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Identification and Estimation in Path Analysis

with Unmeasured Variables

Abstract

A variety of path models involving unmeasured variables are formulated

in terms of areskog's (1970a) general model for the analysis of covariance

structures.



Identification and Estimation in Path Analysis

with Unmeasured Variables*

A variety of authors (e.g., Blalock, 1969; Costner, 1969; Heise, 1969)

have applied path analysis to problems involving multiple indicators of under-

lying constructs. An important and often algebraically complex feature of

such analysis is the determination of identifiability of model parameters.

The purpose of this discussion is to demonstrate how a visual inspection of

the path diagram can be used to simplify the identification question and how

these problems may be formulated in J8reskogis (1970a) general model.

I. A Single Factor Model

Consider the case of a single underlying factor (F1) with three

observed measures (X1, X2, and X
3

) as shown in Figure 1.a. The factor

loadings (p
X.F

) in this model equal the standardized path coefficients
i 1

(b!,b, and b!) , given the assumption that the residuals e
1
,e

2
, and e

3

are independent of each other and of the factor. It is convenient, though

not necessary, to assume that both measured and unmeasured variables are

standardized. For heuristic purposes observed correlations will be designated

with "r" and expected values of these correlations by "p" . The expected

correlations will differ from the corresponding observed correlations because

of samplinn: and model specification errors.

*The research reported herein as performed pursuant to Grant No. OEG-2-
700033(509) with the United States Department of Health, Education, and
Welfare, and the Office of Education.
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Fig. 1.a. A Single Factor Model

and

-2-

x3 e

A path analysis of this model yields the equations:

P = bb*
12 1 2

P13 = 1341b3

P23 134213;

Assuming nonzero correlations, equations (1) yield:

(b*)2 P1213 2

1 PX1F1

(1)

P ,P2 23 2
) = PX F

and (2)

P13 2 1

2 Pl3P23
= p

2
(b*) =

3 P12
X
3
F
1

.

Given only three observed measures the model is just identified, i.e., the

observed and expected correlations are identical. With more than three measures

2 2 Pi'Pik
= (b1!) -p

X.F
1 Pjk

where i 4 j 4 k and (2a)

4
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assuming pjk 4 0 . If there were a causal linkage (e.g., Fl -> -) 12 -> xi)

from Fl to X. then p
X.F

would be the product of the intervening path
1

coefficients, i.e., the product of the path coefficients in the chain from

F1 to X. would be identified. If any loading exceeded unity, the model

would be rejected. When there are m > 3 observed measures then the loadings

will be overidentified. The number of overidentifying restrictions is simply

the number of distinct correlations m(m 1) 2 less the number (m) of

p
X.F

to be estimated. Maximum likelihood or least squares estimates for over-
I

identified models can be obtained using J8reskog's (1970a) general method for

the analysis of covariance structures. We use path analysis only to study the

identifiability problem, not for estimation purposes (Hauser & Goldberger,

1970; Werts, J8reskog, & Linn, in press).

The above analysis leads to our "rule of three": Whenever the correla-

tions among at least three observed variables may be completely ascribed to

the presence of an underlying factor, then the loadings (correlations) for

each observed variable on that factor are identifiable. An important qualifi-

cation is that the expected correlation between any two observed variables

cannot be zero since equation (2a) would not be defined when that correlation

was in the denominator. In practice, small expected correlations may lead to

unstable parameter estimates, i.e., highly unreliable measures result in

unreliable parameter estimates.

II. Generalizations

The Figure 1.a. model with or without intervening, unmeasured variables

going from F1 to Xi is too limited for most causal analyses. Our purpose

in this section is to consider other causal patterns which satisfy the "rule

of three," i.e., in which the observed correlations among three variables are
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nonzero and may be ascribed to the presence of an underlying factor. Equations

(1), and therefore (2), would still hold if for one of the measures (e.g., xi

X1 -->FlansitheresidualelofthisregressimofFlohX.were indepen-

dent of the other residuals e
2

and e
3

, as shown in Figure 1.b.

e2
X2

Figure 1.b.

b*
2

X
1

b*
3 ) x3 4-e3

If two observed measures influence F
1

, e.g., X
1

--)F
1

and X
2
-,F

1
then it

is no longer true that the correlation between these measures equals the product

of the corresponding path coefficients, e.g., p12 would not in general equal

b*
1
b*
2

Given that all residuals are independent, when there is an intervening

variable(11)betweenXi and F1, the correlation between a pair of observed

variables X. and X. will equal the product of the intervening path coefficients
i J

when X. Il F1 X . , X. <-'- Il -4 F1 X . , X. -4 I1 -4 F1 X . ,

i
and

j i j i j

Xi -I3_ (--F1 -X ; but not when two arrows point towards the same variable,
J

e.g.,X.->"(--F1->X.orX.->I
1
F

1
X. . In general the correlation

i -1 j i

between two observed variables may be stated as the product of the intervening

path coefficients whenever the causal linkage between these variables does not

include a variable which is caused by two other variables, i.e., when two

causal arrows point towards a variable. To identify the loadings on a factor

6
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we need to find three observed variables which are causally linked through

that factor, the linkages satisfying the above criteria.

III. Examples

A. Our first example, which corresponds to Figure 1 in Wiley and Wiley

(1970), is shown in Figure 2.a.

Figure 2. a.

Tracing linkages for F2 :

Xi Fi F2 F3 --)x3 ,

xi F2 --)x2 , and

X2 <---F2 ) F3 -3x3

Since these three linkages all include F2 and satisfy the requirements of the

"rule of three" we may conclude that the factor loadings (PX.F
) , i.e., the

2

correlations of each observed variable with F2 , are identified. Thus,

= b*1 b*
PX

1
F
2

4

= b* and
PX

2
F
2

2

PX 3F2 3 5
= b*b*

(3)



-6-

The factor loadings on F
1

are not identified because the correlation between

X2 and X3 cannot be completely ascribed to F1 . Likewise the loadings on

F
3

are not identified because the correlation between X
1

and X
2

cannot

be ascribed to F3 . Vireskog (1970b) shows that this model may be estimated

by a single factor model with F2 as the common factor and that the example

may be generalized to more than three measured variables.

B. Our second example (see Figure 2.b.) corresponds to Figure 4 in Costner

(1969). The analysis is identical whether F1 > F2 or F2 <--F1 .

X2

e
2

Figure 2.b.

Tracing linkages:

X1 F
1
) X2

'

X1 F
1

--> F2 ) X3 ,

X1 F
1

) F2 --> X4

X2 F
1

--> F2 --> X3

X2 F1 F2 --> X4 and

X3 F2 X4 .

8

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)



-7

For F
1

the factor loadings may be identified by linkages 4a,b,d or by

4a,c,e, i.e., these loadings are overidentified and

= b*
.X.F 1
1 1

P
X F

b*
2 1

2

b*b* , and
PX

3
F 3 5
1

P
X
4
F
1

4 5
= b*b*

The factor loadings for F2 may be identified by 4b,c,f or 4d,e,f

and:

PX F
2

1 5
= b*b*

PX F
= b*2 b*

5
2 2

= , and
X3F2

*
PX

4
F
2

= b
4

Since b*
1

and b*
2

are identified,
5

is also identified by these equations.

The analysis may be complicated by assuming el correlated with e5 ,

in which case linkage 1b would not be valid, however the conditions of the

"rule of three" would still be satisfied for F
1

and F
2

and all path

coefficients and correlations between errors are (just) identified. Such a

model would correspond to Figure 5.a. in Costner (1969).

C. The next example, corresponding to Figure 1 in Blalock (1963), is

shown in Figure 2.c. This model is basically a variation on the model of

Figure 1.b.

9
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Figure 2.c.

This model differs from that in Figure 2.a. in that X1 --->F1 instead of

F1 -)X1 . The linkages are:

X
1

F
1

-> F
2

-) X
2

,

X
1

-> F
1

F
2

--)F
3

, and

X
2

(--F
2

-) F
3
) X

3
.

Since F
2 is in all three linkages which satisfy the "rule of three," the

factor loadings for F2 are identified and

_ -x -x- r=
PX

1
F
2

j r r
1 4 12 13 23

PX
2
F
2

2
= b* = jr

12
r
23

r
13

, and

f)X3F2 = b* b* = Ir r r
123 13 23

Since r
12

cannot be ascribed to F
3

and r
23

cannot be ascribed to F
1 '

the loadings on these factors are not identified. Our heuristic device would

have been helpful to Blalock (1963) since he obtained the equations correspond-

ing to the linkages shown above, but did not solve them for the equivalent of

equations 5a,b, and c.

10
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D. Our fourth example, shown in Figure 2.d., corresponds to Figure 2 in

Blalock (1965).

X4

b*
lip

,--r --> t--<
1)

0. -----.

1 b*
2

a

0 = residual of F2 on X4 and

Figure 2.d.

Tracing linkages which satisfy our rule:

X
1

F
1

-)X
2

,

X1 F
1

F2 X3 '

X2 F1 > F2 X3 , and

X/1- --> F2 X3 .

(6a)

(6b)

(6c)

(6d)

In this model it is assumed that X4 is independent of X1 and X2 . The

loadings on F
1

are identified by linkages 6a,b and c and therefore:

PX
1
F
1

= b*
1

= b* , and
PX

2
F
1

2

= b*3b*
5

(7a)

(7b)

(7c)

It is not possible to find three observed variables whose linkages satisfy

our rule for F
2

, i.e., the linkage between X
1

and X4 has two arrows
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pointing at F2 and the linkage between Xi and X2 does not include F2 .

Since p
3

= bib it follows from equation (7c) that
-x

3
F
1

P5/33
n

E. The fifth example, shown in Figure 2.e., has the special feature

of two observed nonindependent variables influencing an unobserved variable.

It corresponds to Figure 4 in Blalock (1969).

Figure 2.e.

x3

x4
4

e = residual of F
1

on X
1

and X
2

regression.

When X2 is deleted X1 , X3, and x4 form the model in Figure 1.b. from

which we conclude that the correlations of X
1

, X 3 , and X
4

with F
1

are

identified. Similarly when Xi is deleted the correlations of X2 , x3 ,and

x4 with F
1

are identified. Given the correlations among Xi , X2 ,and F1

the path coefficients b*
1

and b*
2

may be identified since:

b* -b1
1 - p12

F
1 1

Pl2PX
2
F
1

PX F P 12PX F
2 1 1 1

b2
1 - p

12

and

12



F. Our last example, shown in Figure 2.f. corresponds to Figure 9.b. in

Costner (1969)

Figure 2.f.

x5
5

From the analysis of the Figure 2.d. model we may deduce that whert X4 is

excluded that lot , b2 , b3 , lo; , bg , and loI are identified. Using the

variables X
1

, X
2
, and X 4 we know from our analysis of the Figure 1

model that the correlation of X
4

with
F1

) is identified and
1 X4F1

similarly using X4 , X5, and X6 we know that the correlation of x4

with Z:2 (p ) is identified. Since the correlations among F1 , F2 ,X4F2

and x4 are identified it follows that the path coefficients lot and bg ,

which are functions of these correlations, are identified. As compared to

Costner's (1969) rather complex algebraic analysis of this problem, it may

be seen that we are satisfied in merely knowing that the model parameters

are identified.

IV. Estimation

J8reskog's (1970a) general model for the analysis of covariance

structures can be used to estimate the parameters for the models discussed

13
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above. Werts, J8reskog and Linn (in press) discuss the use of J8reskog's

model from the perspective of path analysis. Use of the associated com-

puter program (J8reskog, Gruvaeus, & van Thillo, 1970) for the present

purposes requires the investigator to specify a matrix A corresponding

to the factor loadings in factor analysis; a matrix 01) which is the variance-

covariance matrix of the unmeasured factors, and a matrix e of residual

variances. The matrices B and T in J8reskog's formula are taken as the

identity and zero matrix respectively.

Consider for example the model in Figure 1 in which

and

8 =

V 0 0
e1

0 V 0
e2

0 0 V
e3

Define: X = column vector of standardized observed variables,

F = column vector of factors, and

e = column vector of residuals.

In matrix terminology:

X =AF e (8)

Equation (8) is shorthand for the path equations (all variables standardized):

14



X = b*F + e
1 1 1 1

X
2 2
= b*F

1
+ e

2
, and

X3 = byl + e3 .

It can be seen that A is the matrix of the coefficients of F
1

. The

parameters in the matrices specifying the model structure in J8reskog's

model are of three kinds: (1) fixed parameters that have been assigned

given. values; (2) constrained parameters that are unknown but equal to

one or more other parameters; and (3) free parameters that are unknown and

not constrained to be equal to any other parameter. In the above example

the unity in 0 is a fixed parameter, whereas the b* in A and the V
e.

in 8 are free parameters.

The expected variance-covariance matrix E for this problem is:

= A0A.'+ e2 ( 9 )

where the 1 in 0 is the variance of F
1

, for convenience standardized

(i.e., equal to unity) and e
2

is a diagonal matrix whose elements are the

error variances (V
e.

) . Equation (9) should be recognized as a. shorthand way

of expressing all the path equations relating expected model correlations to

model parameters,

1

p12

P13

i.e.,

10 12

1

23

p13

p23

.1

(where unities indicate observed

variables were standardized).

Equation (9) states:

15
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1 = (b*1 )
2
+ V

el
,

1 = (b*2 )
2
+ V

e
,

2

1 = (1)2 + Ve

3

'l2
bb*

12 1 2

p13 = blb , and

P23 = bpS' .

This short description for a single model contrasts with the path analysis

approach to estimation used by Costner (1969) and Blalock (1969) in the

following respects:

(a) The matrix E of expected correlations between observed variables

will differ from the actually observed matrix of correlations because of

sampling and/or model specification errors. Thus we do not use observed cor-

relations in our equations as in the usual path analysis approach. Instead,

areskog's program attempts to minimize the difference between observed and

expected variance-covariance matrices using either a least squares or maximum

likelihood approach. In large samples, assuming that observed variables

are distributed normally, a chi square statistic is produced which measures

the overall fit of the model to the data. Another way of gauging fit is to

compare the differences between the observed and expected correlations gen-

erated by the model.

(b) The degrees of freedom (df) for the X
2

measure are equal to the

number of overidentifying restrictions. In path analysis this corresponds
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to the number of different ways the path equations may be solved for each

parameter. To compute the df it is necessary to count the number of distinct

elements in E (i.e., m(m + 1) 4- 2) and subtract the number of parameters

to be estimated (e.g., b41,11,1,Ve ,Ve , and V
e

) . There is no need to
1 2 3

solve the path equations in J8reskog's approach, although the identifiability

must be known.

To analyze the model in Figure 1.b., we merely need to note that when

X
1

and F
1

are standardized the regression of X
1

on F
1

equals that of

F
1

on X
1

and the residuals are identical. Thus we may use the same

estimatim procedure for this model as for that in Figure 1.a. (where 01 = el ).

Likewise the models in Figures 2.a. and 2.c. may be estimated by ignoring F1

and F3 and treating X1,X2, and X3 as indicators of the common factor F2 .

The model in Figure 2.b. with the added feature of el and e
3

corre-

lated requires special treatment. The equations are:

Xi = byi + e1 ,

X2 = b*F e
2 2 1 e2

'

X3 = b3F2 + e3 ,

X4 = bV2 + e) , and

F2 = b5F1 + 02 .

We know that b5 is equal to the correlation between F1 and F2 so

there is no need to replace F2 by F1 and 02 in the first four equations.

To specify a correlation between el and e3 , all residuals must be treated

as factors, i.e., F'= (F1' F2' el' e2' e3' e)) . The structure is:



A

and

b* 0
1

b2
2

0 b3

0 b

1

b*
5

0

0

0

0

-16-

b* 0 0 0
el

0 b*
e
2

0 0

0 0 b* 0
e
3

0 0 0 b*
e
4

b*
5

0 0 0 0

1 0 0 0 0

0 1 0 p
ele3

0

0 0 1 0 0

0 P
e1e3

0 1 0

0 0 0 0 1

In contrast to previous formulations the error variances are standardized

so that the correlations between e
1

and e
3

and F
1

and F
2

are

estimated directly and in A the path coefficients of the observed varia-

bles on their errors (b* ) are estimated. This model has 10 distinct
e.

elements in E and 10 parameters to be estimated ,(b*,b*,b,b*,b* ,b*
1 3 e

1
e
2

b: ,b: ,134-,p ee) , i.e., the model is just identified. The expected

variance-covariance matrix E ADA' , i.e., the matrix 8 is taken to be

zero.

The Figure 2.d. model poses two problems: the parameters bb3 4: , and b*
3 5

are not identified and the expected correlation between X4 and X1 or

X
2

is specified as zero even though the observed correlation may differ

18
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from zero presumably because of sampling fluctuations. The analysis in

Section II showed that X
4

does not contribute to the identification

of parameters, i.e., only the product III is identified with or without

X4 . Without X4 the model is that of Figure 1.b. and no purpose is

served by retaining F2 . Assuming all variables are standardized

X
1

= b*F
1
+

1
may be substituted for F

1
= bp(

1
+ e

1
as noted earlier.

With F
2

eliminated and knowing that only the correlation of X
3

with

F
1

is identified the model may be written as:

X
1

= b*1 F
1
+ 6

1
,

X
2 2

= b*F
1
+ e

2
, and

X
3 3 5 3 4

= b*b*F + b*b*X + el where e' = b*6 + e
33 3 3

(10a)

(lob)

(10c)

For convenience define b35 = bp; and b34 = b3b 4e: . For computational

simplicity define a new factor x4 which is identical to the observed X
4 '

i.e., x4 = x4 . The factors are then F' = (F1,x4) ,

A

and

=

b* 0
1.

b*
2

0

b35 IS

0 1

1

0 V
x4

19
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82

V
0
1

o

0

o

0

V
e2

0

o

0

0

V,
e3

0

0

0

0

0

In the fourth row of 8
2

the diagonal cell is zero to indicate the identity

X4 = x4 without residuals. If the expected matrix E is computed, i.e.,

= ADA' + 82 we find:

=

btb43-5 0

1

b5-5 0bil4 V.
X
2

P

b*b* b*b* V
1 35 2 35 X

3

0 0
VX

4

This shows that the expected correlations of X
1

and X
2

with X
4

are

zero. This follows from the specification in 0 that x4 is uncorrelated

with F1 .

In the analysis of the model in Figure 2.e., the correlations among

X1 , X
2

, and F
1

were identified first and then b*
1

and b*
2

identified

from these correlations. The simplest estimation procedure is to estimate

the correlations among X
1

, X
2

, and F
1

and then compute b*
1

and b*
2

from the estimated correlations. This problem can be handled by defining

two factors xl = X1 and x2 = X2 . The structural equations are:

20
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X
1

= x
1

X2 = X2

X3 = b3F1 + e3 , and

X4 =

The factors

+ e4 .

are F'= (Xi

1 0 0

0 1 0

o o b;

, x2 , F1)

0 0 br

1)

1
PX

1
X
2

P x
1
F
1

Px
1
x
2

Vx
2

Px
2
F
1

Px Px
1

1
F
1 2

F
1

and

0 0 0 0

0 0 0 0

9
2

0 0 V
e3

0

o 0 0 V
e

There are 10 distinct elements in Z and nine parameters to be estimated

(1,1D,V
x1'

V
x
2
'Px

1
x2 PX

1F1
'PX

2
F
1 e3

,V , and Vey), so that the model has one

21
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overidentifying restriction. Note that the estimated elements of (1) should

be used to estimate b*
1

and b*
2 (rX

1
X
2

x1x2 )may not equal 0

In relation to the model in Figure 2.f. Costner (1969) discussed the

problem of ascertaining whether 11 was zero and of distinguishing the

bg = 0 model from one in which errors (e.g., e3 and e) ) were correlated.

To see how this is accomplished in J8reskog's approach,first consider the

model when bg = 0 and treating residuals as factors:

xf = (x ,x ,x ,x ,x )

A =

=

(FFeeeeee)l' 2' l' 2' 3' 4' 5' 6'

b*
1

0

b*
2

0

b3 0

O b

o b''5

o bt

O 0

O 0

O 0

O 0

O 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

o 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

V 0 0 0 0 0
el

0 V% 0 0 0 0

0 0 V 0 0 0
e

0 0 0 V 0 0

c4

0 0 0 0 Ve5 0

0 0 0 0 0 V
e6 22
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E = AIDA' (i.e., e2 = 0 ).

-21-

Note that we have chosen not to introduce the residual v into the analysis

because we wish to standardize both F1 and F2 , in which case P =
F F
1 P

This model is a variation of that in Figure 2.b. and all parameters are

.identified. There are 21 distinct elements in E and l-- parameters to be

estimated so that there are seven overidentifying restrictions. To test

bg / 0 , we specify X4 = bp, + bjF2 + e) , i.e., in A the fourth row,

first column element is left "free" instead of fixed = zero. This model

has one more parameter to be estimated and therefore six overidentifying

restrictions. Thus the original model is more restrictive and will there-

fore typically have a larger In. In large samples, the difference in

X
2

between these two models, with degrees of freedom equal to the difference

in number of restrictions, can be used to test the hypothesis that

bg # 0 . Similarly the model with e
3

and e) correlated.

("free") in 0 instead of independent (fixed = 0), would have six degrees

of freedom and the difference in X
2

with one degree of freedom would be

a test of the hypothesis that e3 and e4 are uncorrelated. A comparison

of the X
2

for b / 0 to that for p
e3e4

/ 0 gives an indication of

which is the better fitting model. Costner (1969, Figure 10) also raises

the question of whether e
1

and e
2

are correlated. This hypothesis is

tested by allowing the covariance between el and e2 in 0 to be "free,"

the change in X
2

with one degree of freedom providing the appropriate

statistical test. Hypotheses involving "constrained" parameters may be

tested similarly, e.g., 'to! = bg (Heise, 1969) or V = (Wiley &
e1

Wiley, 1970).
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It can be observed that use of J8reskog's program requires the investi-

gator to know the identification status of each parameter, but does not

require the complex algebraic manipulations provided by Costner (1969)

and Blalock (1969). It is important to recognize the essentials of each

model in order to fit it into J8reskog's general model. J8reskog's model

assumes that the observed variables are "random" rather than "fixed" but

it is doubtful that most applied sociologists need to be concerned about

this issue which is minor in comparison to the usual questionable validity

of measures and models.
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