf rust according to their categories, respectively, the
spectral curve of each category was shown in Figure 1. As
shown in Figure 1, there were great di�erences between the
spectra in the range 720–1075 nm. For wheat stripe rust and
leaf rust, the canopy spectral re�ectance of wheat in the
incubation period and that of wheat in the diseased period
relatively increased compared with that of healthy wheat in
this spectral range. Both in the incubation period and in
the diseased period, the canopy spectral re�ectance of wheat
infected with Pst relatively increased compared with that of
wheat infected with Prt.

3.2. Identi
cation of Wheat Stripe Rust and Leaf Rust. �e
SVM models for disease identi
cation based on the 
rst
group of spectral features, the second group of spectral
features, and the third group of spectral features were
recorded as Model 1, Model 2, and Model 3, respectively. �e
optimal parameters 
 and � for each SVM model and the
identi
cation results were shown in Table 2.

As shown inTable 2, forModel 1, the overall identi
cation
accuracies of the training set and the testing set were 97.18%
and 78.00%, respectively. For the testing set, the identi
cation
accuracy for wheat in the incubation period of stripe rust
was only 20.00%, and the identi
cation accuracies for other
categories were more than 80.00%; 23 spectra of wheat in the
incubation period of stripe rust were falsely identi
ed as that
of healthywheat and one spectrumofwheat in the incubation
period of stripe rust was identi
ed as that of wheat in the
incubation period of leaf rust; two spectra of wheat in the
diseased period of stripe rust were identi
ed as that of wheat
in the diseased period of leaf rust; one spectrum of wheat in

the diseased period of leaf rust was identi
ed as that of wheat
in the diseased period of stripe rust.

As shown in Table 2, for Model 2, the overall identi-

cation accuracies of the training set and the testing set
were 99.67% and 82.00%, respectively. For the training set,
the identi
cation accuracy for healthy wheat was 94.29%
and the identi
cation accuracies for other categories were
all 100.00%. For the testing set, the identi
cation accuracy
for healthy wheat was 100.00%, that for both wheat in the
incubation period of stripe rust and wheat in the diseased
period of leaf rust was 86.67%, that for wheat in the diseased
period of stripe rust was 63.33%, and that for wheat in the
incubation period of leaf rust was 73.33%; two spectra of
wheat in the incubation period of stripe rust were falsely
identi
ed as that of healthy wheat, one spectrum of wheat in
the incubation period of stripe rust was identi
ed as that of
wheat in the incubation period of leaf rust, and one spectrum
of wheat in the incubation period of stripe rust was identi
ed
as that of wheat in the diseased period of leaf rust; 11 spectra of
wheat in the diseased period of stripe rust were identi
ed as
that of wheat in the diseased period of leaf rust; eight spectra
of wheat in the incubation period of leaf rust were identi
ed
as that of healthy wheat; four spectra of wheat in the diseased
period of leaf rust were identi
ed as that of wheat in the
diseased period of stripe rust.

As shown in Table 2, for Model 3, the overall identi
ca-
tion accuracy of the training set was 82.89% and that of the
testing set was 68.67%. For the training set, the identi
cation
accuracies for healthy wheat, wheat in the incubation period
of stripe rust, wheat in the diseased period of stripe rust,
wheat in the incubation period of leaf rust, and wheat in
the diseased period of leaf rust were 88.33%, 82.22%, 67.15%,
86.67%, and 88.21%, respectively. For the testing set, the
identi
cation accuracy for healthy wheat was 96.67%, that for
wheat in the diseased period of leaf rust was 90.00%, that for
wheat in the incubation period of leaf rust was 76.67%, and
that for wheat in both the incubation period and the diseased
period of stripe rust was 40.00%; one spectrum of healthy
wheat was identi
ed as that of wheat in the diseased period
of leaf rust; 17 spectra of wheat in the incubation period of
stripe rust were identi
ed as that of healthy wheat and one
spectrum of wheat in the incubation period of stripe rust was
identi
ed as that ofwheat in the incubation period of leaf rust;
18 spectra of wheat in the diseased period of stripe rust were
identi
ed as that of wheat in the diseased period of leaf rust;
seven spectra of wheat in the incubation period of leaf rust
were identi
ed as that of healthywheat; three spectra of wheat
in the diseased period of leaf rust were identi
ed as that of
wheat in the diseased period of stripe rust.

�e results showed that Model 1 could e�ectively dis-
tinguish between wheat stripe rust and leaf rust in the
diseased period, that Model 2 could e�ectively separate
healthy wheat, wheat in the incubation period of stripe rust,
and wheat in the incubation period of leaf rust, and that
Model 3 could e�ectively determine whether wheat was in
the diseased period. To improve identi
cation accuracy and
modeling e�ect, it was suggested that the combinationmodel
could be constructed. Firstly, the application of Model 3 to
determine whether wheat was in the diseased period could
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Table 3: �e results of �NNmodels for identi
cation of wheat stripe rust and wheat leaf rust.

Model Sample category

Training set Testing set

Identi
cation
accuracy

for each category/%

Overall
identi
cation
accuracy/%

Identi
cation
accuracy

for each category/%

Overall
identi
cation
accuracy/%

Model 4
Wheat in diseased period of stripe rust 100.00

100.00
100.00

100.00
Wheat in diseased period of leaf rust 100.00 100.00

Model 5

Healthy wheat 100.00

100.00

100.00

92.22Wheat in incubation period of stripe rust 100.00 93.33

Wheat in incubation period of leaf rust 100.00 83.33

Note. Model 4 was the �NN model built based on the remaining data a	er deleting the spectra with the disease indices equal to 0 (including the spectra of
healthy wheat and the spectra of wheat in the incubation period) from the 
rst group of spectral features, and Model 5 was the KNNmodel built based on the
remaining data a	er deleting the spectra of wheat in the diseased period from the second group of spectral features.

be performed. If wheat was in the diseased period, Model 1
could be used to distinguish between wheat stripe rust and
leaf rust. If not, Model 2 could be used to determine whether
wheat was healthy, in the incubation period of stripe rust or
in the incubation period of leaf rust.

�e results described above indicated that the 
rst group
of spectral features re�ected the di�erences between the
spectra of wheat in the diseased period of stripe rust and
that of wheat in the diseased period of leaf rust, that the
second group of spectral features re�ected the di�erences
among the spectra of healthy wheat, that of wheat in the
incubation period of stripe rust and that of wheat in the
incubation period of leaf rust, and that the third group of
spectral features re�ected the di�erences between the spectra
of healthy wheat and diseased wheat infected with Pst or Prt.
For further improving the identi
cation accuracies ofmodels,
the spectra with the disease indices equal to 0 (including
the spectra of healthy wheat and the spectra of wheat in the
incubation period) were deleted from the training set and the
testing set used for the establishment of Model 1, and the rest
were treated as the new training set and the new testing set
for building the identi
cation model called Model 4 by using
�NN method; the spectra of wheat in the diseased period
were deleted from the training set and the testing set used
for the establishment of Model 2, and the rest were treated as
the new training set and the new testing set for building the
identi
cation model called Model 5 by using �NN method.
For building�NNmodels, the determination of the number
of nearest neighbors was performed with Euclidean distance
as the dissimilaritymeasure and the reciprocal of the distance
as the weight. Four was determined as the optimal number of
the nearest neighbors forModel 4, and 
vewas determined as
the optimal number of the nearest neighbors forModel 5.�e
identi
cation results of Model 4 and Model 5 were shown in
Table 3. For Model 4, the overall identi
cation accuracies of
the training set and the testing set were both 100.00%. It was
indicated that Model 4 could accurately distinguish between
wheat stripe rust and leaf rust in the diseased period. For
Model 5, the overall identi
cation accuracy of the training
set was 100.00% and that of the testing set was 92.22%. It
was demonstrated thatModel 5 could separate healthy wheat,

wheat in the incubation period of stripe rust, andwheat in the
incubation period of leaf rust with high accuracies.

WhenModel 5 was used to identify the sample categories
in the testing set, the spectra of healthy wheat were all
identi
ed correctly, two spectra of wheat in the incubation
period of stripe rust were identi
ed as that of healthy wheat,
and 
ve spectra of wheat in the incubation period of leaf rust
were identi
ed as that of healthy wheat. �e results showed
that, using Model 5, the spectra of healthy wheat and wheat
in the incubation period of stripe rust could be confused,
the spectra of healthy wheat and wheat in the incubation
period of leaf rust also could be confused, and the spectra
of wheat in the incubation period of stripe rust and leaf rust
could not be confused. However, when Model 2 was used to
identify the sample categories in the corresponding testing
set, one spectrum of wheat in the incubation period of stripe
rust was identi
ed as that of wheat in the incubation period
of leaf rust. �e results indicated that the �NN model was
more suitable than the SVMmodel to distinguish the spectra
of wheat in the incubation period of wheat stripe rust and
leaf rust. Concerning the overall identi
cation accuracies,
the identi
cation accuracy for each category, the ability to
distinguish the spectra of wheat in the incubation period of
stripe rust and leaf rust, and the ability to distinguish the
spectra of wheat in the diseased period of stripe rust and
leaf rust, it was suggested that Model 1 could be replaced by
Model 4, andModel 2 could be replaced byModel 5, and then
the combination model could be constructed with Model 3,
Model 4, and Model 5 for identi
cation of wheat stripe rust
and leaf rust based on canopy hyperspectral data.

3.3. DI Inversion of Wheat Stripe Rust and Leaf Rust. �e DI
inversion SVR models of wheat stripe rust and leaf rust built
based on the spectra with the disease indices greater than 0
acquired in the diseased period in the 
rst group of spectral
features were recorded as Model 6 and Model 7, respectively.
�e DI inversion SVR models of wheat stripe rust and leaf
rust built based on the spectra with the disease indices greater
than 0 acquired in the diseased period in the second group
of spectral features were recorded as Model 8 and Model 9,
respectively. �e DI inversion SVR models of wheat stripe
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Table 4: �e results of disease index inversion SVR models of wheat stripe rust and wheat leaf rust.

Model Wheat disease
Optimal parameters Training set Testing set


 � R2 MSE �2 MSE

Model 6 Wheat stripe rust 32 0.03125 0.8895 0.0068 0.6750 0.0193

Model 7 Wheat leaf rust 4 0.03125 0.8435 0.0104 0.8099 0.0130

Model 8 Wheat stripe rust 32 0.03125 0.8942 0.0062 0.6597 0.0205

Model 9 Wheat leaf rust 4 0.03125 0.8479 0.0101 0.8068 0.0131

Model 10 Wheat stripe rust 16 0.2500 0.8623 0.0085 0.6250 0.0229

Model 11 Wheat leaf rust 4 0.1250 0.8461 0.0095 0.7982 0.0125

Note. Model 6 was the DI inversion SVR model of wheat stripe rust built based on the spectra with the disease indices greater than 0 acquired in the diseased
period of stripe rust in the 
rst group of spectral features. Model 7 was the DI inversion SVRmodel of wheat leaf rust built based on the spectra with the disease
indices greater than 0 acquired in the diseased period of leaf rust in the 
rst group of spectral features. Model 8 was the DI inversion SVRmodel of wheat stripe
rust built based on the spectra with the disease indices greater than 0 acquired in the diseased period of stripe rust in the second group of spectral features.
Model 9 was the DI inversion SVR model of wheat leaf rust built based on the spectra with the disease indices greater than 0 acquired in the diseased period
of leaf rust in the second group of spectral features. Model 10 was the DI inversion SVR model of wheat stripe rust built based on the spectra with the disease
indices greater than 0 acquired in the diseased period of stripe rust in the third group of spectral features. And Model 11 was the DI inversion SVR model of
wheat leaf rust built based on the spectra with the disease indices greater than 0 acquired in the diseased period of leaf rust in the third group of spectral features.

rust and leaf rust built based on the spectra with the disease
indices greater than 0 acquired in the diseased period in the
third group of spectral features were recorded as Model 10
and Model 11, respectively. �e optimal parameters 
 and �
for each SVR model and the inversion results were shown
in Table 4. As shown in Table 4, the inversion e�ects of all
SVR models were satisfactory. �e values of �2 and MSE of
the testing sets indicated that the inversion e�ects of the SVR
models of wheat leaf rust were better than that of the SVR
models of wheat stripe rust.�is indicated that wheat canopy
hyperspectral data were more suitable for the DI inversion of
wheat leaf rust. �is may be because the uredinia produced
by Prt distribute more evenly on wheat leaves than those
produced by Pst.

�e results showed that the inversion e�ects of the SVR
models of wheat stripe rust or leaf rust were not greatly
improved a	er preprocessing the spectra data using WPA.
Considering the model should be as simple as possible in
practical application, it was suggested that monitoring wheat
stripe rust and leaf rust can be carried out by using the DI
inversion SVR models based on the 
rst group of spectral
features.

4. Conclusions and Discussion

In this study, the canopy hyperspectral data of healthy wheat,
wheat in the incubation period of stripe rust, wheat in the
diseased period of stripe rust, wheat in the incubation period
of leaf rust, and wheat in the diseased period of leaf rust
were obtained. A	er preprocessing of the data, the disease
identi
cation models and the DI inversion models were built
based on the three groups of spectral features, respectively. A
method based on hyperspectral remote sensing was provided
for identi
cation and DI inversion of wheat stripe rust and
leaf rust. �is study provided some basis for monitoring
wheat diseases using satellite remote sensing.

Model 2 based on the second group of spectral features
(wavelet packet decomposition coe�cients) was better than
Model 1 based on the 
rst group of spectral features and
Model 3 based on the third group of spectral features. To

further improve the identi
cation e�ect, when one spectrum
of wheat canopy is obtained, Model 3 can be 
rstly used
to determine whether the spectrum is obtained from the
wheat in the diseased period or not. If yes, Model 4 can
be used to identify wheat stripe rust or leaf rust. If not,
Model 5 can be used to determine whether wheat is healthy,
in the incubation period of stripe rust or in the incubation
period of leaf rust. It is di�cult to identify healthy wheat,
wheat in the incubation period, and wheat in the diseased
period of two diseases using only one identi
cation model.
An approach using the combination model was provided in
this study for solution of this di�culty. �e study conducted
byDevadas et al. [22] showed that the rust infection caused by
Pst, Prt, and Pgt in individual wheat leaves could be identi
ed
through the combination of two vegetation indices (ARI and
TCARI). �erefore, when monitoring and identi
cation of a
variety of plant pests are performed by using remote sensing
technology, the combination of multiple models can be tried
once the purpose cannot be achieved using a single model.

�e 
rst group of spectral features used in this study
was in a full spectral range (325–1075 nm). In practice, the
speci
c spectral ranges can be selected for modeling. When
the models were built based on the third group of spectral
features, all of the 25 feature parameters were used. To
reduce the calculation work, the feature parameters with high
correlation can be selected for identi
cation and inversion of
the diseases.

�e results demonstrated that disease indices of wheat
stripe rust and leaf rust can be evaluated based on canopy
hyperspectral data. �e DI inversion SVR models of each
wheat disease built in this study could e�ectively estimate
the corresponding disease. In practice, the DI inversion SVR
models based on the 
rst group of spectral features should be
preferred to estimate wheat stripe rust or wheat leaf rust.

When wheat leaves are infected with Pst or Prt, chloro-
phyll content in the leaves could be reduced and the changes
of cellular structure could be induced; in the later stage of
incubation period, chlorotic latent lesions would appear on
the leaves; and a	er incubation period, the uredinia would
appear on the leaves and thewater content in the leaves would
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be a�ected [13, 20, 38, 39]. �ese changes caused by disease
infection could be detected by spectral features [5, 13]. In
this study, the canopy spectral re�ectance of wheat infected
with Pst or Prt relatively increased compared with that of
healthy wheat in the spectral range 720–1075 nm. �is may
be induced by the changes of chlorophyll content, cellular
structure, and water content. For wheat stripe rust and wheat
leaf rust, the shape and distribution of the uredinia on the
leaves are di�erent in appearance, and the physiological and
biochemical e�ects on leaves may also be di�erent. So these
di�erences may induce the di�erence between the canopy
spectral re�ectance of wheat infected with Pst and that of
wheat infected with Prt. Further studies on the relationship
between the spectral changes and the physiological and bio-
chemical changes will be helpful for revealing themechanism
of monitoring the two diseases based on hyperspectral data.

With the rapid development of science and technol-
ogy, hyperspectral remote sensing monitoring technology is
increasingly being applied to plant diseases and hyperspectral
remote sensing of a variety of plant pests is gradually being
concerned. However, many factors, such as leaf angle, soil,
backgroundplants, andmeteorological conditions, have great
in�uence on the canopy spectral data, and it is very likely
to change the relative spectral di�erences [7]. �erefore, it is
very important to 
nd out a method to weaken or eliminate
this kind of e�ects in further studies.
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