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2  ldentification and estimation of causal effects of multiple treatmens

Abstract. The assumption that the assignment to treatments is ignorable condi-
tional on attributes plays an important role in the applied statistic and econometric
evauation literature (Conditional Independence Assumption). This paper dis-
cusses identification using CIA when there are more than two types of mutually
exclusive treatments. It turns out that low dimensional balancing scores, similar to
the ones valid in the case of only two treatments, exist and can be used for identi-
fication of various causal effects. Therefore, a comparable reduction of the dimen-
sion of the estimation problem is achieved and the approach retains its basic sim-
plicity. Furthermore, a sample reduction property is derived showing that in cer-
tain important cases it is possible to base the estimation on the specific subsample
of participants. The paper aso outlines a matching estimator suitable in that gen-
eral framework.

Keywords: Treatment effects, balancing score, propensity score, causal model, programme
evaluation, matching.

JEL classification: C30, C40.
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1 Introduction

The prototypical model of the microeconometric evaluation literature is the fol-
lowing: An individual can choose between two states, like participation in a
training programme or non-participation in such a programme. For the potential
participant in such a programme an hypothetical outcome is defined for both
states. This model is also termed the Roy (1951)-Rubin (1974) model of potential
outcomes and causal effects.! Since its statistical content is most clearly spelled
out in Rubin (1974), this model is called the Rubin model in the following. It
clarifies that the individual causal treatment effect - defined as the difference of
the two potential outcomes, for example - is not identified. Therefore, the lack of
identification has to be overcome by plausible, generally untestable assumptions
that depend on the problem analyzed and the data available. One such assumption
is that treatment participation and treatment outcomes are independent conditional
on a set of (observable) attributes. Subsequent papers by Rubin (1977) and Rosen-
baum and Rubin (1983) show how this assumption could effectively be used for
treatment evaluation. In many cases this identifying assumption is exploited via a
matching estimator, for recent examples see Angrist (1998), Dehgjia and Wahba
(1998, 1999), Heckman, Ichimura, and Todd (1997, 1998), Lechner (1999) and
the comprehensive survey by Heckman, Lalonde, and Smith (1999).

This literature focuses on models with only two potential states, treatment and
non-treatment. However, when evaluating European labour market programmes
for example a more complex framework appears to be necessary, since the actual
choice set of individuals contains more than just two options. Potential partici-
pants may or may not participate in one of several different training or employ-
ment programmes. This paper extends the conventional two state framework to
alow for multiple, mutually exclusive treatments. It shows that all major proper-
ties obtained by Rubin (1977) and Rosenbaum and Rubin (1983) also hold in that
framework, if suitably refined.2 The paper also shows that for specific parameters,
like the treatment effect on the treated that compares two different programmes for
the participants in one of those programmes, the multi-programme nature of the
policy can be ignored, because individuals who are not in programmes of interest,
are not needed for identification. The paper also sketches a matching estimator
that takes account of this multiple treatment structure.

1 Seefor example Heckman (2000), Holland (1986), and Sobel (1994) for an extensive
discussion of concepts of causality in statistics, econometrics, and other fields.
2 Pparallel to thiswork similar ideas appeared in Imbens (1999).
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2 Notation and definition of the causal effects

2.1 Two treatments

Let Y* and Y° denote the potential outcomes (1 denotes treatment, O non-
treatment). For participants in the treatment the actual (observable) outcomeis Y*,
and Y' for non-participants. As a notational convention, capital letters indicate
guantities of the population, whereas small letters represent their respective quan-
tities in the sample of size N (i=1,...,N). Additionally, denote variables that are
unaffected by treatments? - called attributes by Holland (1986) - by X. Define a
binary assignment indicator S, that determines whether the unit receive the treat-
ment (S= 1) or not (S= 0). The causal effect, usually defined as the difference of
the two potential outcomes, can never be estimated, because the respective coun-
terfactual (Y* or Y*) to the observable outcome (Y ) is unobservable. However,
under certain assumptions average causal effects are identified. For simplicity, this
section concentrates entirely on the average treatment effect on the treated:

6, =E(Y' -Y°|S=1) = E(Y!|S=1) - E(Y°|S=1). )

The short hand notation E({5=1) denotes the mean in the population of all units
who participate in the programme (S=1). Finally, to make the model’s representa-
tion of outcomes adequate for causal analysis, the stable-unit-treatment-value
assumption (SUTVA) has to be satisfied for all members of the population (e.g.
Rubin, 1991). SUTVA excludes cross-effects, or general equilibrium effects,
among potential programme participants that could occur because of their actual
participation decision.*

The difficulty with the identification of g, from alarge random sampleistheterm

E(YY|S=1), because the pair (y’,5 =1) is not observable. Much of the literature
on causal models in statistics and selectivity models in econometrics is devoted to
finding identifying assumptions to estimate E(Y"|S=1) by using the observable
pairs (y’,s =0) in different ways. One frequently used condition states that the
assignment is random conditional on a set of covariates (Rubin, 1977). Hence, the
assignment is independent (denoted by 11 in the following) of the potential non-
treatment outcome conditional on the value of suitably chosen covariates (condi-
tional independence assumption, CIA):>

YOIIS|X =x, OxOx. 2
3 I will use the terms treatment and programme as synonyms in the remainder of the
paper.

4 Assume for the rest of the paper that the typical assumptions of the Rubin model are
fulfilled (see Holland, 1986, or Rubin, 1974, for example).

5 See Dawid (1979) for notations, definitions, and implications related to the concept of
conditional independence.
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X denotes the part of the attribute space for which the treatment effect is defined.
If CIA holds, then E(Y°|S=1,X=x)= E(Y'|S=0,X=x).8 P(x) denotes the
propensity score that is defined as the participation probability conditional on x
[P(S=1X=x)]. If 0<PYx)<1 holds in x, then E¥°|S=1) =
E[E(Y’|S=0,X=x)|S=1] can be estimated in large samples using respective
sample analogues.”

The condition 0<P'(x) <1, frequently called common support condition (CSC),
deserves some further remarks because of its importance for applied work. If there
are regions in the attribute space xy where either treated or control observation
with these specific attributes have zero probability to occur (for example when all
individuals with a specific attribute include in X are obliged to participate), the
equality E(Y'|S=LX=x)= E(Y’|S=0,X=x) is not helpful for nonparametric
identification, because no informative observations (y,,s =0,x =x) exist for these
particular values of x. The only way to identify and consistently estimate any
effect for such regions, would be to extrapolate from regions of y that have posi-
tive probabilities for both treatment states to occur. Obviously the credibility of
these estimates will critically rely on the credibility of the model used to extrapo-
late. In order to avoid any issue of extrapolation when the true P'(x) is unknown,
the sample used should be restricted to a subspace of y that has positive empirical
probability of both treatment states occurring. Note however, that this procedure
implicitly changes the definition of the effects estimated.

Rosenbaum and Rubin (1983, RR) showed that if CIA isvalid, then the estimation
problem simplifies. In the case of two treatments, RR found that if the two treat-
ments are independent of the assignment conditional on X, then they are also inde-
pendent conditional on specific functions of X, denoted as balancing scores (b(X)),
that fulfil the so-called balancing score property:

YOS X =x,0xO0x = Y°IIS|b(X)=b(x), OxOy, (RR)
if E[P(S=1]X =x)|b(X)=b(X)]=P[S=1|X =x]=P'(x), 0<P*(x)<1, OxOy.

Note that the random variable S can only be zero or one. In the set-up of RR one
particularly important balancing score is the propensity score, because it reduces
the dimension of the conditioning vector to one. If the potential non-treatment
outcome is independent of the assignment mechanism conditional on X = x, then it
is also independent of the assignment mechanism conditional on P'(X)=P*(x),
thus:

6 Notethat CIA can be seen as overly restrictive, because all what is needed to identify
mean effects is conditional mean independence. However, the former has the virtue of
making the latter valid for al transformations of the outcome variables. Furthermore,
in an application it is usualy difficult to argue why conditional mean independence
should hold and CIA might nevertheless be viol ated.

7 It is assumed that the researcher has access to an infinitely large random
sample.
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E[Y°|S=1 P (X) = P(X)] = E[Y°| S=0,P(X) = P{(X)] . ()

Hence, E(Y°|S=1)=E{E[Y°|S=0,P(X)=P(x)]|S=1 can be used for estima
tion. When the propensity score is known or can be consistently estimated, the
major advantage of this property is the reduction of the dimension of the estima-
tion problem, especially important for nonparametric estimation techniques.8

2.2 Many treatments

Consider the outcomes of (M+ 1) different mutually exclusive treatments, denoted
by {Y°Y',..,Y"}. It is assumed that each participant receives exactly one of the
treatments (typically the 'O’ category denotes the case of the treatment type no
treatment). Therefore, for any participant, only one component of {Y°Y*,..Y"}
can be observed in the data. The remaining M outcomes are counterfactuals in the
language of the Rubin model. Participation in a particular trestment mis indicated
by the variable S0O{0,1,..M} .

The definitions of average treatment effects used for the case of just two treat-
ments need to be extended. In the following equations, the focus is on a pair-wise
comparison of the effects of the treatments mand [:

y=E(Y"-Y')=EY"-EY'; (4
al» =E(Y"-Y'|S=ml)=E(Y"|S=m])-E(Y' |S=m,]); (5)
B =E(Y"-Y'|S=m)=E(Y"|S=m)-E(Y' |S=m). (6)

y denotes the expected (average) effect of treatment m relative to treatment | for
a participant drawn randomly from the population (N).2 Similarly, a denotes the
corresponding effect for a participant randomly selected from the group of partici-
pants participating in either m or |. Note that both average treatment effects are
symmetric in the sense that " = - and o' = —a". " is the expected effect
for an individual randomly drawn from the population of participants in treatment
m only. If the participants in treatments m and | differ in a non-random fashion
which isrelated to the outcomes, then 8" # -6, i.e. the treatment effects on the
treated are not symmetric.10

8  Efficiency issues involved by conditioning on the propensity score instead of X are
discussed in detail by Hahn (1998) and Hirano, Imbens and Ridder (2000).

9 If avariable Z cannot be changed by the effect of the treatment (like time constant
personal characteristics of participants), then all what follows is aso valid in strata of
the data defined by different values of Z.

10 Thislist of treatment effects is not exhaustive, neither with respect to comparisons of
types of treatments, nor with respect to populations under consideration.
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It is worth noting that ag' =E(Y™-Y'|S=m,|) is a weighted combination of g
and g,". The weights are given by the participation probabilities in the respective
statesmand |:

al' =E(Y"-Y'|S=m|])
= E(Y"-Y'|S=m)P(S=m|S=m|l) + E(Y"-Y'|S=D)[1-P(S=m|S=m|l)]
= g"P(S=m|S=m,|l) - &"[1-P(S=m|S=m|1)];

P(S=m)
P(S=)+P(S=m)

P(S=m|S=m,|I) =

Notethat Yo' canbe decomposed as follows:

M

VS“:EYm-EY':ZD[E(YmISZJ)-E(Y'IS:i)]P(S:i)- ()

Therefore, the various effects can be ordered in terms of what information is re-
quired to identify them. Identification of A requires identification of

E(Y'|S=m), whereas identification of ag requires identification of E(Y'|S=m)
and E(Y™|S=I). ldentification of Ve requires either all counterfactuals of Y™

and Y', or at least of E(Y'|S#I) and E(Y"|S#m) (see below). Of course, if
E(Y'|S=j) and E(Y™|S=j) is identified for al j, then E(Y'|S#l) and
E(Y"|S#m) areidentified as well. These considerations imply also that if all 6y
(m,I =0,...,M) areidentified, then the other effects are identified as well.

3 Identification and the balancing score

The next step isto define CIA for the case of multiple treatments. This assumption
isformalized in expression (8):

YO, Y., YMIIS| X =x, OxO x 0<P"(x)<1,0m=0,..,M . (8)

In this case a generalisation of the balancing score property suggested by Rosen-
baum and Rubin (1983) holds as well.

Proposition 1 (generalized balancing score property):
YO YL YMIIS| X =x > YO L YMTIS|b(X) =b(x), OxOx,

if E[P(S=m|X =x)|b(X)=b(x)]=P[S=m|X =x]=P"(x), 0<P™(x) <1,
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The proof isgiven in Appendix A.

Functions that can be used as balancing scores are for example the vector of at-
tributes X, or the M-dimensional vector of propensity scores P(x) =
[P*(X),...P"(X),...,P" (x)] .12 Note that the dimension is reduced only to the order of
M. This means that from the point of view of dimension reduction, using the pro-
pensity scores directly, instead of X, as conditioning variables, isonly useful when
the dimension of X islarger than M.

It is obvious that the form of the CIA stated in expressions (8) and (9) identifies all
treatment effects defined in the previous section, because it identifies all counter-
factuals E(Y' |S=m) for al combinations of | and m.

The remainder of this section discusses identification for a given pair of treatments
m and |. It is shown that the problem can simplify considerably. The following
versions of CIA areimplied by the general form given in the previous section.

Proposition 2 (CIA identifies the treatment effects)

a If Y"Y'IIS|X =x and 0<P'(x)<1 hold for OxOx and 0j=m,| , then m,
ym, a, o™, gn, and gm areidentified.

b) If Y"Y'IIS|X =x,SO{ml} and 0<P!(x)<1 hold for OxOy and Oj=m,l,
Im
then 45", gm, 6, and & are identified.

c) If Y'IIS|X=xS0{ml} and 0<P'(x)<1 hold for OxO{y|P™(x)>0} then
&' isidentified.

Part @) is the strongest form of CIA and the implied common support requirement
(CSC). Thisform of the assumption identifies all counterfactuals E(Y™|S=j) and
E(Y'|S=j), because it implies E(Y"|X =x,S=]) = E(Y"|X=x,S=m) and
E(Y' | X =x,S=j) = E(Y' | X =xS=1) for 0j=0,..,M .

In part b) CIA isrelaxed to hold only for the subpopulations participating in either
treatment m or |. Hence, the assumptions of part b) identify in general only the
counterfactuals E(Y"|S=1) and E(Y'|S=m) and thus g™ , o'" as well as g

and gm are identified. Note that this assumption is implied by from the previous

version of CIA, because independence of potential outcomes and assignments in
the population implies independence in any subpopulation defined by assignment
categories.

11 Thereare only M linearly independent probabilities, because of adding-up.
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Finaly in part c) of Proposition 2, CIA is further relaxed to hold only for the po-
tential outcome Y' . In that caseit identifiesonly E(Y'|S=m) and thusonly g.

The fact that for the identification of ﬂé”, 90"', and 8" CIA is only necessary in

the subsample of participants in treatments m and | also implies that only this
subsample is necessary for the empirical analysis.

Corollary (sample reduction properties)

a) If the conditions of Proposition 1b) hold, then only the subsample of partici-
pantsin treatments mor | is needed to identify g g™, g™, and g

b) If the conditions of Proposition 1c) hold, then only the subsample of partici-
pantsin treatmentsmor | is needed to |dent|fy o .

The crucia point hereisto note again that identification is achieved by the equali-
tiess E(Y"|X=xS=l) = EY"|X=xS=m) and E(Y'|X=xS=m) =
E(Y'|X=xS=l). E(Y"|X=x,S=m) and E(Y'|X =x,S=1) are identified from
the subsamples of participantsin mand I, respectively.

The Corollary means in practise that if the interest is only in a specific pairwise-
effect for corresponding subpopulations, CIA alows one to delete the other treat-
ments and their part|C| pants from consideration. In other words, for the estimation
of a5’ , & ,and & we can ignore the existence of multiple treatments.

The following proposition provides balancing score properties corresponding to
the version of CIA given in Proposition 2 and proposes concrete balancing scores.
To ease notation, the focus is on balancing scores with minimal dimension, e.g.
the propensity score. Of course the proposition holds also for all balancing scores
that are as least as fine as the propensity scores given.

Proposition 3 (balancing score property)

a If Y"Y'IIS|X=x and 0<P/(x)<1 hold for OxOy and 0j=0,..M, it
follows that Y™ Y'IIS|[P*(X) = PY(x),...P" (X) =P"(¥)]. y', y", o™, a'm
g, and g are identified.

b) If Y"Y'LIS|X =x,SO{ml} and 0<P/(x)<1 hold for OxO x and Oj =
it follows that  Y™Y'LIS|P"™(X)=P"™(x),SO{m,}. P (x) =

| m
P(S=1[SO{ml}, X =x) = %. a', ag' &' and & are identi-

fied.
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c) If Y'IIS|X =xS0O{m,I} and 0<P!(x)<1 hold for OxOy and Oj=m,l, it
follows that Y'IIS|P'™(X)=P'"™(x),SO{m,} . P (x) =
P(S=11SO{mI},X =x). & isidentified.

Part @) is aversion of the general balancing score property. It has however not of
minimal dimension, as can be seen from the considerations following below (Im-
bens, 1999).

Part b) and c) need no explicit proof because the proofs for the binary cases a-
ready given in Rosenbaum and Rubin (1983) apply. The major implication is that
even for the case of multiple treatments a reduction of the dimension to one is
possible.

Indeed, a similar reduction is aso possible for the identification of ™. For de-

tails, the reader is referred to Imbens (1999), but the following paragraphs gives
the reasoning why thisis possible.

To discussidentification it is useful to rewrite equation (4) in the following way:
ym =EY™ - EY'
=ENY"|S=mP(S=m)+EY"|SZm)P(SZm)
—E(Y'|S=1)P(S=1)+E(Y'|S#I)P(S%])
=E(Y"|S=m)P(S=m)+E[E(Y"| X,S=m)|S# mP(S# m)
—E(Y'|S=1)P(S=1)+E[E(Y' | X,S=1)|SZI]P(S%I).

Hence (8) identifies y as long as P"(x)P'(x)>0, since it implies
E(Y/'|X=xS=j) = E(Y'|[X=xS#Z ), j=m|l.
Defining a new random variable §' =1(S= j), the following two conditions that

follow from (8) are sufficient to identify /" :

YIS |X=x, §=1S=j), OxOx,0j=m,l. (10
Based on these conditions a balancing score property can be deduced:
YIS X =x,OxOx > YIS |b!(X)=bi(x), OxO x,

if E[P'(x)|b'(X)=bl(x)]=P/(x), 0<P/(x)<1, j=m,|l. (1)

Hence, [P"(x), P'(x)] isabalancing score. Expression (11) corresponds again to
the binary case considered by Rosenbaum and Rubin (1983) and given in expres-
sion (RR). Thefact that it is applied twice - for mas well asfor | - is not essential.
Expression (11) leads to E(Y!|b'(x),S=j) = E[Y'|b/(x),S# j], j=ml. As for
the binary case the balancing scores of minimum dimension are the marginal
choice probabilities, hence y;" could be rewritten as follows:
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Yy =ENY™|S=m)P(S=m) +E[E(Y"|P™(X),S=m)| Sz mP(S# m)
—E(Y'|S=1)P(S=1)+E[E(Y' |P'(X),S=1)|S#I]P(S#]).
Thus the dimension of the estimation problem is reduced to one.

Therefore, methods to reduce the dimension of the condition set to one are avail-
ablefor al parameters of interest.

4  Estimation

There are many ways to estimate the parameters defined and identified before.
One example is kernel regression as performed by Brodaty, Crepon, and Fougere
(2000, this volume). The following suggestion is in line with the conventional
matching estimators used in the case of two treatments only (see for example
Rosenbaum and Rubin, 1985).

a) Estimation of P(S=j)

The first set of components are the conditional and unconditional probabilities of

the type P(S=j) and P(S=j|SO{k,j})= oS :Pj()S:Pj()s:k)

estimates can be obtained by using the respective cell frequencies.

(j#k). Consistent

b) Estimation of E(Y!|S=j)

E(Y'|S=j) can be estimated by the mean of the outcomes of units observed in
category j.

c) Estimation of E{E[(Y'|P™(X),S=j]|S=k} (k#])

In this case the following matching estimator is feasible:

In the first step estimate a probability model to obtain consistent estimates of the
choice probabilities Pl(x) and P (x) (or Pi(x) and R!(x)) that form the re-
spective balancing scores. For choosing that model a priori knowledge is impor-
tant. For example, if the choices are ordered, like in a dose-response set-up, an
ordered choice model would be appropriate.12 In other cases a multinomial logit or

12 seeImbens (1999).
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amore flexible model like a multinomial probit or a semiparametric model may be
the appropriate tool.

In the second step E{E(Y'| Pi(X),S=j]| S# ] or E{(H(Y'| RI¥(X),S=]|S=K
needs to be estimated when using the probabilities as balancing scores. There are
several ways to proceed. First, one could obtain a parametric, semi-parametric or a
non-parametric regression estimate of the expectation conditional on the respec-
tive one or two dimensional balancing scores. The outer expectation could then be
estimated by averaging that function with respect to the empirical distribution
function of X in the respective subpopulation.

An dlternative is to estimate both expectations in one step by using a matching
estimator. The idea of the simplest version of such an estimator isto find for every
participant in k or (not j) one participant in j that has (almost) the same balancing

score. Taking the mean of the outcome variable for these matched comparison
observations gives the desired estimate. Note that standard matching procedures
typically use each control observation (here S=j) only once, because the number

of comparison observations is typically much larger than the treated observations
(necessary to get 'good’ matches). However, for the case of many treatments each

group will act as a treated group as well as a comparison group. Therefore, re-
quiring the number of comparison observations to be larger than the number of
treated observations does not make sense. Thus, one needs to rely on matching
algorithms that use single observations more than once. Appendix B gives an
estimator and its approximate variance using such an approach. This estimator is

also used in an empirical study by Frélich, Heshmati and Lechner (2000), Gerfin
and Lechner (2000) and Lechner (2000a, b). The latter two papers address several
practical concerns that could arise with this kind of matching estimator.
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5 Conclusion

The Rubin causal model has been the working horse in the evaluation literature.
However, a model that allows for more than two treatments is necessary to evalu-

ate the different types of active labour market policies in European countries, for
example. This paper extends the classical Rubin model to the case of many treat-

ments and discusses various definitions of the causal effects. It also discusses the
identification of these effects under the conditional independence assumption. It is

shown that the so-called balancing score properties of the model with two treat-

ments can be extended. Furthermore, a sample reduction property is derived a by-
product. Finally, the paper shows that feasible non-parametric estimators such as
matching can be devised by exploiting the dimension reducing effect of using this
balancing score property. First experiences with this approach, as contained in
Brodaty, Crepon, and Fougere (2000, this volume), Frélich, Heshmati and Lech-
ner (2000), Gerfin and Lechner (2000), Larson (2000), and Lechner (2000a, b)
underline its usefulness in applied microeconometric analyses of active labour
market policies.
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Appendix A: Technical appendix

In the following it will be shown that Proposition 1 of the main part of the paper is
correct:

YO XL YMIIS| X =x (CIA) > YO XL YMIIS|b(X) =b(x), OxOy,
if E[P(S=m|X =x)|b(X)=b(x)]=P(S=m|X =x)=P"(x), 0<P"™(x) <1,

Om=0,...,M. (9)
Proof:

Let F() denote the joint distribution function of S and the potential outcomes,
then the following equation holds generally:

FOYO, YL YM SIX) = F(SIYO YL Y™, X)F(YO,YE.. Y [ X).

CIA can be expressed in terms of the distribution of S conditional on the potential
outcomes:

E(S|YO.YL. Y X) 2 F(S|X) (A1)

F(S|YS,YL. Y™ b(X) =F (S[b(X))= F(S| X). (A.2)

Since Sis discrete random variable with M+1 possible values, F(S|X) is a dis-
crete function with M+1 values for every given value of X. Hence, (A.2) can be
reformulated in terms of probabilities:

PIS=m|Y®,YL,...Y" b(X)]=P[S=m|b(X)] = P(S=m|X), Om=0,..M.  (A.3)

If the balancing score b(X) is at least as fine as the propensity score P[S=m| X],
i.e. E[P(S=m|X=x)|b(X)] = P[S=m|X =x], then E[P(S=m|X =x)|b(X)]
does not depend on the potential outcomes, hence:

E(P[S=m|X]|Y°,Y%...Y" b(X)} = E{P[S=m|X]|b(X)}
= P[S=m|b(X)] =P(S=m|X), Om=0,..,M.

Therefore, b(X) =[P*(X),...,P"(X)] isavalid balancing score. g.ed.
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Appendix B: An example of a matching estimator and
an approximation of itsvariance

Table B.1 gives a condensed description of a matching protocol that could be used
in practise.

Table B.1: A matching protocol for the estimation of 05”

Step 1 Specify and estimate a multinomial choice model to obtain
[A(X), R (X),- R (X))
Step 2 Estimate the expectations of the outcome variables conditional on

the respective balancing scores.
For agiven value of mand | the following steps are performed:

a) Compute ljm (x)= “’L@

R (X) + RY(X)
Alternatively step 1 may be omitted and the conditional prob-
abilities may be directly modeled (asin the binary case).

b) Choose one observation in the subsample defined by partici-
pation in mand delete it from that pool.

¢) Find an observation in the subsample of participantsin | that is
as close as possible to the one chosen in step &) in terms of
RIM (x) or [RT, By (X)] - Inthe case of using [RT, B (X)] ‘close-
ness’ can be based on the Mahalanobis distance. Do not re-
move that observation, so that it can be used again.

d) REePEAT b) and c) until no participant of mis|eft.

€) Using the matched comparison group formed in c), compute
the respective conditiona expectation by the sample mean.
Note that the same observations may appear more than oncein

or use [RY, Ry (X)) directly.

that group.
Step 3 Repeat step 2 for al combinations of mand I.
Step 4 Compute the estimate of the treatment effects using the results of

step 3 and compute their covariance matrix (see below).

Note: If the aim is to estimate only %' then the agorithm changes in an obvious
way.

Suppose that the matching protocol used gives an estimator for E(Y' |S=m) of the
following type:

Ev(Y'IS=m)=y  wy .
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The weight functions fulfil Z

observations in m, to which observation i is matched. N™ denotes the number of
observations in treatment m.

w"=N", O =1..,M . w" denotes the number of

o

Using this notation we get the following estimators for the various treatment ef-
fects:

Am _ 1 m _ 1 mol .
O = 2o T L WY
1 jym_ 1 j _ 0 s _oim.
w =;§Wziﬂmvvi]yi _Wziulwijyil)P(S—l)H W=

G =0"P(S=m|S=mor S=1)-6"P(S=I|S=mor S=1); 4" =-a".

To derive the variances of these estimators the weights and the probabilities are
assumed to be fixed and the observations are assumed to be independent. The first
assumption is obviously an approximation since the weights are estimated in the
algorithm given in Table B.1. We also assume that the variances of the observable
outcome variables are the same within a particular treatment, as well as that they
do not depend on the values of the balancing scores.

Var (87 :%Var(vws: m)+z(if\l'(m$vﬂ(v' IS=1).

It is useful to reformulate this estimator in the following way to obtain the vari-
ance of py':

om = mM lﬂ = i)] - IM % =0 -
Y ;[NjP(S ) zmyi;[NjP(s 0 ;

A~ = W ; d m v w ; d I
Var (yy ):zmmﬂ: WP(S: J)BVar(Y |S=m)+ Z‘D'D= WP(S: J)HVar(Y [S=1).
It isagain useful to reformulate the estimator ( P(S=m|SO{m,1}) = P™™ ) to obtain
the variance of ay" :

~ m| 1 mjm. V\d m| 1 Vv|m .
ay = Y e P T @ P - 3 v P R @ P

Var (ay)) = megjfmp"""‘*' +%(1— Pm'm*')EVar (Y"|S=m)+

: d
*um %P”"‘ +%(1— P"“)EVar(Y' IS=1).
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Since this estimator does take account of the fact that the weights are computed
based on estimated quantities and of the fact of matching itself, a bootstrap may be
used as an aternative. However, results by Lechner (2000b) show little difference
between the bootstrap variances and the approximate variances.
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