```
AUTHOR Werts, Charles E.; And Others
TITLE Identification and Estimation in Path Analysis with
    Unmeasured Variables.
INSTITUTION Educational Testing Service, Princeton, N.J.
SPONS AGENCY
REPORT NO RB-71-39
PUB DATE
GRANT
    Department of Health, Education, and Welfare,
    Washington, D.C.; Office of Education (DHEW).
    Washington, D.C.
NOTE 25p.
    Jun 71
    OEG-2-700033(509)
EDRS PRICE EDRS Price MF-$0.65 HC-$3.29
DESCRIPTORS *Analysis of Covariance, *Correlation, Factor
    Analysis, Factor Structure, Goodness of Fit,
    *Mathematical Models, Statistical Analysis,
    Statistics
```


ABSTRACT

A variety of path models involving unmeasured variables are formulated in terms of Joreskog's general model for the analysis of covariance structures. (Author)

Identification and Estimation in Path Analysis with Unmeasured Variables

Abstract

A variety of path models involving unmeasured variables are formulated in terms of JÖreskog's (1970a) general model for the analysis of covariance structures.

2

Identification and Estimation in Path Analysis
with Unmeasured Variables*

A variety of authors (e.g., Blalock, 1969; Costner, 1969; Heise, 1969) have applied path analysis to problems involving multiple indicators of underlying constructs. An important and often algebraically complex feature of such analysis is the determination of identifiability of model parameters. The purpose of this discussion is to demonstrate how a visual inspection of the path diagram can be used to simplify the identification question and how these problems may be formulated in Jobreskog's (1970a) general model.
I. A Single Factor Model

Consider the case of a single underlying factor (F_{1}) with three observed measures $\left(X_{1}, X_{2}\right.$, and $\left.X_{3}\right)$ as shown in Figure 1.a. The factor loadings $\left(\rho_{X_{i} F_{l}}\right)$ in this model equal the standardized path coefficients (b_{1}^{*}, b_{2}^{*}, and b_{3}^{*}), given the assumption that the residuals e_{1}, e_{2}, and e_{3} are independent of each other and of the factor. It is convenient, though not necessary, to assume that both measured and unmeasured variables are standardized. For heuristic purposes observed correlations will be designated with "r" and expected values of these correlations by " ρ ". The expected correlations will differ from the corresponding observed correlations because of samplinss and model specification errors.

[^0]

Fig. l.a. A Single Factor Model

A path analysis of this model yields the equations:

$$
\begin{align*}
& \rho_{12}=b_{1}^{*} b_{2}^{*}, \\
& \rho_{13}=b_{1}^{*} b_{3}^{*}, \tag{1}
\end{align*}
$$

and

$$
\rho_{23}=b_{2}^{*} b_{3}^{*}
$$

Assuming nonzero correlations, equations (l) yield:

$$
\begin{align*}
& \left(b_{1}^{*}\right)^{2}=\frac{\rho_{12} \rho_{13}}{\rho_{23}}=\rho_{X_{1}}^{2} F_{1}, \\
& \left(b_{2}^{*}\right)^{2}=\frac{\rho_{12} \rho_{23}}{\rho_{13}}=\rho_{X_{2} F_{1}}^{2} \text { and } \tag{2}\\
& \left(b_{3}^{*}\right)^{2}=\frac{\rho_{13} \rho_{23}}{\rho_{12}}=\rho_{X_{3} F_{1}}^{2} .
\end{align*}
$$

Given only three observed measures the model is just identified, i.e., the observed and expected correlations are identical. With more than three measures

$$
\begin{equation*}
\rho_{X_{i} F_{J}}^{2}=\left(b_{i}^{*}\right)^{2}=\frac{\rho_{i j} \rho_{i k}}{\rho_{j k}} \quad \text {, where } i \neq j \neq k \text { and } \tag{2a}
\end{equation*}
$$

assuming $\rho_{j k} \neq 0$. If there were a causal linkage (e.g., $F_{J} \rightarrow I_{l} \rightarrow I_{2} \rightarrow X_{i}$) from F_{I} to X_{i} then $\rho_{X_{i}} F_{I}$ would be the product of the intervening path coefficients, i.e., the product of the path coefficients in the chain from F_{1} to X_{i} would be identified. If any loading exceeded unity, the model would be rejected. When there are $m>3$ observed measures then the loadings will be overidentified. The number of overidentifying restrictions is simply the number of distinct correlations $m(m-1) \div 2$ less the number (m) of $\rho_{X_{i} F_{I}}$ to be estimated. Maximum likelihood or least squares estimates for overidentified models can be obtained using Jobreskog's (1970a) general method for the analysis of covariance structures. We use path analysis only to study the identifiability problem, not for estimation purposes (Hauser \& Goldberger, 1970; Werts, Jbreskog, \& Linn, in press).

The above analysis leads to our "rule of three": Whenever the correlations among at least three observed variables may be completely ascribed to the presence of an underlying factor, then the loadings (correlations) for each observed variable on that factor are identifiable. An important qualification is that the expected correlation between any two observed variables cannot be zero since equation (2a) would not be defined when that correlation was in the denominator. In practice, small expected correlations may lead to unstable parameter estimates, i.e., highly unreliable measures result in unreliable parameter estimates.

II. Generalizations

The Figure l.a. model with or without intervening, unmeasured variables going from F_{I} to X_{i} is too limited for most causal analyses. Our purpose in this section is to consider other causal patterns which satisfy the "rule of three," i.e., in which the observed correlations among three variables are
nonzero and may be ascribed to the presence of an underlying factor. Byuations (1), and therefore (2), would still hold if for one on the neasures (c.e., X_{1}) $X_{I} \rightarrow F_{I}$ and the residual θ_{1} of this regression of F_{1} on X_{i} were independent of the other residuals e_{2} and e_{3}, as shown in figure l.b.

Figure I.b.

If two observed measures influence F_{1}, e.g., $X_{1} \rightarrow F_{1}$ and $X_{2} \rightarrow F_{1}$ then it is no longer true that the correlation between these measures equals the product of the corresponding path coefficients, e.g., $\rho_{l 2}$ would not in general equal $b_{1}^{*} b_{2}^{*}$.

Given that all residuals are independent, when there is an intervening variable $\left(I_{1}\right)$ between X_{i} and F_{1}, the correlation between a pair of observed variables X_{i} and X_{j} will equal the product of the intervening path coefficients when $\quad X_{i} \leftarrow I_{1} \leftarrow F_{1} \rightarrow X_{j}, \quad X_{i} \leftarrow I_{l} \rightarrow F_{l} \rightarrow X_{j}, X_{i} \rightarrow I_{l} \rightarrow F_{l} \rightarrow X_{j}, \quad$ and $X_{i} \leftarrow I_{I} \leftarrow F_{I} \leftarrow X_{j}$; but not when two arrows point towards the same variable, e.g., $\quad X_{i} \rightarrow I_{I} \leftarrow F_{I} \rightarrow X_{j}$ or $X_{i} \rightarrow I_{I} \rightarrow F_{I} \leftarrow X_{j}$. In general the correlation between two observed variables may be stated as the product of the intervening path coefficients whenever the causal linkage between these variables does not include a variable which is caused ty two other variables, i.e., when two causal arrows point towards a variable. To identify the loadings on a factor
we need to find three observed variables which are causally linked through that factor, the linkages satisfying the above criteria.

III. Examples

A. Our first example, which corresponds to Figure 1 in Wiley and Wiley (1970), is shown in Figure 2.a.

Figure 2.a.

Tracing linkages for F_{2} :

$$
\begin{aligned}
& X_{1} \leftarrow F_{1} \rightarrow F_{2} \rightarrow F_{3} \rightarrow X_{3}, \\
& X_{1} \leftarrow F_{1} \rightarrow F_{2} \rightarrow X_{2}, \text { and } \\
& X_{2} \leftarrow F_{2} \rightarrow F_{3} \rightarrow X_{3} .
\end{aligned}
$$

Since these three linkages all include F_{2} and satisfy the requirements of the "rule of three" we may conclude that the factor loadings ($\rho_{\mathrm{X}_{\mathrm{i}} \mathrm{F}_{2}}$), i.e., the correlations of each observed variable with F_{2}, are identified. Thus,

$$
\begin{align*}
& \rho_{X_{1} F_{2}}=b_{1}^{*} b_{4}^{*}, \\
& \rho_{X_{2}} F_{2}=b_{2}^{*}, \text { and } \tag{3}\\
& \rho_{X_{3} F_{2}}=b_{3}^{*} b_{5}^{*} .
\end{align*}
$$

The factor loadings on F_{l} are not identified because the correlation between X_{2} and X_{3} cannot be completely ascribed to F_{1}. Likewise the loadings on F_{3} are not identified because the correlation between X_{1} and X_{2} cannot be ascribed to F_{3}. Jd'reskog (1970b) shows that this model may be estimated by a single factor model with F_{2} as the common factor and that the example may be generalized to more than three measured variables.
B. Our second example (see Figure 2.b.) corresponds to Figure 4 in Costner (1969). The analysis is identical whether $F_{1} \rightarrow F_{2}$ or $F_{2} \leftarrow F_{1}$.

Figure 2.b.

Tracing linkages:

$$
\begin{align*}
& X_{1} \leftarrow F_{1} \rightarrow X_{2} \tag{4a}\\
& X_{1} \leftarrow F_{1} \rightarrow F_{2} \rightarrow X_{3}, \tag{4b}\\
& X_{1} \leftarrow F_{1} \rightarrow F_{2} \rightarrow X_{4}, \tag{4c}\\
& X_{2} \leftarrow F_{1} \rightarrow F_{2} \rightarrow X_{3}, \tag{4d}\\
& X_{2} \leftarrow F_{1} \rightarrow F_{2} \rightarrow X_{4} \quad, \text { and } \tag{4e}\\
& X_{3} \leftarrow F_{2} \rightarrow X_{4} . \tag{4f}
\end{align*}
$$

-7-

For F_{1} the factor loadings may be identified by linkages $4 a, b, d$ or by 4a,c,e, i.e., these loadings are overidentified and

$$
\begin{aligned}
& \rho_{X_{1} F_{1}}=b_{1}^{*}, \\
& \rho_{X_{2} F_{1}}=b_{2}^{*}, \\
& \rho_{X_{3} F_{1}}=b_{3}^{*} b_{5}^{*}, \text { and } \\
& \rho_{X_{4} F_{1}}=b_{4}^{*} b_{5}^{*},
\end{aligned}
$$

The factor loadings for F_{2} may be identified by $4 b, c, f$ or $4 d, e, f$ and:

$$
\begin{aligned}
& \rho_{X_{1} F_{2}}=b_{1}^{*} b_{5}^{*}, \\
& \rho_{X_{2}} F_{2}=b_{2}^{*} b_{5}^{*}, \\
& \rho_{X_{3} F_{2}}=b_{3}^{*}, \text { and } \\
& \rho_{X_{4} F_{2}}=b_{4}^{*},
\end{aligned}
$$

Since b_{1}^{*} and b_{r}^{*} are identified, b_{5}^{*} is also identified by these equations.
The analysis may be complicated by assuming e_{1} correlated with e_{3}, in which case linkage 4 b would not be valid, however the conditions of the "rule of three" would still be satisfied for F_{1} and F_{2} and a.ll path coefficients and correlations between errors are (just) identified. Such a model would correspond to Figure 5.a. in Costner (1969).
C. The next example, corresponding to Figure 1 in Blalock (1963), is shown in Figure 2.c. This model is basically a variation on the model of Figure 1.b.

Figure 2.c.
This model differs from that in Figure 2.a. in that $X_{l} \rightarrow F_{1}$ instead of $F_{1} \rightarrow X_{1}$. The linkages are:

$$
\begin{aligned}
& X_{1} \rightarrow F_{1} \rightarrow F_{2} \rightarrow X_{2} \\
& X_{1} \rightarrow F_{1} \rightarrow F_{2} \rightarrow F_{3} \rightarrow X_{3} \quad \text {, and } \\
& X_{2} \leftarrow F_{2} \rightarrow F_{3} \rightarrow X_{3} .
\end{aligned}
$$

Since F_{2} is in all three linkages which satisfy the "rule of three," the factor loadings for F_{2} are identified and

$$
\begin{align*}
& \rho_{X_{1} F_{2}}=b_{1}^{*} b_{4}^{*}=\sqrt{r_{12} r_{13} \div r_{23}}, \tag{5a}\\
& \rho_{X_{2} F_{2}}=b_{2}^{*}=\sqrt{r_{12} r_{23} \div r_{13}}, \text { and } \tag{5b}\\
& \rho_{X_{3} F_{2}}=b_{3}^{*} b_{5}^{*}=\sqrt{r_{13} r_{23} \div r_{12}} . \tag{5c}
\end{align*}
$$

Since r_{12} cannot be ascribed to F_{3} and r_{23} cannot be ascribed to F_{1}, the loadings on these factors are not identified. Our heuristic device would have been helpful to Blalock (1963) since he obtained the equations corresponding to the linkages shown above, but did not solve them for the equivalent of equations $5 \mathrm{a}, \mathrm{b}$, and c .
D. Our fourth example, shown in Figure 2.d., corresponds to Figure 2 in Blalock (1963).

$\theta=$ residual of F_{2} on X_{4} and F_{1}.

Figure 2.d.
Tracing linkages which satisfy our rule:

$$
\begin{align*}
& X_{1} \rightarrow \mathrm{~F}_{1} \rightarrow \mathrm{X}_{2} \tag{6a}\\
& \mathrm{X}_{1} \rightarrow \mathrm{~F}_{1} \rightarrow \mathrm{~F}_{2} \rightarrow \mathrm{X}_{3}, \tag{6b}\\
& \mathrm{X}_{2} \leftarrow \mathrm{~F}_{1} \rightarrow \mathrm{~F}_{2} \rightarrow \mathrm{X}_{3} \quad, \text { and } \tag{6c}\\
& \mathrm{X}_{4} \rightarrow \mathrm{~F}_{2} \rightarrow \mathrm{X}_{3} \tag{6d}
\end{align*}
$$

In this model it is assumed that X_{4} is independent of X_{1} and X_{2}. The loadings on F_{l} are identified by linkages $6 a, b$ and c and therefore:

$$
\begin{align*}
& \rho_{X_{1} F_{1}}=b_{1}^{*}, \tag{7a}\\
& \rho_{X_{2} F_{1}}=b_{2}^{*}, \text { and } \tag{7b}\\
& \rho_{X_{3} F_{1}}=b_{3}^{*} b_{5}^{*} . \tag{7c}
\end{align*}
$$

It is not possible to find three observed variables whose linkages satisfy our rule for F_{2}, i.e., the linkage between X_{1} and X_{4} has two arrows
pointing at F_{2} and the linkage between X_{1} and X_{2} does not include F_{2}. Since $\rho_{34}=b_{3}^{*} b_{4}^{*}$ it follows from equation (7c) that $\rho_{X_{3}}{ }^{\mathrm{F}} \mathrm{b}_{4}^{*}=\rho_{54} b_{5}^{*}$.
E. The fifth example, shown in Figure 2.e., has the special feature of two observed nonindependent variables influencing an unobserved variable. It corresponds to Figure 4 in Blalock (1969).

$\theta=$ residual of F_{1} on X_{1} and X_{2} regression.

Figure 2.e.

When X_{2} is deleted X_{1}, X_{3}, and X_{4} form the model in Figure l.b. from which we conclude that the correlations of X_{1}, X_{3}, and X_{4} with F_{1} are identified. Similarly when X_{1} is deleted the correlations of X_{2}, X_{3}, and X_{4} with F_{1} are identified. Given the correlations among X_{1}, X_{2}, and F_{1} the path coefficients b_{1}^{*} and b_{2}^{*} may be identified since:

$$
\begin{aligned}
& \mathrm{b}_{1}^{*}=\frac{\rho_{X_{1} F_{1}}-\rho_{12} \mathrm{X}_{2} F_{1}}{1-\rho_{12}^{2}} \text { and } \\
& \mathrm{b}_{2}^{*}=\frac{\rho_{X_{2} F_{1}}-\rho_{12} \rho_{X_{1}} F_{1}}{1-\rho_{12}^{2}}
\end{aligned}
$$

F. Our last example, shown in Figure 2.f. corresponds to Figure 9.b. in Costner (1969)

Figure 2.f.

From the analysis of the Figure 2.d. model ve may deduce that when X_{4} is excluded that $b_{1}^{*}, b_{2}^{*}, b_{3}^{*}, b_{5}^{*}, b_{6}^{*}$, and b_{7}^{*} are identified. Using the variables X_{1}, X_{2}, and X_{4} we know from our analysis of the Figure 1 model that the correlation of X_{4} with $\mathrm{F}_{1}\left(\rho_{\mathrm{X}_{4} \mathrm{~F}_{1}}\right)$ is identified and similarly using X_{4}, X_{5}, and X_{6} we know that the correlation of X_{4} with $\mathrm{F}_{2}\left(\rho_{\mathrm{X}_{4} \mathrm{~F}_{2}}\right)$ is identified. Since the correlations among $\mathrm{F}_{1}, \mathrm{~F}_{2}$, and X_{4} are identiffied it follows that the path coefficients b_{4}^{*} and b_{8}^{*}, which are functions of these correlations, are identified. As compared to Costner's (1969) rather complex algebraic analysis of this problem, it may be seen that we are satisfied in merely knowing that the model parameters are identified.

IV. Estimation

JBreskog's (1970a) general model for the analysis of covariance structures can be used to estimate the parameters for the models discussed
above. Werts, JUreskog and Linn (in press) discuss the use of JUreskog's model from the perspective of path analysis. Use of the associated computer program (JUreskog, Gruvaeus, \& van Thillo, 1970) for the present purposes requires the investigator to specify a matrix Λ corresponding to the factor loadings in factor analysis; a matrix Φ which is the variancecovariance matrix of the unmeasured factors, and a matrix Θ of residual variances. The matrices B and Ψ in Jöreskog's formula are taken as the identity and zero matrix respectively.

Consider for example the model in Figure 1 in which

$$
\begin{aligned}
& \Lambda=\left[\begin{array}{r}
b_{1}^{*} \\
b_{2}^{*} \\
2 \\
b_{3}^{*}
\end{array}\right] \\
& \Phi=[I]
\end{aligned}
$$

and

$$
\Theta=\left[\begin{array}{ccc}
\mathrm{V}_{\mathrm{e}_{1}} & 0 & 0 \\
0 & \mathrm{~V}_{\mathrm{e}_{2}} & 0 \\
0 & 0 & V_{e_{3}}
\end{array}\right]
$$

Define: $\underset{\sim}{X}=$ column vector of standardized observed variables, $\underset{\sim}{F}=$ column vector of factors, and $\underset{\sim}{e}=$ column vector of residuals.

In mairix terminology:

$$
\begin{equation*}
\underset{\sim}{X}=\underset{\sim}{\underset{F}{F}}+\underset{\sim}{e} \tag{8}
\end{equation*}
$$

Equation (8) is shorthand for the path equations (all variables standardized):

$$
\begin{aligned}
& X_{1}=b_{1}^{*} F_{1}+e_{1}, \\
& X_{2}=b_{2}^{*} F_{1}+e_{2}, \text { and } \\
& X_{3}=b_{3}^{*} F_{1}+e_{3},
\end{aligned}
$$

It can be seen that Λ is the matrix of the coefficients of F_{1}. The parameters in the matrices specifying the model structure in JUreskog's modelare of three kinds: (I) fixed parameters that have been assigned given values; (2) constrained parameters that are unknown but equal to one or more other parameters; and (3) free parameters that are unknown and not constrained to be equal to any other parameter. In the above example the unity in Φ is a fixed parameter, whereas the b_{i}^{*} in Λ and the $V_{e_{i}}$ in Θ are free parameters.

The expected variance-covariance matrix Σ for this problem is:

$$
\begin{equation*}
\Sigma=\Lambda \Phi \Lambda^{\prime}+\Theta^{2} \tag{9}
\end{equation*}
$$

where the l in Φ is the variance of F_{I}, for convenience standardized (i.e., equal to unity) and Θ^{2} is a diagonal matrix whose elements are the error variances $\left(V_{e_{i}}\right)$. Equation (9) should be recognized as a. shorthand way of expressing all the path equations relating expected model correlations to model parameters, i.e.,

$$
\Sigma=\left[\begin{array}{lll}
1 & \rho_{12} & \rho_{13} \\
\rho_{12} & 1 & \rho_{23} \\
\rho_{13} & \rho_{23} & 1
\end{array}\right] \quad, \quad \begin{aligned}
& \text { (where unities indicate observed }
\end{aligned}
$$

Equation (9) states:

$$
\begin{aligned}
1 & =\left(b_{1}^{*}\right)^{2}+v_{e_{1}}, \\
1 & =\left(b_{2}^{*}\right)^{2}+v_{e_{2}}, \\
1 & =\left(b_{3}^{*}\right)^{2}+v_{e_{3}}, \\
o_{12} & =b_{1}^{*} b_{2}^{*}, \\
o_{13} & =b_{1}^{*} b_{3}^{*}, \text { and } \\
o_{23} & =b_{2}^{*} b_{3}^{*}
\end{aligned}
$$

This short description for a single model contrasts with the path analysis approach to estimation used by Costner (1969) and Blalock (1969) in the following respects:
(a) The matrix Σ of expected correlations between observed variables will differ from the actually observed matrix of correlations because of sampling and/or model specification errors. Thus we do not use observed correlations in our equations as in the usual path analysis approach. Instead, JUreskog's program attempts to minimize the difference between observed and expected variance-covariance matrices using either a least squares or maximum likelihood approach. In large samples, assuming that observed variables are distributed normally, a chi square statistic is produced which measures the overall fit of the model to the data. Another way of gauging fit is to compare the differences between the observed and expected correlations generated by the model.
(b) The degrees of freedom (df) for the x^{2} measure are equal to the number of overidentifying restrictions. In path analysis this corresponds
to the number of different ways the path equations may be solved for each parameter. To compute the df it is necessary to count the number of distinct elements in Σ (i.e., $m(m+1) \div 2$) and subtract the number of parameters to be estimated (e.g., $b_{1}^{*}, b_{2}^{*}, b_{3}^{*}, V_{e_{1}}, V_{e_{2}}$, and $V_{e_{3}}$). There is no need to solve the path equations in JUreskog's approach, although the identifiability must be known.

To analyze the model in Figure l.b., we merely need to note that when X_{1} and F_{1} are standardized the regression of X_{1} on F_{1} equals that of F_{1} on X_{1} and the residuals are identical. Thus we may use the same estimation procedure for this model as for that in Figure l.a. (where $\theta_{1}=e_{l}$). Likewise the models in Figures 2.a. and 2.c. may be estimated by ignoring F_{1} and F_{3} and treating X_{1}, X_{2}, and X_{3} as indicators of the common factor F_{2}. The model in Figure 2.b. with the added feature of e_{1} and e_{3} correlated requires special treatment. The equations are:

$$
\begin{aligned}
& X_{1}=b_{1}^{*} F_{1}+e_{1}, \\
& x_{2}=b_{2}^{*} F_{1}+e_{2}, \\
& X_{3}=b_{3}^{*} F_{2}+e_{3}, \\
& X_{4}=b_{4}^{*} F_{2}+e_{4}, \text { and } \\
& F_{2}=b_{5}^{*} F_{1}+\theta_{2},
\end{aligned}
$$

We know that b_{5}^{*} is equal to the correlation between F_{1} and F_{2} so there is no need to replace F_{2} by F_{1} and θ_{2} in the first four equations. To specify a correlation between e_{1} and e_{3}, all residuals must be treated as factors, i.e., $\underset{\sim}{F}=\left(F_{1}, F_{2}, e_{1}, e_{2}, e_{3}, e_{4}\right)$. The structure is:

and

$$
\Phi=\left[\begin{array}{llllll}
1 & b_{5}^{*} & 0 & 0 & 0 & 0 \\
b_{5}^{*} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \rho_{e_{1}} e_{3} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & \rho_{e_{1} e_{3}} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

In contrast to previous formulations the error variances are standardized so that the correlations between e_{1} and e_{3} and F_{1} and F_{2} are estimated directly and in Λ the path coefficients of the observed variables on their errors $\left(\mathrm{b}_{\mathrm{i}}^{*}\right)$ are estimated. This model has lo distinct elements in Σ and 10 parameters to be estimated ($b_{1}^{*}, b_{2}^{*}, b_{3}^{*}, b_{4}^{*}, b_{e_{1}}^{*}, b_{e_{2}^{*}}^{*}$, $\mathrm{b}_{3}^{*}, \mathrm{~b}_{\mathrm{e}_{4}}^{*}, \mathrm{~b}_{5}^{*}, \rho_{e_{1}} e_{3}$), i.e., the model is just identified. The expected variance-covariance matrix $\Sigma=\Lambda \Phi \Lambda^{\prime}$, i.e., the matrix Θ is taken to be zero.

The Figure 2.d. model poses two problems: the parameters b_{3}^{*}, b_{4}^{*}, and b_{5}^{*} are not identified and the expected correlation between X_{4} and X_{1} or X_{2} is specified as zero even though the observed correlation may differ
from zero presumably because of sampling fluctuations. The analysis in Section II showed that X_{4} does not contribute to the identification of parameters, i.e., only the product b娄b宩 is identified with or without X_{4}. Without X_{4} the model is that of Figure l.b. and no purpose is served by retaining F_{2}. Assuming all variables are standardized $X_{1}=b_{1}^{*} F_{1}+\theta_{1}$ may be substituted for $F_{1}=b_{1}^{*} X_{1}+e_{1}$ as noted earlier. With F_{2} eliminated and knowing that only the correlation of X_{3} with F_{1} is identified the model may be written as:

$$
\begin{align*}
& X_{1}=b_{1}^{*} F_{1}+\theta_{1}, \tag{10a}\\
& X_{2}=b_{2}^{*} F_{1}+e_{2}, \text { and } \tag{10b}\\
& X_{3}=b_{3}^{*} b_{5}^{*} F_{1}+b_{3}^{*} b_{4}^{*} X_{4}+e_{3}^{\prime} \text { where } e_{3}^{\prime}=b_{3}^{*} \theta+e_{3} . \tag{10c}
\end{align*}
$$

For convenience define $b_{35}^{*}=b_{3}^{*} b_{5}^{*}$ and $b_{3}^{*}=b_{3}^{*} b_{4}^{*}$. For computational simplicity define a new factor X_{4} which is identical to the observed X_{4}, i.e., $X_{4}=X_{4}$. The factors are then $\underset{\sim}{F}{ }^{\prime}=\left(F_{1}, x_{4}\right)$,

$$
\begin{aligned}
& \Lambda=\left[\begin{array}{cc}
b_{\perp}^{*} & 0 \\
b_{2}^{*} & 0 \\
b_{3}^{*} & b_{3}^{*} \\
0 & 1
\end{array}\right] \\
& \Phi=\left[\begin{array}{ll}
1 & 0 \\
0 & v_{x_{4}}
\end{array}\right]
\end{aligned}
$$

and

$$
\Theta^{2}=\left[\begin{array}{llll}
\bar{v}_{\theta_{1}} & 0 & 0 & 0 \\
0 & v_{e_{2}} & 0 & 0 \\
0 & 0 & v_{e_{3}^{\prime}} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In the fourth row of Θ^{2} the diagonal cell is zero to indicate the identity $x_{4}=x_{4}$ without residuals. If the expected matrix Σ is computed, i.e., $\Sigma=\Lambda \Phi \Lambda^{\prime}+\Theta^{2}$ we find:
$\Sigma=\left[\begin{array}{cccc}v_{X_{1}} & b_{1}^{*} b_{2}^{*} & b_{1}^{*} b_{3}^{*} 5 & 0 \\ b_{1}^{*} b_{2}^{*} & v_{X_{2}} & b_{2}^{*} b_{35}^{*} & 0 \\ b_{1}^{*} b_{35}^{*} & b_{2}^{*} b_{35}^{*} & v_{X_{3}} & b_{34}^{*} \\ 0 & 0 & b_{34}^{*} & v_{X_{4}}\end{array}\right]$.
This shows that the expected correlations of X_{1} and X_{2} with X_{4} are zero. This follows from the specification in Φ that x_{4} is uncorrelated with F_{1}.

In the analysis of the model in Figure 2.e., the correlations among X_{1}, X_{2}, and F_{1} were identified first and then b_{1}^{*} and b_{2}^{*} identified from these correlations. The simplest estimation procedure is to estimate the correlations among X_{1}, X_{2}, and F_{1} and then compute b_{1}^{*} and b_{2}^{*} from the estimated correlations. This problem can be handled by defining two factors $x_{1}=X_{1}$ and $x_{2}=X_{2}$. The structural equations are:

$$
\begin{aligned}
& x_{1}=x_{1}, \\
& x_{2}=x_{2}, \\
& x_{3}=b_{3}^{*} F_{1}+e_{3}, \text { and } \\
& x_{4}=b_{4}^{*} F_{1}+e_{4},
\end{aligned}
$$

The factors are $\underset{\sim}{F}=\left(X_{1}^{\prime}, X_{2}, F_{1}\right)$,

$$
\begin{aligned}
& \Lambda=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & b_{3}^{*} \\
0 & 0 & b_{4}^{*}
\end{array}\right] \\
& \Phi=\left[\begin{array}{lll}
\mathrm{v}_{\mathrm{x}_{1}} & \rho_{\mathrm{x}_{1} \mathrm{x}_{2}} & \rho_{\mathrm{x}_{1} F_{1}} \\
\rho_{x_{1} x_{2}} & \mathrm{v}_{\mathrm{x}_{2}} & \rho_{x_{2} F_{1}} \\
\rho_{\mathrm{x}_{1} F_{1}} & \rho_{x_{2} F_{1}} & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\Theta^{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{v}_{\mathrm{e}_{3}} & 0 \\
0 & 0 & 0 & \mathrm{v}_{\mathrm{e}_{4}}
\end{array}\right]
$$

There are 10 distinct elements in Σ and nine parameters to be estimated $\left(b_{3}^{*}, b_{4}^{*}, \mathrm{~V}_{\mathrm{x}_{1}}, \mathrm{~V}_{\mathrm{x}_{2}}, \rho_{\mathrm{X}_{1} \mathrm{x}_{2}}, \rho_{\mathrm{X}_{1} \mathrm{~F}_{1}}, \mathrm{P}_{\mathrm{X}_{2} \mathrm{~F}_{1}}, \mathrm{~V}_{\mathrm{e}_{3}}\right.$, and $\mathrm{V}_{\mathrm{e}_{4}}$), so that the model has one
overidentifying restriction. Note that the estimated elements of Φ should be used to estimate b_{1}^{*} and $b_{2}^{*}\left(r_{X_{1}} X_{2}\right.$ may not equal $\left.\rho_{x_{1}} x_{2}\right)$

In relation to the model in Figure 2.f. Costner (1969) discussed the problem of ascertaining whether b券 was zero and of distinguishing the $b_{8}^{*}=0$ model from one in which errors (e.g., e_{3} and e_{4}) were corrclated. To see how this is accomplished in JUreskog's approach,first consider the model when $b_{8}^{*}=0$ and treating residuals as factors:

$$
\begin{aligned}
& \underset{\sim}{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right), \\
& {\underset{\sim}{F}}^{\prime}=\left(F_{1}, F_{2}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right),
\end{aligned}
$$

$$
\Lambda=\left[\begin{array}{cccccccc}
b_{1}^{*} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
b_{2}^{*} & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
b_{3}^{*} & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & b_{4}^{*} & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & b_{5}^{*} & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & b_{6}^{*} & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and

$$
\Sigma=\Lambda \Phi \Lambda^{\prime} \quad \text { (i.e., } \quad \Theta^{2}=0 \text {). }
$$

Note that we have chosen not to introduce the residual θ into the analysis because we wish to standardize both F_{1} and F_{2}, in which case $\rho_{H_{1}}=l_{7}$. This model is a variation of that in Figure 2.b. and all parameters are identified. There are 21 distinct elements in Σ and 14 parameters to be estimated so that there are seven overidentifying restrictions. To test $\mathrm{b}_{8}^{*} \neq 0$, we specify $X_{4}=\mathrm{b}_{8}^{*} \mathrm{~F}_{1}+\mathrm{b}_{4}^{*} \mathrm{~F}_{2}+e_{4}^{\prime}$, i.e., in Λ the fourth row, first column element is left "free" instead of fixed = zero. This model has one more parameter to be estimated and therefore six overidentifying restrictions. Thus the original model is more restrictive and will therefore typically have a larger χ^{2}. In large samples, the difference in x^{2} between these two models, with degrees of freedom equal to the difference in number of restrictions, can be used to test the hypothesis that b若 $\neq 0$. Similarly the model with e_{3} and e_{4} correlated ("free") in Φ instead of independent (fixed $=0$), would have six degrees of freedom and the difference in χ^{2} with one degree of freedom would be a test of the hypothesis that e_{3} and e_{4} are uncorrelated. A comparison of the x^{2} for b है $\neq 0$ to that for $\rho_{e_{3} e_{4}} \neq 0$ gives an indication of which is the better fitting model. Costner (1969, Figure 10) also raises the question of whether e_{1} and e_{2} are correlated. This hypothesis is tested by allowing the covariance between e_{1} and e_{2} in Φ to be "free," the change in x^{2} with one degree of freedom providing the appropriate statistical test. Hypotheses involving "constrained" parameters may be tested similarly, e.g., $b_{1}^{*}=b_{6}^{*}$ (Heise, 1969) or $V_{e_{1}}=V_{e_{6}}$ (Wiley \& Wiley, 1970).
-22-

It can be observed that use of J"reskog's program requires the investigator to know the identification status of each parameter, but does not require the complex algebraic manipulations prorided by Costner (1969) and Blalock (1969). It is important to recognize the essentials of each model in order to fit it into Jorreskog's general model. Jöreskog's model assumes that the observed variables are "random" rather than "fixed" but it is doubtful that most applied sociologists need to be concerned about this issue which is minor in comparison to the usual questionable validity of measures and models.

References

Blalock, H. M. Making causal inferences for urmeasured variables from correlations among indicators. American Journal of Sociology, 1963, IXIX, 53-62.

Blalock, H. M. Multiple indicators and the causal approach to measurement error. American Journal of Sociology, 1969, 75, 264-272.

Costner, H. L. Theory, deduction, and rules of correspondence. American Journal of Sociology, 1969, 75, 245-263.

Hauser, R. M., \& Goldberger, A. S. The treatment of unobservable variables in path analysis. Social Systems Research Institute Series $\mathbb{E M E} 7030$, University of Wisconsin, Madison, Wisconsin, 1970.

Heise, D. R. Separating reliability and stability in test-retest correlation. American Sociological Review, 1969, 34, 93-101.

JUreskog, K. G. A general method for analysis of covariance structures. Biometrika, 1970, 57, 239-251. (a)

JHreskog, K. G. Estimation and testing of simplex models. British Journal of Mathematical and Statistical Psychology, 1970, 23, 121-145. (b) JØreskog, K. G., Gruvaeus, G. T., \& van Inillo, M. ACOVS, a general computer program for analysis of covariance structures. Research Bulletin 7015. Princeton, N. J.: Educational Testing Service, 1970.

Werts, C. E., JOreskog, K. G., \& Linn, R. L. Estimating the parameters of path models involving unmeasured variables. In H. M. Blalock, Jr. (Ed.), Causal models in the social sciences. Chicago: Aldine Publishing Company, in press.

Wiley, D. E., \& Wiley, J. A. The estimation of measurement error in panel data. American Sociological Review, 1970, 35, 112-117.

[^0]: *The research reported herein was performed pursuant to Grant No. OEG-र्ट$700033(509)$ with the United States Department of Health, Education, and Welfare, and the Office of Education.

