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SUMMARY

Methods for the combined analysis of survival time and longitudinal biomarker data have been
developed in recent years, with most emphasis on modelling and estimation. This paper focuses on the use
of longitudinal marker trajectories as individual-level surrogates for survival. A score test for association
which requires only standard methods for implementation is derived for the initial identification of
candidate biomarkers. Methods for assessing efficacy of markers are discussed and a measure contrasting
conditional and marginal distibutions is proposed. An application using prothrombin index as biomarker
for survival of liver cirrhosis patients is included.
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1. INTRODUCTION

Interest in methods for the combined analysis of longitudinal and survival time data has developed
considerably in recent years (for example, De Stavola and Christensen, 1996; Hogan and Laird, 1997;
Wulfsohn and Tsiatis, 1997; Boscardin et al., 1998; Bycott and Taylor, 1998; Henderson et al., 2000).
These methods are appropriate when sequential measurements of a biomarker are made on each subject in
a clinical trial but the sequence can be terminated early either through death of the patient or withdrawal
from the trial for other reasons. Figure 1 summarizes the results of a typical illustration, a controlled trial
into prednisone treatment of liver cirrhosis patients reported by Andersen et al. (1993, p. 19) and others.
The upper plot shows smooth estimates of prothrombin index, a measure of liver function, and the lower
plot shows Kaplan–Meier survival curves. The estimates in the upper plot are based on mean values over
all patients still alive at each time point, which means that the observed trends may be due to the attrition
of high-risk patients rather than a general increase in mean prothrombin index with time since diagnosis.
Joint longitudinal and survival methods are needed to investigate the development of prothrombin index
over time and the relationship between prothrombin and survival.
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Fig. 1. Mean prothrombin index (upper plot) and patient survival (lower plot) for liver cirrhosis data.

One motivation for interest in joint modelling methods is the potential to exploit the longitudinal
marker as a surrogate for subsequent survival (Prentice, 1989; Satten and Logini, 1996; Tsiatis et al.,
1991) The recent literature on the use of markers as surrogate endpoints distinguishes two points of
view. Prentice (1989) defined surrogacy in terms of the equivalence of hypothesis tests for treatment
effects, using data on either the surrogate or the true endpoint. Buyse et al. (2000) refer to this as trial-
level surrogacy, and distinguish it from individual-level surrogacy. For the liver cirrhosis example for
instance, prothrombin index would be considered to be a useful trial-level surrogate if the average effect
of prednisone treatment on survival could be determined more quickly through the average effect on
prothrombin index. At the individual level prothrombin index would be a useful surrogate if the trajectory
of irregularly observed values available at any time for a single subject provides useful prognostic
information on subsequent survival of that person. Building on earlier work by Freedman et al. (1992)
and Buyse and Molenberghs (1998), Buyse et al. (2000) consider individual-level surrogates to be valid
if there is strong association between an individual subject’s values of the marker and the endpoint of
interest. Intuitively, one might well expect that a good trial-level surrogate would also turn out to be a
good individual-level surrogate, and vice versa, but clearly there is no logical reason why this must be so.
The resulting scope for controversy as to what constitutes a ‘good’ surrogate marker is well demonstrated
by Begg and Leung (2000) and the associated discussion by N. E. Day, S. W. Duffy and R. L. Prentice.
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In this paper, we focus on individual-level surrogacy for a survival endpoint. We begin by considering
the selection of marker variables. Sometimes a number of candidate biomarkers may be available (for
example, Einspahr et al., 1997) and the initial problem is to assess each for association with survival
time, so that those with most potential can be investigated further. However, joint modelling techniques
are invariably heavily computer intensive and therefore it would be useful to have a relatively quick and
simple screen for the initial identification of association, to indicate whether further joint analysis is likely
to add materially to the scientific interpretation of the data. For this purpose, we develop a score test for
association between survival time and biomarker values. The score test requires only separate analyses of
the two components, using standard techniques.

We then consider the efficacy of individual-level markers. From this point of view, an effective
surrogate is one for which the conditional residual lifetime distribution accounting for marker information
at an interim time is more strongly concentrated around the actual, but as-yet unobserved, survival time
than is the marginal residual lifetime distribution ignoring the marker data. In Section 4 we propose a
modification of an explained variation measure suggested by Schemper and Henderson (2000), which can
be used to measure predictive accuracy with and without the interim longitudinal marker information. In
Section 5 we employ the suggested measure in exploring the effectiveness of prothrombin as an individual-
level surrogate for liver cirrhosis survival and also investigate sensitivity to choice of both model and
interim time.

Our model, notation and assumptions are given in Section 2. In Section 3 we describe the score test for
association and in Section 4 discuss the use of longitudinal information at an interim time in estimating
probability of survival to some future time, including the proposed measure of variation explained by
the marker. The illustration using prothrombin index as a marker for survival of liver cirrhosis patients is
considered in detail in Section 5, including a comparison of joint modelling and estimation methods with
simpler techniques. Some final remarks in Section 6 close the paper.

2. MODEL AND NOTATION

We have survival time and longitudinal information for m subjects. Longitudinal measurements are
obtained intermittently and we allow the possibility of different numbers and timing of measurements for
different subjects. A Gaussian linear model is assumed for the response Yt at time t :

Yt = x1(t)
′β1 + W (t) + Zt , (1)

where x1(t) is a p1-vector of explanatory variables, W (t) is the value at time t of an unobserved zero-
mean Gaussian random process, and Zt denotes zero-mean Gaussian measurement error. Within-subject
correlation in responses arises through serial correlation in the W (t) process, the measurement errors
being assumed to be mutually independent.

Survival time is associated with the longitudinal response through the effect of the latent process W (t)
but is otherwise conditionally independent. A semiparametric proportional hazards model is assumed,
with intensity

λ(t) = H(t)α0(t) exp{x2(t)
′β2 + γ W (t)}. (2)

Here H(t) is a predictable 0–1 at-risk process, α0(t) is an unspecified baseline hazard, and x2(t) is
a p2-vector of observed explanatory variables. A generalization under which γ W (t) is replaced with a
second random process correlated with W (t) is possible (Henderson et al., 2000), but not considered
further in this paper. Noninformative right censoring of survival time is allowed as usual. We use generic
notation T , Y and W for survival time, longitudinal responses and latent process, respectively.
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A variety of estimation procedures are possible for this class of model, depending in part upon the
assumptions required for W (t), but including MCMC (Faucett and Thomas, 1996), EM (Wulfsohn and
Tsiatis, 1997), and a combined simplex/EM procedure (Henderson et al., 2000). We do not consider
estimation explicitly in this work.

3. A SCORE TEST FOR ASSOCIATION

This test is based on separate analyses of the two components Y and T under the null hypothesis H0 :
γ = 0. Under this assumption Y is simply multivariate Gaussian and T follows a standard proportional
hazards model.

With subscript i indexing subject, the score test statistic (Appendix A) is

U =
m∑

i=1

∫ τ

0
EW|Y {Wi (t)} dM̂i (t), (3)

where the expectation is with respect to the conditional distribution of the latent process given the observed
measurements, and

M̂i (t) = Ni (t) − �̂i (t) = Ni (t) −
∫ t

0
Hi (u) exp{x2i (u)′β̂2} d Â0(u)

is the estimated martingale process obtained from an analysis of the survival data. As usual, Ni is the
counting process for subject i and Â0 is the nonparametric estimator of the cumulative baseline hazard

Â0(u) =
∫ u

0

J (s)∑m
i=1 Hi (s) exp{x2i (s)′β̂2}

dN (s),

where N (s) = ∑
Ni (s) and J (s) = I

( ∑
Hi (s) > 0

)
. Since Â0 has jumps at event times only,

EW |Y {Wi (t)} is required for a finite number of values of t only. Note that the unconditional expectation of
each {Wi (t)} term is zero for all t and the power of the test derives from the information which Y provides
about W . Also, whilst (3) is a formal score test statistic, additionally it has a wider intuitive interpretation
as follows. The term EW |Y {Wi (t)} estimates the value of Wi (t); the term dM̂i (t) is the residual between
observed and expected event-intensities for subject i at time t . The test statistic is then the covariance,
integrated over time and summed over subjects, between these two empirical quantities.

The variance of U can be consistently estimated either by

V1 =
m∑

i=1

∫ τ

0
[EW |Y {Wi (t)}]2 d�̂i (t)

obtained from the martingale formulation, or more directly by

V2 =
m∑

i=1

[ ∫ τ

0
EW |Y {W 2

i (t)} d�i (t) −
∫ τ

0

∫ τ

0
covW |Y {Wi (t), Wi (s)} dMi (t) dMi (s)

]
.

In either case U/V 1/2 is asymptotically N (0, 1) under the usual regularity conditions. In small
samples an adjustment to the variance estimate to allow for the replacement of parameters with estimates
may be useful, as sketched in the appendix. All terms required for the calculation of U and both variance
estimates can be obtained from standard software packages.
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Table 1. Power of score test for W (t) model with random intercept
(variance σ 2

1 ) and stationary Gaussian process (variance σ 2
v and lag one

correlation ρ(1)). Overall lag one covariance is σ 2
1 + σ 2

v ρ(1). Longitu-
dinal and survival data are linked through the association parameter γ ,

with independence at γ = 0

σ 2
1 σ 2

v ρ(1) σ 2
1 + σ 2

v ρ(1) γ = 0 γ = 0.1 γ = 0.25 γ = 0.5
0.5 0.5 0.5 0.75 0.06 0.23 0.70 1.00

0.05 0.525 0.05 0.08 0.55 1.00

0.8 0.2 0.5 0.90 0.06 0.26 0.86 1.00
0.05 0.81 0.06 0.18 0.79 1.00

0.2 0.8 0.5 0.60 0.04 0.16 0.68 0.98
0.05 0.24 0.03 0.08 0.21 0.77

We have conducted several simulation studies to check the adequacy of the asymptotic approximations
to the null distribution of the proposed test, to compare the alternative variance estimators, and to give
some indication of power to detect association between Y and T . A small sample of simulation results is
shown in Table 1. For these we considered a single group of subjects with target measurement times 0, 1,
2 and 3 units. The longitudinal measurement process Y had mean response E[Y (t)] = 5+ t , measurement
error variance σ 2

z = 0.25 and latent process W (t) = U1 + V (t). Here U1 is an N (0, σ 2
1 ) random effect

and V (t) is a stationary Gaussian process with variance σ 2
v and correlation function ρ(s) = corr(V (t),

V (t + s)) = exp(−|s|/φ), independent of U1.
The variances of the random intercept, σ 2

1 , and of the stationary Gaussian process, σ 2
v , were chosen

to sum to one in the simulations, thus giving an N (0, 1) marginal distribution for the latent process W (t)
at all t . This helps in the interpretation of the scale parameter γ , which can be considered crudely as the
effect of an omitted standard normal covariate. Two values of φ were used, to give lag 1 correlation in the
V (t) process of either 0.5 or 0.05. The resulting covariance between successive response measurements,
σ 2

1 + σ 2
v ρ(1), is included in the tabulated results to aid interpretation.

Survival times were generated according to (2), using Weibull baseline survival with survivor function
S0(t) = exp(−0.1t2), and a single time-constant standard normal covariate for each subject with
associated regression coefficient β2 = 1. Censoring was taken at a maximum follow-up time τ = 5
only, leading to around 15–20% censored observations in the simulations reported here. In additional
simulations we found that varying τ over a range of values greater than the final measurement time had
relatively little effect.

Table 1 gives the estimated power for a nominal 5% test of H0 : γ = 0 for four true values of γ , based
in each case on 200 simulations with m = 250 subjects. Parameter values required for the calculation
of the test statistic were replaced with estimates obtained from separate analyses of the two components,
with a semiparametric approach for the survival times, not requiring knowledge of the Weibull baseline.
Results are given only for the martingale-based variance estimator V1 and with correction for parameter
estimation: results without correction or with the more complicated V2 were very similar.

Results in Table 1 and from other simulations show that: attained test sizes are close to nominal values
based on the asymptotic N (0, 1) distribution; power increases as γ moves away from zero, as expected;
for fixed γ , power also increases with the correlation between successive longitudinal measurements,
again as expected because the observed measurements from each subject then provide more information
on the unobserved value of W1 at event times; there was little difference between V1 and V2 as variance
estimators, and little effect of adjustment for parameter estimation. Since V1 and V2 perform similarly,
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the simpler V1 can be recommended, and on the evidence of our results the correction term does not seem
necessary. Further information on the simulation study is available on request to the corresponding author.

4. LONGITUDINAL MARKERS FOR SURVIVAL

4.1 Interim survival estimation

Now suppose a longitudinal marker has been identified and a joint model has been fitted to sample data.
In subsequent practice we may wish to use the model to make inferences about patient survival to some
future time τ2 given all information available at some earlier time τ1. Letting Y01 denote all longitudinal
measurements obtained on the subject over the interval [0, τ1], we assume there is interest in

S(τ2 | τ1, Y01) = P(T > τ2 | T > τ1, Y01).

Evaluation of the conditional probability of surviving to τ2 involves taking expectations with
respect to the unobserved latent process W (t). Strictly, this is a continuous-time process but under the
semiparametric approach the estimated baseline hazard is zero except at observed event times, and for
this reason the expectation only involves the values of W (t) at a finite number of time points, namely
the measurement times and the event times. Let W01 and W02 denote the corresponding vectors of
values of W (t) at measurement or event times within the intervals [0, τ1] and [0, τ2], respectively. Using
f (·) to denote density and exploiting the conditional independence of survival time and longitudinal
measurements given the latent process, we then have

S(τ2 | τ1, Y01) =
∫

P(T > τ2|T > τ1, W02) f (W02|T > τ1, Y01) dW02

=
∫

P(T > τ2|T > τ1, W02)P(T > τ1|W02) f (W02|Y01) dW02

P(T > τ1|Y01)

=
∫

P(T > τ2|W02) f (Y01|W02) f (W02) dW02∫
P(T > τ1|W02) f (Y01|W02) f (W02) dW02

=
∫

P(T > τ2|W02) f (Y01|W01) f (W02) dW02∫
P(T > τ1|W01) f (Y01|W01) f (W01) dW01

. (4)

We will be interested in comparing this conditional probability with the corresponding marginal value
ignoring any information in Y01:

S(τ2 | τ1) =
∫

P(T > τ2|W02) f (W02) dW02∫
P(T > τ1|W01) f (W01) dW01

. (5)

The term f (Y01|W01) in the integrands in (4) is a weighting which reflects the relevant information in
Y01. At one extreme there may be so much measurement error in the longitudinal data that Y01 provides no
information about the latent process. In that case f (Y01|W01) is constant for all W01 and (4) reduces to (5).
At the other extreme, if it is possible to completely determine the true value, W 0

02 say, of W02 from Y01,
then f (Y01|W01) f (W02) and f (Y01|W01) f (W01) are zero except at W02 = W 0

02. Then we have maximum
information from Y01 and

S(τ2 | τ1, Y01) = S(τ2 | τ1, W 0
02). (6)

In practice (4) will be intermediate between (5) and (6).
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4.2 Measuring marker effectiveness

To judge the effectiveness of the marker in helping predict survival to the endpoint τ2, we need a way of
comparing each of (4) and (5) with the actual survival time. We propose a modification of a measure of
explained variation for semiparametric survival models suggested by Schemper and Henderson (2000).
This is based on mean absolute deviation between observed and estimated survival status and can be
adjusted to either a single time τ2 or an interval [τ1, τ2].

Define S0
i (t) to be the value at time t of the observed survivor process for individual i , which takes the

value one if the individual was known to be alive at t , zero if the individual died before t , and is undefined
if the survival time for the individual was censored before t . Then, if the marker is effective we would
expect to find, on average, relatively small absolute deviations between S0

i (τ2) and the corresponding
estimates Si (τ2 | τ1, Y01,i ) from (4), where the subscript i identifies an individual subject. Estimation is
complicated when there is censoring, as simply deleting cases with undefined S0

i (τ2) would lead to bias in
the observed mean absolute deviation as an estimator of the underlying population quantity. However, a
slight adjustment of the estimator of Schemper and Henderson (2000), so as to condition on prior survival
to τ1, leads to the unbiased estimator

MY (τ1, τ2) = 1

r(τ1)

∑
i :ti �τ1

[I (ti � τ2)(1 − Si (τ2 | τ1, Y01,i )) + δi I (ti < τ2)Si (τ2 | τ1, Y01,i )

+ (1 − δi )I (ti < τ2){(1 − Si (τ2 | τ1, Y01,i ))Si (τ2 | ti , Y01,i )

+ Si (τ2 | τ1, Y01,i )(1 − Si (τ2 | ti , Y01,i )}], (7)

where r(τ1) is the number of subjects at risk at τ1 and δi is an indicator of censoring (δi = 0) or observed
failure (δi = 1). The first term in the expression for MY (τ1, τ2) is the contribution of those known still to
be alive at t (S0

i (τ2) = 1) and the second is the contribution of those known to have died (S0
i (τ2) = 0).

Patients with censored follow-up before τ2 are allocated to S0
i (τ2) = 1 or S0

i (τ2) = 0 in accordance with
the respective conditional probabilities, leading to the final two terms.

A second estimator M(τ1, τ2) can be defined in a similar way to MY (τ1, τ2) to measure predictive
accuracy without knowledge of Y01, by using in (7) the marginal values (5) in place of the conditional
probabilities (4). A comparison between MY (τ1, τ2) and M(τ1, τ2) measures the improvement in
predictive accuracy obtained through marker information; for example, we might use a relative measure,

RM (τ1, τ2) = 1 − MY (τ1, τ2)/M(τ1, τ2).

In principle, variance estimates for the statistics M(τ1, τ2) and MY (τ1, τ2) can be obtained and used
for formal inference. We have not attempted this as our intention is that they should be used and interpreted
as informal summary measures, rather like the familiar R2 from linear regression.

Instead of measuring mean absolute deviation at a single time τ2, we may prefer to form an average
over an interval [τ1, τ2]. Schemper and Henderson (2000) suggest an integration of the absolute deviation
between observed survivor processes and estimated survivor curves, with weights in proportion to failure
density. Their statistic can be again adapted to provide an unbiased estimator,

DY (τ1, τ2) =
∑

i :τ1�ti �τ2
δi {Ĝ(τ1)/Ĝ(ti )}MY (τ1, ti )∑

i :τ1�ti �τ2
δi {Ĝ(τ1)/Ĝ(ti )}

.

Here Ĝ(·) is the Kaplan–Meier estimator of the censoring time distribution, which is used to
compensate for the loss of censored cases. Again, a similar estimator D(τ1, τ2) can be defined to measure
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predictive accuracy without Y01, by replacing MY (·, ·) with M(·, ·). These values may be used directly or
to construct a relative measure

RD(τ1, τ2) = 1 − DY (τ1, τ2)/D(τ1, τ2).

All measures are invariant to monotonic transformations of the time scale and are consistent under
random censoring of the underlying population quantities. See Schemper and Henderson (2000) for further
information.

Choice of fixed point (M) or interval (D) measures will be application-specific. Sometimes there may
be a clinically recognized fixed survival time, such as one-year graft survival being used as a measure
of the effectiveness of a renal transplant, in which case M-measures should be used. On the other hand,
the D-measures present a more complete summary rather than a snapshot and can also be defined for
complete follow-up by letting τ2 increase indefinitely.

Finally, two cautionary notes are worth mentioning, whichever method of measuring marker effec-
tiveness is selected. Firstly, explained variation measures in survival tend to be low, particularly under
proportional hazards models, even when there are strong covariate/marker effects. Secondly, having
conditional measures MY and DY close to their marginal counterparts M and D indicates that there is
little to be gained on average from knowledge of Y , but this can mask the potential for quite useful
information on individual subjects with relatively extreme longitudinal trajectories, as is illustrated in the
following section.

5. APPLICATION TO LIVER CIRRHOSIS TRIAL

5.1 Modelling

We consider the liver cirrhosis trial introduced in Section 1 and previously described by Andersen et al.
(1993, p. 19) and others. Data are available for m = 488 patients, randomly allocated at diagnosis to
prednisone (251) or placebo (237) and followed until death or end of study, some 12 years after the first
patients were recruited. A number of variables were recorded at entry and throughout the study, though
here we concentrate on just two: treatment and repeated prothrombin index measurements. The latter,
which might be considered as a marker for disease progression, forms our longitudinal component Y .
Measurements were obtained at entry and then scheduled for 3, 6, 12 months and annually thereafter,
though the achieved times and numbers varied considerably between patients, with up to 17 values for
some.

The upper plot of Figure 1 shows smooth estimates of mean prothrombin index for surviving patients
in each of the groups, truncated at 8 years follow-up since after that time relatively few patients remained
at risk and prothrombin data are sparse. Smoothing is necessary because measurement times differed
between patients. The smooth profiles mask considerable variability between patients: four illustrative
cases will be presented later. In both groups there is an increase in average prothrombin over time from
means around 70 (‘abnormal’, Andersen et al. (1993, p. 33)) at entry to close to the ‘normal’ 100 after
8 years follow-up. There is an initial steep increase between baseline and 3 month measurement for the
prednisone treated group, which is not the case in the placebo group. This and the later continued increase
may in part be a consequence of diagnosis and subsequent entry into the study often being made following
hospitalization due to exacerbation of symptoms (Christensen et al., 1986). However, mean profiles based
on all patients at risk may be misleading because death of high-risk patients with lower prothrombin values
would also lead to an apparent increase over time in mean prothrombin level amongst patients still alive.
The survivor curves in the lower plot of Figure 1 indicate that only some 30% of patients survive 8 years
from entry, with slightly better prognosis for prednisone-treated patients than for those given placebo only.
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We assume the overall model of Section 2 and consider three different submodels for the latent process
W (t):

A: W (t) = U1 U1 ∼ N (0, σ 2
1 )

B: W (t) = U1 + U2 × t U1 ∼ N (0, σ 2
1 ), U2 ∼ N (0, σ 2

2 ),
Corr(U1, U2) = ρ

C: W (t) = U1 + V (t) U1 ∼ N (0, σ 2
1 ), V (t) ∼ N (0, σ 2

v ),
Corr(V (t), V (t + s)) = exp(−|s|/φ).

The mean prothrombin response Y is assumed to be linear in time, with separate slope and intercept
for each group. To describe the sharp increase in the prednisone group in mean response between time
zero and the first measurement time we include an indicator variable for measurements at time zero. For
the survival component we assume a proportional hazards model with a time-constant treatment effect.

We first analysed the survival and prothrombin data separately, leading to maximized log likelihoods.

Prothrombin Survival Combined

A −13 300.655 −1829.509 −15 130.164
B −13 231.718 −1829.509 −15 061.227
C −13 213.531 −1829.509 −15 043.040

Standardized score statistics U/V 1/2 using the martingale variance formulation are −9.07, −10.23
and −8.01 for models A, B and C respectively, providing very strong evidence of association between
survival time T and prothrombin index Y . With the interpretation of the score statistic as a covariance
between the latent process and the martingale residuals between observed and expected numbers of events,
the negative signs indicate that high prothrombin is associated with long-term survival (fewer events than
expected).

Parameter estimates, standard errors and maximized log likelihoods obtained under joint analyses are
given in Table 2. We used the method described by Henderson et al. (2000) for fitting all models, with
standard errors obtained by Monte Carlo methods based on re-estimation from simulated data. For each
of models A, B and C there is strong evidence of association between Y and T , with large increases in
log likelihood in comparison with the values obtained under separate analyses, and negative estimates of
γ confirming that high prothromobin levels are associated with reduced risk.

To assess model adequacy we compared the observed data with simulations generated under the fitted
models. Details are omitted except to report that although the log-likelihood values strongly favour models
B and C over model A, all three models gave good agreement between observed and simulated mean
prothrombin profiles for patients still at risk, and between observed and simulated Kaplan–Meier survival
plots, for each treatment group. However, there was a bigger difference between models with respect
to estimated underlying prothrombin profiles for hypothetical dropout-free populations (Figure 2). As
expected, these all fall below the observed profiles as time increases, because of the loss of the observed
data from high-risk patients with low prothrombin levels. Note, however, the more pronounced difference
between observed and underlying dropout-free means under model B than under the other models. This
type of pattern was also seen for the schizophrenia data analysed by Henderson et al. (2000), where
there was also a particularly large difference between observed and estimated underlying profiles when a
random slope term was allowed in the latent process model. Sensitivity to modelling assumptions when
the data are incomplete is a topic which requires further research beyond the scope of this paper.
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Table 2. Liver cirrhosis trial results for three different W (t) models: random intercept (A);
random intercept and random slope (B); and random intercept and stationary Gaussian

process (C)

A : W (t) = U1 B : W (t) = U1 + U2t C : W (t) = U1 + V (t)
Est SE Est SE Est SE

Prothrombin β1
Constant 69.813 1.391 72.111 1.442 69.282 0.453
Treatment, P 10.806 2.024 11.425 2.111 11.944 0.607
Time, t 1.714 0.224 −0.463 0.521 1.156 0.193
P × t −1.073 0.344 −0.758 0.710 −0.890 0.155
Time = 0, B −0.265 1.442 −2.011 1.423 −0.629 0.995
P × B −11.214 1.954 −11.225 2.112 −12.313 1.430

Survival β2
Treatment −0.037 0.153 −0.075 0.146 −0.185 0.099

Latent association
γ −0.037 0.004 −0.045 0.004 −0.025 0.001

Random effects
σ 2

1 383.259 29.471 335.729 27.335 280.237 37.905
σ 2

2 20.686 2.541
ρ 0.066 0.097
σ 2
v 237.128 29.267

φ 1.915 0.517

Noise
σ 2

z 334.629 8.872 289.388 9.242 210.105 19.679

Log likelihoods
Prothrombin −13302.174 −13240.952 −13223.483
Survival −1777.879 −1751.225 −1760.576
Combined −15080.053 −14992.177 −14984.059

5.2 Prothrombin as marker for survival

Having fitted an adequate joint model and shown strong association between prothrombin and survival,
we now investigate the use of prothrombin information as a marker for survival. For illustrative purposes
we assume the interim time τ1 is 3 years and the endpoint τ2 is either 4.5 or 6 years. To be clinically useful
τ1 should not be too close to τ2, but on the other hand should be large enough to allow accrual of marker
information.

Table 3 gives the actual and relative estimated mean absolute deviations between true survival status
and estimated survival probabilities at the endpoint τ2 and averaged over the interval [τ1, τ2], for each of
the latent association models A, B and C. Also shown are the corresponding values using two versions
of a simpler approach whereby the prothrombin measurement is used as a time-dependent covariate in
a straightforward proportional hazards model for the data. For model D we used as covariate at time t
the mean value of all prothrombin measurements obtained up to that time, and for model E we used only
the most recent measurement. In both cases there was a highly significant effect of the covariate, with
regression coefficients (and standard errors) −0.032(0.003) and −0.035(0.003): high prothrombin index
is associated with low hazard, as expected.

Table 3 shows that the five models lead to similar values for all of the summary measures considered
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Fig. 2. Observed (bold) and hypothetical dropout-free means (fine) for placebo (solid) and prednisone (broken)
groups.

and that, as expected, prediction to the nearer horizon 4.5 is more accurate than to the further horizon 6.
Whilst knowledge of the longitudinal data Y01 does lead to improved prediction accuracy, because each
value of MY (·, ·) is smaller than the corresponding value of M(·, ·), in relative terms the improvements
are modest. Despite a highly statistically significant association between prothrombin and survival, there
seems to be little prognostic capability in knowledge of the prothrombin trajectory for the majority of
patients. This is a common feature of proportional hazards survival models (Schemper and Henderson,
2000).

The similarity of the mean absolute deviations masks some quite large differences between the results
from different models for individual patients and the potential for prothrombin to be a useful marker for
patients with the more extreme values. Figure 3 illustrates this by comparing S(τ2|τ1, Y01) at τ1 = 3 and
τ2 = 6 for the five different models, with model A taken as reference. There can be some substantial
differences between estimates under models A and B, with quite large scatter about the 1 : 1 line.
There is less scatter when model C is compared with model A, though estimates under the former are
attentuated towards the marginal estimate, ignoring the information in the longitudinal data. This reflects
the acceptance under model C of further unpredictable variation in W (t) over [τ1, τ2] no matter how much
information is obtained up to τ1, because of the effect of the stationary component V (t) in the model for
W (t). Model D, which uses the mean prothrombin value obtained to date as a time-dependent covariate
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Table 3. Measures of marker effectiveness for liver cirrhosis
data. Estimation at τ1 = 3 years and prognosis to τ2 = 4.5 or
6 years. Values M and MY estimate mean absolute deviation
at endpoint τ2 between observed and fitted survival, values D
and DY average over (τ1, τ2). Relative measures are RM =
1 − M/MY and RD = 1 − D/DY . Models A–E are described

in the text

Conditional on T > τ1 and Y01
MY (3, 4.5) MY (3, 6) DY (3, 4.5) DY (3, 6)

A 0.271 0.384 0.090 0.226
B 0.272 0.380 0.091 0.226
C 0.265 0.393 0.085 0.222
D 0.274 0.386 0.092 0.229
E 0.263 0.366 0.087 0.218

Conditional on T > τ1
M(3, 4.5) M(3, 6) D(3, 4.5) D(3, 6)

A 0.289 0.423 0.094 0.241
B 0.297 0.434 0.096 0.247
C 0.289 0.430 0.093 0.241

Relative values
RM (3, 4.5) RM (3, 6) RD(3, 4.5) RD(3, 6)

A 0.061 0.093 0.041 0.061
B 0.085 0.125 0.058 0.084
C 0.082 0.086 0.080 0.081

in a proportional hazards model, gives results which are very similar to the random intercept model A, as
expected. In contrast, there can be very large differences between model A and model E, which uses only
the most recent prothrombin value as a covariate.

With intermittently observed markers, the results can be sensitive to the choice of the interim analysis
time τ1, as the estimated survival probabilty to an endpoint τ2 changes in response to new marker data.
To illustate this, we now fix τ2 at 6 years and let τ1 increase from 0 to 3 years. Figures 4 and 5 show
how the estimated conditional probability of surviving to the 6 year endpoint develops as τ1 increases,
for four individuals selected to illustrate the types of patterns which can occur. For reference, estimates
in Figure 3 for these four people are marked with circles labelled 1–4. Figure 4 shows values under
model C, which is the best-fitting model overall as judged by the likelihood criterion, with and without
using prothrombin information, and under model B with the use of prothrombin information. Figure 5
again shows the marginal estimates under model C ignoring prothrombin, which acts as a reference, but
includes also estimates under the two proportional hazards models, D and E. Results for model A are very
close to those for model C and are not presented. It is clear that there can be high sensitivity to changes
in marker values, especially for low τ1. For most models, this sensitivity decreases as more values are
recorded and some stability is achieved. An exception is the Cox model using only the most recent value
of Y as covariate, where necessarily the sensitivity is both high and maintained over time no matter how
many previous measurements are available.
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Fig. 3. Comparison of survival probabilities to τ2 = 6 years made at τ1 = 3 years, for five different models. In each
plot the horizontal axis shows the subject-specific estimate of surviving to six years made under model A and given
all information available at three years. The vertical axes show the corresponding estimates under each of the other
models.
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Fig. 4. Four case illustrations of the development of S(τ2|τ1). The upper part of each plot shows prothrombin value
against time recorded. The lower part shows how the estimated conditional probability of surviving to time τ2 =
6 years changes as information is accrued over the first three years: model C, ignoring Y01 (fine solid curve); model C
using Y01 (bold solid curve); model B using Y01 (broken curve).

6. DISCUSSION

In this work we have concentrated on the initial screening of biomarkers for survival and the
subsequent use of marker information in attempting to improve survival probability estimates for
individual patients. In the terminology of Buyse et al. (2000), this implies a concern for individual-
level surrogacy, rather than for trial-level surrogacy. Within this context, the score test for association
could be used for interim analysis, to help decide whether continued monitoring of large numbers of
potential surrogate markers is worthwhile. The predictive calculations of survival probabilities conditional
on observed values to date of a selected marker are a potential contribution to prognosis for individual
patients. In this respect, one conclusion is that prognosis should somehow integrate the information
available over time for the patient in question, to avoid over-sensitivity to single atypical measurements.
A second conclusion is that different models which fit average characteristics equally well may differ
substantially in their predictions for individual patients. This is perhaps not surprising.

The area of joint modelling of longitudinal measurements and survival outcomes is closely related to
the problem of dealing with potentially informative dropout in longitudinal studies, where the consensus
is that conclusions can be sensitive to modelling assumptions which are difficult, or even impossible, to
validate from the available data. See, for example, Scharfstein et al. (1999) and the associated discussion.
In this respect, our experience has been that the widely used random intercept and slope model for
longitudinal data introduced by Laird and Ware (1982) is particularly fragile when applied to data
consisting of relatively long sequences but with a relatively high dropout rate.
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Fig. 5. As previous figure. Lower plots from: model C ignoring Y01 (fine solid curve); Cox with mean Y01 as covariate
(bold solid curve); Cox with most recent Y as covariate (broken curve).
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APPENDIX: SCORE TEST FOR ASSOCIATION

Let the combined vector of unknown parameters be (θ, γ, β2, A0), where θ includes all parameters
determining the distribution of Y . Let the maximum follow-up time be τ . Assume temporarily that β2 and
A0(t) are known and that A0 is continuous. If W is known we can write the conditional likelihood of the
event history data as

Lγ =
(∏

t

∏
i

(ex2i (t)′β2+γ Wi (t) dA0(t))
�Ni (t)

)
exp

{
−

∫ τ

0
S(0)
γ (t, W,β2) dA0(t)

}
,

where

S(0)
γ (t, W,β2) =

m∑
i=1

Hi (t) ex2i (t)′β2+γ Wi (t).
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Let

Uγ (τ ) =
m∑

i=1

{ ∫ τ

0
Wi (t) dNi (t) −

∫ τ

0
Wi (t)Hi (t) ex2i (t)′β2+γ Wi (t) dA0(t)

}

and note that

∂Lγ

∂γ
= Uγ (τ )Lγ .

With l1(θ, Y ) denoting the marginal likelihood of the longitudinal measurements, the overall log
likelihood is

l = l1(θ, Y ) + log EW |Y [Lγ ]
which has derivative with respect to γ

∂l

∂γ
= EW |Y [Uγ (τ )Lγ ]

EW |Y [Lγ ] .

Hence the score statistic is

U (τ ) = EW |Y [U0(τ )]

= EW |Y

[
m∑

i=1

{∫ τ

0
Wi (t) dNi (t) −

∫ τ

0
Wi (t)Hi (t) ex2i (t)′β2 dA0(t)

}]

=
m∑

i=1

∫ τ

0
EW |Y [Wi (t)] dMi (t)

where

Mi (t) = Ni (t) − �i (t) = Ni (t) −
∫ t

0
Hi (u) ex2i (u)′β2 dA0(u)

is the usual counting process martingale.
Now consider U (τ ) to be a particular value of a process {U (s) : s > 0}. Since W is predictable it

follows that U (s) is itself a martingale process with predictable variation

V1(s) =
m∑

i=1

∫ s

0
EW |Y [Wi (t)]2 d�i (t).

With independence between subjects and under mild conditions, the martingale central limit theorem
implies U (τ )/

√
V1(τ ) is asymptotically N (0, 1) under H0 as m → ∞ (Andersen et al., 1993, p. 83).

Alternatively, regular likelihood theory can be used to provide an information-based variance for the
score statistic:

V2(τ ) =
m∑

i=1

{ ∫ τ

0
EW |Y [W 2

i (t)] d�i (t) −
∫ τ

0

∫ τ

0
CovW |Y (Wi (t), Wi (s)) dMi (t) dMi (s)

}
.

Again the limiting distribution of U (τ )/
√

V2(τ ) is N (0, 1) under mild conditions.
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In practice, we replace the unknown β2 by the usual maximum partial likelihood estimator β̂2 and
A0(t) by the non-parametric maximum likelihood estimator (under H0)

Â0(t) =
∫ t

0

J (u)∑m
i=1 Hi (u) ex2i (u)′β̂2

dN (u)

where N (u) = ∑
Ni (u) and J (u) = I

( ∑
Hi (u) > 0

)
. Thus the expectations need only be determined

at event times.
Some compensation may be required when sample size is small to allow for the effect of using

estimated values. In practice, the effect of estimating θ is likely to be small (as it is obtained from the
measurement data only) but estimation of β2 may inflate the variance estimate and lead to a conservative
test. For example, Crowder and Kimber (1997) show this to be a severe problem in a parametric test for
frailty. In the semiparametric case a variance estimate corrected for uncertainty in β2 is of the form

Vc = V − J ′ I (β2)
−1 J

where I (β2) is the information matrix obtained from the partial likelihood and J = E[∂U/∂β2]
(Commenges and Andersen, 1995). In practice the observed value of ∂U/∂β2 can be used in place of J .
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