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1 Introduction

In this paper, we study the identification and efficient sieve estimation of a dynamic discrete

game. We provide a general nonparametric identification result under the imposition of an

exclusion restrictions on agents payoffs and analyze large sample statistical properties of

nonparametric and semiparametric estimators for the econometric dynamic game model.

We also show how to achieve semiparametric efficiency of dynamic discrete choice models

using a sieve based conditional moment framework of Ai and Chen (2003). Numerical

simulations are used to demonstrate the finite sample properties of the dynamic game

estimators.

A dynamic discrete game is a generalization of a dynamic discrete choice model as in

Rust (1987), Hotz and Miller (1993). As in these earlier papers, agents in the model are

assumed to solve a dynamic programming problem. Payoffs in each time period depend

on the agent’s actions, the state variables and random preference shocks. Given current

choices, the state variables evolve according to a law of motion which can depend on an

agent’s actions. A dynamic game generalizes this single agent model to allow the payoffs

of one agent to depend on the actions of other agents. Dynamic game models are appli-

cable in many areas such as industrial organization dynamic oligopoly with collusions, e.g.

Fershtman and Pakes (2009). Recently, a number of papers have proposed methods to

estimate dynamic games including Aguirregabiria and Mira (2002, 2007), Berry, Pakes, and

Ostrovsky (2003), Pesendorfer and Schmidt-Dengler (2010), Bajari, Benkard, and Levin

(2007) and Jenkins, Liu, McFadden, and Matzkin (2004).

Our identification framework for dynamic discrete games builds on an extensive recent

literature including Aguirregabiria and Mira (2007), Berry, Pakes, and Ostrovsky (2003),

Pesendorfer and Schmidt-Dengler (2010). In particular, the important contribution by

Magnac and Thesmar (2002) developed a recoverability technique for a single agent dynamic

model that also provides a much credited building block to identify closely related dynamic

discrete games. Our framework builds directly on this profound literature and makes use

of a recoverability method that follows directly from the single agent model analyzed in

Magnac and Thesmar (2002). We generalizes in that we allow the state variables to be either

discrete or continuous. This is attractive for empirical work since in many applications state
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variables are naturally modeled as continuous. The model is nonparametrically identified

if the researcher is willing to make exclusion restrictions, that is, not all state variables

can enter the payoffs of all agents. Such restrictions are commonly imposed in empirical

research. For example, cost and demand shifters for one firm are frequently excluded

from the payoffs of other firms. These include the distance to its distribution center in

retail store entry models (Jia (2008) and Holmes (2011)), and the distance of a firm to the

project location in highway procurements (Somaini (2011)).

Second, we analyze semiparametric and non-parametric estimation procedures. In a

semiparametric model, imposing parametric functional form on the static payoff also allows

for possible cross equation restrictions between players that can differentiate the current

setup from most existing models. We begin with the analysis of a semiparametric setup,

where we only use non-parametric identification assumptions and parameterize the iden-

tifiable payoffs of the players without additional restrictions on the state transition law.

We find the semiparametric efficiency bound for the payoff parameters, which is the min-

imum variance of the parameter estimates without parametric assumptions regarding the

state transition. Moreover, we show that obtaining the semiparametrically efficient esti-

mates does not require solving for equilibria of the game and computing the corresponding

likelihood function. We demonstrate that the treatment of the player’s decision problem

as a moment equation, generated by her first-order condition allows use to estimate the

payoff parameters in one step. We also show that the estimation procedure that allows one

to achieve the semiparametric efficiency bound belongs to our class of one-step estimation

methods. This is a new approach to the analysis of dynamic games and it generalizes the

existing two-step estimation techniques such as those proposed by Aguirregabiria and Mira

(2007), Berry, Pakes, and Ostrovsky (2003) and Pesendorfer and Schmidt-Dengler (2010).

An additional advantage of our approach is that it does not rely on the discreteness of

the state space which is in particular achieved by using an estimation approach that does

not need preliminary estimation of the continuation values of the players. In applied work,

many researchers choose to discretize a continuous state variable. Increasing the number of

grid points in a two step estimator reduces the bias of the first stage. However, this comes at

the cost of increasing the variance of the first stage estimates. In fact, when there are d = 4
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or more continuous state variables, it can be shown that it is not possible to obtain through

discretization
√
T consistent and asymptotically normal parameter estimates in the second

stage, where T is the sample size.2. Therefore, discretizing the state space does not provide

a solution to continuous state variables. The estimation approach of Bajari, Benkard, and

Levin (2007) allows for continuous state variables. However, it requires a parametric first

stage and the resulting estimates will be biased if the first stage is misspecified.

Third, we find that the reduction of the estimation procedure to one stage allows us to

estimate payoffs of players fully non-parametrically. The structure of the non-parametric

estimator is based on the player’s first-order condition similarly to the semiparametric case.

The estimates of the payoff function have a slower than parametric convergence rate. This

rate depends on the smoothness of the distribution of the state transition as well as on the

support condition on the policy functions of the players. We analyze the non-parametric

estimator from the perspective of the mean-square optimality and offer a choice of trimming

for the sieve representation of the payoff functions as well as the value functions that provides

the procedure with the minimum mean squared error while converging at an optimal non-

parametric rate. For the non-parametric estimator we develop a unified large sample theory

that nests both continuous and discrete state variables as special cases.

Furthermore, the one step semiparametric conditional moment estimator proposed in

this paper does not require one to determine numerically the value functions as they are

nonparametrically estimated within the conditional moment formulation. This constitutes a

considerable advantage over an identification based estimator and other existing multi-step

estimation procedure for dynamic discrete choice models.

Section 2 discusses identification in a static discrete game model. Section 3 extends

the identification analysis to a dynamic game. Section 3.7 develops nonparametric and

semiparametric estimation methods which follow the lines of the identification conditions to

construct estimates for the payoffs based on the non-parametric estimates of the conditional

choice probabilities. Section 4 demonstrates how the multi-stage estimation strategy can

be improved by representing the decision problem of a player in a dynamic game as a

2To see this follow the arguments in Newey and McFadden (1994). A requirement for the second stage

parameter estimates to be
√
T consistent is that both the bias

√
Th2 and the variance 1/(Thd) should

converge to 0 as T → ∞. This is not possible when d > 4.
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conditional moment equation. Moreover, it demonstrates how to obtain the estimates for the

payoff parameters with the minimum variance over the class of models without parametric

assumptions regarding the choice probabilities. It also derives the asymptotic distribution

for the estimates of the payoff parameters. Section 4.3 briefly describes nonparametric

estimation and section 5 demonstrates the finite sample properties of the estimators in a

monte carlo simulation. Section 7 concludes.

2 Nonparametric identification of static games

We begin by describing the model for the case of static games. This serves two purposes.

First, this will allow us to discuss our modeling assumptions in a simpler setting. Second,

we prove the identification for the static model. This will highlight some key ideas in our

identification of the full dynamic model and also will be used as a step in the identification

of the more general dynamic model.

In the model, there are a finite number of players i = 1, ..., n. Each player simultaneously

chooses an action ai ∈ {0, 1, . . . ,K} out of a finite set. We assume that the set of actions

are identical across players. This assumption is for notational convenience only and could

easily be relaxed. Let A = {0, 1, . . . ,K}n denote the set of possible actions for all players

and a = (a1, ..., an) denote a generic element of A. Also, let a−i = (a1, ...ai−1, ai+1, ..., an)

denote a vector of strategies for all players excluding i. The vector si ∈ Si denotes the

state variable for player i. The set Si can be discrete, continuous or both. Also, define

S = ΠiSi and let s = (s1, ..., sn) ∈ S denote a vector of state variables for all n players.

We assume that s is common knowledge to all players in the game and is observable to the

econometrician.

For each agent, there are K + 1 private shocks ǫi(ai) indexed by the actions ai. Let

εi = (εi(0), ..., εi(K)) have a density f (ǫi) and assume that the shocks ǫi are i.i.d across

agents and actions ai. We shall assume that ǫi(ai) is distributed extreme value.

Assumption 1 The error terms ǫi(ai) are distributed i.i.d. across actions and agents.

Furthermore, the error term has an extreme value distribution with density

f (ǫi) = exp(− (ǫi + γ̄)) exp(− exp(− (ǫi + γ̄))).
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In the above γ̄ is the Euler’s constant, γ̄ ≈ 0.577. This location shift ensures that the error

terms have mean zero.

We could easily weaken this assumption. However, it is commonly used in the applied

literature and will allow us to write a number of formulas in closed form which will simplify

our study of identification. The vNM utility function for player i is:

ui(a, s, ǫi) = Πi(ai, a−i, s) + ǫi(ai).

In the above, Πi(ai, a−i, s) is a scalar which depends on i’s own actions, the actions of all

other agents a−i and the entire vector of state variables s. We assume that the iid preference

shocks ǫi(ai) are private information for player i. The assumption that the error term ǫi(ai)

is private information is not universal in the literature. For example, Bresnahan and Reiss

(1991) assume that the error terms are common knowledge. However, this model requires

quite different econometric methods which account for the presence of multiple equilibrium

and the possibility of mixed strategies.

A strategy for agent i is a function ai = δi (s, ǫi) which maps the state s and agent i’s

private information ǫi to an action ai. Note that agent i’s strategy does not depend on ǫ−i

since this is assumed to be private information to the other agents in the game. Define

σi(ai = k|s) =
∫

1 {δi(s, ǫi) = k} f(ǫi)dǫi.

This is the probability that agent i will play strategy k after we margin out ǫi.

In equilibrium, player i’s belief is that j will play strategy k with probability σj(aj =

k|s). Therefore, i’s expected utility from choosing the strategy ai is
∑

a−i
Πi(ai, a−i, s)σ−i(a−i|s)+

ǫi(ai).

Moving forward, it will be useful to define the choice specific value function as

Πi(ai, s) =
∑

a−i

Πi(ai, a−i, s)σ−i(a−i|s). (1)

Note that we can write the expected utility from choosing ai as

Πi(ai, s) + ǫi(ai). (2)
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Recall that the error terms are distributed extreme value. Standard results about the

logit model plus the definition of the choice specific value function imply that

σi(ai|s) =
exp(Πi(ai, s))∑

a′i∈Ai
exp(Πi(a′i, s))

.

Definition 1 Fix the state s. A Bayes-Nash equilibrium is a collection of probabilities,

σ∗i (ai = k|s) for i = 1, ..., n and k = 0, ...,K such that for all i and all k

σ∗i (ai|s) =
exp(Πi(ai, s))∑

a′i∈Ai
exp(Πi(a′i, s))

and

Πi(ai, s) =
∑

a−i

Πi(ai, a−i, s)σ
∗
−i(a−i|s).

An equilibrium requires the actions of all players to be a best response to the actions of all

other players. Moving forward, it is convenient to define an equilibrium in terms of σi(ai|s)
instead of δi (s, ǫi).

2.1 Identification of the static model

An important question is whether it is possible for us to identify the parameters of our

model. One approach to identification is to impose parametric restrictions on Πi(a, s).

In what follows, we allow Πi(a, s) to be a general function of s and do not specify the

payoffs Πi(ai, s) parametrically. We identify Πi(ai, a−i, si) nonparametrically by imposing

exclusion restrictions on this function.

Our proof of identification is constructive. Assuming that the population probabilities

σi(ai = k|s) for all k, i and s are known, we reverse engineer the Πi(ai, a−i, si) that

rationalize the data. Simple algebra implies that

σi(ai = k|s) = exp(Πi(ai, s))∑
a′i∈Ai

exp(Πi(a′i, s))
(3)

log(σi(ai = k|s))− log(σi(ai = 0|s)) = Πi(ai = k, s)−Πi(ai = 0, s) (4)

Equation (4) is the well known Hotz-Miller inversion. This equation implies that it is

possible to learn the choice specific payoff functions, Πi(ai = k, s) up to a first difference

from knowledge of the choice probabilities σi(ai = k|s). Since these choice-specific payoff
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functions can only be learned up to a first difference, we need to impose the normalization

that an “outside good” action always yields zero utility:

Πi(ai = 0, a−i, s) = 0. (5)

Assumption 2 For all i, all a−i and all s, Πi(ai = 0, a−i, s) = 0.

Having identified the choice specific payoff functions Πi(a, s), we next turn to the prob-

lem of identifying primitive mean utilities Πi(ai, a−i, s). The definition of the choice specific

payoff function implies that these two objects are related by the following equation:

Πi(ai, s) =
∑

a−i

σ−i(a−i|s)Πi(ai, a−i, s), ∀i = 1, . . . , n, ai = 1, . . . ,K. (6)

Given s, this is a system of n × K equations, because there are n agents and for each

agent, there are K +1 choices. Then Πi(ai, a−i, s) are n×K × (K +1)n−1 free parameters

in equation (6). Recall that for each agent, we have normalized the utility for the action

ai = 0 to zero regardless of the actions of the other players. Therefore, for each agent

i, there are K × (K + 1)n−1 free parameters corresponding to the K actions available to

i which yield nonzero utility and the (K + 1)n−1 actions of the other agents. Clearly,

n×K × (K + 1)n−1 > n×K, which implies that the model is underidentified.

In order to identify the model, we will impose exclusion restrictions on i’s payoffs.

Partition s = (si, s−i), and assume that

Πi(ai, a−i, s) = Πi(ai, a−i, si) (7)

depends only on the subvector si. In other words, we are excluding some component of s

from i’s payoffs. Such assumptions are commonly used in applied work. For example,

many oligopoly models predict that after we control for −i’s strategies, i’s profits are not

influenced by certain cost or demand shifters for −i.
If we impose these exclusion restrictions, we can rewrite (6) as

Πi(ai, s−i, si) =
∑

a−i

σ−i(a−i|s−i, si)Πi(ai, a−i, si), (8)

If there are (K +1)n−1 points in the support of the conditional distribution of s−i given si,

we will have more equations than unknowns.
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Theorem 1 Suppose that Assumptions 1 and 2 hold. Also suppose that for each si , there

exist (K+1)n−1 points in the support of the conditional distribution of s−i given si. Assume

that the (K + 1)n−1 equations defined by (8) are linearly independent almost surely. Then

the latent utilities Πi(ai, s−i, si) are identified for almost every si and s−i.

We can alternatively state a rank condition, similar to the linear least squares regression

model, that is sufficient for identification. This rank condition requires that given each si,

the second moment matrix of the “regressors” σ−i(a−i|s−i, si),

Eσ−i(a−i|s−i, si)σ−i(a−i|s−i, si)′ (9)

is nonsingular. Intuitively, we interpret Πi(ai, s−i, si) as the dependent variable in an ols

regression and σ−i(a−i|s−i, si) as a regressor.

The rank condition in Theorem 1 is stated in terms of the equilibrium choice proba-

bilities, which implicitly depend on the primitive parameters in the instantaneous payoffs

Πi (ai, a−i, s). For a given set of primitive utility and transition density parameters, whether

the induced equilibrium choice probabilities satisfy the rank condition may not be easy to

verify. In the two by two case if the discount rate is close to zero, the rank condition holds

as long as the instaneous payoffs are different between the two players. Pesendorfer and

Schmidt-Dengler (2010) gave elegant conditions for the discrete state space model in more

details. Verifying the rank condition for continuous state space models can be more dif-

ficult. Theorem 1 does have the advantage that it can be verifiable using observed data.

Furthermore, while whether the equilibrium choice probabilities induced by an arbitrarily

given set of model primitive parameters satisfy the rank condition is an open question,

it always holds for the primitive model utility functions recovered by the nonparametric

identification procedure. By construction, the nonparametrically identified primitive utility

functions satisfy the Bellman equation and the fixed point conditions for the Markov perfect

equilibrium, and induce equilibrium choice probabilities that satisfy the rank condition as

long as it is satisfied in the data.

We also note the identification arguments above can be extended where there are some

state variables s0 common to all payoffs. While this might slightly weaken the source of

the exclusion restriction, it can be important in practice. In order for the identification
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arguments to go through, the discount rate β is assumed to be known. This follows from

known nonidentification results in one-player dynamic optimization problems from e.g. Rust

(1987) and in dynamic auctions from Jofre-Bonet and Pesendorfer (2003).

3 Nonparametric identification of dynamic games

3.1 Dynamic game of incomplete information

In this section, we extend our model to allow for non-trivial dynamics. Our model is

similar to the framework proposed by Aguirregabiria and Mira (2007), Berry, Pakes, and

Ostrovsky (2003), and Pesendorfer and Schmidt-Dengler (2010) and Pesendorfer, Schmidt-

Dengler, and Street (2008). Period returns are defined using a static logit model. The

current actions a and state influence the future evolution of the state variable. We shall

restrict attention to Markov perfect equilibrium. The methods that we propose here could

be applied to other dynamic games, such as a finite horizon where payoffs and the low of

motion are time dependent. These extensions require considerable additional notational

complexity.

3.2 The Environment

3.2.1 Payoffs

In the model, there are t = 1, ...,∞ time periods. At each time t, we let ait ∈ {0, 1, . . . ,K}
denote the choice for agent i. We shall assume that the choice set is identical for all agents

and does not depend on the state variable. Both assumptions could be dropped at the cost

of notational complexity. Let si,t ∈ Si denote the state variable for agent i at time t. As

in the previous section, Si is a collection of real valued vectors and the state can either be

continuous or discrete.

Let εit = (εit(0), ..., εit(K)) denote a vector of iid shocks to agent i’s payoffs at time t.

As in the previous section, we shall assume that the error terms are distributed extreme

value. Player i’s period utility function is

ui(ait, a−it, st, ǫit) = Πi(ait, a−it, st) + ǫit(ait).
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As in the previous section, we shall develop the model assuming that Πi(ait, a−it, st) is a

general function of the state variables rather than a member of a particular parametric

family. Let σi(ai|s) denote the probability that i plays ai given that the state is s. As in

the previous section, we define Πi(ait, s) as Πi(ai, s) =
∑

a−i
Πi(ai, a−i, s)σ−i(a−i|s).

3.3 Value Functions

In the model, the evolution of the state variable depends on the current state and the

actions of all players. We assume that the state variable evolves according to a first order

Markov process g(s′|s, ai, a−i). As before, s is perfectly observed by the agent and the

econometrician. Player i maximizes expected discounted utility using a discount factor β.

Let Wi(s, ǫi;σ) be player i’s value function given s and ǫi. The value function holds

fixed the strategies of the other agents σ−i. The value function then satisfies the following

recursive relationship:

Wi(s, ǫi;σ−i) = max
ai∈Ai

{
Πi(ai, s) + ǫi(ai) (10)

+ β

∫ ∑

a−i

Wi(s
′, ǫ′i;σ−i)g(s

′|s, ai, a−i)σ−i(a−i|s)f(ǫ′i)dǫ′ids′
}
.

At each state, agents choose an action ai ∈ Ai to maximize expected discounted utility.

The term Πi(ai, s) + ǫi(ai) is the current period return from choosing ai. The second term

captures i’s utility from future time periods. In our model, agents choose their actions

simultaneously. Therefore, agent i’s beliefs about the evolution of the state given his current

information will be
∑

a−i
g(s′|s, ai, a−i)σ−i(a−i|s). This integrates out agent i’s uncertainty

about the actions of −i. The agent also needs to take into account expectations about next

periods preference shocks, ǫ′i, by integrating out their distribution using the density f(ǫ′i).

Definition 2 A Markov perfect equilibrium is a collection of policy functions, δi(s, ǫi) and

corresponding conditional choice probabilities σi(ai|s) such that for all i, all s and all ǫi,

δi(s, ǫi) maximizes the value function Wi(s, ǫi;σ−i) defined in (10)

In a Markov perfect equilibrium, an agent’s strategy δi(s, ǫi) is restricted to be a function

of the state (s, ǫi). This solution concepts restricts equilibrium behavior by not allowing
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for time dependent punishment strategies, such as trigger strategies or tit-for-tat which

do not depend on payoff relevant state variables. While the Markov perfect equilibrium

assumption restricts behavior considerably, it has the advantage that equilibrium behavior

can be expressed using familiar techniques from dynamic programming. Since the focus of

this paper is on nonparametric identification and estimation, existence of equilibrium will

be taken as given in the following analysis.

3.4 Nonparametric identification

Next, we turn to the problem of identification of the model. The strategy for identifying

the model will be similar to the static model. We begin with some preliminaries by first

defining the choice specific value function and deriving some key equations that must hold

in our dynamic model.

The starting point of our analysis is to define the choice specific value function

Vi(ai, s) = Πi(ai, s) + β

∫ ∑

a−i

Wi(s
′, ǫ′i;σ)g(s

′∣∣s, ai, a−i)σ−i(a−i|s)f(ǫ′i)dǫ′ids′. (11)

Similar to (1), the choice specific value function is the expected utility from choosing the

action ai, excluding the current period error term ǫi(ai). As in the static setting, the term

Πi(ai, s) integrates out player i’s expectations about the actions of the other players. In a

dynamic setting, however, we have to include the utility from future time periods. We do

this by integrating out the value function Wi(s
′, ǫ′i;σ) with respect to next periods private

information, ǫ′i, and state s′. In words, we can interpret the choice specific value function

as the returns, excluding ǫi(ai), from choosing ai today and then reverting to the solution

to the dynamic programming problem (10) in all future time periods. Next, we define the

ex ante value function, or social surplus function, as

Vi(s) =

∫
Wi(s, ǫi;σ)f(ǫi)dǫi (12)

The ex ante value function is the expected value of Wi tomorrow given that the state today

is s. In order to compute this expectation, we integrate over the distribution of ǫi given

that the current state is s.
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Using equations (11) and (12), the ex ante and choice specific value functions are related

to each other through the following equation

Vi(ai, s) = Πi(ai, s) + βE
[
Vi(s

′)|s, ai
]
. (13)

In the dynamic model, if the state is equal to s, the ex ante value function is related to the

choice specific value function by:

Vi(s) = Eǫi max
ai

[Vi(ai, s) + ǫi(ai)] . (14)

That is, the utility maximizing action maximizes the sum of the choice specific value function

plus the private information ǫi(ai). As in the static model, the equilibrium probabilities

and the choice specific value functions are relate through the following equation

σi(ai|s) =
exp(Vi(ai, s))∑
a′i
exp(Vi(a′i, s))

. (15)

3.5 Constructive Proof of Identification

As in the static model, we prove the identification of our model constructively. Our strategy

is to assume that the econometrician has knowledge of the population choice probabilities

σi(ai|s). We then show that it is possible to uniquely recover Πi(ai, a−i, s) after making

appropriate normalizations and checking a rank condition.

As in the static model, we begin by taking the log of both sides of (15). Straightforward

algebra implies that

log(σi(ai = k|s))− log(σi(ai = 0|s)) = Vi(ai = k, s)− Vi(ai = 0, s) (16)

This equation demonstrates that it is possible to recover the choice specific value functions

up to a first difference, if we know the population choice probabilities.

Next, it follows from (14) and the properties of the extreme value distribution that:

Vi(s) = Eǫi max
ai

Vi(ai, s) + ǫi(ai) = log
K∑

k=0

exp(Vi(k, s))

= log

K∑

k=0

exp(Vi(k, s)− Vi(0, s)) + Vi(0, s).

(17)
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The second equality follows from a property of the multinomial logit specification (derived

in e.g. Anderson, DePalma, and Thisse (1992)). Using (16), (17) can also be written more

concisely as

Vi (s) = − log σi (ai = 0|s) + Vi (0, s) . (18)

In particular, (18) shows that Vi (s) is known as soon as Vi (0, s) is.

We now combine (17) with equation (13) to yield:

Vi(0, s) = Πi(ai = 0, s) + βE [Vi(s
′)|s, ai = 0]

= Πi(ai = 0, s) + βE [− log σi (ai = 0|s′) + Vi(0, s
′)|s, ai = 0]

= Πi(ai = 0, s) + βE [− log σi (ai = 0|s′) |s, ai = 0]

+βE [Vi(0, s
′)|s, ai = 0] .

(19)

Next, suppose that we are willing to make the “outside good” assumption as in equation

(5). Then equation (16) implies that:

Vi(0, s) = βE
[
− log σi

(
ai = 0|s′

)
+ Vi(0, s

′)|s, ai = 0
]

= βE
[
− log σi

(
ai = 0|s′

)
|s, ai = 0

]

+ βE
[
Vi(0, s

′)|s, ai = 0
]
.

Since the population probabilities σi(ai = k|s) are assumed to be known for the purposes

of our identification argument, the term

βE
[
− log σi

(
ai = 0|s′

)
|s, ai = 0

]

can be treated as a known constant. Then, equation (19) is a functional equation involving

the unknown function Vi(0, s). Blackwell’s sufficient conditions (e.g. Theorem 3.3 in Stokey,

Lucas, and Prescott (1989)) imply that for fixed σi (ai|s), (19) is a contraction mapping and

therefore there is a unique solution for Vi(0, s), which can be computed e.g. using methods

discussed in section 5.2. As a result, we have shown that Vi(0, s) is identified. Moreover,

Vi(k, s) is identified for all k by substituting Vi(0, s) into (16) . Finally, we note that the

ex ante value functions can be identified by (17) or (18) given that we have identified the

Vi(k, s).
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Next, note that (13) implies that

Πi(ai = k, s) = Vi(ai = k, s)− βE
[
Vi(s

′)|s, ai = k
]
. (20)

Our identification arguments imply that both terms on the right hand side of (20) are

known. This implies that Πi(ai = k, s) is identified. Alternatively, using (13), (16) and (18)

one obtains

Πi (k, s) = Vi (0, s) + log [σi (k|s) /σi (0|s)]− βE
[
Vi
(
0, s′

)
− log σi

(
ai = 0|s′

)
|s, ai = k

]
,

which directly establishes the identification of Πi (k, s) from the knowledge of Vi (0, s).

The rest of identification proof can then follow exactly as in equations (6)-(8), as once

Πi (k, s) is known, the argument with exclusion restrictions of section 2.1 applies to identify

Πi (k, a−i, s). We simply need to construct the Πi(ai, a−i, si) from the static choice specific

value functions Πi(ai, s) by imposing exclusion restrictions.

Theorem 2 Suppose that Assumptions 1-2 hold. Also suppose that for each si , there exist

(K+1)n−1 points in the support of the conditional distribution of s−i given si. Assume that

the (K + 1)n−1 equations defined by (8) are linearly independent. Then the latent utilities

Πi(ai, a−i, si) are identified.

3.6 Nonparametric Shock Distribution

Our results has thus far focused on nonparametric identification and semiparametric estima-

tion of the payoff function taking the parametric known distribution of the shocks as given.

As is well known in the discrete choice model literature, without imposing strong identifi-

cation at infinity assumptions, it is clearly not possible to identify both the mean utility

functions and the shock distributions entirely nonparametrically. In Nekipelov, Bajari, and

Hong (2010), we show that if we are willing to impose a parametric structure on the mean

utility functions, then it is possible to identify and estimate a nonparametric specification

of the shock distributions, which is assumed to be fully independent of the state variables.

These results apply to both the static game and the dynamic discrete game.
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3.7 Identification-based estimation procedures

Under the assumption that one has access to a data set from a collection of independent

markets m = 1, . . . ,M with at least two periods of observations each, a nonparametric

multi-step estimator can be constructed by using the empirical analogue of our identification

strategy. The translation from identification arguments to the nonparametric estimator

essentially only requires replacing the appropriate conditional expectations with analog

sample projections. There are many possible local and global nonparametric smoothing

techniques to estimate conditional expectations. For example, series expansions have been

a popular choice as most of the recent literature (e.g. Newey (1994) and Chen, Linton, and

Van Keilegom (2003)).

In step 1, V̂i(k, s)−V̂i(0, s) can be estimated using (16) given a flexible estimator σ̂i(ai|s)
of the equilibrium choice probabilities σi(ai|s), in

V̂i(k, s)− V̂i(0, s) = log(σ̂i(k|s))− log(σ̂i(0|s)).

We also need to construct an estimate of g(s′|s, ai, a−i). The details of estimating

g(s′|s, ai, a−i) will vary with the application. In many problems, the law of motion for

the state variable is deterministic and therefore does not need to be directly estimated.

Another common case is when g(s′|s, ai, a−i) is defined by a density, which can be modeled

by a flexible parametric density or estimated nonparametrically.

In step 2, an estimate of V̂i(0, s), the baseline choice specific value function for k = 0,

can be constructed by iterating on the empirical analogue of equation (19), using a nu-

merical quadrature method possibly in combination with discretization of the state spaces.

See e.g. section 5.2. If the numerical quadrature used to implement (19) is integrating

against an estimated conditional density function, then Blackwell’s sufficient condition for

contraction mapping will be automatically satisfied. If the conditional expectation in (19)

is approximated by least square projections then iterating on the least square projection

might not ensure the contraction mapping property. However, the semiparametric condi-

tional moment estimator that we propose below will still be consistent and does not require

iterating on the contraction mapping relation.

In step 3, we evaluate the empirical analogue of (20) to estimate the static choice specific

payoff function which we denote as Π̂i(k, s). From the previous step, we have constructed
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an estimate of V̂i(0, s) and from step 1 we have constructed an estimate of V̂i(k, s)− V̂i(0, s).
Putting these two steps together implies that we have an estimate of V̂i(k, s) for all i, k, s.

The empirical analogue of equations (17) and (20) is then

Π̂i(ai = k, s) = V̂i(ai = k, s)− β

∫ (
log

K∑

k=0

exp(V̂i(k, s)))

)
ĝ(s′|s, ai = k)ds′. (21)

Standard methods from numerical integration can be used to compute the integrals.

The final step is to perform the empirical analogue of inverting the linear system (8)

in order to estimate the nonparametric mean utilities Π̂i(ai, a−i, si). Recall that the state

has to be partitioned as s = (si, s−i) and the variables s−i are assumed not to enter into

i’s mean utilities. This allows us to write i’s utility as Πi(ai, a−i, si). One approach to

inverting this system will be to run a local linear regression (see Fan and Gijbels (1992)).

Local linear regression is essentially a weighted least squares regressions where the weights

are defined using a kernel distance between the observations. The exclusion restrictions

guarantee that the standard rank condition from the theory of regression is satisfied.

Without a sufficiently large sample, nonparametric estimators suffer from a curse of

dimensionality and may be poorly estimated. Therefore, it might be desirable to have a

semiparametric approach to the problem where the transition density is specified nonpara-

metrically while the utility functions Πi(a, si, θ) are specified to depend on a finite number

of parameters. Frequently, applied researchers will assume that utility is linear in the struc-

tural parameters:

Πi(a, si) = Φi(a, si)
′θi,a. (22)

Here, Φi(a, si) is a known vector valued function and θ is used to weight the elements of

the basis function.

In the semiparametric model, steps 1-3 of the nonparametric section are left unchanged.

It is only necessary to modify step 4 to include the parametric restrictions in (22).

An advantage of the semiparametric estimator is that it can be shown that θ̂ converges to

the true parameter value at a rate proportional to the square root of the sample size and has

a normal asymptotic distribution. This is a common result in semiparametric estimation.

Even though the nonparametric part of our model, σ̂−i(a−i|sm,t) and Π̂i(ai, sm,t) can only

be estimated at nonparametric slower rates, the payoff parameters θ converge at the faster
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parametric rates. Derivation of the limit distribution of the multi-step semiparametric

estimator can be found in a previous online working paper version of this article.

3.8 Unobserved heterogeneity

Unobserved heterogeneity is an important concern for dynamic discrete choice models. A

recent insight from this literature (Hu and Shum (2008), Kasahara and Shimotsu (2008))

is that it is sufficient to estimate a reduced form model of conditional choice probabilities

and transition probabilities that account for the presence of the unobserved heterogeneity.

A variety of such methods are available in the recent literature, some allowing for a fixed

number of support points in the distribution of unobserved state variables while others

allowing for continuous unobserved state variables. For each of the discrete and continuous

support cases of the unobserved state variables, some methods are limited to only non time

varying unobserved state variables while other methods might allow for serially correlated

unobserved state variables.

In the following, we will take as given the ability to estimate a first stage model of

conditional choice probabilities and conditional transition probabilities that incorporate

the presence of general (discrete and continuous, time invariant and serially correlated)

state variables. Therefore, we will assume that it is possible to use one of the methods

available in the existing literature to estimate a reduced form model of σ̂i (k|s) , ∀i, k and

ĝ (s′|s, a), where now s′ and s include both observed and unobserved state variables that

can be either discrete or continuous, either time-invariant or serially correlated.

We now note that the entire nonparametric identification process in section 3.4 and the

entire estimation procedure, both nonparametric and semiparametric, described in section

3.7, depend only on the first stage σ̂i (k|s) , ∀i, k and ĝ (s′|s, ai). Therefore, as long as the

state transition process is assumed to be common across individuals, we can follow exactly

the same procedures outlined in sections 3.4 and 3.7 to estimate the primitive mean utility

functions Πi (a, si) and Φi (a, si)
′ θ. Perhaps the best way to understand this argument

is through simulations. Given knowledge of σ̂i (k|s) , ∀i, k and ĝ (s′|s, ai), a researcher can

generate a data set with as many markets and as many time periods as desired, and apply the

estimation procedures described in the previous subsections of section 3.7 to the simulated
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data set.

4 Efficient Semiparametric and Nonparametric Estimation

In the previous section we described a multi-stage procedure which allows us to estimate

both a finite-dimensional and an infinite dimensional specification of the profit function.

This procedure is very intuitive because it follows directly from the identification argument.

The asymptotic distribution of this estimator also has an explicit analytic structure. How-

ever, this approach inherits the disadvantages of many multi-stage estimation techniques.

First of all, the standard errors are hard to compute because of propagation of errors from

the previous steps of the procedure which will depend on the degree of smoothness of the

unknown functions of the model. Second, this multistage estimation procedure is not effi-

cient. It is well known that it is difficult to design multistage estimation procedures that can

achieve efficiency bounds, because each subsequent step has to compensate the estimation

errors that will arise from previous estimation errors.

In this section we will propose an efficient one step estimation procedure using the

framework of conditional moment models. It has the advantage that given the choice of

instrument functions and the weighting matrix, practical inference can be performed using

standard parametric methods as if a finite dimensional linear parametric model of Vi (k, s)

and Π (a, si)
′ θ is estimated, as long as the estimation noise in the estimation of σi (k|s) is

appropriately accounted for.

By formulating the model in a conditional moment framework and making use of the

stationary controlled Markov process structure, we can avoid direct estimation of the tran-

sition density of the state variable. This simplifies the derivation of the efficiency bound

of the model and the statement of the regularity conditions for the efficient estimator.

The efficient estimation procedure is applicable to both semiparametric and nonparametric

models.
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4.1 Semiparametric efficient estimation

The conditional moment formulation is derived from the Bellman equations for individual

players. Recall the Bellman equations of interest:

Vi (k, s) = Πi (k, s; γ) + β

∫ ∑

a−i∈A−i

σ−i (a−i|s) log
[
K∑

l=0

exp (Vi (l, s
′))

]
g (s′|s, ai = k, a−i) ds

′,

where

σi (ai = k|s) = exp (Vi (k, s))
K∑
l=0

exp (Vi (l, s))

,

for i = 1, . . . , n and k = 0, . . . ,K. Denote di,l the dummy for choice l by player i. We can

use the second equation to substitute it into the first one, which leads to n×K conditional

moment equations for each (T − 1)×M observations:

E

[
di,km,t (Vi (0, sm,t)− βVi (0, sm,t+1) + β log σi (0|sm,t+1))

−di,km,t
(
1− di,0m,t

)
[Πi (ai, a−i, sm,t; γ) + log σi (0|sm,t)− log σi (ai|sm,t)]

∣∣∣∣ sm,t
]
= 0.

(23)

Together with the following n× (K + 1) moment conditions for each T ×M observations,

E
(
di,km,t|sm,t

)
= σi (k|sm,t) , (24)

(23) and (24) form a system of conditional moment restrictions that fully characterize the

implications from the structural dynamic discrete choice model. This system of conditional

moment restrictions can be used to obtain asymptotically normal semiparametric estimators

that can achieve the semiparametric efficiency bound by adapting the recipe prescribed in

Ai and Chen (2003). In their notation of E [ρ (wm,t, γ, V (·) , σ (·)) |sm,t] = 0, where wm,t are

all the random variables in the model, γ are the finite dimensional parameters, V (·) and

σ (·) are the infinite dimensional unknown parameters, we can write, for h (·) = (V (·) , σ (·)):

ρ (wm,t, γ, h (·)) =
(
ρ1 (wm,t, γ, V (·) , σ (·))′ , ρ2 (wm,t, γ, V (·) , σ (·))′

)′
,

where ρ1 is the T ×m× n×K dimensional collection of dai,km,t − σi (k|sm,t), and

ρ2 (wm,t, γ, V (·) , σ (·)) = di,km,t (Vi (0, sm,t)− βVi (0, sm,t+1) + β log σi (0|sm,t+1))

−di,km,t
(
1− dai,0m,t

)
[Πi (ai, a−i, sm,t; γ) + log σi (0|sm,t)− log σi (ai|sm,t)] .
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Strictly speaking, the original efficiency bound in Ai and Chen (2003) requires the same

conditioning variables in the moment restrictions. However, for each m = 1, . . . ,M , the

collection of moment conditions in (23) and (24) involve different conditioning variables

st, t = 1, . . . , T − 1. In addition, the moment condition (24) can also be used at time t = T .

Fortunately, the Markov structure of the model implies that conditioning on st is equivalent

to conditioning on s1, . . . , st. Therefore the conditioning sets form an increasing sequence of

sigma-algebra, and the sequential conditional moment model of Ai and Chen (2009) applies

to substantiate the semiparametric efficiency bound.

The conditional moment restrictions in (23) and (24) can be transformed into uncon-

ditional moments by forming an instrument matrix zm,t using the state variables sm,t, its

lags sm,t−τ and polynomial powers sm,t and its lags, such that the number of instruments

in zm,t increases at appropriate rates as the sample size increases to infinity. Equations (23)

and (24) implies the following moment vectors with elements

E

[
di,pm,tzm,t

(
Vi (0, sm,t)− βV (0, sm,t+1) + log

σi(ai|sm,t)
σi(0|sm,t)

− β log
σi(ai|sm,t+1)
σi(0|sm,t+1)

−
(
1− di,0m,t

)
[Πi (ai, a−i, sm,t; γ)− β log σi (ai|sm,t+1)]

+di,0t β log σi (0|sm,t+1)

)]
= 0,

and Ezm,t

(
di,pm,t − σi (p|sm,t)

)
= 0. To estimate γ we can follow two steps.

Step 1

We approximate the conditional choice probabilities using orthogonal series:

σi (ai = p | s) = qk1(MT )′ (s) b1i,p +∆k1(MT ),

and approximate the value function similarly

Vi (0, s) = qk2(MT )′ (s) b2i +∆k2(MT ),

where ∆k1(M) and ∆k2(MT ) are numerical approximation errors that decrease to zero as

k1 (MT ) and k2 (MT ) increase to infinity with MT at appropriate rates.

Step 2

Next we form an instrument zm,t by stacking an orthogonal series of functions of the state
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variables sm,t,
(
q0 (sm,t) , . . . , qk3(MT ) (sm,t)

)
. This produces an over-identified empirical

moment vector with the elements, for b =
(
bi,p1 , bi2, ∀i, p

)
,

ϕ̂ (γ, b) =
∑

m,t

ϕm,t (γ, b) where ϕm,t (γ, b) = ρ (wm,t, γ, b)⊗ zm,t.

Then we introduce a weighting matrixW with both row and column dimensions dim (zm,t)×
dim (ρ). In the simplest case we can use the identity matrix in lieu of W. Using a

given weighting matrix we form a GMM objective and minimize it with respect to pa-

rameters of interest γ as well as the parameters of the expansion of the value function

min
γ, b

ϕ̂ (γ, b)′ W ϕ̂ (γ, b) . In particular, as shown in Ackerberg, Chen, and Hahn (2011), if

we let Z ≡ (zm,t, ∀,m, t)′ denote the data matrix for the instruments, the following choice

of the weighting matrix

W = I ⊗
(
Z ′Z

)−1

(
∑

m,t

Ω−1
m,t ⊗ zm,tz

′
m,t

)
I ⊗

(
Z ′Z

)−1
.

yields the semiparametric minimum distance estimators of Ai and Chen (2003). In the above

Ωm,t is a candidate estimate of the conditional variance covariance matrix of ρ (wm,t, γ, h (·))
given sm,t. When Ωm,t ≡ I an identity matrix, the estimator becomes a nonlinear two stage

least square estimator. When Ωm,t = Ω is homoscedastic across observations, this becomes

a nonlinear three stage least square estimators. Semiparametric efficiency bound is achieved

when Ωm,t is a consistent estimate of V ar (ρ (wm,t, γ, h (·)) |sm,t), in which case it becomes

a heteroscedasticity weighted nonlinear three stage least square estimator. When ρ (·) is

a scalar, the semiparametric efficient minimum distance estimator is a weighted nonlinear

two stage least square estimator.

Remark 1:

By appropriate choices of the instrument functions and the weighting matrix, the conditional

moment framework also incorporates the multistage procedure in the previous section as

special cases. If the same orthogonal series is used in approximating Vi (0, sm,t), σi (p|sm,t)
and in obtaining the instruments, and if k1 (MT ) = k2 (MT ) = k3 (MT ), the instrumented

moment conditions (24) are exactly identifying, and σi (p|s) are computed from least square
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regressions:

σ̂i (ai = p | s) = qk(MT )′ (s)

(
∑

m,t

qk(M) (sm,t) q
k(MT )′ (sm,t)

)−1∑

m,t

qk(MT ) (sm,t) d
ai,p
t .

Given the estimate of σ̂i (ai = p | s), the component of the instrumented moment condi-

tion ρ2 (wm,t, ·) that corresponds to k = 0 is also exactly identifying and depends only

on Vi (0, s). Hence Vi (0, s) can be estimated by a single equation two stage least square

regression with dependent variables β log σ̂i (0|sm,t+1), independent variables q
k(MT ) (sm,t)−

βqk(MT ) (sm,t+1) and instrument matrix qkMT (sm,t). Subsequently, given estimates of V̂i (0, s)

and σ̂i (ai = p | s), the parameters

γpi =
(
γpi,a−i

, ∀a−i
)
,

for i = 1, . . . , n, p = 1, . . . ,K in a linear profit function specification Πi (p, a−i; γ) =

Φi (p, a−i)
′ γpi , can be estimated by single equation linear two stage least square regression

methods when Ω (xi) ≡ I, with dependent variables

Yi,p,m,t = V̂i (0, sm,t)− βV̂ (0, sm,t+1) + log
σ̂i (ai|sm,t)
σ̂i (0|sm,t)

− β log
1

σ̂i (0|sm,t+1)

and the vector of independent variables Xt with elements

Xi,p,m,t = −
(
1− di,0m,t

)
Φi (p, a−i) ,

and instrument matrix Z = (zm,t, ∀m, t)′. Efficiency can be improved by weighted 2SLS or

weighted 3SLS by choosing Ω̂ (xi) appropriately.

Remark 2:

The semiparametric efficient minimum distance estimator of Ai and Chen (2003) can be

interpreted both in light of weighted nonlinear three stage least square estimator and the

efficient instrument method of Newey (1990) for finite dimensional parameters. The semi-

parametric minimum distance objective function can be equivalently rewritten as

∑

m,t

ρ̂ (sm,t, b, γ)
′ Ω̂−1

m,tρ̂ (sm,t, b, γ) ,
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where ρ̂ (sm,t, b, γ) is an estimate of E (ρ (wm,t, b, γ) |sm,t),

ρ̂ (s, b, γ) = z
(
Z ′Z

)−1
∑

m,t

zm,tρ (wm,t, b, γ)
′ .

Its first order condition resembles the efficient instrument estimator of Newey (1990):

∑

m,t

∂

∂ (b, γ)
ρ̂ (sm,t, b, γ)

′ Ω̂−1
m,tρ̂ (sm,t, b, γ) .

The efficient instrument estimator of Newey (1990) only differs in using ρ (sm,t, b, γ) in place

of the second ρ̂ (sm,t, b, γ) in light of the law of iterated expectation, and instead uses the

first order condition of

∑

m,t

∂

∂ (b, γ)
ρ̂ (sm,t, b, γ)

′ Ω̂−1
m,tρ (sm,t, b, γ) .

The following theorem adapts the semiparametric efficiency bound in Ai and Chen (2003)

to our model. In our model the unknown function V (·) enters non-linearly as a function of

the state variable in the period t and in the period t+ 1.

Using the results from Ai and Chen (2003) we can provide the semiparametric efficiency

bound for estimating the parameter γ of the payoff function. Denote

Σ0 (sm,t) = Var (ρ (wm,t, γ0, h0 (·)) |sm,t) .

The semiparametric efficiency bound expressed in theorem 3 will depend on the functional

derivatives of the moment conditions ρ1 in (23) and ρ2 in (24) on the unknown functions

hi1 (·) = Vi (0, ·) and hi,k2 (·) = σi (k|·). The functional derivative of the conditional mo-

ment functions with respect to these unknown functions can be expressed using the linear

expectation operator

Pk
i ◦ f = E

[
f (sm,t+1) | sm,t = s, aim,t = k

]
,

where expectation is defined for the conditional density

∑

a−i

g (sm,t+1|sm,t = s, ai = k, a−i)σ−i (a−i|sm,t = s) .
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The operator Pk
i ◦f is assumed to have a discrete spectrum with eigenfunctions

{
Θi,k
j (s)

}∞

j=0

and eigenvalues
{
λi,kj

}∞

j=0
different from zero. Then we can find that

dE
[
ρi,k1 (wm,t, γ0, h0 (·)) |sm,t

]

d hi1
[ψ] = σi (k|s)

∞∑

j=0

ψj

(
1− βλi,kj

)
Θi,k
j (s) ,

for all sequences of real numbers ψ which belong to H =

{
ψ
∣∣ ∞∑
j=0

|ψj |
∥∥∥Θi,k

j (s)
∥∥∥ <∞

}
,

Furthermore, we also calculate that

dE
[
ρi,k1 (wm,t, γ0, h0 (·)) |sm,t

]

d hi,02
[ψ] = βE

[
di,km,t

1

σi(0|sm,t+1)
hi,02 (sm,t+1) |sm,t

]
.

and for k 6= 0 the linear derivative of,

dE
[
ρi,k1 (wm,t, γ0, h0 (·)) |sm,t

]

d hi,k2
[ψ] = hi,k2 (sm,t) .

Finally, for all k,

dE
[
ρi,k2 (wm,t, γ0, h0 (·)) |sm,t

]

d hi,k2
[ψ] = −hi,k2 (sm,t) .

The functional derivatives in the direction of the unknown functions
dE[ρ(wm,t,γ0,h0(·))|sm,t]

d h [ψ]

are formed by stacking the above individual components together.

Then for each component of γ solve the minimization problem

min
ψ(j,0)∈H

E

{(
dE[ρ(wm,t,γ0,h0(·))|sm,t]

d γj
− dE[ρ(wm,t,γ0,h0(·))|sm,t]

d h

[
ψ(j,0)

])
Σ0 (sm,t)

−1

×
(
dE[ρ(wm,t,γ0,h0(·))|sm,t]

d γj
− dE[ρ(wm,t,γ0,h0(·))|sm,t]

d h

[
ψ(j,0)

])}
.

Form the vector

Dψ(0) (sm,t) =
dE [ρ (wm,t, γ0, h0 (·)) |sm,t]

d γ′
− dE [ρ (wm,t, γ0, h0 (·)) |sm,t]

d h

[
ψ(0)

]
.

The following theorem follow directly from the result provided in Ai and Chen (2003):
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Theorem 3 The semiparametric efficiency bound for estimation of γ in equation (23) can

be found as

V (γ) = E
[
Dψ(0) (sm,t)

′ Σ0 (sm,t)
−1Dψ(0) (sm,t)

]−1
.

4.2 Asymptotic distribution for semiparametric estimator

We impose the following regularity assumptions on the functions in the model to assure that

the two-stage conditional moment-based estimation method delivers consistent estimates for

the Euclidean parameter in the per period payoff function as well as the non-parametric

estimate of the continuation value of players.

Assumption 3

1. Parameter space Γ is a convex compact set. Profit function Πi (ai, a−i, s; γ) is continuous

in γ for each (ai, a−i) ∈ A. Moreover, for each γ ∈ Γ profit function is bounded:

sup
a∈A, s∈S

|Πi (ai, a−i, s; γ)| <∞.

2. The data
{
{a1t, . . . , ant, st, st+1}T−1

t=1

}M
m=1

are i.i.d. generated by the stationary distribu-

tion determined by Markov transition kernel for the state variable.

3. The approximating series expansion {qk(MT )} forms a basis in Ck(MT ) (S), such that the

eigenvalues of E
[
qk(MT ) (st+1) q

k(MT )′ (st+1) |st = s
]
are bounded away from zero for all

s ∈ S. The operator

Pi ◦ f = E [f (sm,t+1) | sm,t = s, ai] ,

where expectation is defined for the conditional density

∑

a−i

g (sm,t+1|sm,t = s, ai = k, a−i)σ−i (a−i|sm,t = s) ,

which has a discrete spectrum with eigenfunctions
{
Θi,k
j (s)

}∞

j=0
such that for each j we can

find j′ ≤ j for which 〈qk(MT )
j , Θi,k

j 〉 6= 0. In addition,

lim sup
m→∞

E
[
(TM)−1/2

(
1 + βΛi,kj

)
q
k(MT )
j

]
<∞.
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4. The value function Vi (st) is piece-wise continuous on S and bounded. Moreover, for each

Vi (·) ∈ V there exists a vector µ ∈ R
k(n) such that E

[(
V (st)− µ′ qk

)2]
= o (1).

5. For a given V (·) and transition density, there exists a unique solution γ ∈ Γ to the system

of equations

E [ϕi (st, st+1, a;Vi, γ) | st] = 0,

for i = 1, . . . , n.

These assumptions allow us to apply the results from Newey and Powell (2003) for each

order of approximation k(MT ). By the appropriate choice of basis we can guarantee that

the approximation error is negligible as compared to the estimation error. The estimation

problem is linear in parameters: expansion coefficients for V (·) and the Euclidean parameter

γ. For each finite approximation order k(MT ) we can assure that the estimated parameters

are consistent estimates for the functions given the order of approximation. WhenMT → ∞
approximation error approaches zero and the estimated coefficients will be consistent for

the true coefficients. Given that by assumption the value function admits consecutive

approximations in the basis {qK(s)} for each K ∈ N, the fitted values b̂K′qK(s) will be

consistent for the true value function in the limit.

We can provide a similar set of assumptions that will assure the asymptotic normality

of the estimates.

Assumption 4 1. There exists a metric ‖ · ‖s such that the product space V × Γ is

compact. Moreover, the space {q∞ (s)} × Γ is dense in V × Γ for the chosen metric.

2. For the covering number in the family of the moment functions defined by consecutive

series approximations

log N
(
ε, {qk(MT ) (s)} × Γ, ‖ · ‖s

)
≤ Ck(MT ) log

(
k(MT )

ǫ

)
.

3. The weighting matrix can be estimated consistently such that

∥∥∥Â (s, da)−A (s, da)
∥∥∥ = op

(
(MT )−1/4

)
.
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Moreover for each ‖µ− µ
k(MT )
0 ‖ < C(MT )−1/4 and each ‖γ − γ0‖ < C(MT )−1/4

∥∥∥
(
Â (s, da)−A (s, da)

)
ϕ
(
s′, s, a;µ′qk(m)(s), γ

)∥∥∥ = op

(
(MT )−1/4

)

4. The variance of the moment function Var

(
ϕ (s′, s, a;V0, γ0)

∣∣∣∣ s
)

is positive definite for

all s ∈ S.

5. For each direction h ∈ Ck(m) (S) we define the directional derivative of the moment func-

tion as a vector ∂hϕ =
(
∂ϕ
∂γ ,

(
∂ϕ
∂V

)
h

)
, where

∂ϕi
∂γ

=
∂Πi (ai, a−i, s; γ)

∂γ
, and

(
∂ϕi
∂Vi

)

h

=

∞∑

j=0

hj

(
1− βλi,kj

)
Θi,k
j (s) .

We assume that in the ball of radius C(MT )−1/4 around the true value (V0, γ0) in V × Γ

the directional derivative ∂hϕ is Hölder-continuous with respect to norm ‖ · ‖s and bounded

above by a linear functional of h, F [h] such that E [F [h]] <∞. Choose h∗ such that

E
{
∂hϕ (V0, γ0)

′E
[
A (st+1, d

a)A (st+1, d
a)′
∣∣st=s

]
∂hϕ (V0, γ0)

}

is minimized with respect to h. Then uniformly in the chosen ball

E
(
‖∂h∗ϕ (V0, γ0)− ∂h∗ϕ (V, γ)‖2

)
= o

(
(MT )−1/4

)
,

where we use a standard Euclidean norm.

The following theorem is an immediate consequence of Ai and Chen (2003), which we

state without proof.

Theorem 4 Under assumptions 3 and 4, for γ̂ defined in steps 1 and 2 of the previous

section, γ̂
p−→ γ0, and for V (γ) given in theorem 3

√
MT (γ̂ − γ0)

d−→ N (0, V (γ)) .
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4.3 Nonparametric estimation

The moment equation (23) in general does not depend on the dimensionality of the pay-

off parameter γ. While making γ infinite-dimensional will cost the loss of the parametric

convergence rate, a fully nonparametric estimation procedure of the per-period payoff func-

tion is feasible because of the identification results, and is implementationally essentially

equivalent to the efficient estimation procedure in the semiparametric case.

Step 1 Estimate conditional choice probabilities non-parametrically using the orthogo-

nal series representation:

σ̂i (ai = p | s) = qk(MT )′ (s)

(
∑

m,t

qk(MT ) (sm,t) q
k(MT )′ (sm,t)

)−1∑

m,t

qk(MT ) (sm,t) d
i,p
t .

Step 2

Consider a series approximation for the value function

Vi (ai = p, s) = qk(MT )′ (s) bi,p +∆k(MT ),

where ∆k(MT ) is a numerical approximation error, and consider a similar expansion for the

payoff function

Πi (ai = p, a−i, s) = qk(MT )′ (s) γi,p,a−i +∆′
k(MT ).

For implementability of the procedure at this step we need the payoff function to be contin-

uous (or, at least, to have a finite set of points of first-order discontinuity). Next we form

an instrument zm,t by stacking the state variables sm,t across the markets to form vectors

st, and then choosing the linearly independent subset of vectors from the collection

(
q0 (sm,t−τ ) , . . . , qk(M) (sm,t−τ )

)
,

for all 0 ≤ τ ≤ t − 1. Additional instruments come from other functions of am,t and the

estimated choice probabilities σ̂i (j|sm,t+1). This produces an empirical moment vector with
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2k(M) unknown expansion coefficients with the elements

ϕ̂i,p (γ, b) =
1
T

T−1∑
t=1

di,pt zt

(
bi,p′

(
qk(M) (sm,t)− βqk(M) (sm,t+1)

)

−
(
1− di,0t

) [
qk(M)′ (s) γi,p,a−i − β log σ̂i (ai|sm,t+1)

]

+di,0t β log

(
1−

K∑
j=1

σ̂i (j|sm,t+1)

))
.

Then we introduce a weighting matrix W with dimensions nKm dim (zt)×nKm dim (zt).

In the simplest case we can use the identity matrix in lieu of W. For this weighting matrix

we form a GMM objective and minimize it with respect to parameters of interest γ as well

as the parameters of the expansion of the value function

min
γ, b

ϕ̂ (γ, b)′ W ϕ̂ (γ, b) .

In this estimation procedure the object of interest is the entire surface of the profit function,

which can be computed as

Π̂i (ai = p, a−i s) = qk(M)′ (s) γ̂i,p,a−i .

We need to determine the conditions that assure consistency and non-degeneracy of the

asymptotic distribution of the pointwise estimate of the payoff function as well as find

the rate of convergence of the estimator. Previous we imposed conditions that assure

convergence of the semiparametric estimator. We can supplement them with additional

assumptions which will provide consistency and asymptotic normality in the non-parametric

case.

Assumption 5 1. The payoff function Πi (ai, a−i, ·) belongs to the functional space Cp (S)
for p > 1. Moreover, the orthocomplement of projecting the payoff function onto some

Hilbert space H, defined by the set of basis functions {qt (·)}pt=0 with the scalar product

〈·, ·〉 has a norm in C∞ (S) decreasing in p. Moreover its projection on the first p basis

vectors converge absolutely, uniformly in the argument as p→ ∞.

2. For a truncation sequence k(m) < m2r the error of approximation of Πi(·) and V (·)by
the basis function {qt (·)}k(m)

t=0 is o
(
m−2r

)
with respect to the norm implied by the scalar

product in H.

29



3. σ̂i(ai|ai, ·) is asymptotically normal pointwise in Ω and converges at rate q. The trun-

cation sequence k(m)′ giving the convergence rate mq is o (k(m)′). The approximation

error of hi(·) with respect to the norm in H is of order smaller than mq.

This set of assumptions allows us to formulate the following theorem, which is proven in

the appendix. The asymptotic variances ω2
v and ω2

π are also defined in the appendix.

Theorem 5 Given assumption 3, 4 and 5,

mmin {q,r}
(
V̂
k(m)
i (s)− Vi (s)

)
d−→ N

(
0, ω2

v

)
,

and

mmin {q,r}
(
Π̂
k(m)
i (ai, a−i, s)−Πi (ai, a−i, s)

)
d−→ N

(
0, ω2

π

)
.

5 Simulations

To demonstrate the performance of proposed estimators in finite samples, we conduct two

sets of numerical simulations. The first set is a simple two by two entry game with discrete

state variables and the second set is a single agent dynamic discrete choice model with

continuous state variables.

5.1 Simulation setup

In the first set of numerical simulations, each of the two players has one state variable

that takes two possible values. Each player simultaneously decides whether to enter a

market. The payoff to not entering into the market is normalized to zero regardless of

the action of the competing player. We construct the payoff function as Πi(ai, a−i) =

U1 1(ai = 1) + U2 1(a−i = 1) where U1 and U2 for each Monte Carlo sample are taken

as independent draws from the uniform distribution between -2 and 2. The payoffs of

players are independent across both the combination of the states and across the actions of

the competing players. Therefore, we do not impose restrictions on how the action of the

competing player affects the payoff to entering into the market, and allow the actions of

both players to be either substitutes or complements. The transition probability matrices
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for a new state condition on the previous state and the actions of both players are also

randomly generated from uniform distributions between 0 and 1. They are normalized so

that the transition probability matrix is a proper stochastic matrix. The discount rate is

set to 0.9.

Once generated, the payoff matrix and the transition probability matrices are held

constant across the simulation runs. Following the recipe described in the estimation section,

we first estimate the entry probabilities from independently generated data on the entry

indicators, and then invert out the choice specific continuation value function and the choice

specific static expected utility function. Finally, the primitive payoffs are recovered from

the choice specific static expected utility functions.

Tables 1 to 4 report the results across 1000 simulation runs. The number of markets

(nmarket), reported in the following tables refer to the number of observations (markets)

generated for each combination of the state variables. The columns labelled “1st quartile”,

“median”, “mean”, “3rd quartile” and “std” refer to the deviation of the estimates from

the true parameters.

These tables show that the estimator performs well in finite sample, and that the amount

of estimation error decreases monotonically as the sample size increases.

In the second set of numerical simulations for a single agent dynamic discrete choice

model. We construct this exercise in a “reverse” way. We generate the data from a re-

duced form system of choice probabilities. Given that we know the functional form of the

reduced-form probabilities, we can also use the methods of numerical integration to recover

the per-period payoff function that corresponds to the specific choice probabilities and a

specific state transition process. The goal of this empirical exercise is to compare the payoff

function estimated from the sample, generated by the state variable and the policy func-

tion using our one-stage estimation method and the utility function that we can recover

by numerically solving the first-order condition for the player. We keep indexing variables

by i to maintain the coherence with our theoretical analysis. The state variable follows a

continuous distribution and evolves continuously according to a normal AR(1) process:

st = ϕ (ai) st−1 + σ εt,

where εt is a standard normal random variable and ϕ (ai) = 0.81(ai = 0) + 0.31(ai = 1).
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The probability of choosing action 1 is assumed to take the following flexible functional

form:

σi (ai = k | st) = α0ik + α1ikst + α2iks
2
t +

J∑

j=1

[β0j + β1j cos (pjst)− β2j sin (pjst)] ,

where parameters α are fixed. Now for known state transition and choice probabilities we

can recover the corresponding per period payoff function using a high-order finite-point

approximation formulas for integrals. We normalize the payoff Πi(·, ai = 0) = 0 and aim at

recovering the function Πi(·, ai = 1). We begin with describing the numerical computation

algorithm.

5.2 Determining the base value function

For each player i the value function associated with choice 0 can be expressed as

Vi (0, s) = β
+∞∫
−∞

log

[
K∑
r=0

exp (Vi,r (s
′))

]
1√
2πσ2

e−
(s′−ϕ(0) s)2

2σ2 ds′.

Using the relation σi (k | s) =
exp(Vi,k(s))
K∑

r=0
exp(Vi,r(s))

, this expression can be written as a functional

relation to solve for the continuation value function:

Vi (0, s) = β
+∞∫
−∞

[V0 (0, s
′)− log σi (0 | s′)] 1√

2πσ2
e−

(s′−ϕ(0) s)2

2σ2 ds′.

The value function will be approximated on a discrete uniform grid using linear extrap-

olation and the integral will be approximated by a Gauss-Hermite Gaussian quadrature

method. The value function for the grid points will be solved from a system of linear

equations. In particular, by a change of variables

Vi(0, s) =
β√
π

+∞∫

−∞

[
Vi

(
0,
√
2σ x+ ϕ (0) s

)
− log σi

(
0
∣∣√2σ x+ ϕ (0) s

)]
e−x

2
dx

≈ β√
π

N∑

n=1

ωn

[
Vi

(
0,±

√
2σ xn + ϕ (0) s

)
− log σi

(
0
∣∣ ±

√
2σ xn + ϕ (0) s

)]
,
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where ωn are the weights and xn are the points of 2N -point Gauss-Hermite quadrature

approximation for the integral of interest. We aim to solve for the value function at a

uniform grid SG = {s1, s2 . . . , sG} for the state variable: Vi (0, sg) = Vi,0,g. For numerical

computations we will use linear interpolation. The intermediate values of the value function

will be approximated by linear interpolation: for instance, if s ∈ [sg, sg+1] then Vi (0, s) ≈
Vi,0,g +

Vi,0,g+1−Vi,0,g
sg+1−sg (s− sg). Let ξg,n,p correspond to the index of the grid point that is

not further from the point (−1)p
√
2σ xn+ϕ (0) sg than the cell length and has the smallest

absolute value. Then the discretized Bellman equation can be written as G linear equations

for the grid function:

Vi,0,g −
β√
π

N∑

n=1

1∑

p=0

[
ag,n,pV1,0,ξg,n,p

+ bg,n,pVi,0,ξg,n,p+1

]

= − β√
π

N∑
n=1

1∑
p=0

ωn log σi
(
0
∣∣ (−1)p

√
2σ xn + ϕ (0) sg

)

Denote ∆ the step of the grid. Then we can express the above coefficients as

ag,n,p =
β

∆
√
π
ωn
[
sξg,n,p+1 − (−1)p

√
2σ xn − ϕ (0) sg

]
,

bg,n,p =
β

∆
√
π
ωn
[
(−1)p

√
2σ xn + ϕ (0) sg − sξg,n,p

]
.

5.3 Simulation Results

We compare the utility function that we obtain from a numerical solution of the Bellman

equation with the estimated payoff that we obtain using our method. The following table

tabulates the integrated difference between the utility function that is numerically computed

and the utility function that is estimated from a randomly generated sample. We use the

stationary density of the state variable for the comparison. Specifically, if Π̂i,T (·, ai = 1) is

the estimated utility from sample of size T and Πi(·, ai = 1) is the numerical solution, the

reported criterion is

QT =
√
T

∫

S

(
Π̂i,T (s, ai = 1)−Πi(s, ai = 1)

)
π(s) ds,

where π(·) is the stationary density of the state variable. We obtain this integral using

the Monte-Carlo integration technique. To do so we make the joint draws from the state
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variable transition and the decision rules using a preliminary draw of the state variable. We

generate the state variable as well as the policy rule as a Markov chain until it reaches the

stationary distribution (we determine that by the behavior of the distribution mean across

the blocks of consecutive draws). Then if Ns is the number of draws from the stationary

distribution, we compute the approximate criterion

QNs

T =

√
T

Ns

Ns∑

t=1

(
Π̂i,T (st, ai = 1)−Πi(st, ai = 1)

)
.

This object converges to the integral of interest as the number of draws increases. For our

purposes we use 2.5 million draws.

As table 5 shows, the nonparametric procedure for recovering the primitive utilities

works well in finite samples. In particular, just to the give the reader a visual sense of the

shape of the value function that is being recovered in the simulation, the following figure

illustrates the median of numerically recovered utility with top and bottom 10% quantiles

for 600 Monte-Carlo draws. The horizontal axis represents the value of the state variable,

while the vertical axis represents the value of the recovered utilities.

6 Empirical Application

6.1 Data

We apply our identification and estimation results to analyze an empirical model of con-

sumer choices using an IRA scanner data set of supermarket purchases of potato chips.

The scanner data include multiple supermarket locations in two separate geographic areas.

It contains over 900 different product types, some of which are not available in all areas.

The panel data structure cover 312 weeks of purchases at 54 supermarkets in Pittsfield,

MA and Eau Claire, WI. The products are categorized into 20 major brands that account

for over 97% of the total market. The remaining brands are combined into a single brand

category “other brands”. The market is dominated by “Lays” (the label of Pepsico inc.),

which has a 45% share, and the second largest brand is “Pringles” (the label of Procter

& Gamble). The empirical question we investigate is the demand elasticity with respect

to price discounts. Since potato chips have long expiration periods and can be purchased
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outside vendors outside of the supermarkets, we expect that demand reacts elastically to

price discounts due to substitution and stockpiling effects.

The purchase prices in this data set vary substantially from 5 cents to $6.99, and the

average time between purchases varies from 1 to 285 weeks for returning consumers (Table

8). On average, the market share of a brand increases by 20% when it is offered at a

discounted price. For most brands, market shares are highly correlated with the shares

of inventory on sale. Volume discounts are prevalent. The price per ounce for the largest

packages is almost half the price per ounce for the smallest packages. These reduced-form

evidence indicates a high correlation between price discounts and purchase behaviors.

The market shares of various Potato chip products are persistent over time. In Figure

2, the cross product variation at a given time substantially exceeds the variation of product

share over time for the same product. In the data price promotions occur regularly. Some

brands having price discounts as frequently as 50 % of the time. Consumers appear to be

responding to the posted price drops. Table 6 displays summary sale statistics and frequency

of promotions across products. .7The reported statistics correspond to the parameters of

distribution of sales aggregated by time and markets and sales aggregated by time and

brand, to the consumers surveyed in the panel. The sales averaged over time and market

range from 11 cents to $1795. The sales averaged over brand and time range from 25 cents

to $1849 per week. The sale distribution has a long tail with a visible concentration at the

bottom. This is due to small sales in some markets and small sales of certain brands.

Table 7 compares the market shares of brands following a week with price promotion and

the market shares of brands during the same number of weeks when no price promotion has

previously occurred. The mean as well as the 25, 50 and 75% quantiles of the market share

distribution are all significantly higher for the promoted products. Figure 3 also shows that

the histogram of log-market shares has visibly lower mode and mean for periods following a

week without price promotion. In contrast, log-market shares concentrate at higher levels

following a period of price promotions. The effect of promotion effect can also be visualized

by the time path of log-market share and promotion timing for particular products. Figure

4 shows the market share of Classic Lay’s chips over time with a spline-smoothed graph.

The market share of Classic Lay tends to increase following the price promotion, and it

35



decreases when the price promotion is absent.

Additional evidence on the effect of price promotion on the transition of the market

shares over time is reported in Figure 5, which summarizes the results of a nonparametric

regression of the log-market share on the lagged log-market shares, separately for the cases

where there was a price promotion in the previous period and where there were no pro-

motions. It is clear from figure 5 that log-market share tends to be higher in the periods

following the price promotion. Even the periods without the price promotion, we observe a

strong positive relationship between the past and the present log-market shares, suggesting

persistent non-price product-specific fixed effects. While a similar pattern is also observed

in the period following a price promotion, the effect of price promotion is very large and

outweighs the effect of the product characteristics.

Table 12 reports the results of a set of models in which we regress log market shares

on price, a dummy variable for promotion and various product characteristics. Product

characteristics include package size, fat content, sodium content, cooking method, brand

name and shape. The three columns in table 12 correspond to OLS, a linear IV regression

using the sums of product characteristics of the other products and the demographic infor-

mation of consumers as instrument, and nonlinear BLP IV demand function with the same

instruments. The largest value for the price coefficient was obtained in the BLP model with

fixed coefficients. To estimate the BLP we used the same instruments as in the IV setup.

The price promotion dummy has a similar range for all of the estimated models.

Brand level demand estimates accounting for time lags from the previous discount pro-

motion are reported in table 13. The demand elasticity is estimated at 1.6 for the entire

sample which varies from 1.7 for estimates in the sale periods only to 1.5 in the periods

not on sale. In addition, the overall demand is lower for the products that are on sale less

frequently, although the effect of sale frequency on demand is diminishing. The estimates

of the price elasticity are compatible with those obtained using the BLP approach on the

product level. As expected, the fraction of purchases of potato chips on sale is higher for

households with lower income and higher for larger households. The share of products

purchased on sale is higher for unemployed individuals as well as for students and retirees.
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6.2 The Empirical Model

To account for forward-looking consumers and their stockpiling behavior, we need to esti-

mate a dynamic choice model to distinguish between short term demands and long term

demands. Applying the nonparametric and semiparametric estimators discussed earlier in

the paper, however, is complicated by the presence of unobserved heterogeneity in consumer

demand at the individual level. The presence of unobserved heterogeneity is reflected in

the higher price elasticity in the household level demand than in the aggregate brand level

demand. Unobserved consumer characteristics that affects their tendency to stockpile are

likely to be persistent but can also vary over time.

Methods to account for the presence of unobserved heterogeneity are developed by Aguir-

regabiria and Mira (2007), Arcidiacono and Miller (2006), Kasahara and Shimotsu (2008)

among others. In particular, Hu and Shum (2008) allows for nonparametric identification of

continuously distributed and serially correlated unobserved heterogeneity. These methods

are not only more advantageous in nonparametric identification but also more computation-

ally feasible. It is prohibitive to compute the consumer decision rules in the nested fixed

point maximum likelihood method due to the rich state space in most consumer choice

models. In our data of price promotion with 21 brands over 1000 households, storing 1000

value functions defined over 20 continuous variables of market shares on a discretized grid

of 100 points in single precision will require a total memory of exceeding 10200000 Terabytes.

We augment an infinite horizon heterogeneous consumer model using the nonparametric

identification and estimation method cited above. Each period t = 1, . . . ,∞ is associated

with the visit of a particular consumer to the store. Each product j = 1, . . . , J is charac-

terized by a vector of observable characteristics xjt, price pjt, and scalar product-consumer

specific unobservable characteristic νijt. The utility for consumer i from purchasing product

j in period t is given by

uijt = x′jtβ − αpjt + νijt + εijt = vj(pjt, xjt) + νijt + εijt,

where pjt is the price of product j and εijt is an i.i.d. idiosyncratic preference shock

according to the extreme value distribution. We assume that pjt follows a first-order Markov

process the stationary distribution being continuous on compact support. Consumers are
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forward looking and maximize the expected lifetime discounted utility. We also assume that

conditional on ξt, δt, dt, (ξt+1, δt+1) are independent of (pt+1, xt+1).

Denote pt = (p1t, . . . , pJt) the vector of current period prices and νit = (νi1t, . . . , νiJt)

the vector of product-consumer-specific characteristics. The ex ante continuation value of

consumers, denoted Vi(pt, νit), only depends on the current state variables because of the

Markov transition assumption. The choice-specific value function of choosing product j is

Vij(pt, νit) = vj(pjt, xjt) + νijt + βE [V (pt+1, νi,t+1) | pt, νit, dit = j] .

The static utility of the outside option of no purchase, indexed by k = 0, is normalized to

zero. The corresponding choice specific value function of outside purchase is

Vi0(pt, νit) = βE [V (pt+1, νi,t+1) | pt, νit, dit = 0] .

We consider a model in which νijt = ξjt + δit, where the unobserved product characteristic

has both a product-specific component ξjt that is common across the consumers a the same

instance of time, and a consumer-specific component δit that is common across different

brands for the same consumer. We assume that ξjt and δit both have finite support with

K points, denoted by {zk}Kk=1, and that they follow first-order Markov processes according

to the choice d.

In the presence of unobserved product characteristics both the value functions and the

choice probabilities depend on the unobserved components. For example,

Vij(p, x, ξ, δ) = vj(pj , xj) + ξj + δ − βE [log σij(pt+1, xt+1, ξt+1, δi,t+1) | p, x, ξ, δ]

+ βE [Vij(pt+1, xt+1, ξt+1, δi,t+1) | p, x, ξ, δ] ,

for choices j = 1, . . . , J , and

σij(p, x, ξ, δ) =
exp (Vij(p, x, ξ, δ))
J∑
k=0

exp (Vik(p, x, ξ, δ))

, j = 0, . . . , J.

While σij(p, x, ξ, δ) are not observed, they are related to the observed choice probabilities

through the relation

σij (p, x) =

K∑

k=1

K∑

p=1

σij(p, x, ξ = zk, δ = zp)πi,δ(zp)πj,ξ(zk).
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where πi,δ(zp) and πj,ξ(zk) correspond to the stationary distribution of δi and ξj . Also define

matrixes Π1 with elements Π1
lmnp = Pr (δi,t = zl, ξi,t = zm, δi,t+1 = zn, ξi,t+1 = zp), and Π2 =

Π1Π2. In the above, πi,δ(zp) and πj,ξ(zk) are the corresponding marginal distribution of

δi,t, ξi,t implied by Π1.

As shown in Hu and Shum (2008), in addition to the conditional choice probabilities

σij (p, x), the conditional covariance between choices over different periods also contain use-

ful information to identify the unknown parameters in σij(p, x, ξ, δ). In particular, consider

the choice correlations between one and two periods apart:

γijh(p
′, x′, p, x) = E

[
dij,t+1diht | pt+1 = p′, xt+1 = x′, pt = p, xt = x

]

=
K∑

p,k,l,m=1

σij
(
p′, x′, zp, zk

)
σih (p, x, zp, zk)Π

1
pklm,

and

κijh(p
′, x′, p, x) = E

[
dij,t+2diht | pt+2 = p′, xt+2 = x′, pt = p, xt = x

]

=

K∑

p,k,l,m=1

σij
(
p′, x′, zp, zk

)
σih (p, x, zp, zk)Π

2
pklm.

These provide additional moment conditions that we will use to estimate the distribution

of the unobserved heterogeneity components.

We use ζk, k = 1, . . . ,K2 to denote all the support points of δ, ξ. To implement the model

we represent the choice probabilities given both the observed and unobserved components

using a polynomial:

σ̂ij(p, x, ζk) = aN,kij HN (p, x),

where HN (p, x) are basis functions and aN,kij are unknown coefficients to be estimated.

Similarly define the observable conditional value function

V̂ij(p, x) =
K∑

k=1

K∑

p=1

Vij(p, x, zk, zp)πi,δ(zp)πj,ξ(zk),

and represent it with a polynomial expansion V̂i0(p, x) = vNi H
N (p, x). Using instruments

Zt = HN (pt, xt), we form two sets of moment conditions to estimate the model. The first
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set of moments relate to the conditional correlation of the choices over time:

ρ1,jh(A, v(·)) = E

[
Zt

(
dij,t+1diht

−
K2∑

k,p=1

Πkha
N,k
ij HN (pt+1, xt+1)a

N,p
ij HN (pt, xt)

)]

ρ2,jh(A, v(·)) = E

[
Zt

(
dij,t+2diht

−
K2∑

k,p,r=1

ΠkrΠrpa
N,k
ij HN (pt+2, xt+2)a

N,p
ij HN (pt, xt)

)]
.

The second set of moment conditions are the conditional choice probabilities in relation to

the Bellman equations:

ρ3(A, v(·)) = E

[
Zt

(
vNi H

N (pt, xt) + β

K2∑

k,p=1

Πkp log
(
aN,ki0 HN (pt+1, xt+1)

)

− βvNi H
N (pt+1, xt+1)

)]
,

and

ρ4,j(A, v(·)) =E
[
Zt

(
vNi H

N (pt, xt) + β

K2∑

k,p=1

Πkp log
(
aN,ki0 HN (pt+1, xt+1)

)

− βvNi H
N (pt+1, xt+1)− vj(xjt, pjt) +

K2∑

k,p=1

Πkp log

(
aN,kij HN (pt, xt)

aN,ki0 HN (pt, xt)

))]
.

We estimate the parameters in this system using a conventional GMM method.

6.3 Empirical Results

The additive individual-specific unobserved heterogeneity component with serial correlation

over time can represent the reactions of consumers purchasing potato chips to purchasing

potato chips can react to price variations over time by either socking up potato chips, or

using the alternative retail locations such as gas stations. While consumer individual unob-

served heterogeneity can be interpreted either as their stocking behavior or as their tendency
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to switch to alternative outlets, and may have other interpretations, the data pattern of the

clear responses of consumer purchases to the timing of large price discounts is consistent

with the stock piling interpretation of unobserved individual components. We implement

a model specification where the unobserved heterogeneity component has a support of 20

points, and we use second-order approximations to the choice probabilities. As a result,

we estimate the period utility as a function of demographic and brand characteristics for

each of the 20 brands (excluding the “combined” brand #21). The obtained structural

estimates are given in Tables 17- 20. The structural elasticity estimates reported in these

tables are much higher than those in the static BLP model. This suggests that the presence

of consumer-level persistent unobserved heterogeneity has a substantial impact on the coef-

ficient estimates. The estimates that we obtain in the structural model exceed the estimates

reported in the static BLP model by a factor of two. We also that find that an increase in

the package size has a positive impact on consumer utility. Consumer demographic infor-

mation also plays important roles in the utility function. Higher income individuals tend to

extract smaller utility from purchasing potato chips uniformly over brands. larger family

size makes consumer more prone to purchasing potato chips. Furthermore, education tends

to decrease the utility from purchasing potato chips. In addition, the families where the

oldest male works tend to value potato chips less than those where the oldest male stays

at home. Finally, we find that Hispanic households tend to value potato chips more than

other households.

Our findings show that the elasticity of demand in the dynamic model is very different

from that obtained in a static BLP style demand model. These findings reinforces the

insights in Hendel and Nevo (2006) that short term and long term demand elasticities

can be substantially different because of unobserved stockpiling behaviors by consumers.

Qualifying this difference between short term and long term demand is difficult, however,

using conventional demand estimation techniques in the BLP style. A semiparametric

dynamic discrete choice model that is computationally flexible and attractive, provides a

powerful tool to distinguish long term behavior from short term demands, and can be useful

to obtain meaningful demand elasticity estimates for consumers.

By comparison, we also estimate the structural discrete choice without the serially cor-
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related unobserved heterogeneity component. The brand-by-brand estimates are reported

in tables 21-24. One can immediately see that the price coefficients are lower in the model

with serially correlated unobserved component, which provides evidence of consumption

smoothing behavior by consumers who purchase larger quantities of products on sale.

We also present a direct comparison between the results from the two models with and

without unobserved heterogeneities in Table 25. To construct this table we consider how

the price elasticity of demand evolve over time in response to an unanticipated price decline

for Lay’s potato chips by 10% in Week 1 (10% price discounts are typical in our data).

Only the model with unobserved heterogeneity allows for time-varying elasticity. A direct

comparison between the OLS and IV results shows that price endogeneity indeed creates a

serious bias in the point estimates. Then when we compare the fixed and random coefficient

BLP model, we notice that the random coefficient BLP produces a higher price elasticity.

Furthermore, when we compare elasticity between the structural models with and without

serially correlated unobserved heterogeneity we can see that, the model without serially

correlated unobserved heterogeneity overstates both the short term and the long-term price

elasticity. The price elasticity tends to decline over time following the weeks after the

one-time price drop for Lay’s.

7 Conclusion

We study nonparametric identification of a dynamic discrete game model of incomplete

information, and develop nonparametric and semiparametric estimators that have flexible

computational properties and desirable statistical properties. Our identification analysis

provides a unified framework for both discrete and continuous state variables, and sug-

gests a natural implementation of a nonparametric estimator. In addition, we derive the

semiparametric efficiency bound and propose a one-step semiparametric efficient estimator

under the assumptions that the transition process is nonparametrically specified while the

static payoff functions are parametric. The properties of the model are illustrated in a set

of numerical simulations and by an empirical application. Similarly, the

The identification and estimation framework in this paper is not without limitations.

Assumption 1 requires the independence and identical extreme value distribution of the error
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terms. Additionally, these errors enter additively into the agent’s static payoffs. While

this is a common assumption in the literature, it is also very strong. It is possible to

relax some of these restrictions if we are willing to comprise the other components of the

model. For example, if a linear index functional form is imposed on the static payoffs,

the error term distribution can be identified nonparametrically and does not need to be

assumed entirely known. This is well known in static linear index discrete choice models,

but requires more complex deconvolution arguments in dynamic models through nonlinear

functional relations. Similarly, the normalization assumption is a necessary identification

condition and is innocuous in a static model. But it might not be innocuous in a dynamic

model. Adding a function of the state variables to the payoffs of all actions will not change

the static choice probabilities, but might change the dynamic choice probabilities, especially

if one of the choices tends to shift the distribution of the future state variables towards a

higher utility area. In these cases assumption 2 is not necessarily more appealing than

making a parametric static utility assumption. These can be interesting future research

directions.
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A Proof of theorem 3

First we need to characterize the tangent set of the model. The likelihood of the model will be

determined by the choice probabilities and the transition density for the state variable. Given that

choices of players are observed by the econometrician, the log-likelihood of the model can be written

as

L (s, s′, d) =

n∑

i=1

K∑

k=0

di,k log σi (ai = k | s) +
∑

a∈A

da log g (s | s′, a) + log p (s′) ,

where g(·|s′, a) is the transition density of the state variable, da is the indicator of the action profile

a, and p(·) is the stationary density of the state variable. We choose a particular parameterization

path θ for the model and compute the score by differentiating the model along the path:

Sθ (s, s
′, d) =

∑

a∈A

das1θ (s | s′, a) + s2θ (s
′) +

n∑

i=1

K−1∑

k=0

(
di,k

σi (k|s)
− di,K

σi (K|s)

)
σ̇i (k|s) ,

where E [s1θ (s | s′, a) |s′, a] = 0, E [s2θ (s
′)] = 0, E

[
|s1θ (s | s′, a)|2 |s′, a

]
< ∞, E |s2θ (s′)|2 < ∞,

and E |σi (k|s)|2 <∞. Then we characterize the tangent set as

T =

{
∑

a∈A

daη1 (s | s′, a) + η2 (s
′) +

n∑

i=1

K−1∑

k=0

η3(s)

(
di,k

σi (k|s)
− di,K

σi (K|s)

)}
,
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with E [η1 (s | s′, a) |s′, a] = 0, E [η2 (s
′)] = 0, E

[
|η1 (s | s′, a)|2 |s′, a

]
< ∞, E |η2 (s′)|2 < ∞, and

E |η3(s)|2 <∞. We will derive the semiparameric efficiency bound for this model under the absence

of parametric restrictions on the state transition density. To derive the bound we find the parametric

and the non-parametric parts of the score of the model using a particular parametrization path for

the non-parametric component. For the chosen parametric path θ we denote

∂Vi (k, s)

∂θ
= ζi (k, s) and

∂Vi (k, s)

∂γ′
= ζ̃i (k, s) .

Also denote πi (k, s) =
∂Π(k,s;β)

∂γ′ . We form vectors V i = (Vi (1, s) , . . . , Vi (K, s))
′
, V =

(
V 1, . . . , V n

)′
,

σi = (σi (1|s) , . . . , σi (K|s))′ and
ζ = (ζ1 (1, s) , . . . , ζ1 (K, s) , . . . , ζn (K, s))

′
. First of all, we note that we can transform the original

moment equation. Consider the operator

Pi ◦ f = E [f (s′) | s, ai] ,

where expectation is defined for the conditional density
∑
a−i

g (s′|s, ai = k, a−i)σ−i (a−i|s). This

operator has a discrete spectrum with eigenfunctions
{
Θi,kj (s)

}∞

j=0
and eigenvalues

{
λi,kj

}∞

j=0
dif-

ferent from zero. This follows directly from the properties of the Hibert-Schmidt operators which

can be found in Dunford and Schwartz (1958). Then we can represent the value function as

Vi (k, s) =

∞∑

j=0

ai,kj Θi,kj (s) .

Then we can transform the moment equation to

ϕ̃ (s, s′, a ; γ, Vi, σi) =
∞∑
j=0

ai,kj

(
1− βλi,kj

)
Θi,kj (s)

+
(
1− di,0

)
[−Πi (ai, a−i, s; γ) + β log σi (ai|s′)] + di,0β log

(
1−

K∑
j=1

σi (j|s′)
)
.

Then we can define a directional derivative of the moment function with respect to Vi in the direction

h as
(
∂ϕi
∂Vi

)

h

=
∞∑

j=0

hj

(
1− βλi,kj

)
Θi,kj (s) ,

for all h with
∞∑
j=0

|hj |
∥∥∥Θi,kj (s)

∥∥∥ < ∞. Differentiating the unconditional moment equation with

respect to the parametrization path we obtain

E
[
A (s, da)π (s)

(
1− da,0

)]
γ̇ − E

[
A (s, da)

(
∂ϕ
∂V

)
h

]
ḣ

= βE
[
A (s, da)

(
da 6=0

σ(a|s′) − da,0

σ(0|s′)

)]
+ E [A (s′, da) ϕs1θ] .
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We consider the right-hand side and try to find a function Ψ̃ such that the expression on the right-

hand side can be represented as 〈Ψ, Sθ〉. This function can be obtained as

Ψ̃ = A (s, da)

{
(ϕ− E [ϕ | s, a]) + da 6=0 − σ (a|s)

σ (a|s′) − da,0 − σ (0|s)
σ (0|s′)

}
.

We note that conditional moment equation (23) holds and we can differentiate it with respect

to the parameterization path. Then we can substitute the expression for the derivative into the

expression for the unconditional moment. This allows us to express the directional derivative of γ

and, consequently, the efficient influence function for a fixed instrument matrix:

Ψ = E
[
A (s, da)

(
π (s)

(
1− da,0

)
−
(
∂ϕ
∂V

)
h

)]−1

Ψ̃.

The semiparametric efficiency bound as a minimum variance of the influence function. Denoting

Ω(s, a) = Var

(
ϕ+

da 6=0

σ (a|s′) −
da,0

σ (0|s′)

∣∣∣∣ s, a
)
.

Using standard GMM arguments, we can express the efficiency bound for fixed instrument as

Vh (β) =
((
π (s)

(
1− da,0

)
−
(
∂ϕ
∂V

)
h

)
ζ (da, s)

′
Ω (s, a)

−1
ζ (da, s)

(
π (s)

(
1− da,0

)
−
(
∂ϕ
∂V

)
h

))−1

.

The efficiency bound overall can be found as Vh∗ (β) for h∗ solving

inf
h

(
π (s)

(
1− da,0

)
−
(
∂ϕ
∂V

)
h

)
ζ (da, s)

′
Ω (s, a)

−1
ζ (da, s)

(
π (s)

(
1− da,0

)
−
(
∂ϕ
∂V

)
h

)
.

The optimal instrument matrix can be explicitly written as

M(s) = E

[(
π (s)

(
1− da,0

)
−

∞∑
j=0

h∗j (1− βλj)Θj (s)

)
ζ (da, s)

′
Ω (s, a)

−1

∣∣∣∣ s
]
.

Q.E.D.

Proof of theorem 5

We can use the Bellman equation to express the estimate of the payoff function in terms of the

estimate of the value function. We use a series projection estimator to estimate Vi (k, s)− Vi (0, s).

To evaluate the elements of the Bellman equation for player i we need to analyze the right hand side

function

hi(s) = E

{
log

K∑

k=0

(Vi (k, s
′)− Vi (0, s

′))

∣∣∣∣s
}
.
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Function hi(s) admits a series representation hi(s) =
k(m)∑
j=1

qj(s)λ
k(m)
i,j + o

(
‖qk(m)(s)‖

)
, where we

use the standard Sobolev norm. The coefficients for this representation can be obtained from the

coefficients for Vi(k, s)− Vi(0, s). This result can be used to find a series representation for Vi (0, s)

which needs to be estimated. To do that we proceed by analyzing the nonparametric conditional

expectation estimation component of step two, which takes the form of

Vi (s, 0) = β

∫
Vi (s

′, 0) gi (s
′|s, 0) ds′ + hi (s) = (Ki ◦ Vi) (s, 0) + hi (s) , (25)

where gi (s
′|s, 0) = ∑

a−i∈A−i

g (s′|s, 0, a−i)σ (a−i|s).

This is an integral equation for Vi (·, 0). We assume that the integral operator Ki and the term

hi (·) satisfy the standard assumptions assuring the existence of a smooth solution of this equation.

In particular s ∈ S, Vi : S 7→ R+, both the kernel function gi (·) and the function hi (·) have

derivatives up to order p ≥ k(m), which assures a high degree of smoothness of the value function.

Thus Vi ∈ Cp (S), and Ki : Cp (S) 7→ Cp (S). A standard method for solving this equation is to

represent solution by a series expansion over a particular basis in Cp (S). We will use the basis

qk(m)(s) =
(
q1(s), . . . , qk(m)(s)

)′
for these purposes. Then the approximation for the value function

can be written as:

Vi (·, 0) = qk(m)(s)′ θ
k(m)
i .

We endow the space Cp (S) with an inner product 〈·, ·〉 and introduce matrices

Γ = (〈qt(s), qj(s)〉)k(m)
t,j=1 and Gi = (〈K qt(s), qj(s)〉)k(m)

t,j=1 .

We define the inner product for two functions f, g ∈ Cp (S) as:

〈f, g〉 =
∫

S

f(s)g(s)π (ds) = E [f(s) g(s)] ,

where π(·) is a stationary distribution measure for the state space S. In general, this measure is

not available. For this reason, we substitute it with the empirical measure πm (·), which we require

to be weekly converging to π(·). We call the space associated with the inner product generated by

πm (·) by Cpm (S). This space is only a semi-Hilbert space as the inner product in it might have a

non-empty kernel (and, thus, the associated norm is only a seminorm). We will use the same basis

in Cpm (S) as before.

We can use the expansion for hi(·) to derive the series approximation for the value function

Vi (·, 0). In this case the vector of coefficients in the series representation of the value function can
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be found as:

θ
k(m)
i = (Γ− βGi)

−1
Γλ

k(m)
i .

This result is obtained from substituting series expansions for hi(·) and Vi(·, 0) into equation (25)

and projecting both sides of this equation on the basis vectors qk(m)(·).
These coefficients allow us to obtain an approximation for the value of the function Vi (·, 0) which

can be expressed as:

V
k(m)
i (s, 0) = qk(m)(s)′ (Γ− βGi)

−1
Γλ

k(m)
i

For sufficiently smooth coefficients of the original integral equation, this expression will provide an

approximation of order k(m) such that the norm of the deviation of the approximation from the

true solution will be bounded from above by L
k(m)! sup

s,s′∈Ω
‖s− s′‖k(m)

, where Ω ⊂ S is a subset of

the state space where the value function is approximated by the series expansion. Note that all

components of this formula are exactly known, although the matrices are specific to a particular

basis.3

We estimate coefficients in the series representation of the value function from the data. To do

so, first, we estimate the state transition probability. We assume that an estimator with the rate

r ∈ (0, 1/2] is available which produces the estimate that is point-wise asymptotically normal at s′

uniformly over s in Ω:

nr (ĝi (s
′ | s, 0)− gi (s

′ | s, 0)) d−→ N
(
0, σ2

g(s
′, s)

)
.

We assume for convenience that this estimate is obtained using an estimation procedure which can

be approximated by a series expansion with the order of precision at least op (n
−r). To estimate the

vector of coefficients λk(m) we use the data from the observed states and values of hi (·) to estimate

it. Note that the values of hi(·) are obtained from the Hotz-Miller-type inversion and thus contain

noise. By the nature of this inversion we can in principle evaluate ĥi(·) at any point of Ω. Although

the probabilities of actions are estimated non-parametrically, by Delta-method we can assure that

for some q ∈ (0, 1/2] we obtain a point-wise asymptotically normal estimator of hi(·) in Ω. In

particular we use a spectral representation of hi(·) to estimate it non-parametrically and obtain the

coefficients λp. Thus

nq
(
ĥi (s)− hi (s)

)
d−→ N

(
0, σ2

h(s)
)
.

3For instance, if qk(m) (·) is a system of Legendre polynomials then Γ = diag
{√

2
2k(m)+1

}

.
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We consider the properties of the pointwise approximation error for the value function:

V̂
k(m)
i (s, 0)− Vi (s, 0) = qk(m)(s)′ (Γ− βGi)

−1 〈ĥi(s)− hi(s), q
k(m)(s)〉

+βqk(m)(s)′ (Γ− βGi)
−1 〈

(
K̂i −Ki

)
qk(m)(s), qk(m)(s)′〉 (Γ− βGi)

−1′
Γλk(m) +∆k(m).

In this expression ∆k(m) is a residual function. In the expression for the error in the estimate of

the value function the matrices only play the role of normalization while the asymptotic behavior of

the error is governed by the integrated error in the estimated components of the Bellman equation.

This normalization does not change the rate of convergence of the estimators, and the order of

polynomial expansion is determined only by the degree of smoothness of the function approximation.

Assumption 5 restricts the operator K to be bounded. Consider the transformation λ 7→ Γ1/2λ and

qk(m) (·) 7→ Γ−1/2qk(m) (·). This a rotation of the basis which does not change the asymptotic

properties. In fact, indicating the rotated variables by tildes we get:

mq

(
q̃k(m)(s)′

˜̂
λ
k(m)

i − q̃k(m)(s)′λ̃
k(m)
i

)
d−→ N

(
0, σ2

ψ

)
.

Specifically, σ2
V = lim

m→∞
trace

{
m2qΩ̃λq̃

k(m)(s)q̃k(m)(s)′
}
= lim

m→∞
trace

{
m2qΩλq

k(m)(s)qk(m)(s)′
}
=

σ2
ψ(s).

Next, note that Ik(m) ≤
(
Ik(m) − βΓ−1/2GiΓ

−1/2
)−1 ≤ (1− β)

−1
Ik(m), where inequality should

be treated as the difference between the two matrices is a positive semi-definite matrix. We can show

that the last inequality is valid in to steps. First, the matrix Γ−Gi is positive semi-definite because

the operatorK is defined by a density function. Second, the matrix (1− β)
−1 (

Ik(m) − βΓ−1/2GiΓ
−1/2

)
−

Ik(m) is positive semi-definite. To see that, consider decomposition

Ik(m) − βΓ−1/2GiΓ
−1/2 = (1− β) Ik(m) + βΓ−1/2 (Gi − Γ)Γ−1/2 ≥ (1− β) Ik(m).

As a result:

trace
{
m2q (Γ− βGi)

−1
ΓΩλΓ (Γ− βGi)

−1
qk(m)(s)qk(m)(s)′

}

= trace
{
m2q

(
Ik − βΓ−1/2GΓ−1/2

)−1
Ω̃λ
(
Ik(m) − βΓ−1/2GΓ−1/2

)−1
q̃k(m)(s)q̃k(m)(s)′

}
.

This means that

ω2
1 = lim

m→∞
trace

{
m2q (Γ− βGi)

−1
ΓΩλΓ (Γ− βGi)

−1
qk(m)(s)qk(m)(s)′

}
<

σ2
ψ

(1− β)
2 ,

and it does not vanish. This proves that the rate of convergence of the non-parametric estimate for

Vi(·, 0) is the same as the rate for hi(·).
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The approximation for the value function can be expressed in terms of subsequent projections.

From the Bellman’s equation it follows that

V̂
k(m)
i (s, 0)− Vi(s, 0)− βE

[
V̂i(s

′, 0)− Vi(s
′, 0)

∣∣s
]
= β

(
Ê
[
Vi(s

′, 0)
∣∣s
]
− E

[
Vi(s

′, 0)
∣∣s
])

+∆, (26)

with the residual ∆. Using the spectral representation for the expectation in the basis qk(m)(·)
(where the coefficients of Vi (·, 0) in this basis are denoted θk(m)) we obtain that up to the error of

order smaller than ∆:

Ê [V (s′, 0) | s]− E [V (s′, 0) | s] = qk(m)(s)′Γ−1
(
Ĝi −Gi

)
θk(m),

E
[
V̂ (s′)− V (s′)

∣∣s
]
= qk(m)(s)′Γ−1Gi

(
θ̂k(m) − θk(m)

)
.

From spectral representation of the Bellman’s equation it follows that (up to the series approximation

error):

θk(m) = (Γ− βGi)
−1

Γλk(m).

Substitution of these expressions into (26) gives:

V̂
k(m)
i (s, 0)− V

k(m)
i (s, 0) = βqk(m)(s)′Γ−1/2

(
I − βΓ−1/2GiΓ

−1/2
)−1

Γ−1/2

×
(
Ĝi −Gi

)
Γ−1/2

(
I − βΓ−1/2GiΓ

−1/2
)−1

Γ1/2λ
k(m)
i .

This suggests that the method of approximating value function by consecutive conditional expecta-

tions (26) is equivalent to the spectral approach up to approximation error.

Now we will discuss the case where we substitute the stationary measure Gi (·) by its empirical

analog. In this case for the sample {sl}ml=1 the inner product for f, g ∈ Cp (S) can be defined as:

〈f, g〉m =

m∑

l=1

f (sl) g (sl) .

We can describe the quality of approximation only outside the kernel of the seminorm in Cpm (S).

In that part of the subspace the norm of the elements of the basis is well-defined. For this reason,

we can write the same expressions for the coefficients for expansion of the value function in the basis

qk(m) (·) but in terms of matrices Γm and Gm defined by the inner product in Cpm (S). In this case,

the problem of evaluation of the difference between the estimate of the value function obtained from

Γm and Gm and the true value reduces to two separate problems. The first one is evaluation of the

error due to series approximation, which was considered above. The second one is evaluation of the

quality of approximation when using empirical measure instead of the true stationary measure. The
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general results regarding these properties are given, for instance, in (Billingsley, 1968). Here we will

consider a special case when the stationary and empirical measures have densities. We can evaluate

the quality of approximation of the value function as:

V
m,k(m)
i (s)− V

k(m)
i (s) = βqp(s) (Γ− βGi)

−1
(Gmi −Gi) (Γ− βGi)

−1
Γλp

+βqk(m)(s) (Γ− βGi)
−1

(Γm − Γ)
[
I − (Γ− βGi)

−1
Γ
]
λ
k(m)
i + o (‖Γm − Γ‖, ‖Gmi −Gi‖) ,

where the norm in the residual term is a standard matrix norm. This expression has similar structure

as the expression for the errors due to estimation of hi(·). From Assumption 5 it follows that traces

of matrices Γm − Γ and Gmi − Gi approach to zero faster than mmax{q,r}. This means that in the

asymptotic expansion the corresponding term vanishes as well.

This result proves that we can, in general, substitute the matrices Gi and Γ by their sample

versions without affecting the asymptotic variance. The estimate of the value function will take the

form:

V̂
k(m)
i (s, 0) = qk(m) (s)

′
(
Γ̂− βĜi

)−1

Γ̂′λ̂
k(m)
i ,

where Γ̂ and Ĝi are sample averages for estimating Γ and G. For example:

Ĝi =
1

m

m∑

j=1

1

T

T−1∑

t=1

qk(m) (sj,t+1) q
k(m) (sj,t)

′
.

In the previous step we have estimated Vi (s, l) − Vi (s, 0) non-parametrically as qk(m)′γ
k(m)
i,l .

This means that the non-parametric estimate for the choice-specific value function is a combination

of the obtained estimate for Vi (s, 0) and this difference and:

V̂
k(m)
i (s, l) = qk(m)′

(
θ̂
k(m)
i + γ̂

k(m)
i,l

)
.

This variable will be normal as it is non-degenerate and computed as a sum of two asymptotically

normal estimates. This fact becomes straightforward if we explicitly express coefficients θ
k(m)
i in

terms of γ
k(m)
i,l . Let γ

k(m)
i =

(
0, γ

k(m)
i,1 , . . . , γ

k(m)
i,K

)
be the stacked matrix of coefficients in the

expansions for Vi (s, l)− Vi (s, 0). We introduce the following vector of logit probabilities:

Λ =


 exp(Vi(s,l)−Vi(s,0))

K∑

j=0

exp(Vi(s,j)−Vi(s,0))




l=1,...,K

Then we can express λ
k(m)
i (up to the error of approximation) as:

λ
k(m)
i = Γ−1Giγ

k(m)
i Λ.
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Therefore, the corresponding coefficients for the value function can be expressed as:

θ
k(m)
i = (Γ− βGi)

−1
Giγ

k(m)
i Λ.

Value function can be explicitly estimated from coefficients γ̂
k(m)
i and matrices Gi and Γ as:

V̂
k(m)
i (s, l) = qk(m)′

(
γ̂
k(m)
i,l +

(
Γ̂− βĜi

)−1

Ĝiγ̂
k(m)
i Λ̂

)
.

From this estimate one can see that the estimate for the value function is obtained from the esti-

mates for the choice-specific probabilities by permuting them by bounded linear transformations (as
∑
t Λt = 1 and Λt > 0, while the operator represented by the matrix I −βΓ−1/2GiΓ

−1/2 is bounded

as shown above). This motivates asymptotic normality with non-degenerate distribution for their

estimates. Estimated profit will be, again, a non-degenerate linear combination of the estimates for

the choice-specific probabilities, and pointwise normality of the estimate with the rate of conver-

gence, corresponding to the minimum of the convergence rate for the choice specific probability or

transition density.

To formalize this recall that we can compute the profit function from the value function by the

formula:

Πi (s, l) = Vi (s, l)− βE
[
Vi (s

′)
∣∣s, ai = l

]
.

Let G
(l)
i be the matrix corresponding to the state transition density gi (s

′ | s, l) such that G
(l)
i,tr =

∫ ∫
gi (s

′ | s, l) qk(m)
t (s′)q

k(m)
r (s)π(ds) ds′. We can then express the spectral representation for the

profit as:

Π
k(m)
i (s, l) = qk(m)′(s)

(
γ
k(m)
i,l +

{[
Ik(m) − Γ−1G

(l)
i

] [
(Γ− βGi)

−1
Gi + Ik(m)

]
− Ik(m)

}
γ
k(m)
i Λ

)
.

Then we can transform the expression for the profit function as:

Π
k(m)
i (s, l) = qk(m)′(s)γ

k(m)
i,l + q̃k(m)′(s)

{[
Ik(m) − Γ−1/2G

(l)
i Γ−1/2

]

×
[(
Ik(m) − βΓ−1/2GiΓ

−1/2
)−1

+ Γ1/2G−1
i Γ1/2

]
Γ−1/2GiΓ

−1/2 − Γ−1/2

}
γ̃
k(m)
i Λ.

In this expression tildes denote the rotation of the basis considered before. The matrix in the second

expression represents a bounded linear transformation due to assumption 3. Therefore the estimate

for the profit function is a bounded transformation of the estimate of the choice probabilities. Then

we can evaluate the variance-covariance matrix as

ω2
π = lim

m→∞
trace

{
qk(m)′(s)

(
γ
k(m)
i,l +

{[
Ik(m) − Γ−1G

(l)
i

] [
(Γ− βGi)

−1
Gi + Ik(m)

]
− Ik(m)

}
γ
k(m)
i Λ

)

×
(
γ
k(m)
i,l +

{[
Ik(m) − Γ−1G

(l)
i

] [
(Γ− βGi)

−1
Gi + Ik(m)

]
− Ik(m)

}
γ
k(m)
i Λ

)′
qk(m)′(s)

}
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Table 1: Simulation summary for entry utilities, nmarket=100

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.238 -0.006885 -0.0028 0.225 0.36 -0.52

1 1 2 -0.22 0.00004 0.0071 0.2304 0.343 0.749

1 2 1 -0.33 -0.011 -0.0349 0.28 0.48 -1.023

1 2 2 -0.21 0.0038 0.017 0.24 0.34 0.81

2 1 1 -0.25 0.027 0.023 0.31 0.44 0.53

2 1 2 -0.36 -0.021 -0.005 0.35 0.57 -1.005

2 2 1 -0.31 -0.022 0.0032 0.31 0.482 1.15

2 2 2 -0.38 0.013 -0.021 0.36 0.619 -1.600

Table 2: Simulation summary for entry utilities, nmarket=500

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.109 -0.006 -0.002 0.102 0.161 -0.52

1 1 2 -0.095 0.0017 0.0011 0.097 0.146 0.749

1 2 1 -0.15 -0.0044 -0.0068 0.13 0.211 -1.02

1 2 2 -0.092 -0.0059 0.00004 0.1 0.146 0.812

2 2 1 -0.109 0.013 0.009 0.12 0.18 0.53

2 2 2 -0.164 0.0085 -0.0013 0.15 0.23 -1.005

2 2 1 -0.13 0.0017 0.0043 0.14 0.203 1.15

2 2 2 -0.15 0.0001 0.002 0.16 0.24 -1.60

Table 3: Simulation summary for entry utilities, nmarket=1000

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.073 -0.00002 0.001 0.077 0.109 -0.52

1 1 2 -0.075 -0.0049 -0.0032 0.072 0.106 0.749

1 2 1 -0.107 -0.003 -0.005 0.092 0.14 -1.023

1 2 2 -0.066 0.0053 0.004 0.075 0.108 0.812

2 2 1 -0.078 0.0023 0.0046 0.086 0.127 0.537

2 2 2 -0.11 0.0024 -0.0033 0.107 0.166 -1.005

2 2 1 -0.098 -0.0021 -0.001 0.091 0.14 -1.60
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Table 4: Simulation summary for entry utilities, nmarket=2000

i a−i state 1st quartile median mean 3rd quartile std true Pi

1 1 1 -0.05 0.005 0.0038 0.059 0.0772 -0.52

1 1 2 -0.053 -0.00017 -0.00037 0.051 0.074 0.749

1 2 1 -0.078 -0.0066 -0.0062 0.0603 0.1007 -1.023

1 2 2 -0.045 0.0018 0.0017 0.05 0.075 0.812

2 2 1 -0.055 0.0017 0.0039 0.064 0.089 0.537

2 2 2 -0.088 -0.005 -0.0049 0.07 0.119 -1.005

2 2 1 -0.066 -0.004 -0.0021 0.059 0.097 1.150

2 2 2 -0.079 0.011 0.0051 0.086 0.124 -1.600

Table 5: Simulation summary for entry utilities

sample size mean variance median 90% quantile/10% quantile ratio

50 -0.2075 1.0898 -0.2371 0.0007

100 -0.2064 1.1111 -0.1776 0.0012

150 -0.2075 0.9341 -0.1935 0.0011

200 -0.2056 1.0461 -0.1934 0.0010

250 -0.2047 1.0346 -0.1936 0.0009

300 -0.2041 0.9111 -0.1851 0.0010
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Table 6: Summary statistics for sales and promotions

Variable Obs Mean Std. Dev. Min Max 25% 50% 75%

Total sales across brands
in dollars 68102 15.997 51.492 0.11 1795.4 2.39 5.38 12.88
in units 68103 9.025 24.566 1 721 1 3 8

Total sales across markets
in dollars 7499 145.282 216.266 0.25 1848.5 6.56 33.8 196.1
in units 7499 81.958 120.995 0.25 156 5 23 107

Frequency of promotions 5166 0.283 0.322 0 1 0 0.16 0.5

Table 7: Product market shares following the weeks with a price promotion and without a
promotion

Variable Obs Mean Std.Dv. Min Max 25% 50% 75%

All sample
log-market share 149460 -4.134 1.178 -7.355 0 -4.997 -4.241 -3.423

Promotion
log-market share 22496 -3.916 1.144 -7.355 0 -4.751 -3.985 -3.135

No promotion
log-market share 126964 -4.173 1.179 -7.355 0 -5.037 -4.290 -3.481

Table 8: Summary of purchases
Obs Mean Std. Dev. Min Max

Price per purchase 335230 1.875 0.820 0.059 6.99
# of items purchased 345952 1.278 0.737 0.25 70
Average size of item 345952 0.591 0.251 0.031 3

Time between purchases, weeks 335608 5.588 10.552 1 285
Average number of brands purchased 345952 1.114 0.348 1 6

Table 9: Summary of price promotions
Variable Obs Mean Std.Dv. Min Max 25% 50% 75%

All sample
log-market share 149460 -4.134 1.178 -7.355 0 -4.997 -4.241 -3.423

Promotion
log-market share 22496 -3.916 1.144 -7.355 0 -4.751 -3.985 -3.135

No promotion
log-market share 126964 -4.173 1.179 -7.355 0 -5.037 -4.290 -3.481
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Table 10: Summary of package sizes

volume, rounded # of observations quantity on discount, % % time on sale Average discount

0 563 69% 13% 41%
0.1 22253 13% 8% 13%
0.2 3787 8% 11% 12%
0.3 88309 34% 23% 35%
0.4 78056 30% 23% 28%
0.5 15491 32% 18% 16%
0.6 27189 19% 13% 22%
0.7 88105 47% 41% 33%
0.8 116989 51% 33% 34%
0.9 20376 39% 38% 25%
1 17960 12% 14% 19%

1.1 319 18% 11% 27%
1.2 238 30% 32% 16%
1.3 10040 19% 17% 21%
1.4 63 56% 42% 6%

≥1.5 413 6% 13% -1%
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Table 11: Characteristics of brands in the sample

Rank Brand Company Share (vol.) % on sale Share (rev.)

1 LAYS PEPSICO INC 0.4561 0.4325 0.5018
2 PRINGLES PROCTER & GAMBLE 0.1304 0.2964 0.0939
3 PRIVATE LABEL PRIVATE LABEL 0.1191 0.2180 0.0964
4 RUFFLES PEPSICO INC 0.0630 0.2306 0.0917
5 WISE PALLADIUM EQUITY PARTNERS 0.0536 0.4183 0.0456
6 OLD DUTCH OLD DUTCH FOODS INC 0.0398 0.4739 0.0481
7 UTZ UTZ QUALITY FOODS 0.0311 0.5347 0.0247
8 CAPE COD CAPE COD POTATO CHIP 0.0276 0.2984 0.0350
9 JAYS UBIQUITY BRANDS 0.0197 0.5002 0.0224
10 BARREL O FUN KLN ENTERPRISE 0.0193 0.4562 0.0173
11 POORE BROTHERS THE INVENTURE GROUP INC 0.0094 0.5740 0.0070
12 TERRA THE HAIN CELESTIAL GROUP INC 0.0029 0.1980 0.0045
13 STATE LINE STATE LINE SNACKS CORP 0.0025 0.0755 0.0026
14 KETTLE CHIPS KETTLE FOODS INC 0.0024 0.1995 0.0031
15 HERRS HERR FOODS INC 0.0013 0.0109 0.0010
16 GIBBLES MARTIN SNACKS 0.0012 0.1403 0.0015
17 COTTAGE FRIES PALLADIUM EQUITY PARTNERS 0.0008 0.1023 0.0007
18 BACHMAN GOLDEN RIDGES BACHMAN CO 0.0004 0.1734 0.0004
19 GRANDMA UTZ UTZ QUALITY FOODS 0.0003 0.1203 0.0003
20 UTZ DELITES UTZ QUALITY FOODS 0.0002 0.4479 0.0003
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Table 12: Estimated demand for products in potato chips category

OLS IV BLP

log-price -0.29 -1.2 -1.979
[74.69]*** [56.14]*** [44.59]***

promotion 0.153 0.137 0.144
[19.67]*** [13.99]*** [7.32]***

Observations 149460 125401 125401

t-statistics are in the braces
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Table 13: Aggregate demand estimates
All sample On sale Not on sale

log(quantity) log(quantity) log(quantity) log(quantity) log(quantity) log(quantity)

log(price) -1.594 -1.293 -1.741 -1.627 -1.539 -1.176
[0.01]*** [0.01]*** [0.03]*** [0.02]*** [0.01]*** [0.01]***

time -0.006 -0.006 -0.008 -0.005
[0.0004]*** [0.0004]*** [0.0004]*** [0.0004]***

time2 0.00005 0.00006 0.00006 0.00005
[0.000005]*** [0.000005]*** [0.000005]*** [0.000005]***

Constant 2.126 1.736 2.215 2.098 2.09 1.557
[0.01]*** [0.01]*** [0.03]*** [0.02]*** [0.02]*** [0.01]***

brand FE Yes No Yes No Yes No
Observations 139058 139058 37709 37709 101033 101033
R-squared 0.16 0.2 0.11 0.16 0.11 0.16
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Table 14: Fraction of products purchased on sale as function of household characteristics
Fraction of purshase made on sale

Pre-tax income -0.001 -0.001 -0.001 -0.001
[0.000]* [0.000]** [0.000] [0.000]**

Family size 0.014 0.012 0.014 0.012
[0.001]*** [0.001]*** [0.001]*** [0.001]***

Education male 0.001 0.001 0 0.001
[0.001] [0.001] [0.001] [0.001]*

Age male -0.002 0.001 -0.002 0.001
[0.001]** [0.001] [0.001]* [0.001]

Education female -0.001 -0.002 -0.002 -0.002
[0.001]** [0.001]*** [0.001]*** [0.001]***

Age female 0.008 0.007 0.007 0.008
[0.001]*** [0.001]*** [0.001]*** [0.001]***

I(not employed, male) 0.095 0.006 0.023 0.094
[0.010]*** [0.010] [0.010]** [0.010]***

I(Part time, male) 0.022 -0.018 0.002 0.006
[0.024] [0.024] [0.024] [0.025]

I(Full time, male) 0.018 -0.017 -0.003 0.009
[0.024] [0.024] [0.024] [0.025]

I(Retired, male) 0.118 0.089 0.094 0.118
[0.028]*** [0.028]*** [0.028]*** [0.029]***

I(Retired, male) 0.061 -0.005 0.002 0.067
[0.003]*** [0.004] [0.004] [0.003]***

I(Student, male) 0.028 -0.036 -0.022 0.027
[0.019] [0.019]* [0.018] [0.019]

I(not employed, female) 0.067 -0.023 -0.016 0.079
[0.009]*** [0.010]** [0.010]* [0.010]***

I(Part time, female) -0.019 -0.024 -0.045 0.009
[0.021] [0.021] [0.021]** [0.021]

I(Full time, female) -0.021 -0.026 -0.048 0.008
[0.021] [0.021] [0.021]** [0.021]

I(Retired, female) -0.049 -0.048 -0.08 -0.007
[0.025]** [0.025]* [0.024]*** [0.025]

I(Retired, female) 0.029 -0.027 -0.023 0.037
[0.008]*** [0.008]*** [0.008]*** [0.009]***

I(Student, female) 0.053 0.021 0.002 0.086
[0.015]*** [0.015] [0.014] [0.015]***

Market FE Yes No Yes No
Time FE No Yes Yes No
Marital status FE Yes Yes Yes Yes
Occupation, male FE Yes Yes Yes Yes
Occupation, Female FE Yes Yes Yes Yes
HH race FE Yes Yes Yes Yes
Demographics variables: I(N/A) Yes Yes Yes Yes
Constant 0.211 0.216 -0.128 0.195

[0.036]*** [0.036]*** [0.039]*** [0.037]***
Observations 354380 354380 354380 354380
R-squared 0 0 0.04 0
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Table 15: Demand as a function of sale parameters
log(quantity)

log(price) -0.05 -0.038 -0.022 -0.046 -0.023
[0.003]*** [0.003]*** [0.003]*** [0.003]*** [0.003]***

I(sale) 0.13 0.154 0.197 0.149 0.194
[0.004]*** [0.004]*** [0.004]*** [0.005]*** [0.004]***

I(sale) X log(price) -0.086 -0.096 -0.136 -0.09 -0.137
[0.004]*** [0.004]*** [0.004]*** [0.004]*** [0.004]***

Size 2.018 2.118 2.128 2.115 2.128
[0.003]*** [0.003]*** [0.003]*** [0.003]*** [0.003]***

Household FE Yes No No No No
Time FE No No Yes Yes No
Market FE No Yes No Yes No

Flavour FE Yes Yes Yes Yes Yes
Fat content FE Yes Yes Yes Yes Yes
Produser FE Yes Yes Yes Yes Yes
Cooking stile FE Yes Yes Yes Yes Yes
Salt/sodium content Yes Yes Yes Yes Yes
Cut type FE Yes Yes Yes Yes Yes
Packegae type FE Yes Yes Yes Yes Yes
Constant -0.044 -0.083 -0.16 0.643 -0.171

[0.327] [0.349] [0.351] [0.372]* [0.352]
Observations 471953 471953 471953 471953 471953
R-squared 0.62 0.67 0.67 0.68 0.68
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Table 16: Brands of potato chips in the considered markets
Brand rank Brand Name Brand owner

1 LAYS PEPSICO INC
2 PRINGLES PROCTER & GAMBLE
3 PRIVATE PRIVATE LABEL
4 RUFFLES PEPSICO INC
5 WISE PALLADIUM EQUITY PARTNERS
6 OLD DUTCH OLD DUTCH FOODS INC
7 UTZ UTZ QUALITY FOODS
8 CAPE CODE CAPE COD POTATO CHIP
9 JAYS UBIQUITY BRANDS
10 BARREL KLN ENTERPRISE
11 POORE THE INVENTURE GROUP INC
12 TERRA THE HAIN CELESTIAL GROUP INC
13 STATE STATE LINE SNACKS CORP
14 KETTLE KETTLE FOODS INC
15 HERRS HERR FOODS INC
16 GIBBLES MARTIN SNACKS
17 COTTAGE PALLADIUM EQUITY PARTNERS
18 BACHMAN BACHMAN CO
19 GRANDMA UTZ QUALITY FOODS
20 UTZ UTZ QUALITY FOODS
21 OTHER OTHER
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Table 17: Coefficient estimates for consumer choice model with serially correlated consumer
and brand-specific unobserved heterogeneity: part 1

Variables Brand 1 Brand 2 Brand 3 Brand 4 Brand 5

log(Price) -3.093084 -2.839459 -2.731196 -3.163044 -2.692065
Pkg. quantity (oz) 0.023648 0.027227 0.113665 0.052785 0.056427
Packaging: bag 1.083336 2.257118 2.076922 0.160061 1.120758
Box 0.167489 0.710799 0.989843 0.443545 0.412596
Canister 2.126507 1.08645 0.918042 2.380979 0.004586
other 2.130894 0.857171 3.322598 0.313321 1.393228
Flavor: Barbeque 2.516947 1.121407 0.927539 2.578106 0.830753
Cheddar 0.002148 2.123562 2.887561 0.81756 1.116835
Classic 0.081069 3.319681 0.056023 1.339931 0.726215
Dill 0.09442 1.97255 0.983903 2.120143 0.336933
Other 0.894347 1.443588 3.086589 3.301995 0.839248
Missing 0.401883 1.362309 0.945448 3.126884 0.871189
Cut: Flat 17.504062 11.922788 16.878971 5.546945 18.11449
Rippled 0.563384 6.881071 2.475236 4.990139 4.607974
Wavy 2.054767 1.529476 3.308461 2.575336 0.23931
Other 1.893328 2.60554 3.370363 2.50533 2.519205
Missing 0.767867 1.453247 3.402031 3.001584 2.016039
Fat indication: Reduced 0.412106 0.660561 1.31856 1.450738 2.816783
Regular 3.331358 1.393665 1.095798 1.610804 2.088087
Missing 2.954277 3.163212 0.911828 2.750444 3.085395
Cooking: Crispy 3.358041 1.506079 3.125307 1.668809 0.502346
Kettle cooked 0.87759 2.51677 3.264619 3.215015 2.202708
Other 0.588135 0.294594 2.573136 1.256161 1.134427
Missing 2.564087 2.952459 1.128398 0.632139 0.373934
Sodium indication: Reduced 1.055897 3.10707 2.399652 3.10766 3.029386
Regular 1.993188 3.427846 1.26847 0.947693 2.653605
Missing 1.902018 2.761925 1.884527 2.683362 3.241812
Pre-tax income -2.771089 -1.819382 -2.430073 -2.297347 -0.248018
Family size 5.349905 4.103607 5.144125 5.241447 0.725615
Age male -0.422976 -0.751685 -0.173533 -0.101178 -0.522588
Education male -12.245675 -4.573244 -2.860647 -7.009571 -30.733799
Age Female -5.205421 -2.352651 -5.136977 -2.208746 -2.728967
Education Female -8.045068 -1.045667 -15.690651 -8.1239 -2.483252
Work male -2.347099 -0.738439 -0.881929 -2.716539 -2.984811
Work female 0.077111 0.070068 0.06911 0.06611 0.003634
Hispanic 0.97801 0.246425 2.268229 2.124053 1.485854
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Table 18: Coefficient estimates for consumer choice model with serially correlated consumer
and brand-specific unobserved heterogeneity: part 2

Variables Brand 6 Brand 7 Brand 8 Brand 9 Brand 10

log(Price) -2.911434 -2.998795 -2.950773 -2.672683 -2.473143
Pkg. quantity (oz) 0.077634 0.156119 0.090197 0.175843 0.192358
Packaging: bag 1.381033 1.113762 0.708142 0.975481 0.81713
Box 0.177706 0.102814 0.658632 0.757247 0.039964
Canister 1.570065 2.636845 0.598895 3.094523 0.452339
other 0.431822 0.309739 2.399878 2.287465 0.130452
Flavor: Barbeque 0.62645 1.018675 0.734392 0.183648 1.669077
Cheddar 2.235641 2.613372 3.331874 2.859479 1.202645
Classic 2.038993 2.156949 1.807655 1.38874 0.774996
Dill 0.487649 0.054597 2.637733 2.900615 2.676727
Other 2.965642 0.104623 0.129827 1.592186 0.989739
Missing 1.134811 0.427577 2.267329 0.306437 0.172047
Cut: Flat 13.151739 2.881501 1.738296 18.662324 22.868188
Rippled 5.639751 4.017684 6.745104 3.429067 5.441019
Wavy 2.818587 1.890329 3.394326 0.61501 3.239276
Other 0.912543 3.296327 2.683909 2.52803 0.541938
Missing 1.983328 2.267515 1.093936 1.991945 1.574072
Fat indication: Reduced 1.241271 2.117671 0.777772 0.544591 2.787941
Regular 2.018017 1.582632 0.866518 1.31806 0.939611
Missing 1.531191 0.998216 2.905236 0.728097 1.663594
Cooking: Crispy 3.004646 0.930495 1.357602 3.364759 2.223727
Kettle cooked 2.932436 0.864896 0.136 1.778929 0.213116
Other 1.932747 1.154702 0.164381 2.008287 2.578632
Missing 2.235834 2.947569 2.862703 2.566581 2.177511
Sodium indication: Reduced 3.339568 0.92091 0.371203 1.002449 0.12617
Regular 0.857643 0.135918 1.918062 3.303149 1.49087
Missing 1.587419 2.271327 2.661004 1.24907 2.247563
Pre-tax income -2.265123 -2.31245 -3.10701 -1.603886 -3.144913
Family size 2.361773 2.349088 2.489815 2.285943 1.438528
Age male -0.253109 -0.62194 -0.731417 -1.028493 -1.187941
Education male -31.260136 -24.93648 -29.108916 -8.994038 -31.168224
Age Female -3.391082 -5.489202 -1.12166 -4.483172 -5.019412
Education Female -5.893146 -0.327465 -23.465545 -33.513486 -33.660915
Work male -3.223599 -1.585419 -2.77831 -3.06848 -2.867074
Work female 0.060679 0.05034 0.011888 0.066718 0.033457
Hispanic 2.097809 2.375445 2.443606 1.414577 1.602941

66



Table 19: Coefficient estimates for consumer choice model with serially correlated consumer
and brand-specific unobserved heterogeneity: part 3

Variables Brand 11 Brand 12 Brand 13 Brand 14 Brand 15

log(Price) -2.832483 -3.377132 -2.771604 -3.497284 -2.529089
Pkg. quantity (oz) 0.049913 0.230882 0.053747 0.058217 0.041049
Packaging: bag 1.600841 0.118706 0.617699 2.056933 0.869879
Box 0.66783 0.353583 0.037915 0.630748 0.320821
Canister 0.139967 1.525342 1.816851 2.932369 2.517147
other 1.064437 1.152173 0.740411 2.18755 1.210693
Flavor: Barbeque 2.461822 3.416663 2.033453 0.193975 3.045213
Cheddar 4.808022 2.221313 3.301636 0.329845 3.980536
Classic 1.07844 1.917593 1.685969 0.338605 0.856008
Dill 2.687815 2.200718 1.338211 2.977077 1.352452
Other 3.090167 1.616635 0.548024 1.587683 0.538777
Missing 1.208416 1.091454 1.163744 1.782808 2.062348
Cut: Flat 0.569647 13.65379 4.337904 0.914032 9.027001
Rippled 9.962334 7.662772 6.120877 7.448297 7.093168
Wavy 1.224002 1.545203 2.729351 0.558106 0.695127
Other 3.228049 2.306742 0.349161 2.128965 1.702242
Missing 1.025563 1.182387 1.9929 1.314187 0.275021
Fat indication: Reduced 0.494604 0.618838 2.900136 0.315187 2.544821
Regular 0.977317 1.664291 3.103324 1.754553 1.279596
Missing 0.453452 1.897675 2.550097 0.366025 2.723793
Cooking: Crispy 1.282562 1.199485 0.76986 0.922236 2.201934
Kettle cooked 0.846958 2.254751 0.684318 1.126301 2.962456
Other 0.490823 1.409014 0.613642 0.085044 2.266251
Missing 3.066277 2.290534 1.426655 2.805567 0.900059
Sodium indication: Reduced 0.220772 2.03641 2.992886 0.761481 2.594839
Regular 3.278297 0.896235 0.785438 0.877279 2.438604
Missing 1.769905 0.108077 0.465667 1.745102 3.205335
Pre-tax income -3.107872 -2.114851 -0.482997 -0.726054 -1.734766
Family size 5.085033 4.436701 5.358412 4.696524 0.313327
Age male -0.308294 -0.933368 -0.518613 -0.942868 -1.336357
Education male -11.639638 -10.194708 -20.207561 -14.761104 -21.938081
Age Female -3.958591 -2.246844 -0.810577 -5.343278 -0.145376
Education Female -22.979569 -15.827254 -11.254127 -39.739514 -12.535587
Work male -2.465584 -2.559206 -0.994668 -1.205902 -1.376537
Work female 0.073555 0.005894 0.063267 0.048208 0.080662
Hispanic 1.636374 1.335034 0.645398 1.331692 2.231147
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Table 20: Coefficient estimates for consumer choice model with serially correlated consumer
and brand-specific unobserved heterogeneity: part 4

Variables Brand 16 Brand 17 Brand 18 Brand 19 Brand 20

log(Price) -2.65456 -2.671703 -3.402789 -2.876268 -2.610249
Pkg. quantity (oz) 0.214722 0.069933 0.023916 0.117554 0.080076
Packaging: bag 0.329038 2.010122 1.392058 0.508031 0.265844
Box 0.456768 0.808673 0.767574 0.344338 0.916292
Canister 2.430506 1.36155 0.801319 1.837389 1.128458
other 3.304824 2.336067 1.889204 1.383907 3.423793
Flavor: Barbeque 2.318563 2.898738 0.661945 3.182186 2.134064
Cheddar 1.248369 3.641905 3.100562 4.430765 2.862633
Classic 0.740903 3.341088 2.813865 1.194648 2.614328
Dill 2.418467 0.927911 1.732779 3.373826 3.333253
Other 2.925802 1.586381 2.942008 1.538393 3.146978
Missing 1.738911 1.001665 2.457159 1.28895 2.800001
Cut: Flat 5.157646 8.127552 9.455298 1.931442 8.526636
Rippled 8.278694 4.803991 6.586358 7.938665 1.443765
Wavy 1.759582 1.992636 3.14824 1.00224 3.244111
Other 0.073455 0.367029 1.069979 3.27423 0.015846
Missing 1.698027 0.919257 1.581047 2.866553 0.445962
Fat indication: Reduced 3.12346 0.740612 1.941488 1.099642 2.53422
Regular 1.667674 2.186504 0.131235 0.039267 2.979704
Missing 0.862517 2.932301 1.131967 2.435796 1.551027
Cooking: Crispy 2.948857 2.600496 1.024544 2.865601 2.281548
Kettle cooked 0.591628 0.549288 2.21809 1.650761 2.90468
Other 3.078843 0.158544 1.708176 2.033724 1.019161
Missing 2.520156 0.240018 2.243487 2.816472 2.67039
Sodium indication: Reduced 0.188314 3.335747 1.835417 0.158818 1.007104
Regular 1.760145 3.061989 2.362086 1.47624 3.291899
Missing 1.216696 1.309844 1.665115 1.864185 0.148474
Pre-tax income -3.150911 -0.298756 -1.584276 -0.723553 -1.788233
Family size 4.497552 0.147249 1.090846 4.11252 3.563815
Age male -0.243806 -0.640892 -0.126559 -0.497055 -1.641209
Education male -7.518827 -20.366765 -32.768399 -22.227705 -23.662763
Age Female -4.674357 -3.098578 -0.587867 -3.512758 -3.791617
Education Female -38.776416 -18.424189 -30.783284 -0.613146 -39.625269
Work male -3.174855 -3.153605 -0.373659 -0.98848 -0.507682
Work female 0.076362 0.019372 0.015398 0.052889 0.049528
Hispanic 1.311957 1.313039 0.871052 1.5276 1.721466
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Table 21: Coefficient estimates for consumer choice model without unobserved heterogene-
ity: part 1

Variables Brand 1 Brand 2 Brand 3 Brand 4 Brand 5

log(Price) -4.165822 -5.386564 -5.365204 -4.193513 -4.300462
Pkg. quantity (oz) 0.110578 0.158264 0.068733 0.010223 0.011204
Packaging: bag 0.326362 0.341004 0.864795 0.2872 0.292761
Box 0.021068 0.650912 0.374105 0.37723 0.080592
Canister 0.13326 0.476179 0.473303 1.558845 1.417243
other 2.212735 0.813927 2.457802 0.536493 1.168099
Flavor: Barbeque 0.309188 0.715059 1.573114 0.651692 0.565978
Cheddar 1.926521 0.746351 2.479831 0.163897 1.361593
Classic 0.178167 1.317739 2.055443 1.609769 2.047781
Dill 2.423557 0.80767 1.831116 1.547685 0.127566
Other 0.783219 0.675258 1.011162 0.922373 0.884892
Missing 0.547649 0.359212 0.936272 1.351815 1.139046
Cut: Flat 17.424891 2.951845 8.680732 14.586069 8.236349
Rippled 2.459214 8.556563 4.837721 6.878325 4.889042
Wavy 1.788228 1.713201 0.039203 0.199366 1.706493
Other 0.562744 0.725479 1.555318 2.634525 2.449236
Missing 1.102998 0.022778 0.68523 0.808989 0.654261
Fat indication: Reduced 0.588252 2.558548 1.009842 1.806997 0.704029
Regular 0.279152 1.561708 0.329483 0.764724 1.387526
Missing 1.378011 2.576356 1.370222 0.298344 0.339283
Cooking: Crispy 0.790333 1.125594 1.361933 1.990712 0.328233
Kettle cooked 1.506478 1.301525 1.977683 2.078281 0.896909
Other 2.493808 0.426577 0.866939 1.715311 1.046856
Missing 0.516302 0.22664 2.414835 1.236038 1.472778
Sodium indication: Reduced 1.525073 1.469333 1.995248 1.673107 2.143054
Regular 1.019638 1.781308 1.90269 0.744342 2.298365
Missing 0.161072 1.434877 1.625611 0.744006 0.474184
Pre-tax income -0.855846 -4.250458 -4.463546 -1.127139 -5.5819
Family size 2.691766 2.314595 4.08801 7.095724 2.540808
Age male -1.041996 -2.443184 -1.534026 -1.110189 -0.93047
Education male -6.242541 -40.394791 -19.719089 -16.976177 -29.850739
Age Female -6.627981 -0.727685 -6.96913 -8.556765 -7.504168
Education Female -40.128482 -26.834798 -61.137031 -1.390044 -53.885656
Work male -4.449358 -1.87242 -3.109071 -1.798329 -3.875555
Work female 0.052662 0.03255 0.108231 0.023519 0.094144
Hispanic 0.880216 0.282617 0.579385 3.555073 0.895571

69



Table 22: Coefficient estimates for consumer choice model without unobserved heterogene-
ity: part 2

Variables Brand 6 Brand 7 Brand 8 Brand 9 Brand 10

log(Price) -5.942396 -6.631553 -5.33314 -5.463779 -4.585297
Pkg. quantity (oz) 0.100403 0.015798 0.046498 0.062104 0.015571
Packaging: bag 1.528673 1.262471 0.397429 0.052525 0.42474
Box 0.262017 0.248657 0.11899 0.140372 0.084643
Canister 2.208332 0.935361 1.631955 0.604184 1.933457
other 1.198789 0.458909 0.613683 1.63443 1.100732
Flavor: Barbeque 1.640518 0.963101 1.434067 0.596472 0.835032
Cheddar 2.138886 1.101339 0.476418 0.622793 1.272544
Classic 1.720011 0.016727 0.56878 1.235842 0.899407
Dill 0.19335 1.558747 0.680782 0.835989 2.193451
Other 0.198886 1.760965 2.352432 1.586522 1.508106
Missing 1.228729 1.48904 1.226602 0.543439 1.694876
Cut: Flat 10.755164 12.723075 11.819334 9.378905 1.896329
Rippled 5.560848 3.575512 1.021045 4.216397 1.677433
Wavy 1.122226 0.519879 1.279616 1.113999 1.249871
Other 0.96761 0.947765 0.868797 0.934202 1.361492
Missing 0.090624 1.813063 0.23638 2.639069 0.572035
Fat indication: Reduced 1.008904 0.377457 1.356393 1.069813 0.394479
Regular 1.053043 0.139044 1.877635 1.168561 0.61018
Missing 0.270797 1.558468 0.532695 1.197255 1.424094
Cooking: Crispy 0.408829 1.690843 1.941648 0.603736 1.931615
Kettle cooked 1.650217 1.177204 0.948795 2.162084 0.329338
Other 0.284677 1.255097 0.860667 0.244123 2.039686
Missing 0.992637 0.273154 0.341603 2.016055 1.901628
Sodium indication: Reduced 0.727254 0.928646 0.406623 1.989706 0.056746
Regular 1.524695 1.783301 1.887261 1.243915 1.597559
Missing 1.388155 0.185051 1.613794 1.575446 2.259512
Pre-tax income -4.487869 -5.50511 -0.798736 -1.827621 -3.104033
Family size 6.77549 9.872027 6.009347 5.543223 8.759527
Age male -1.537945 -1.975047 -1.061209 -2.063721 -1.270058
Education male -45.872031 -30.453402 -42.889598 -25.072204 -13.63651
Age Female -6.204733 -4.661933 -5.370452 -1.054304 -6.491553
Education Female -15.772796 -63.238631 -40.137163 -63.13209 -55.651209
Work male -0.062776 -3.253028 -0.825571 -3.887503 -2.180464
Work female 0.113847 0.110697 0.045031 0.048243 0.051391
Hispanic 2.772715 2.507646 1.522741 0.235443 2.912699
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Table 23: Coefficient estimates for consumer choice model without unobserved heterogene-
ity: part 3

Variables Brand 11 Brand 12 Brand 13 Brand 14 Brand 15

log(Price) -5.701579 -6.153897 -5.569636 -4.179997 -6.387933
Pkg. quantity (oz) 0.052347 0.044234 0.065901 0.123 0.004293
Packaging: bag 0.599797 1.20975 0.585687 0.570026 0.71747
Box 0.539036 0.117165 0.400723 0.48628 0.452487
Canister 1.328678 2.239394 0.685635 1.858454 0.569346
other 1.003705 0.999802 1.294024 2.080618 0.485416
Flavor: Barbeque 0.707111 0.099615 0.710088 1.994047 1.773578
Cheddar 0.781812 1.745907 2.550642 2.369324 3.359982
Classic 0.036601 1.054822 1.081916 0.555373 2.8331
Dill 0.140996 1.009944 1.145985 1.509845 1.1288
Other 0.094312 1.269004 0.766857 0.341079 0.458858
Missing 1.173771 0.206495 1.116473 1.512532 1.621733
Cut: Flat 5.477097 4.056816 4.275265 6.66029 3.848013
Rippled 3.444869 3.747512 3.94062 2.655449 6.212754
Wavy 1.92152 0.341824 2.036878 1.138402 0.472894
Other 1.011258 1.269357 1.062805 1.50636 1.926623
Missing 0.825069 0.065132 0.967002 0.363923 1.275612
Fat indication: Reduced 1.483487 1.72401 0.301453 0.96603 1.035122
Regular 0.226998 0.878857 0.60496 2.126524 1.648472
Missing 0.005091 1.563122 0.359839 0.829744 1.657967
Cooking: Crispy 0.336888 0.320954 0.735975 1.530435 1.16523
Kettle cooked 2.398844 0.459408 0.514702 2.343202 2.022477
Other 2.569468 2.021763 0.302024 1.608572 1.834448
Missing 0.028339 0.764783 0.058601 0.243557 1.648182
Sodium indication: Reduced 0.511914 1.184127 1.130265 0.835812 2.112263
Regular 1.41527 0.619621 0.74064 1.438851 0.617883
Missing 0.237487 2.2337 2.702513 1.726688 1.460125
Pre-tax income -0.471282 -2.858001 -0.793913 -1.134544 -3.011794
Family size 2.840776 2.882248 5.98188 5.830896 4.483393
Age male -2.444957 -1.277594 -2.089676 -2.057892 -0.212153
Education male -30.61355 -2.350366 -6.891827 -14.514786 -11.433809
Age Female -2.084504 -6.290976 -1.038558 -0.632368 -8.778083
Education Female -0.098408 -44.789743 -41.493357 -33.137318 -60.581205
Work male -3.686434 -4.003346 -4.008495 -5.977308 -4.636364
Work female 0.017135 0.008615 0.049143 0.060251 0.148519
Hispanic 2.782203 3.744826 3.835797 2.177668 0.887173
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Table 24: Coefficient estimates for consumer choice model without unobserved heterogene-
ity: part 4

Variables Brand 16 Brand 17 Brand 18 Brand 19 Brand 20

log(Price) -3.657458 -5.087297 -5.721577 -5.394077 -5.820561
Pkg. quantity (oz) 0.072216 0.096999 0.005196 0.12646 0.101312
Packaging: bag 0.323703 1.503906 0.791686 0.708138 0.55918
Box 0.130689 0.643636 0.62666 0.627598 0.002174
Canister 2.34006 0.310726 1.182337 1.183339 1.397798
other 0.651848 0.510269 0.123232 0.399809 0.872859
Flavor: Barbeque 1.537395 1.627388 0.584187 0.763447 2.562344
Cheddar 2.241224 1.9829 1.292326 3.110279 1.123984
Classic 1.650107 0.098588 0.210854 0.777324 2.025672
Dill 0.04128 2.20342 0.390171 1.445992 0.368976
Other 1.270501 1.698583 0.205198 2.352648 2.173152
Missing 0.977024 2.53051 0.448205 0.086543 0.735897
Cut: Flat 15.983062 17.587212 9.795252 15.078067 11.286216
Rippled 7.974686 2.273874 0.534869 0.222243 3.023763
Wavy 0.918974 0.797805 0.756303 2.344447 0.462558
Other 0.036814 1.513505 0.217719 1.01393 2.10527
Missing 0.634043 1.121361 1.650162 2.136423 1.058599
Fat indication: Reduced 0.550543 0.402566 2.045991 1.852582 0.301347
Regular 0.306531 0.495048 0.741667 1.402807 1.923906
Missing 2.011747 1.592642 0.263512 0.151334 1.203223
Cooking: Crispy 1.040639 0.526655 0.264302 1.35717 1.548327
Kettle cooked 0.542647 0.891644 0.51518 2.021249 1.438555
Other 0.867668 1.614956 1.297056 0.286831 1.274577
Missing 0.579038 0.933107 1.665178 1.621085 0.555817
Sodium indication: Reduced 1.744876 1.80043 1.284818 0.372325 0.590017
Regular 0.189598 0.499006 1.413911 0.750868 1.271185
Missing 0.103778 0.658885 0.133986 1.628518 0.977413
Pre-tax income -5.897316 -3.518929 -1.44832 -3.32489 -3.572895
Family size 3.071121 6.79469 0.691731 6.581674 1.513708
Age male -1.217371 -0.225644 -2.478639 -0.362583 -0.681375
Education male -26.642239 -22.698188 -42.233385 -29.881693 -15.795049
Age Female -7.719932 -0.72764 -0.979365 -4.417174 -7.825331
Education Female -30.140097 -23.681847 -43.966854 -46.336628 -31.340084
Work male -5.456659 -2.276498 -2.56086 -2.113586 -1.737959
Work female 0.055232 0.14906 0.014044 0.060431 0.013366
Hispanic 0.428278 4.600718 1.283886 0.585398 3.790626
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Table 25: Impact of an unexpected 10% price drop for “Lay’s potato chips” on the price
elasticity

Week Demand model
OLS IV BLP BLP Dynamic decision model

(random coefficients) (no random coefficients) (random coefficients
+ serial correlation)

1 -0.29134 -1.21362 -2.92362 -3.69832 -2.85327
2 -0.29134 -1.21362 -2.92362 -3.69832 -2.83287
3 -0.29134 -1.21362 -2.92362 -3.69832 -2.82933
4 -0.29134 -1.21362 -2.92362 -3.69832 -2.63647
5 -0.29134 -1.21362 -2.92362 -3.69832 -2.51385
6 -0.29134 -1.21362 -2.92362 -3.69832 -2.49583
7 -0.29134 -1.21362 -2.92362 -3.69832 -2.47564
8 -0.29134 -1.21362 -2.92362 -3.69832 -2.46541
9 -0.29134 -1.21362 -2.92362 -3.69832 -2.45695
10 -0.29134 -1.21362 -2.92362 -3.69832 -2.44564
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Figure 1: Median and Percentiles of numerically recovered utility
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Figure 2: Histogram of variances of log-market shares over products and over markets
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Figure 3: Histogram of log-market shares following the weeks with and without price pro-
motions
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Figure 4: Histogram of log-market shares following the weeks with and without price pro-
motions
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Figure 5: Dependence of the current log-market share from lagged log-market share the
weeks with and without price promotions
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