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Stripe rust and leaf rust with similar symptoms are two important wheat diseases. In this study, to investigate a method to identify
and assess the two diseases, the canopy hyperspectral data of healthy wheat, wheat in incubation period, and wheat in diseased
period of the diseases were collected, respectively. After data preprocessing, three support vector machine (SVM) models for disease
identification and six support vector regression (SVR) models for disease index (DI) inversion were built. The results showed that
the SVM model based on wavelet packet decomposition coeflicients with the overall identification accuracy of the training set
equal to 99.67% and that of the testing set equal to 82.00% was better than the other two models. To improve the identification
accuracy, it was suggested that a combination model could be constructed with one SVM model and two models built using K-
nearest neighbors (KNN) method. Using the DI inversion SVR models, the satisfactory results were obtained for the two diseases.
The results demonstrated that identification and DI inversion of stripe rust and leaf rust can be implemented based on hyperspectral

data at the canopy level.

1. Introduction

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst)
and leaf rust caused by P recondita f. sp. tritici (Prt) are
two devastating wheat diseases worldwide [1]. They occur
widely in wheat growing regions in China and they are the
major obstacles to stable and high yield wheat production
[1-3]. In China, a couple of severe epidemics of the two
diseases occurred and destructive yield losses of wheat were
caused [1-3]. These two diseases are easily confused with
each other because of the similar disease symptoms. So it
is difficult to make an accurate diagnosis and monitoring
of the diseases under field conditions. Thus timely man-
agement of the diseases may be affected. Traditionally, the
identification and assessment of the two diseases mainly
rely on the naked-eye field observation and investigation of
the visible disease symptoms conducted by plant protection
technical personnel. But this method is labor-consuming

and time-costing, and it easily results in errors. Therefore,
it is of great significance to explore a method for rapid and
accurate identification and quantitative assessment of these
two diseases.

The rapid development of remote sensing technology
provides strong technical support for the monitoring of plant
diseases. The real-time, objective, rapid, and nondestructive
methods for identifying, detecting, and monitoring plant
diseases may be developed based on remote sensing tech-
nology. Remote sensing techniques have been applied in the
studies on identifying and monitoring plant diseases [4-
6]. Remote sensing technology, especially the hyperspectral
remote sensing technology, has been applied to remote
sensing monitoring of wheat stripe rust [7]. Detection and
identification of wheat stripe rust via remote sensing at the
individual wheat leaves [8-10], monitoring of the disease via
ground remote sensing [11-13], aerial remote sensing [14-16],
and space remote sensing [17-19] have been investigated.



Few studies on the detection and disease severity estimation
of wheat leaf rust using the spectral reflectance data were
carried out at the leaf scale [20, 21]. At this present time,
remote sensing techniques are mostly used in the studies
on detecting and monitoring of single plant disease, and
there are only few studies on the identification and mon-
itoring of two or more than two kinds of plant diseases.
There are few reports focusing on the distinction between
wheat stripe rust and other wheat diseases based on remote
sensing technology. Devadas et al. [22] evaluated ten widely
used spectral vegetation indices for discriminating individual
wheat leaves infected with stripe rust, leaf rust, and stem rust
caused by the pathogen Puccinia graminis f. sp. tritici (Pgt).
The results showed that no single index could discriminate
the three kinds of wheat rusts from each other. However,
a method for discriminating the three wheat rusts was
provided. Firstly, the anthocyanin reflectance index (ARI)
could be used to discriminate healthy leaves, leaves infected
with stripe rust, and mixed leaves infected with stem rust
and leaf rust, and the transformed chlorophyll absorption and
reflectance index (TCARI) could then be used to discriminate
the leaves infected with leaf rust and those infected with
stem rust. In a study conducted by Yuan et al. [23], based
on the spectra of individual wheat leaves infected with stripe
rust and powdery mildew (caused by Blumeria graminis f.
sp. tritici), the model for discriminating the two diseases
with the overall accuracy more than 80% was developed
using the selected spectral bands and spectral features, and
the retrieving model of disease severity for each disease
with the root-mean-square error (RMSE) less than 15% was
also built. The study on identification of damage symptoms
caused by powdery mildew, stripe rust, and wheat aphid on
winter wheat was conducted by Qiao et al. [24] based on
the canopy hyperspectral remote sensing data. The results
showed that, after logarithmic-differential transformation of
the original spectra, the three kinds of wheat pests were
well identified with the accuracies more than 90% by using
stepwise discriminate analysis and hierarchical clustering,
respectively. Based on the near-infrared spectral data of
individual wheat leaves, Li et al. [25] investigated the early
diagnosis of stripe rust and leaf rust in incubation period and
diseased period using near-infrared reflectance spectroscopy
(NIRS) technology. The results showed that the identification
accuracy of the training set was 97.00% and the identification
accuracy of the testing set was 96.00% for the optimal model
to identify the diseases built by using distinguished partial
least squares (DPLS). To the best of our knowledge, at the
present time, there are no reports about identifying wheat
stripe rust and wheat leaf rust by using hyperspectral remote
sensing technology at the wheat canopy level, and there are
also no reports about the assessment of wheat leaf rust by
using hyperspectral remote sensing technology at the canopy
level.

In this study, through the field experiment, identification
and disease index inversion of wheat stripe rust and wheat
leaf rust were investigated by using hyperspectral remote
sensing technology at the canopy level. The aim of this study
was to provide a method for monitoring and evaluating the
two diseases.
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2. Materials and Methods

2.1. Field Experiment Design and Artificial Spray Inoculation.
Field experiment was conducted in Kaifeng Experimental
Station of China Agricultural University, Kaifeng, Henan
Province, China. Beijing 0045, a wheat variety which is
moderately susceptible to Pst and Prt, was selected as the
experimental cultivar. The seeds of the cultivar were sown in
the autumn of 2013. The experimental field was divided into
two large zones. One zone was designed as the experimental
zone of wheat stripe rust, and another was designed as the
experimental zone of wheat leaf rust. Each zone was divided
into 18 experimental plots. The size of each plot was 3m x
4m. Wheat variety Nongda 195 was planted as protective
belts in the areas between the plots. To get different disease
prevalence of wheat stripe rust and wheat leaf rust in the plots,
the spore suspensions at five concentrations were prepared
for artificial spray inoculation of Pst and Prt, respectively.
The concentrations of Pst spore suspensions were 100 mg/L,
80 mg/L, 60 mg/L, 40 mg/L, and 20 mg/L, respectively, and
those of Prt spore suspensions were 50 mg/L, 40 mg/L,
30 mg/L,20 mg/L, and 10 mg/L, respectively. The control plots
were not inoculated using the pathogens. Each treatment was
replicated three times. The experiments were performed with
randomized block design. Late in the afternoon in April 2014,
the plots that need to be inoculated were evenly sprayed using
spore suspensions. For moisturizing the wheat leaves, after
inoculation, the plots were covered with plastic film that was
sprayed with water, and then the edges of the plastic film were
covered with earth. Between 8:00 and 9:00 (Beijing Time) in
the next day, the plastic film was unveiled.

2.2. Acquisition of Hyperspectral Data. The canopy hyper-
spectral data of wheat were measured by using an ASD
spectrometer (ASD FieldSpec HandHeld 2) (ASD Inc., Boul-
der, CO, USA) with a wavelength range of 325-1075nm,
a wavelength accuracy of +1nm, a spectral resolution of
<3 nmat 700 nm, 25° field-of-view, and minimum integration
time of 8.5ms. The hyperspectral data were acquired before
inoculation (wheat was healthy) and in incubation period
of the diseases (wheat has been infected with the pathogen
spores, but no disease symptoms were visible) and also
were acquired in diseased period (in this period, the data
acquisition was conducted twice on April 14, 2014, and on
April 29, 2014, resp.). All measurements of hyperspectral data
were carried out on clear, sunny days between 10:00 and 14:00
(Beijing Time). In each experimental plot, 5 points (five-
point sampling) were marked and treated as fixed points for
hyperspectral measurements. The spectrum average was set
as 15. Three spectra were measured for the wheat canopy
at each marked point, and the average value was treated as
the canopy spectrum at the point. When the hyperspectral
measurement was taken, the sensor of the spectrometer
was vertically positioned at a height of 1.3 m above ground.
White board correction was performed before hyperspectral
measurements in each plot. A total of 602 reflectance spectra
were used for subsequent analysis. The spectra included 210
canopy spectra of healthy wheat (90 spectra obtained in the
experimental zone of wheat stripe rust before inoculation,
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90 spectra obtained in the experimental zone of wheat leaf
rust before inoculation, 15 spectra obtained in the control
plot of wheat stripe rust in incubation period, and 15 spectra
obtained in the control plot of wheat leaf rust in incubation
period), 75 canopy spectra of wheat in incubation period of
stripe rust, 75 canopy spectra of wheat in incubation period
of leaf rust, 92 canopy spectra of wheat in diseased period
of stripe rust, and 150 canopy spectra of wheat in diseased
period of leaf rust. In the diseased period of stripe rust,
150 canopy spectra of the inoculated wheat were obtained.
To avoid the effects of the spectra with the disease indices
equal to 0 on disease identification and assessment, 92 spectra
with the disease indices greater than 0 were used for the
corresponding analysis. In the diseased period of leaf rust, 150
canopy spectra of the inoculated wheat were also obtained.
The corresponding disease indices were all greater than 0, so
all of the spectra of the diseased wheat infected with leaf rust
were used for the corresponding analysis.

At the same time as the spectra were acquired, wheat
stripe rust and leaf rust were assessed according to the
Rules for Monitoring and Forecast of the Wheat Stripe Rust
(Puccinia striiformis West.) (National Standard of the People’s
Republic of China, GB/T 15795-2011) and the Rules for the
Investigation and Forecast of Wheat Leaf Rust (Puccinia
recondita Rob. et Desm.) (Agricultural Industry Standard of
the People’s Republic of China, NY/T 617-2002), respectively.
For wheat stripe rust and leaf rust, disease severity of the
diseased leaf was estimated as 1%, 5%, 10%, 20%, 40%, 60%,
80%, or 100%. Disease index (DI) at each marked point was
calculated by using the following formula:

DI = I x Sx 100, @)

where I was disease incidence and S was average disease
severity. S was calculated by using the following formula:

S = M x 100, (2)

where S was average disease severity, S was disease severity, n
was the total number of diseased leaves, and n,, n,,n,.. ., ng
were the number of diseased leaves with disease severity as
1%, 5%, 10%, . . ., 100%, respectively.

2.3. Preprocessing Methods of Hyperspectral Data. To mine
information from the acquired hyperspectral data, the first
derivatives and the second derivatives of the original spectral
reflectance data were calculated by using the Savitzky-Golay
method [32] with the polynomial degree equal to 3 and the
span equal to 7 And then the original spectral reflectance
data, the Savitzky-Golay first derivatives, and the Savitzky-
Golay second derivatives were regarded as the first group of
spectral features. Wavelet packet analysis (WPA) was used as
a method for spectral data preprocessing in this study. As a
time-frequency analysis method, WPA is better than wavelet
analysis method, and using the former, high frequency
signals and low frequency signals can be simultaneously
decomposed [33]. So full-channel signal decomposition can
be implemented using WPA. In this study, two-level wavelet

packet decomposition of the original spectral reflectance
data, the Savitzky-Golay first derivatives, and the Savitzky-
Golay second derivatives were simultaneously performed by
using db5 wavelet. And then a total of 2328 coefficients of the
second level wavelet packet decomposition were chosen as
the second group of spectral features. Based on the original
canopy spectral data of wheat, a total of 25 feature parameters
(as shown in Table 1) were obtained and then were regarded
as the third group of spectral features. Considering there were
great differences between the magnitudes of the different
feature parameters in the third group, the feature parameters
were normalized to 0-1 by using the formula x; = (X; -
X i)/ (X iax — Xinin)» Where x; was the parameter value after
normalization, X; was the parameter value before normal-
ization, X ,;, was the minimum value of the parameter, and
X, ax Was the maximum value of the parameter. And the
normalized values were then used for modeling.

2.4. Identification of Wheat Stripe Rust and Leaf Rust Based
on Canopy Hyperspectral Data. The canopy spectral data of
healthy wheat, wheat in incubation period of stripe rust,
wheat in diseased period of stripe rust, wheat in incubation
period of leaf rust, and wheat in diseased period of leaf
rust were treated as one category, respectively. Thus the
spectral data were divided into five categories. The Kennard-
Stone method [34] was used to choose samples to constitute
training set and testing set for modeling. With the point
nearest to the center point as the starting point and the
Euclidean distance as the dissimilarity measure, 30 samples
were selected from each category to set up testing set, and the
rest were treated as training set. In particular, for the third
group of spectral features, the dimension of the training set
was reduced to four using linear discriminant analysis (LDA),
and, based on the obtained means and score matrix of the
training set, the dimension of the testing set was also reduced
to four. Then the establishment of disease identification
model was conducted.

In this study, disease identification modeling was con-
ducted using support vector machine (SVM) based on the
three groups of spectral features, respectively. SVM can
satisfactorily solve the small sample, nonlinear problems,
high dimension, local minimum points, and other practical
issues, and it has high generalization ability [35]. SVM models
for disease identification were established with radial basis
function (RBF) as the kernel function by using C-SVM in
LIBSVM package developed by Chih-Jen Lin Group from
Taiwan, China [36]. For each SVM model, both the optimal
penalty parameter C and the optimal kernel function param-
eter y were searched using grid search algorithm in the range
271929 with the searching step equal to 1. Identification
accuracies were calculated at all points within the grid and the
values of C and y were selected as the optimal parameters as
the identification accuracy of the training set was the highest.
Then the SVM models built based on each group of spectral
features, respectively, were used to identify the categories of
canopy hyperspectral data. The identification accuracy for
each category and the overall identification accuracy for all
categories were used to evaluate each SVM model.
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TABLE 1: The feature parameters in the third group of spectral features.

Feature parameter Definition or calculation formula Reference
Db The maximum of first derivatives within blue edge (490-530 nm) (4]
Ab Wavelength at the position of Db (nm) (4]
Dy The maximum of first derivatives within yellow edge (550-582 nm) (4]
Ay Wavelength at the position of Dy (nm) [4]
Dr The maximum of first derivatives within red edge (680-780 nm) (4]
Ar Wavelength at the position of Dr (nm) [4]
Rg The maximum reflectance in 510-560 nm (4]
Ag Wavelength at the position of Rg (nm) (4]
Rr The minimum reflectance in 640-680 nm (4]
A Wavelength at the position of Rr (nm) [4]
SDb Sum of first derivatives within blue edge (490-530 nm) (4]
SDy Sum of first derivatives within yellow edge (550-582 nm) (4]
SDr Sum of first derivatives within red edge (680-780 nm) (4]
Rg/Rr The ratio of Rg to Rr (4]
(Rg — Rr)/(Rg + Rr) The normalized value of Rg and Rr (4]
SDr/SDb The ratio of SDr to SDb (4]
SDr/SDy The ratio of SDr to SDy (4]
(SDr — SDb)/(SDr + SDb) The normalized value of SDr and SDb (4]
(SDr - SDy)/(SDr + SDy) The normalized value of SDr and SDy (4]
Anthocyanin reflectance index (ARI) ART = (Rygy) " = (Rypo) [26]
CARI = [(ax 670 + Ry + D) o Ry
Chlorophyll absorption ratio index (CARI) a’+1 Rezo (27]
in which, a = w, b = Ry5, — (a x 550)
Photochemical reflectance index (PRI) PRI = M [28]
(Rs3; + Rszg)
Plant senescence reflectance index (PSRI) PSRI = M [29]
50
Triangular vegetation index (TVI) TVI = 0.5 % [120 x (Ry55 — Rss0) — 200 X (Rgyp — Rssg) ] [30]
Water index (WI) WI = Rooo (31]
Roz

In this study, if the satisfactory identification accuracies
for the SVM models were not obtained, an attempt of K-
nearest neighbors (KNN) method for disease identification
modeling would be conducted. As a nonparametric machine
learning algorithm, KNN method has good classification
ability and generalization performance [37]. Using KNN
method, the classification is performed based on local
information. Compared with SVM, KNN method is more
suitable for solving the classification problems with local
characteristics.

2.5. DI Inversion of Wheat Stripe Rust and Leaf Rust Based on
Canopy Hyperspectral Data. DI inversion models were built
by using support vector regression (SVR) for wheat stripe rust
and leaf rust, respectively. The spectra with the disease indices
greater than 0 acquired in the diseased period of wheat stripe
rust or leaf rust were used for building the DI inversion SVR
model. The content-grads method [32] was used to choose
samples to constitute training set and testing set for modeling.

For the DI inversion SVR model of wheat stripe rust or leaf
rust, the ratio of training set to testing set was about 3: 1. For
the SVR model of wheat stripe rust, the training set included
69 spectra and the testing set included 23 spectra. For the SVR
model of wheat leaf rust, the training set included 113 spectra
and the testing set included 37 spectra.

The DI inversion models of wheat stripe rust were built
by using e-SVR with RBF as the kernel function based on the
first group of spectral features, the second group of spectral
features, and the third group of spectral features, respectively.
In the same way, the DI inversion models of wheat leaf rust
were also built. For each SVR model, both the optimal penalty
parameter C and the optimal kernel function parameter y
were searched using grid search algorithm in the searching
range 27°-2% with the searching step equal to 0.8. Mean
squared errors (MSE) were calculated at all points within the
grid, and the values of C and y were selected as the optimal
parameters as the minimum MSE of the training set was
obtained.
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FIGURE 1: The canopy spectra of different categories of wheat.

3. Results

3.1. Wheat Canopy Spectra. After averaging the canopy spec-
tral data of healthy wheat, wheat in incubation period of
stripe rust, wheat in diseased period of stripe rust, wheat in
incubation period of leaf rust, and wheat in diseased period
of leaf rust according to their categories, respectively, the
spectral curve of each category was shown in Figure 1. As
shown in Figure 1, there were great differences between the
spectra in the range 720-1075 nm. For wheat stripe rust and
leaf rust, the canopy spectral reflectance of wheat in the
incubation period and that of wheat in the diseased period
relatively increased compared with that of healthy wheat in
this spectral range. Both in the incubation period and in
the diseased period, the canopy spectral reflectance of wheat
infected with Pst relatively increased compared with that of
wheat infected with Prt.

3.2. Identification of Wheat Stripe Rust and Leaf Rust. The
SVM models for disease identification based on the first
group of spectral features, the second group of spectral
features, and the third group of spectral features were
recorded as Model 1, Model 2, and Model 3, respectively. The
optimal parameters C and y for each SVM model and the
identification results were shown in Table 2.

As shown in Table 2, for Model 1, the overall identification
accuracies of the training set and the testing set were 9718%
and 78.00%, respectively. For the testing set, the identification
accuracy for wheat in the incubation period of stripe rust
was only 20.00%, and the identification accuracies for other
categories were more than 80.00%; 23 spectra of wheat in the
incubation period of stripe rust were falsely identified as that
of healthy wheat and one spectrum of wheat in the incubation
period of stripe rust was identified as that of wheat in the
incubation period of leaf rust; two spectra of wheat in the
diseased period of stripe rust were identified as that of wheat
in the diseased period of leaf rust; one spectrum of wheat in

the diseased period of leaf rust was identified as that of wheat
in the diseased period of stripe rust.

As shown in Table 2, for Model 2, the overall identi-
fication accuracies of the training set and the testing set
were 99.67% and 82.00%, respectively. For the training set,
the identification accuracy for healthy wheat was 94.29%
and the identification accuracies for other categories were
all 100.00%. For the testing set, the identification accuracy
for healthy wheat was 100.00%, that for both wheat in the
incubation period of stripe rust and wheat in the diseased
period of leaf rust was 86.67%, that for wheat in the diseased
period of stripe rust was 63.33%, and that for wheat in the
incubation period of leaf rust was 73.33%; two spectra of
wheat in the incubation period of stripe rust were falsely
identified as that of healthy wheat, one spectrum of wheat in
the incubation period of stripe rust was identified as that of
wheat in the incubation period of leaf rust, and one spectrum
of wheat in the incubation period of stripe rust was identified
as that of wheat in the diseased period of leaf rust; 11 spectra of
wheat in the diseased period of stripe rust were identified as
that of wheat in the diseased period of leaf rust; eight spectra
of wheat in the incubation period of leaf rust were identified
as that of healthy wheat; four spectra of wheat in the diseased
period of leaf rust were identified as that of wheat in the
diseased period of stripe rust.

As shown in Table 2, for Model 3, the overall identifica-
tion accuracy of the training set was 82.89% and that of the
testing set was 68.67%. For the training set, the identification
accuracies for healthy wheat, wheat in the incubation period
of stripe rust, wheat in the diseased period of stripe rust,
wheat in the incubation period of leaf rust, and wheat in
the diseased period of leaf rust were 88.33%, 82.22%, 67.15%,
86.67%, and 88.21%, respectively. For the testing set, the
identification accuracy for healthy wheat was 96.67%, that for
wheat in the diseased period of leaf rust was 90.00%, that for
wheat in the incubation period of leaf rust was 76.67%, and
that for wheat in both the incubation period and the diseased
period of stripe rust was 40.00%; one spectrum of healthy
wheat was identified as that of wheat in the diseased period
of leaf rust; 17 spectra of wheat in the incubation period of
stripe rust were identified as that of healthy wheat and one
spectrum of wheat in the incubation period of stripe rust was
identified as that of wheat in the incubation period of leaf rust;
18 spectra of wheat in the diseased period of stripe rust were
identified as that of wheat in the diseased period of leaf rust;
seven spectra of wheat in the incubation period of leaf rust
were identified as that of healthy wheat; three spectra of wheat
in the diseased period of leaf rust were identified as that of
wheat in the diseased period of stripe rust.

The results showed that Model 1 could effectively dis-
tinguish between wheat stripe rust and leaf rust in the
diseased period, that Model 2 could effectively separate
healthy wheat, wheat in the incubation period of stripe rust,
and wheat in the incubation period of leaf rust, and that
Model 3 could effectively determine whether wheat was in
the diseased period. To improve identification accuracy and
modeling effect, it was suggested that the combination model
could be constructed. Firstly, the application of Model 3 to
determine whether wheat was in the diseased period could
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TABLE 3: The results of KNN models for identification of wheat stripe rust and wheat leaf rust.
Training set Testing set
Model Sample category Identification Overall Identification Overall
accuracy identification accuracy identification
for each category/% accuracy/% for each category/% accuracy/%
Model 4 Wheat in diseased period of stripe rust 100.00 100.00 100.00 100.00
Wheat in diseased period of leaf rust 100.00 100.00
Healthy wheat 100.00 100.00
Model 5 ‘Wheat in incubation period of stripe rust 100.00 100.00 93.33 92.22
Wheat in incubation period of leaf rust 100.00 83.33

Note. Model 4 was the KNN model built based on the remaining data after deleting the spectra with the disease indices equal to 0 (including the spectra of
healthy wheat and the spectra of wheat in the incubation period) from the first group of spectral features, and Model 5 was the KNN model built based on the
remaining data after deleting the spectra of wheat in the diseased period from the second group of spectral features.

be performed. If wheat was in the diseased period, Model 1
could be used to distinguish between wheat stripe rust and
leaf rust. If not, Model 2 could be used to determine whether
wheat was healthy, in the incubation period of stripe rust or
in the incubation period of leaf rust.

The results described above indicated that the first group
of spectral features reflected the differences between the
spectra of wheat in the diseased period of stripe rust and
that of wheat in the diseased period of leaf rust, that the
second group of spectral features reflected the differences
among the spectra of healthy wheat, that of wheat in the
incubation period of stripe rust and that of wheat in the
incubation period of leaf rust, and that the third group of
spectral features reflected the differences between the spectra
of healthy wheat and diseased wheat infected with Pst or Prt.
For further improving the identification accuracies of models,
the spectra with the disease indices equal to 0 (including
the spectra of healthy wheat and the spectra of wheat in the
incubation period) were deleted from the training set and the
testing set used for the establishment of Model 1, and the rest
were treated as the new training set and the new testing set
for building the identification model called Model 4 by using
KNN method; the spectra of wheat in the diseased period
were deleted from the training set and the testing set used
for the establishment of Model 2, and the rest were treated as
the new training set and the new testing set for building the
identification model called Model 5 by using KNN method.
For building KNN models, the determination of the number
of nearest neighbors was performed with Euclidean distance
as the dissimilarity measure and the reciprocal of the distance
as the weight. Four was determined as the optimal number of
the nearest neighbors for Model 4, and five was determined as
the optimal number of the nearest neighbors for Model 5. The
identification results of Model 4 and Model 5 were shown in
Table 3. For Model 4, the overall identification accuracies of
the training set and the testing set were both 100.00%. It was
indicated that Model 4 could accurately distinguish between
wheat stripe rust and leaf rust in the diseased period. For
Model 5, the overall identification accuracy of the training
set was 100.00% and that of the testing set was 92.22%. It
was demonstrated that Model 5 could separate healthy wheat,

wheat in the incubation period of stripe rust, and wheat in the
incubation period of leaf rust with high accuracies.

When Model 5 was used to identify the sample categories
in the testing set, the spectra of healthy wheat were all
identified correctly, two spectra of wheat in the incubation
period of stripe rust were identified as that of healthy wheat,
and five spectra of wheat in the incubation period of leaf rust
were identified as that of healthy wheat. The results showed
that, using Model 5, the spectra of healthy wheat and wheat
in the incubation period of stripe rust could be confused,
the spectra of healthy wheat and wheat in the incubation
period of leaf rust also could be confused, and the spectra
of wheat in the incubation period of stripe rust and leaf rust
could not be confused. However, when Model 2 was used to
identify the sample categories in the corresponding testing
set, one spectrum of wheat in the incubation period of stripe
rust was identified as that of wheat in the incubation period
of leaf rust. The results indicated that the KNN model was
more suitable than the SVM model to distinguish the spectra
of wheat in the incubation period of wheat stripe rust and
leaf rust. Concerning the overall identification accuracies,
the identification accuracy for each category, the ability to
distinguish the spectra of wheat in the incubation period of
stripe rust and leaf rust, and the ability to distinguish the
spectra of wheat in the diseased period of stripe rust and
leaf rust, it was suggested that Model 1 could be replaced by
Model 4, and Model 2 could be replaced by Model 5, and then
the combination model could be constructed with Model 3,
Model 4, and Model 5 for identification of wheat stripe rust
and leaf rust based on canopy hyperspectral data.

3.3. DI Inversion of Wheat Stripe Rust and Leaf Rust. The DI
inversion SVR models of wheat stripe rust and leaf rust built
based on the spectra with the disease indices greater than 0
acquired in the diseased period in the first group of spectral
features were recorded as Model 6 and Model 7, respectively.
The DI inversion SVR models of wheat stripe rust and leaf
rust built based on the spectra with the disease indices greater
than 0 acquired in the diseased period in the second group
of spectral features were recorded as Model 8 and Model 9,
respectively. The DI inversion SVR models of wheat stripe
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TABLE 4: The results of disease index inversion SVR models of wheat stripe rust and wheat leaf rust.

Model Wheat disease Optimal parameters i Training set i Testing set

C y R MSE R MSE
Model 6 Wheat stripe rust 32 0.03125 0.8895 0.0068 0.6750 0.0193
Model 7 Wheat leaf rust 4 0.03125 0.8435 0.0104 0.8099 0.0130
Model 8 Wheat stripe rust 32 0.03125 0.8942 0.0062 0.6597 0.0205
Model 9 Wheat leaf rust 4 0.03125 0.8479 0.0101 0.8068 0.0131
Model 10 Wheat stripe rust 16 0.2500 0.8623 0.0085 0.6250 0.0229
Model 11 Wheat leaf rust 4 0.1250 0.8461 0.0095 0.7982 0.0125

Note. Model 6 was the DI inversion SVR model of wheat stripe rust built based on the spectra with the disease indices greater than 0 acquired in the diseased
period of stripe rust in the first group of spectral features. Model 7 was the DI inversion SVR model of wheat leaf rust built based on the spectra with the disease
indices greater than 0 acquired in the diseased period of leaf rust in the first group of spectral features. Model 8 was the DI inversion SVR model of wheat stripe
rust built based on the spectra with the disease indices greater than 0 acquired in the diseased period of stripe rust in the second group of spectral features.
Model 9 was the DI inversion SVR model of wheat leaf rust built based on the spectra with the disease indices greater than 0 acquired in the diseased period
of leaf rust in the second group of spectral features. Model 10 was the DI inversion SVR model of wheat stripe rust built based on the spectra with the disease
indices greater than 0 acquired in the diseased period of stripe rust in the third group of spectral features. And Model 11 was the DI inversion SVR model of
wheat leaf rust built based on the spectra with the disease indices greater than 0 acquired in the diseased period of leaf rust in the third group of spectral features.

rust and leaf rust built based on the spectra with the disease
indices greater than 0 acquired in the diseased period in the
third group of spectral features were recorded as Model 10
and Model 11, respectively. The optimal parameters C and y
for each SVR model and the inversion results were shown
in Table 4. As shown in Table 4, the inversion effects of all
SVR models were satisfactory. The values of R* and MSE of
the testing sets indicated that the inversion effects of the SVR
models of wheat leaf rust were better than that of the SVR
models of wheat stripe rust. This indicated that wheat canopy
hyperspectral data were more suitable for the DI inversion of
wheat leaf rust. This may be because the uredinia produced
by Prt distribute more evenly on wheat leaves than those
produced by Pst.

The results showed that the inversion effects of the SVR
models of wheat stripe rust or leaf rust were not greatly
improved after preprocessing the spectra data using WPA.
Considering the model should be as simple as possible in
practical application, it was suggested that monitoring wheat
stripe rust and leaf rust can be carried out by using the DI
inversion SVR models based on the first group of spectral
features.

4. Conclusions and Discussion

In this study, the canopy hyperspectral data of healthy wheat,
wheat in the incubation period of stripe rust, wheat in the
diseased period of stripe rust, wheat in the incubation period
of leaf rust, and wheat in the diseased period of leaf rust
were obtained. After preprocessing of the data, the disease
identification models and the DI inversion models were built
based on the three groups of spectral features, respectively. A
method based on hyperspectral remote sensing was provided
for identification and DI inversion of wheat stripe rust and
leaf rust. This study provided some basis for monitoring
wheat diseases using satellite remote sensing.

Model 2 based on the second group of spectral features
(wavelet packet decomposition coeflicients) was better than
Model 1 based on the first group of spectral features and
Model 3 based on the third group of spectral features. To

further improve the identification effect, when one spectrum
of wheat canopy is obtained, Model 3 can be firstly used
to determine whether the spectrum is obtained from the
wheat in the diseased period or not. If yes, Model 4 can
be used to identify wheat stripe rust or leaf rust. If not,
Model 5 can be used to determine whether wheat is healthy,
in the incubation period of stripe rust or in the incubation
period of leaf rust. It is difficult to identify healthy wheat,
wheat in the incubation period, and wheat in the diseased
period of two diseases using only one identification model.
An approach using the combination model was provided in
this study for solution of this difficulty. The study conducted
by Devadas et al. [22] showed that the rust infection caused by
Pst, Prt, and Pgt in individual wheat leaves could be identified
through the combination of two vegetation indices (ARI and
TCARI). Therefore, when monitoring and identification of a
variety of plant pests are performed by using remote sensing
technology, the combination of multiple models can be tried
once the purpose cannot be achieved using a single model.

The first group of spectral features used in this study
was in a full spectral range (325-1075nm). In practice, the
specific spectral ranges can be selected for modeling. When
the models were built based on the third group of spectral
features, all of the 25 feature parameters were used. To
reduce the calculation work, the feature parameters with high
correlation can be selected for identification and inversion of
the diseases.

The results demonstrated that disease indices of wheat
stripe rust and leaf rust can be evaluated based on canopy
hyperspectral data. The DI inversion SVR models of each
wheat disease built in this study could effectively estimate
the corresponding disease. In practice, the DI inversion SVR
models based on the first group of spectral features should be
preferred to estimate wheat stripe rust or wheat leaf rust.

When wheat leaves are infected with Pst or Prt, chloro-
phyll content in the leaves could be reduced and the changes
of cellular structure could be induced; in the later stage of
incubation period, chlorotic latent lesions would appear on
the leaves; and after incubation period, the uredinia would
appear on the leaves and the water content in the leaves would
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be affected [13, 20, 38, 39]. These changes caused by disease
infection could be detected by spectral features [5, 13]. In
this study, the canopy spectral reflectance of wheat infected
with Pst or Prt relatively increased compared with that of
healthy wheat in the spectral range 720-1075 nm. This may
be induced by the changes of chlorophyll content, cellular
structure, and water content. For wheat stripe rust and wheat
leaf rust, the shape and distribution of the uredinia on the
leaves are different in appearance, and the physiological and
biochemical effects on leaves may also be different. So these
differences may induce the difference between the canopy
spectral reflectance of wheat infected with Pst and that of
wheat infected with Prt. Further studies on the relationship
between the spectral changes and the physiological and bio-
chemical changes will be helpful for revealing the mechanism
of monitoring the two diseases based on hyperspectral data.

With the rapid development of science and technol-
ogy, hyperspectral remote sensing monitoring technology is
increasingly being applied to plant diseases and hyperspectral
remote sensing of a variety of plant pests is gradually being
concerned. However, many factors, such as leaf angle, soil,
background plants, and meteorological conditions, have great
influence on the canopy spectral data, and it is very likely
to change the relative spectral differences [7]. Therefore, it is
very important to find out a method to weaken or eliminate
this kind of effects in further studies.
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