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Abstract : Initially, the paper provides an introduction to the main aspects of existing time-

domain methods for identifying linear continuous-time models from discrete-time data and shows

how one of these methods has been applied to the identification and estimation of a model for the

transportation and dispersion of a pollutant in a river. It then introduces a widely applicable class

of new, nonlinear, State-Dependent Parameter (SDP) models. Finally, the paper describes how

this SDP approach has been used to identify, estimate and control a nonlinear differential equation

model of global carbon cycle dynamics and global warming.
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1 Introduction

In recent years, there has been increasing interest in the use of Transfer Function (TF) models

in environmental science and engineering. This arises for three main reasons. First, they provide

a generic approach to the data-based, stochastic modelling of linear systems; an approach that

encompasses both discrete and continuous time model forms. Second, a considerable amount

of research has been devoted to the statistical identification and estimation1 of TF models, so

providing a rigorous statistical basis for model development. Finally, because of their heritage in

the control and systems literature, TF models are in an ideal form for block diagram analysis and

the interpretation of the model in serial, parallel and feedback connections of sub-systems that often

have physical significance. In addition to this, more recent research has extended the domain of TF

modelling to encompass Time Variable Parameter (TVP) and State Dependent Parameter (SDP)

TF models, so allowing for their application to non-stationary and nonlinear stochastic systems.

One only has to look at recent papers in this Journal to see that many environmental models

are formulated in terms of continuous-time differential equations (see e.g. Belforte et al., 2005;

Zhan, 2005; Carvalho et al., 2005). As a result, the continuous-time TF model, which is simply an

alternative representation of a differential equation, provides an obvious vehicle for data-based en-

vironmental modelling. Since the early 1960’s a variety of different approaches have been suggested

for the identification and estimation of continuous-time, linear TF models from discrete-time, sam-

pled data (see e.g. the reviews of Young 1981; Unbehauen and Rao 1990 1998; Nielsen et al. 2000;

Garnier et al. 2003). Despite this, however, such methods are not very well known or used by the

environmental science and engineering communities, who tend to prefer the alternative estimation

methods for discrete-time TF models (e.g. Jakeman et al. 1990; Young 2003 and the prior refer-

ences therein), such as those available in the CAPTAIN Toolbox for MatlabTM and the MatlabTM

System IDentification (SID) Toolbox.

However, renewed interest in continuous-time model estimation is emerging following recent

tutorial sessions at the 2003 IFAC Symposium on System Identification (SYSID) in Amsterdam

and the 2004 American Control Conference (ACC) in Boston, USA. In this paper, therefore, we

briefly consider the available methods of estimation for continuous-time linear systems and review

a method of estimation for a widely applicable class of continuous-time, nonlinear systems. In

1Here we use the statistical meanings of these words: ‘identification’ is the definition of the most appropriate

model order and structure; and ‘estimation’ is the estimation of the parameters that characterize this identified

model.
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addition, we present two examples, based on the analysis of real environmental data, that demon-

strate the practical utility and efficacy of these methods. Our main aim is to demonstrate the many

advantages of direct continuous-time model estimation, in relation to its discrete-time alternative,

and so encourage its practical application.

The paper is presented in two main parts. The first part, in section 2., starts by reviewing

various time-domain approaches to linear, continuous-time model identification and estimation,

starting with the iterative Simplified Refined Instrumental Variable method for Continuous-time

systems (SRIVC) method, that can be interpreted in statistically optimal and quasi-optimal terms

when the transfer function model residuals are serially uncorrelated, white noise. It is also noted

that this SRIVC algorithm can be extended to its more complex RIVC form, which is optimal or

quasi-optimal for the case of coloured residuals. The paper then proceeds to outline the main as-

pects of alternative, deterministic, sub-optimal methods, before discussing the utility of the ‘direct’

continuous-time estimation methodology, in comparison to the alternative ‘indirect’ discrete-time

approach (where a discrete-time model is first estimated by using standard discrete-time TF esti-

mation methods and then converted into a continuous-time model). Finally in this first section of

the paper, the practical utility of the SRIVC approach is illustrated by the its application to the

‘Aggregated Dead-Zone’ (ADZ) modelling of pollutant transport in a river, based on data collected

during a tracer experiment.

The second part of the paper, in section 3., considers nonlinear modelling, concentrating on

the estimation of State-Dependent Parameter (SDP) models, a widely applicable class of stochastic

nonlinear models. The estimation methodology for SDP models follows logically from the linear

methods and can describe a wide variety of nonlinear systems, including chaotic processes. Al-

though applicable to both discrete and continuous-time systems, only the continuous-time case is

considered here. The practical utility of this SDP approach is illustrated by its application to a well

known set of global climate data. This first, non-parametric stage of the SDP analysis identifies

the presence and nature of a temperature-dependent, negative feedback effect; and in the second,

parametric stage this nonlinearity is parameterized and the resulting model is estimated from the

data using a prediction error minimization approach.

Note that the paper does not attempt to review the literature on the identification and estima-

tion of models based on Itô stochastic differential equations (see e.g. Nielsen et al. 2000; Kristensen

et al. 2004, and the references on this topic therein). While this is partly through lack of space,

it is also because this alternative approach has not been applied so widely and is theoretically

more demanding. By contrast, the methods discussed below have been proven in many practical
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applications and are available as computationally efficient algorithms in two MatlabTM toolboxes:

CAPTAIN and CONTSID.

2 Linear Continuous-Time Model Identification

The theoretical basis for the statistical identification and estimation of linear, continuous-time

models from discrete-time, sampled data can be outlined by considering the following Single-Input,

Single-Output (SISO) system2










x(t) = B(s)
A(s)

u(t − τ)

y(t) = x(t) + e(t).

(1)

Here A(s) and B(s) are the following polynomials in the derivative operator s = d/dt:

A(s) = sn + a1s
n−1 + ... + an−1s + an (2)

B(s) = b0s
m + b1s

m−1 + ... + bm−1s + bm (3)

and τ is any pure time delay in time units. This Transfer Function model structure is denoted by

the triad [n,m, τ ]. In (1), u(t) is the input signal, x(t) is the ‘noise free’ output signal and y(t)

is the noisy output signal. Initially, the noise e(t) is considered as zero mean, white noise with

Gaussian amplitude distribution, although we will see later in section 2.1 that this assumption is

not restrictive. Of course, the model (1) can also be written in the following differential equation

form, which is often more familiar to physical scientists

dny(t)

dtn
+ a1

dn−1y(t)

dtn−1
+ . . . + any(t) = b0

dmu(t − τ)

dtm
+ . . . + bmu(t − τ) + µ(t) (4)

where µ(t) is defined as µ(t) = A(s)e(t).

Note that s is used as the derivative operator in the TF model (1) because of the very close

relationship to the Laplace transform operator, which is often used in this same context and allows

for the incorporation of initial conditions on the variables and their derivatives. Initially, however,

it is assumed that there are no major effects of any initial conditions remaining on the observed

time series y(t) and u(t) that would complicate the estimation of the model parameters.

2Multiple-Input, Single-Output (MISO) and Multiple-Input, Multiple-Output MIMO extensions are straightfor-

ward but obviously more complex.
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2.1 Optimal and Quasi-Optimal Estimation

The more common but rather ad hoc deterministic methods for estimating continuous-time mod-

els, such as (1), from discrete-time series data are not formulated within the context of statistical

optimality. Indeed, the topic of optimal statistical estimation in this continuous-time context has

received only a small amount of attention (e.g. Young and Jakeman, 1980; Wang and Gawthrop,

2001; Young, 2002b). This is rather surprising because optimal statistical methods provide quan-

tification of the uncertainty associated with the parameter estimates (see later examples in sections

2.4 aand 3.4) that can prove very useful in practice and such an approach is relatively standard in

the case of discrete-time model estimation. Of course, the estimation of continuous-time models

from discrete-time data is made more difficult because the input signal is not normally known over

the sampling interval and has to be interpolated in some manner. However, in the case where the

input is approximately constant over the sampling interval, it is possible to formulate the optimal

estimation solution fairly straightforwardly. In other situations, the optimality of the algorithm

will depend on the method of interpolation that is used. If this is not optimal, we refer to the

algorithm as ‘quasi-optimal’ although such quasi-optimal methods provide results that are often

very close to optimality and can provide an excellent, practical approach to continuous-time model

estimation.

Following the usual Prediction Error Minimization (PEM) approach (Maximum Likelihood (ML)

in the present situation because of the Gaussian assumption) for the model (1), a suitable error

function ε(t) is given by,

ε(t) = y(t) −
B(s)

A(s)
u(t − τ) (5)

=
1

A(s)
{A(s)y(t) − B(s)u(t − τ)} . (6)

Minimization of a least squares criterion function in ε(t), measured at the sampling instants, rep-

resents a nonlinear estimation problem and provides the basis for the response or output error

estimation methods. However, since the operators commute in this linear case, the 1/A(s) filter

can be taken inside the brackets to yield the expression

ε(t) = A(s)yf (t) − B(s)uf (t − τ) (7)

or,

ε(t) = snyf (t) + a1s
n−1yf (t) + . . . + anyf (t) − b0s

muf (t − τ) − . . . − bmuf (t − τ) (8)

where the f subscript indicates that the associated variable has been ‘prefiltered’ by 1/A(s). The

advantage of this transformation is that (8) is now linear in the unknown parameters ai, i =
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1, ..., n; bj, j = 0, ...,m, so that the associated estimation model can be written in the form

snyf (t) = zT
f (t)a + e(t) (9)

where,

zf (t) =
[

−sn−1yf (t) . . . − yf (t) smuf (t − τ) . . . uf (t − τ)
]T

(10)

a = [a1 . . . an b0 . . . bm]T . (11)

As a result, all of the prefiltered derivatives appearing as variables in this estimation model are

measurable as the inputs of the integrators that appear in the realization of the prefilter 1/A(s).

Thus, provided we assume that A(s) is known, the estimation model (9) forms a basis for the

definition of a likelihood function and ML estimation.

There are two problems with this formulation. The obvious one is, of course, that A(s) is not

known a priori. The less obvious one is that, in practical applications, we cannot assume that

the noise e(t) will have the nice white noise properties assumed above: it is likely that the noise

will be a coloured noise process, say ξ(t). Both of these problems can be solved by employing a

similar approach to that used in the Refined Instrumental Variable (RIV) algorithm for discrete-

time (backward-shift operator TF) model identification and estimation (see Young and Jakeman

1979; Jakeman and Young 1979; Young 1984 and the prior references therein). Here, a ‘relaxation’

optimization procedure is devised that adaptively adjusts an initial estimate Â0(s) of A(s) in an

iterative algorithm until it converges on an optimal estimate of A(s). The coloured noise problem is

then solved conveniently by exploiting IV estimation within this iterative optimization algorithm.

If the coloured noise is not modelled and estimated explicitly within the RIV algorithm, it is

referred to as the Simplified Refined Instrumental Variable (SRIV) algorithm. The continuous-

time version of this SRIV algorithm (SRIVC) is described fully in Young and Jakeman (1980)

and outlined in Young (2002c). The SRIVC and RIV/SRIV algorithms are both available in

the CAPTAIN toolbox3; and the SRIVC algorithm is also available in the CONTSID Toolbox (see

software availability section). Of course, if the noise e(t) is coloured or the input u(t) is not constant

between samples, then the above SRIVC approach to estimation is not optimal in statistical terms,

although it is robust and normally yields estimates with reasonable statistical efficiency (i.e. low

but not minimum variance). In the former case, it is possible to obtain quasi-optimal estimates by

3The CAPTAIN toolbox also contains optimized recursive filtering, forecasting and fixed interval smoothing

algorithms for the estimation of time and state-dependent variable parameters in various models (TF, ARX, linear

and harmonic regression models).
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modelling the coloured noise in AutoRegressive-Moving Average (ARMA) or AutoRegressive (AR)

terms (see e.g. Box and Jenkins, 1970) and expanding the definition of the adaptive prefilters

to account for this, as in the optimal RIV method for discrete-time systems. However, since it

is well known that there are theoretical and practical problems associated with continuous-time

ARMA and AR modelling, it is practically advantageous to use a hybrid approach in which the

noise modelling is carried out in discrete-time terms4 (Young and Jakeman 1980; Johansson 1994;

Pintelon et al. 2000). As regards the interpolation of the input signal u(t), it is possible to consider

optimal interpolation, for example using optimal fixed interval smoothing procedures (e.g. Young

et al. 1999; Young 1999), but experience suggests that simple interpolation normally produces very

good estimation results providing, of course, that the sampling interval is not too large.

Finally, it is worth noting that, if there are effects of any initial conditions on the observed time

series y(t) and u(t) then, provided they are not too severe, they can be handled in a sub-optimal

manner by the instrumental variable procedures that are an inherent and important part of the

above estimation algorithms. However, the algorithms can be extended to allow for the estimation

of such initial conditions, if this proves necessary because their effects are large (see e.g. Saha and

Rao, 1980).

2.2 Alternative Sub-Optimal Approaches

Initial research on continuous-time model identification and estimation was not formulated in the

above optimal manner but was based on the concept of a State Variable Filter (SVF) that generated

the required prefiltered derivatives (see section 2.2.1 below). A comprehensive survey of these

techniques has been given by Young (1981) and then by Unbehauen and Rao (1987, 1990, 1998)

and Garnier et al. (2003). A book has also been devoted to these direct methods (Sinha and Rao,

1991). Most of the main, sub-optimal approaches are available in the CONtinuous-Time System

IDentification (CONTSID) toolbox for MatlabTM (Garnier and Mensler 2000; Garnier et al. 2003),

which also contains a version of the SRIVC algorithm. Since the methods have been documented

so fully, however, it will suffice here merely to outline the main features of each approach.

4Note, however, that continuous-time noise modeling has been considered for models with no input u(t) (Tuan

1977; Fan et al. 1999; Pham 2000; Söderström and Mossberg 2000; Larsson 2004); and some extensions have been

made to handle the case of continuous-time ARX models (Söderström et al. 1997).
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2.2.1 State-Variable Filter (SVF) Methods

These methods originated from the first author’s early research in this area (Young 1964, 1965a,b,

1970) and was referred to as the Method of Multiple Filters (MMF). It involves passing the input and

output signals through a chain of (usually identical) first order prefilters with user-specified band-

pass, normally selected so that it spans the anticipated bandpass of the system being identified.

More recently this MMF approach has been re-named the Generalized Poisson Moment Functionals

(GPMF) approach (Saha and Rao 1983; Unbehauen and Rao 1987). Recent MMF/GPMF devel-

opments have been proposed by the second author and his co-workers (Garnier et al. 1994 1995

1997 2000; Bastogne et al. 2001).

2.2.2 Integration-Based Methods

The main idea of these methods is to avoid the differentiation of the data by performing an order

n integration. These integration-based methods can be roughly divided into two groups. The first

group, using numerical integration and orthogonal function methods, performs a basic integration

of the data and special attention has to be paid to the initial condition issue. The second group

includes the Linear Integral Filter (LIF: Sagara and Zhao 1990) and the Reinitialized Partial

Moments (RPM: Jemni and Trigeassou 1996) approaches. Here, advanced integration methods are

used that avoid the initial condition problem either by exploiting a moving integration window

(LIF) or a time-shifting window (RPM).

2.2.3 Modulating Function Methods

This approach was first suggested almost half a century ago by Shinbrot in order to estimate the

parameters of linear and nonlinear systems (Shinbrot 1957). Further developments have been based

on different modulating functions. These include the Fourier-based functions (Pearson et al. 1994),

in either trigonometric or complex exponential form; spline-type functions; Hermite functions and,

more recently, Hartley-based functions (Unbehauen and Rao 1998). A very important advantage of

using Fourier- and Hartley-based modulating functions is that the model estimation can be formu-

lated entirely in the frequency domain, making it possible to use efficient Fast Fourier Transform

(DFT/FFT) techniques.
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2.3 The Advantages of Direct Continuous-Time Estimation

Direct continuous-time model identification and estimation is advantageous for a number of rea-

sons but four of these have particular practical importance. First, most scientific laws used in

scientific model formulation, such as mass and energy conservation, are more naturally formulated

in continuous-time differential equation terms. Second, while discrete-time models have different

parameter values, dependent upon the sampling interval of the data, continuous-time models are

defined by a unique set of parameters that are independent of the sampling interval. Third the

direct continuous-time methods can be adapted easily to handle the case of irregularly sampled

data. Finally, and perhaps most importantly, continuous-time models can be identified and es-

timated from rapidly sampled data, whereas discrete-time models encounter difficulties when the

sampling frequency is too high in relation to the dominant frequencies of the system under study

(Aström 1969). In this situation, the eigenvalues lie too close to the unit circle in the complex

domain and the discrete-time model parameter estimates become statistically ill-defined. The

practical consequences of this are either that the discrete-time estimation fails to converge prop-

erly, so providing an erroneous explanation of the data; or that even if convergence is achieved, the

continuous-time model, as obtained by standard conversion (e.g. the MatlabTM D2CM function)

from the estimated discrete-time model, does not provide the correct continuous-time model.

In order to illustrate the robustness of continuous-time estimation methods to the sampling

interval of the data, a Monte Carlo Simulation (MCS) study was carried out (Young 2004) based

on 50 stochastic realizations of a simulated effective rainfall-flow model, with the data sampled at

sampling intervals from 5 minutes to 24 hours. Independent white noise (at a 20% level by standard

deviation) was added to the simulated output for each realization. Only 50 realizations were used

since the MCS in this case is computationally very intensive, with sample sizes ranging from 52, 128

to 181. The SRIVC results obtained in this manner were compared with the estimation results

obtained from the same data using two, indirect, discrete-time estimation methods: namely the

RIV method mentioned previously and the Prediction Error Minimization (PEM) method available

in the MatlabTM System Identification Toolbox. For each realization, the estimation was designated

a failure if the error on a parameter estimate was greater than three standard deviations from the

true value. This satisfactorily detected all convergence failures (where the estimates were always

far from the true values, much greater than three standard deviations), without misclassification

of any realizations.

It is clear from these MCS results that direct continuous-time model identification using the
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SRIVC algorithm is much more reliable than either of the indirect discrete-time methods considered.

In particular, the direct continuous-time identification has no failures for sampling intervals up to

one hour and only 0.32% thereafter. By contrast, the RIV-based indirect method has mean failure

rates at short, medium and long sampling intervals of 7.1%, 2.5% and 1.5%, respectively; while

the equivalent figures for the PEM-based indirect method are 8.2% 6.3% and 11.5%. The main

reason for the rather poorer performance of the PEM-based indirect approach appears to be because

the rainfall-flow system is ‘stiff’, being characterized by widely spaced eigenvalues (similar to the

situation with the solute transport model described in the next section). This makes the PEM-based

gradient optimization algorithm sensitive to the initial estimates and can result in convergence to

non-global minima (see e.g. Ljung 2003). In other MCS studies using heteroscedastic additive noise,

similar to that encountered on real flow data, the SRIVC results remain excellent but the indirect

estimation results are worse than those reported here, with mean failure rates of the PEM-based

indirect method of up to 45% (Young 2004)5.

2.4 Linear Example: Pollutant Transport in River Systems

Both of the practical examples described in this paper are examples of Data-Based Mechanistic

(DBM) modelling (see Young 1998 and the prior references therein). This can be contrasted with

‘black-box’ modelling, since DBM models are only deemed credible if, in addition to explaining the

time series data in a statistically efficient, parsimonious manner, they also provide an acceptable

physical interpretation of the system under study. They can also be contrasted with ‘grey-box’

models, because the model structure is inferred inductively from the data, rather than being as-

sumed a priori before model identification and estimation in a hypothetico-deductive manner (see

the discussion in Young 2002a).

This first DBM modelling example is based on the analysis of data obtained from a tracer

experiment in a river system. Tracer experiments6 are an excellent way of evaluating how a river

transports and disperses a dissolved, conservative pollutant (solute). Figure 1 shows a typical set

of tracer data from the River Conder, near Lancaster in North West England. This river is fairly

small, with a cobbled bed, and the experiment involved the injection of 199 mg of the dye tracer

5All of these estimation results were computed in version 6.5 of MatlabTM using version 5.0.2 of the Systems

IDentification Toolbox (SID) and CAPTAIN toolboxes. The PEM-based results were quite a lot worse when using

version 4 of the MatlabTM SID toolbox, which utilizes a previous version of PEM.
6The interested reader will find a more complex example of ADZ modelling in Young (2001b), where the same

approach used here is applied to data from a tracer experiment conducted in a large Florida wetland area.
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Rhodamine WT, with the measurement locations situated 400 metres apart, some way downstream

of the injection location to allow for initial mixing. The river flow rate was measured at 1.3 m3/sec.

The best known TF model for solute transport and dispersion is the Aggregated Dead Zone

(ADZ) model introduced by Beer and Young (1983). It has become conventional to identify and

estimate this model in discrete-time TF form and then deduce the continuous-time (differential

equation) model parameters from the estimated parameters of this discrete-time TF (the indirect

method). More recently, however, in related research on imperfect mixing processes (Price et

al. 1999), continuous-time models have proven more useful. Moreover, in the present example,

discrete-time modelling is not very successful when applied to the data in Figure 1: using a relatively

fast sampling interval of 0.25 minutes, both the discrete-time RIV algorithm and the alternative

PEM algorithm yield second order models which do not explain the data very well. Moreover,

while these algorithms produce well fitting third order models, these are clearly over-parameterized

and have complex roots, so that the models can be rejected on DBM grounds since they have no

obvious physical interpretation.

Continuous-time SRIVC modelling of the tracer data is much more successful and also pro-

duces models that can be interpreted directly in physically meaningful terms, so satisfying the

DBM modelling requirements. This suggests strongly that the dynamic relationship between the

measured concentrations at the input (upstream) and at the output (downstream) measurement

sites is linear and second order, with the continuous-time TF identified by the SRIVC algorithm

in the following form

y(t) =
b0s + b1

s2 + a1s + a2

u(t − τ) + e(t) (12)

or, in ordinary differential equation terms,

d2y(t)

dt2
+ a1

dy(t)

dt
+ a2y(t) = b0

du(t − τ)

dt
+ b1u(t − τ) + µ(t) (13)

where µ(t) = (s2+a1s+a2)e(t). Here, time is measured in minutes and the pure time delay of τ = 3

minutes on the input variable is the purely advective, ‘plug flow’ effect. There is very little serial

correlation and some heteroscedasticity in the estimated residuals, but the variance is extremely

low (0.0001), as reflected in the very high coefficient of determination based on these modelling

errors of R2
T = 0.9984 (i.e. 99.84% of the measured output variance is explained by the simulated

output of the model)7. Note that it is this extremely low variance and near whiteness of the model

residuals that justifies our use of the SRIVC algorithm in this case: not only are the parameter

estimates asymptotically unbiased because of the low noise level and the use of the IV approach in

7R2

T
is defined as R2

T
= 1 − var{y(t) − x̂(t)}/var{y(t)}, where x̂(t) is the deterministic model output from (14).
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SRIVC, but the estimated standard error bounds provide a good indication of the uncertainty in

these estimates.

With such a high R2
T , the model (12) obviously explains the data very well, as shown in Figure

2 which compares the deterministic (noise free) model output

x̂(t) =
b̂0s + b̂1

s2 + â1s + â2

u(t − 3) (14)

with the measured tracer concentrations y(t). The estimated parameters are as follows:

â1 = 2.0513(0.073); â2 = 0.6032(0.055); (15)

b̂0 = 1.1939(0.014); b̂1 = 0.6428(0.056) (16)

where the figures in parentheses are the estimated standard errors. Introducing the estimated

parameter values, the TF model (14) can be decomposed by partial fraction expansion into the

following form

x̂(t) =
0.6081

1 + 0.5898s
u(t − 3) +

0.4575

1 + 2.8105s
u(t − 3) (17)

which reveals that the model can be considered as a parallel configuration of two first order pro-

cesses which appear to characterize distinctive solute ‘pathways’ in the system with quite different

residence times: one ‘quick’, with a residence time Tq = 0.5898 minutes; and the other ‘slow’,

with a residence time Ts = 2.8105 minutes. The associated steady state gains are Gq = 0.6081

and Gs = 0.4575, respectively. These suggest a parallel partitioning of tracer with a parti-

tion percentage of Pq = 100 [ 0.6081/(0.6081 + 0.4575)] = 57.1% for the quick pathway, and

Pq = 100 [ 0.4575/(0.6081 + 0.4575)] = 42.9% for the ’slow’ pathway. As expected, the sum of

the estimated steady state gains for the two pathways (1.0656) is equal to the total estimated

steady state gain of the complete TF model (0.6428/0.6032), which has an estimated standard

error of 0.1658. These figures can be compared with the ratio of the areas under the input and

output signal graphs, which is 1.086, and the gain of unity that, in a perfect experiment with no

loss/gain of tracer or measurement errors, corresponds to the complete conservation of the tracer

mass. In this regard, it is clear that, taking into account the estimated uncertainty, the estimated

gain insignificantly different from unity.

The decomposition of the TF into the parallel pathway form (17), provides the information

required to interpret the model in a simple physically meaningful manner. The first order model

associated with each pathway can be considered as a differential equation describing mass con-

servation (see e.g. Wallis et al., 1989). And if it is assumed that the flow is partitioned in the

same way as the dye, then the Active Mixing Volume (AMV: see Young and Lees 1993) of water
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associated with the dispersion of the solute in each pathway can be evaluated by reference to equa-

tion (17), the flow rate and the residence times. This yields a quick pathway AMV, Vq = 26.3m3;

and a slow pathway AMV, Vs = 94.1m3, respectively. The associated Dispersive Fraction (DF),

in each case, is calculated as the ratio of the AMV and the total volume of water in the reach,

giving DFq = 0.12 and DFs = 0.56: (i.e. the active mixing volumes are 12% and 56% of the

total volume of water in each pathway, respectively). In other words, the slow pathway results in

a considerably greater dispersion (and longer-term detention) of the dye than the quick pathway,

as one might expect. While the model, interpreted in this simple manner, provides little insight

into the detailed, complex processes of solute transport and dispersion in the river, it does provide

a meaningful explanation of the overall, aggregative behaviour and the dominant pathways in the

system. Such an explanation is clearly appropriate in applications related to the monitoring and

control of water quality in the river system at this aggregative level

Given this quantitative analysis of the model (14), the most obvious physical interpretation

of the parallel flow decomposition in (17) is a form of two layer flow, with the slow pathway

representing the dye in the water moving adjacent to the cobbled bed and banks of the river, which

is being differentially delayed in relation to the quick pathway, which is associated with the more

freely moving surface layers of water. The aggregated effect of each pathway is then an advective

transportation delay of 3 minutes, associated with the non-dispersive advection (‘plug flow’); and

an ADZ, defined by the associated AMVs and DFs in each case, which are the main mechanisms

for dispersion of the dye (and, therefore, other forms of pollution) in its passage down the river.

This parallel partitioning of the flow and solute also helps to explain the shape of the experi-

mentally measured concentration profile. The individual concentration profiles for the quick and

slow pathways, as inferred from the parallel partitioning, are shown as dashed and dash-dot curves,

respectively, in Figure 2.

3 Nonlinear Continuous-Time Model Identification

The identification and estimation of nonlinear continuous-time models is considerably more difficult

than linear modelling. First, there is no unified theory for nonlinear systems and so it is necessary

to consider a given ‘class’ of nonlinear model. Secondly, the estimation of time derivatives is

more difficult because the commutation operation that is so important in defining prefiltered time-

derivatives (see section 2.1) is no longer possible in the case of nonlinear systems. Here, we consider

the State Dependent Parameter (SDP) class of nonlinear models which can describe a wide variety
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of nonlinear systems including chaotic processes.

3.1 State Dependent Parameter Estimation

As far as the authors are aware, the idea of State Dependent Parameter (SDP) modelling within a

stochastic setting was originated by Young (1969a,b) and Mendel (1969). They enhanced recursive

estimation performance by assuming that the model parameters could vary over time because of

their dependence on the variations in other measured variables. These ideas were then explored

within a broader SDP setting (Young 1978) and Priestley (1988) took them up in a series of

papers and a book on the subject. These earlier publications do not, however, exploit the power of

recursive Fixed Interval Smoothing (FIS), which provides the main engine for the latest methods

of SDP estimation (see Young et al. 1999; Young 2000 2001a; Young et al. 2001).

There is some similarity between SDP models and Linear Parameter Varying (LPV) models,

as pointed out in Young (2005) in a comment on the paper by Previdi and Lovera (2004).

However, there are significant differences. For instance, while the LPV approach tends to be

a fully parametric, black-box method, SDP estimation is a combination of non-parametric and

parametric estimation aimed at opening up this black-box model and, if at all possible, explaining it

in physically meaningful terms. In particular, SDP modelling exploits recursive FIS estimation in an

initial structure identification stage of the modelling in order to obtain the location of nonlinearities

in the model, together with non-parametric (graphical) estimates of how the SDPs are related to the

state on which they are dependent. This information then forms the basis for the parameterization

of the nonlinearities and the final estimation of this parametric DBM model (see the later example

in section 3.4).

SDP estimation was originally developed in discrete-time terms (see above references). The

simplest SDP continuous-time model is a nonlinear equivalent of the linear TF model (1) and takes

the following form

y(t) =
B(s, zt)

A(s, zt)
u(t − τ) + e(t) (18)

where A(s, zt) and B(s, zt) are SDP polynomials in the s operator of the form

A(s, zt) = sn + a1(z1,t)s
n−1 + · · · + an(zn,t) (19)

B(s, zt) = b0(zn+1,t)s
m + · · · + bm(zn+m+1,t) (20)

while zt is a vector of measured variables (states) on which the parameters may be dependent. In
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estimation equation terms, this model can be written most conveniently as:

sny(t) = zT
t pt + et (21)

where,

zT
t =

[

−sn−1y(t) . . . − y(t) smu(t − τ) . . . u(t − τ)
]

(22)

pt = [p1(z1,t) . . . pn+m+1(zn+m+1,t)]
T , (23)

while,

p1(z1,t) = a1(z1,t); p2(z2,t) = a2(z2,t) · · · , pn+m+1,t(zn+m+1,t) = bm(zn+m+1,t) (24)

Here, pi(zi,t) indicates that the ith parameter varies over time as an (initially unknown) function of

another measured variable zi,t which could be any measured variable but is quite often the input

variable u(t), the output variable y(t) or functions of these variables (e.g. time derivatives, lagged

values etc.).

Although the SDP model (18) has the superficial appearance of a linear, time variable parameter

TF model, this is quite deceptive since the model represents a widely applicable class of truly

nonlinear systems. This becomes apparent when it is noted that the time variable parameters

ai(zi,t) in this model are not slowly variable, as in the case of standard TVP models, they are

functions of the variables zi,t that relate directly to the state of the system. As a result, they can

vary very rapidly: indeed, in the case of nonlinear chaotic systems, they will also vary chaotically.

This means that the SDP model does not simply represent a system in a limited neighbourhood

of some defined reference state, it can represent wide-ranging and truly nonlinear behaviour. So,

although they cannot represent every type of nonlinear stochastic-dynamic behaviour, such SDP

models (which can be extended to include multivariate state dependency with each SDP a function

of more than one state variable) can represent a very wide variety of nonlinear systems, as shown

in the references cited above. For this reason, they seem to have great potential within a general

environmental context.

As mentioned above, SDP modelling consists of two stages, the full details of which are given in

the above references. In the first, non-parametric stage, the recursive SDP estimation algorithm is

an extension of the stochastic approach to Time Variable Parameter (TVP) estimation, where the

time variations in the parameters are assumed to evolve as one of the Generalized Random Walk

(GRW) class of Gauss-Markov process (e.g. Young 1999) , of which the Random Walk (RW) and

Integrated Random Walk (IRW) processes are the best known. However, SDP estimation differs

from standard TVP estimation in three important respects. First, by exploiting the forward and
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backward approach of recursive smoothing (FIS) estimation rather than forward ‘filtering’ approach

used in most standard TVP estimation, it is able to obtain lag-free and statistically more efficient

estimates of changing parameters, so enhancing the ability to interpret these parametric variations

in SDP terms. Second, in order to allow for the rapid variation that state dependency can induce

in the parameters, the data are sorted into some other, non-temporal order (e.g. ascending order of

magnitude), so that the rate of change of the parameter variations between samples in this sorted

data space is much smaller than in the original observation space. Thirdly, in order to allow for

the possibility of different state dependency in each parameter, an iterative ‘back-fitting’ algorithm

is used to estimate each SDP separately, based on prior estimates of all the other SDPs in the

model. The main estimation engine used in the implementation of this back-fitting algorithm is

FIS estimation.

As in the linear situation, the main problem with the above SDP estimation methodology in the

continuous-time case is its requirement for measurements of the input and output time derivatives

siy(t) =
diy(t)

dti
, i = 1, 2, ..., n (25)

sju(t − τ) =
dju(t − τ)

dtj
, j = 1, 2, ...,m (26)

which are not usually available directly. The approach to this time derivative estimation problem

used in the later example (section 3.4) is again based on recursive FIS estimation (Young et al. 1993;

Young 1993). Each variable in question (here u(t) or y(t)) is modelled as a multiple differentiation

process in continuous-time and then converted to the discrete-time equivalent of this process. The

time derivatives of the variable at the sampling instants are then recovered as the FIS estimated

states of this model. In the simplest, single derivative case used in the example discussed later in

section 3.4, for instance, this takes the form of an IRW process with its parameter defined by the

sampling interval, ∆t. This process could be formulated more accurately in continuous-time terms

but the discrete-time formulation works quite well, as we shall see in the later example (section 3.4;

see also the above references). Note also that this estimation of time derivatives is only required

in the first, non-parametric stage of SDP estimation. The subsequent, final parametric estimation

stage, as discussed below, involves direct integration of the differential equation and some form of

optimal or sub-optimal estimation, so that no explicit derivative estimation is required.
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3.2 Final Parametric Estimation

Within DBM modelling, non-parametric SDP modelling normally provides a method for identifying

the presence, location and nature of nonlinearities in the SDP models. In this manner, it serves

as a prelude to the parameterization of the final nonlinear stochastic model and the more efficient

estimation of the (normally constant) parameters that characterize this nonlinear parametric model.

Such estimation can be based on various approaches to model optimization, from nonlinear least

squares, through maximum likelihood and optimal instrumental variable estimation, to the latest

Monte Carlo-based methods of Bayesian estimation. But the methodology used in any particular

application will normally depend on the nature of the system under study, the modelling objectives,

and the scientific background of the model builder. In the case of the global carbon cycle example

discussed below, optimization is based again on a Prediction Error Minimization (PEM) approach

(maximum likelihood estimation in the case of Gaussian residuals).

3.3 Other models

Although we have outlined the SDP approach to data-based nonlinear model identification and

estimation in terms of continuous-time transfer function models, SDP estimation is not restricted

to such models. It can be applied to any continuous or discrete-time, nonlinear stochastic model

that can be formulated as linear additive sum of nonlinear elements (sometimes termed an ‘affine’

model). This ranges from static nonlinear regression models (Young 2001b) to dynamic state space

models. Typical examples of the latter are the well known Lorenz Strange Attractor (Young 1993),

the model of the Nicholson Blowfly Data (Young 2000) and the simpler global carbon cycle model

considered below.

3.4 Global Carbon Cycle Modelling

This example is a summary of much more comprehesive results obtained in a recent study of the

global carbon cycle, a complete description of which is given in Young and Jarvis (2002). In

particular, it investigates the dynamic relationship, over the period 1856 to 2000, between globally

averaged annual measures of CO2 emissions (arising from both the use of carbon fuels and land-use

changes); perturbations in atmospheric carbon dioxide partial pressure, pCO2; and the Northern

Hemisphere temperature anomaly. The analysis reveals the possible presence of a temperature-

dependent nonlinearity in the dynamic relationship between CO2 emissions and atmospheric pCO2

that has an interesting and potentially important physical interpretation.
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Figure 3 presents the data used in the analysis and shows that there are clear increases in all

three variables over the period from 1856 to the end of the last century. The normal statistical

procedure would be to reduce the series to stationarity in some manner (e.g. by differencing). But

the climate data have a clear physical meaning and we can be reasonably sure that the increase

in the levels of atmospheric pCO2 are the result of the increases in emissions. In other words,

there is an obvious input-output relationship, with the non-stationarity in the input giving rise to

non-stationarity in the output. What is much less certain, however, is that the rise in the level

of the atmospheric pCO2 is, in turn, leading to the observed increase in the temperature anomaly

(see later in section 3.4.4).

With these factors in mind, we will analyze the data directly in the form shown in Figure 3.

For this analysis, the input CO2 emissions, the output atmospheric pCO2 perturbations about

the assumed pre-industrial level (see caption to Figure 3), and the temperature anomaly will be

denoted by u(t), y(t) and T (t), respectively.

3.4.1 Linear model identification and estimation

The SRIVC algorithm identifies a number of linear, constant parameter, first order models that

have good identification and estimation statistics; i.e. coefficients of determination R2
T based on the

simulated output greater than 0.99 (i.e. the simulated deterministic output of the model explains

> 99% of the pCO2 variance), together with well defined, low standard error parameter estimates.

However, all estimated higher order models are rejected, either because they do not satisfy these

statistical criteria or because they are not satisfactory in dynamic terms (e.g. they have unstable

or imaginary eigenvalues).

Two important factors emerge from this analysis: first, it is necessary to add a small additional

constant input to obtain a good explanation of the y(t) series (see below); second, there is a less

well-defined pure time delay of about 5 years. In other words, this initial analysis suggests a model

of the form:










dx(t)
dt

= a1x(t) + b0u(t − τ) + c

y(t) = x(t) + ξ(t)

(27)

where x(t) is the underlying, ‘noise-free’ pCO2 perturbation; τ is the pure time delay; ξ(t) is the

residual coloured noise at the output of the model, with zero mean value and variance σ2
ξ ; and c is

an additional constant input. The addition of c makes sense physically because it will account for

the small dynamic effects of anthopogenic emissions pre-1856, as well as correcting for any small
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inaccuracy in either the assumed pre-industrial level of pCO2 that has been removed from the pCO2

data (see caption to Figure 3), or the CO2 emissions

In order to obtain an improved, possibly non-integer, estimate of the time delay, the model

(27) was estimated using the leastsq optimization tool in MatlabTM, with the model simulated in

SimulinkTM, using the linsim tool. All integrations of the model used in this optimization were

initiated from the measured y(0), since separate optimization of the initial condition had little

effect on the estimates. Also, in order to allow for colour in the residuals ξ(t), they were modelled

as a discrete-time AR process, i.e.

ξt =
1

1 + d1z−1 + ... + dnz−n
et (28)

where z−r, r = 1, 2, ...n is the backward shift operator; while ξt = ξ(ti) and et = e(ti) are, respec-

tively, ξ(t) and e(t) sampled at the annual sample times ti, i = 1, 2, ..., N , and N is the sample

size. The sampled stochastic model residuals et are assumed to be a zero mean sequence of serially

uncorrelated random variables with variance σ2 (discrete white noise). This ‘hybrid’ approach to

modelling was used because the discrete-time stochastic model (28) is easier to handle within the

optimization (and in theory). In any case, the noise model estimation makes only a small difference

to the final estimated parameter values because the residual noise variance is so small (although it

does affect their estimated uncertainty).

Parameter estimation was based on optimization of the following least squares PEM cost func-

tion with respect to the unknown parameters

J{θ} =
t=N
∑

t=1

ê2
t , θ = [a1 b0 c d1 d2 ... dn τ ]T (29)

where êt are the stochastic model residuals (one-year-ahead prediction errors) at the annual sam-

pling interval. The estimated parameters in the most important continuous-time part of the model,

based initially on the whole data set (N = 145) are as follows:

â1 = −0.0167(0.0009); b̂0 = 0.0371(0.0009); (30)

ĉ = 0.0114(0.0006); τ̂ = 5.0(0.389); (31)

σ2
ξ = 0.0041; σ2 = 0.0004. (32)

where, once again, the numbers in parentheses are the estimated standard errors. The noise model

(28) is identified by the Akaike Identification Criterion (AIC: Akaike, 1974) as either an AR(8)

or ARMA(2,2) process, with the final residuals et showing no significant auto-correlation and no
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cross-correlation with the input ut (the annual samples of the input CO2 emissions). However,

the residuals ξ̂t = yt − x̂t, although very small, are significantly correlated with the temperature

Tt for all lags between 4 and 22 years and a maximum correlation coefficient of 0.4 (0.17) at a

lag of 10 years. Moreover, recursive FIS estimation of the local cross correlation is much larger

than this at high values of Tt. The model has a coefficient of determination based on the error ξ̂t

between the simulated deterministic model output and the measured CO2 of R2
T = 0.9991; while

the more conventional coefficient of determination based on the one-step-ahead prediction errors êt

is R2 = 0.9999. This is, of course, important in the present context since it means that the main

differential equation which, as we shall see below has some physical significance, is explaining the

measured output of the dynamic system very well indeed in both simulation and prediction terms.

3.4.2 Nonlinear model identification and estimation

Despite the apparently very good results obtained in linear modelling, the high correlation of the

residuals ξ̂t with the temperature anomaly Tt suggests that there may be a temperature dependent

component in the model residuals that is capable of being absorbed within the model and so im-

proving its descriptive ability still further. This is indeed the case: SDP non-parametric estimation

suggests strongly that, while there is no evidence that the input parameter b0 is time variable, the

parameter estimate â1 seems to vary significantly as a function of the temperature anomaly Tt.

This SDP estimate â1(Tt), plotted as the dash-dot line in the left hand panel of Figure 4, suggests

that the parameter value is becoming more negative as the temperature increases, although there

is a tendency for the variations to ‘flatten out’ at the lower and upper extremes of the temperature

anomaly range. But we must remember that these are non-parametric estimates and tend to be

more poorly defined in these regions because of end effects and the paucity of data in these regions.

In order to investigate this problem in a statistically more efficient parametric manner, several

different parameterizations of the temperature dependency suggested in Figure 4 were tried, in-

cluding polynomial, radial basis function (e.g. Ordieres et al., 2005) and an exponential decline.

However, the best results were obtained with either simple linear (first order polynomial) or sig-

moidal8 laws in T (t). In other words, the finally identified nonlinear model takes either of the

8This kind of nonlinearity has also been termed a ‘two-regime, smooth transition threshold nonlinearity’ (Granger

and Teräsvirta 1993)

21



following forms










dx(t)
dt

= {α + βT (t)}x(t) + b0u(t − τ) + c

y(t) = x(t) + ξ(t)

(33)

or










dx(t)
dt

= {α + 1
1+e−βT (t) (γ − α)}x(t) + b0u(t − τ) + c

y(t) = x(t) + ξ(t).

(34)

In the case of (34), the estimated parameters, again based initially on the whole data set (N = 145),

are as follows9

α̂ = −0.0232(0.0062); β̂ = −4.503(7.321); γ̂ = −0.0128(0.0054);

b̂0 = 0.0402(0.0017); c = 0.0066(0.0015);

τ̂ = 5.0; σ2
ξ = 0.00240;σ2 = 0.000623

R2
T = 0.99949, R2 = 0.99987

where the AIC once more identifies an AR(8) or ARMA(2,2) model for the noise ξt. Also as before,

the final model residuals et show no significant auto-correlation and no cross-correlation with the

input ut. But now ξ̂t also shows no significant correlation with Tt (statistically insignificant maxi-

mum correlation of 0.11(0.17) at a lag of 10 years), as required. Bearing on our earlier discussion,

note that the estimate of c is significant but very small, as anticipated.

The sigmoidal law obtained from the above estimation of model (34) is shown as the full line

in the right hand panel of Figure 4. This sigmoidal law was introduced in order to allow for any

possible flattening out of the relationship at higher levels of the temperature anomaly (see earlier

discussion) which would have most effect on long-term model predictions. This model explains the

data marginally better than the linear-in-temperature model (33) and, while its β parameter is

rather poorly defined statistically, this is quite normal for nonlinearities of this type (Granger and

Teräsvirta 1993). For comparison, the estimated linear-in-temperature law is shown as the full line

in the left hand panel of Figure 4.

Finally, although the models (33) and (34) have been identified and estimated in a largely ‘black-

box’ manner, they can both be interpreted in physically meaningful terms at the global scale, as

required by the DBM approach to modelling. A full interpretation of the models in this regard is

provided in Young and Jarvis (2002). It is sufficient here to say that they can be considered to

9These results were obtained with a fixed τ = 5: however, this was based on prior estimation with τ allowed to

take on non-integer values.
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represent the mixing dynamics of anthropogenic CO2 emissions within the active elements of the

global carbon cycle. Both models yield similar results in this regard. In 1980, the total mass of CO2

in this identified mixing system is estimated as 842.9(30.2)Gt: this is somewhat larger than the

quoted figures for the mass of CO2 in the atmosphere alone in 1980, which is given in the literature

as 730Gt (Farquhar et al. 2001), suggesting that, as might be expected since they are based on

globally averaged data, our models include the mixing effects of other surface ocean and terrestrial

carbon reservoirs that interact with the atmospheric system. Also, for the period 1950-1984, the

cumulative loss of CO2 attributable to the nonlinear negative feedback effect that we have identified

is 13.5 (1.8) Gt, which is comparable to the 20(5)Gt estimated by Dai and Fung (1993) using a

completely different approach. The estimated total climatic losses for the period 1856-2000 are

39.4(6.2)Gt. This may provide a credible explanation for some of the so called ‘missing sink’ for

CO2 that is often cited in the literature (Farquhar et al. 2001).

3.4.3 Predictive validation

In order to investigate the predictive capacity of the model (34), it is re-estimated on the basis of

only the first 120 annual samples up to 1975 and then its performance is evaluated by forecasting

the perturbational pCO2 variations over the last 25 years of the 20th Century, without any re-

estimation of the parameters over this period. To make this exercise more demanding, the model

integrations are initiated in 1856, with the initial condition for the integrations set to the value

of y(0) = 0.6523 pa on this date and with no reference to the actual y(t) measurements at all

after this. In other words, the forecast is based on a straightforward Monte Carlo Simulation

(MCS) of the nonlinear model from this initial condition using only the measured CO2 emissions

and temperature anomaly as inputs to the model. This MCS analysis is based on the estimated

covariance matrix of the model parameters and involves 1000 random realizations of the model.

The results are shown in Figure 5, where we see that the y(t) variations are predicted very well, with

R2
T = 0.99941 (almost the same as that obtained from model estimation based on all 145 samples)

and the MCS estimated confidence region is small. For comparison, the linear-in-temperature

model (33) performed marginally worse in predictive validation terms, with R2
T = 0.99935; while

the linear model (27) was significantly worse (in statistical terms), with R2
T = 0.99909.
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3.4.4 A controlled future?

The simple, stochastic, nonlinear models discussed in the previous section could form the basis for

long-term predictions of pCO2 and, when combined with an associated pCO2-global temperature

model, could form the basis for long term climate predictions. However, such long term predictions

are highly uncertain whatever climate model is utilized and it is, perhaps, better to avoid such

speculative exercises. In our opinion, a more sensible alternative is to consider how it is possible

to formulate a CO2 emissions policy that is relatively insensitive to the models used in its deriva-

tion. One such approach of this type is described by Young and Jarvis (2002), who consider the

specification of carbon emissions policy as a stochastic feedback control problem. They carry out

such an exercise using the following simple hybrid (see earlier) model obtained by SRIVC and RIV

analysis of the globally averaged pCO2 and global temperature anomaly data shown in Figure 3:

dz(t)

dt
= a1z(t) + b0{y(t) − ȳ} (35)

Tt = z(t) + η(t) (36)

where ȳ is the mean value of y(t) (which is subtracted from y(t) so that the input is a perturbational

series, as in the case of the output temperature anomaly series, T (t)); z(t) is the underlying ‘noise-

free’ temperature anomaly; ηt is an AR(9) process and the estimates of the two parameters in (35)

are:

â1 = 0.0514(0.009); b̂0 = 0.0080(0.001)

It must be stressed that we are not claiming that this is a good model for the effects of the

perturbations in pCO2 on global energy balance: its descriptive ability is too limited in this regard

(R2
T = 0.56; R2 = 0.72) and a more detailed analysis of this relationship is required. Rather it is

being used here merely for illustrative purposes and to ensure that the scaling between y(t) and

T (t) is of the correct order to ensure that the simulation of the complete feedback system makes

reasonable sense. Although we do not feel that long term predictions based on this model, combined

with the simple global pCO2 models discussed in previous sections, should be taken too seriously,

they are quite interesting. For instance, as we see below, they suggest that any anthropogenically-

related future temperature rise might occur at a much slower rate than that predicted by the large,

deterministic climate models that are normally used to make such predictions.

An important aspect of climate change studies is the definition of emission scenarios into the

future that may control the global warming (under the hypothesis that a link between emissions and

global temperature change is accepted). One approach is to consider the ‘inverse problem’ (see e.g.
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Wigley 2000): i.e. compute the emission scenarios that are able to achieve a range of ‘stabilization

concentration profiles’ for atmospheric CO2, such as those utilized in the studies carried out by

the IPCC (Schimel et al. 1996). An alternative and more robust approach is to exploit automatic

control theory and so generate an emissions scenario (control input) that achieves some required

objective, as defined by a specified ‘optimal’ criterion function.

However, if we consider the results obtained using approaches such as these, based on the models

discussed in this paper, they are significantly different from those obtained heretofore by climate

scientists. For example, in (Wigley 2000), a deterministic carbon balance model is used to generate

a range of emission scenarios that achieve a whole range of stabilization concentration profiles, with

steady CO2 levels ranging from 350 to 750 ppmv (i.e. perturbations in pCO2 from 7 to 47 pa). If

we consider the 450 ppmv (17 pa) case, for instance, this deterministic analysis produces a future

emissions scenario that reduces to a quasi-steady level of circa 2.3 Gt y−1 by the year 2200.

In contrast to the latter deterministic results, consider the stochastic simulation scenario pre-

sented in Figure 6. This shows the results of an automatic control exercise based on our most

pessimistic linear model (27), which predicts the largest future rises in pCO2. In order to gen-

erate the results shown in Figure 6, the emissions input to the model is based on the measured

emissions from 1856 to 2000. After this, however, the computed emissions input is generated by a

Proportional-Integral-Plus (PIP) feedback controller (see Taylor et al. 2000 and the prior references

therein) designed to follow a defined future pCO2 profile (in this case similar to that in Wigley

(2000), but other profiles could be considered equally easily using this approach). This is designed

to stabilize the atmospheric pCO2 perturbation at a level of 17.6pa (456ppmv) and the temperature

anomaly at a mean level of circa 2.6◦C. Considering the results of this exercise shown in Figure 6,

we see that the objectives have been realized by 2200, with an emissions scenario stabilizing at a

level of 7.4 Gt y−1, with a 5%− 95% percentile range between 6.1 and 8.5 Gt y−1; i.e. between 3.6

to 6 Gt y−1 higher than that computed in Wigley (2000) for a similar profile (i.e. the same result

is achieved with a much smaller and more practically feasible reduction in the CO2 emissions).

One practical advantage of this automatic control solution, when compared with the inversion

solution, is that the feedback control policy is applied incrementally, so that it is adjusted in relation

to the measured data as time progresses. Thus if some disturbance to the system is experienced,

the PIP controller will suggest adjustments to the CO2 emission policy that compensate for the

disturbance and continue to follow the defined pCO2 profile as closely as possible without requiring

excessive emission adjustments (as defined by the optimal control criterion function used in the

PIP control system design).
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Of course, it must be emphasized that the above exercise is purely illustrative. Its main aim is

to show how the continuous-time DBM model, as obtained in the manner described in this paper,

might be useful in policy formation. Both the results in Wigley (2000) and ours are speculative

‘what-if’ studies, characterized by considerable uncertainty, even if it is assumed that the generated

emissions scenario is achievable. They can also be considered as providing a range of extreme

speculations, with the Wigley results representing a pessimistic future requiring major reductions

in emissions; while ours are much more optimistic in this regard10. The credibility attached to

these speculations will, of course, depend largely on one’s scientific background. If we exaggerate

the situation somewhat, in order to clarify the nature of the dilemma, then two extreme viewpoints

can be discerned:

1. Scientists educated within a deterministic, hypothetico-deductive tradition, will argue cor-

rectly that a simulation model, such as that used by Wigley, reflects the current state-of-the-

art understanding of the mechanisms operative in those multiple compartments of the GCC

system that are thought necessary to characterize its dynamic behaviour. They will point

out that it is a representation that utilizes all of the information available in this regard,

assembled in a model form that reflects the scientist’s well-supported perception of how the

different physical and biological processes interact with each other in dynamic terms. And

they will emphasize that the level of detail in the model reflects a widely held view that

the environment, particularly at the global scale, is a very complex system that can only be

represented by a similarly complex model.

2. On the other hand, scientists who follow a statistically-based, inductive approach, of the kind

employed in the present report, will argue that data-based, mechanistic models, identified and

estimated in stochastic terms, better reflect the information content of the available, uncertain

data; and that such models are less prone to the prior prejudice that can sometimes result

from over-confidence in current paradigmatic judgment. They will also point out that large

and complex models cannot be estimated properly in rigorous statistical terms, since they are

over-parameterized and so not uniquely identifiable from the available data. As a result, they

will argue that such a model has not been adequately validated against the available data and

so is a questionable vehicle for making predictions into the distant future. And, finally, they

will be able to show that, despite their complexity, large mathematical models behave in a

10although, ironically, they are based here on our most pessimistic, linear model: the nonlinear models would be

even more optimistic because of the temperature feedback effects.
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quite simple dynamic manner and can be mimicked in this regard by much simpler ‘dominant

mode’ mathematical models of the DBM kind (Young et al. 1996; Shackley et al. 1998) .

Both of these extreme viewpoints can be defended, of course, and the reader will not be surprised

that we subscribe more to the latter, whilst strongly advocating continuing studies of all types that

are aimed at better understanding climate system dynamics. But they are, nonetheless, rather

dogmatic extremes: the most reasonable approach, in any given practical situation, probably lies

somewhere between them. After all, there is never only one model of a real system and the choice

between them will depend largely on the objectives of the modelling exercise. Certainly, although

we exploit data-based mechanistic modelling whenever the availability of data allow for this, we

also make good use of large simulation models (although normally considered within a stochastic

setting and utilizing stochastic simulation: e.g. Parkinson and Young 1998).

Finally, there is one paradox raised by the comparison of our results with those of Wigley

that we will leave the reader to contemplate. If the results shown in Wigley’s Figure 21.1, which

presents the simulated atmospheric CO2 generated by a number of deterministic and rather heavily

parameterized simulation models, are compared with those obtained above (Figure 6), then it is

clear that, despite the relative complexity of the deterministic models, the simple DBM models (33)

or (34) explain the observational data considerably better. Moreover this DBM model, although

simple, cannot be dismissed as an exercise in curve fitting. It is not a ‘black-box’ representation: as

we have outlined here and shown more comprehensively in Young and Jarvis (2002), its parameters,

as estimated or derived, are physically meaningful; and the physical deductions drawn from these

parameters are all reasonable (albeit controversial) from a scientific standpoint. But we must

emphasize that the information content of the available data is not high and so these deductions

must be judged with due circumspection, as must those derived from the much more complex

deterministic climate models.

4 Conclusions

This paper provides an introduction to time-domain methods for identifying linear and nonlinear,

continuous-time models of stochastic systems from discrete-time sampled data and illustrates the

practical utility of these methods for the data-based mechanistic modelling of environmental sys-

tems. The main advantage of these methods, over the alternative and better known discrete-time

methods, is that they provide differential equation models whose parameters can be interpreted

immediately in physically meaningful terms, as our examples have shown. Consequently, they are
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of direct use to environmental scientists and engineers who most often derive models in differential

equation terms based on natural (e.g. conservation) laws and who are much less familiar with

discrete-time models. Moreover, the continuous-time methods can be adapted easily to handle the

case of irregularly sampled data or non-integer time delays that are often encountered in the mod-

elling of real systems. They are also much superior when applied to rapidly sampled data, where

discrete-time methods often perform poorly because the eigenvalues lie close to the unit circle in

the complex domain, so that the model parameters can be quite poorly defined in statistical terms,

leading to estimation problems.
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Figure 1: Dye tracer experiment data for the River Conder, North West England: measured input,

upstream concentrations (dashed line); measured output, downstream concentrations (full line).
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Figure 2: Comparison of the SRIVC identified ADZ model output x̂(t) (full line) and the measured

concentration of tracer y(t) (circular points) at the downstream location. Also shown: inferred

quick pathway (dashed) and slow pathway (dash-dot) concentration profiles.
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Figure 3: Annual carbon dioxide and temperature anomaly data 1856-2000. Upper panel, pertur-

bations in atmospheric CO2, (measured as partial pressure, pCO2, relative to standard pressure,

in pascals, pa) about an assumed pre-industrial level of 28 pa; middle panel, anthropogenic CO2

emissions arising from fossil fuel usage and land use change (Gt y−1); lower panel, Northern Hemi-

sphere average temperature anomaly (◦C). The vertical dash-dot line marks the boundary between

model estimation (1856-1975) and predictive validation (1976-2000) data (see text). All series are

derived from data available at http://cdiac.esd.ornl.gov/.
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Figure 4: Initial, non-parametric SDP estimate (dash-dot line) and standard error bounds (dots)

compared with the parametric model estimates (full lines) from model equations (33) and (34): left

panel - linear change with temperature; right panel - sigmoidal change with temperature (cf linear

model estimate â1 = −0.0167).
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Figure 5: Monte Carlo simulation and predictive validation results: perturbations in atmospheric

pCO2 about the assumed pre-industrial level (dashed line); deterministic simulation and MCS

median prediction (full line); 5%-95% percentile bounds (dotted lines). The error between the

simulated and measured pCO2 is shown in the top panel. The vertical dash-dot line marks the

boundary between the estimation and validation periods in 1975.

40



1900 1950 2000 2050 2100 2150 2200
0

2

4

6

8

10

12

14

16

18

pC
O

2,
 C

O
2 

E
m

is
si

on
s 

an
d 

T
em

pe
ra

tu
re

 a
no

m
al

y

Date

Figure 6: Speculative MCS simulation of the DBM linear model, illustrating how, given this model,

a PIP designed automatic control system is able to produce a reasonable CO2 emissions policy

(dashed line) that stabilizes 200 year-ahead levels of the simulated atmospheric pCO2 perturbations

(full line) at a level of 17.6pa (456ppmv) and the simulated temperature anomaly (lower full line)

at a mean level of circa 2.6◦C. The vertical dash-dot line marks the initiation of PIP controlled

emissions at 2000.
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