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1. Introduction 
 

The identification and estimation of dynamic causal effects is a defining challenge of 

macroeconometrics. In the macroeconomic tradition dating to Slutzky (1927) and Frisch (1933), 

dynamic causal effects are conceived as the effect, over time, of an intervention that propagates 

through the economy, as modeled by a system of simultaneous equations. Restrictions on that 

system can be used to identify its parameters.  

In a classic result by the namesake of this lecture, Denis Sargan (1964) (along with 

Rothenberg and Leenders (1964)) showed that full information maximum likelihood estimation, 

subject to identifying restrictions, is asymptotically equivalent to instrumental variables (IV) 

estimation by three stage least squares. The three stage least squares instruments are obtained 

from restrictions on the system, typically that some variables and/or their lags enter some 

equations but not others, and thus are internal instruments – they are internal to the system. The 

massive modern literature since Sims (1980) on point-identified structural vector autoregressions 

(SVARs) descends from this tradition, and nearly all the papers in that literature can be 

interpreted as achieving identification through internal instruments. In these models, structural 

shocks are the interventions of interest, and the goal is to estimate the dynamic causal effect of 

these shocks on macroeconomic outcomes. 

In contrast, modern microeconometric identification strategies exploit external sources of 

variation that provide quasi-experiments to identify causal effects. Such external variation might 

be found, for example, in institutional idiosyncrasies that introduce as-if randomness in the 

variable of interest (the treatment). The use of such external instruments in microeconometrics 

has proven highly productive and has yielded compelling estimates of causal effects. 

The subject of this lecture is the use of external instruments to estimate dynamic causal 

effects in macroeconomics. By an external instrument, we mean a variable that is correlated with 

a shock of interest, but not with other shocks, so that the instrument captures some exogenous 

variation in the shock of interest. These instruments are typically not a macro variable of ultimate 

interest, and as such they are external to the system. In referring to these instruments as external, 

we also connect with the original term for instruments, external factors (Wright (1928)). 

External instruments can be used to estimate dynamic causal effects directly without an 

intervening VAR step. This method uses an instrumental variables (IV) version of what is called 

in the forecasting literature a direct multistep forecasting regression; in the impulse response 
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literature, this method is called a local projection. Alternatively, the instruments can be used in 

conjunction with a VAR to identify structural impulse response functions; this is the IV version 

of an iterated multistep forecast. 

The use of external instruments has opened a new and rapidly growing research program 

in macroeconometrics, in which credible identification is obtained using as-if random variation 

in the shock of interest that is distinct from – external to – the macroeconomic shocks hitting the 

economy. In many applications, the instrument is constructed as a partial measure of the shock of 

interest: the quantity of oil kept from market because of a political disruption, a change in fiscal 

policy not related to business cycle conditions, or the part of a monetary shock revealed during a 

monetary policy announcement window. Such constructed measures typically have measurement 

error, which in general leads to bias if the measure is treated as the true shock. However, that 

measurement error need not compromise the validity of the measure as an instrument. As in the 

microeconometric setting, finding such instruments is not easy. Still, in our view this research 

program holds out the potential for more credible identification than is typically provided by 

SVARs identified using internal restrictions. 

This lecture unifies and explicates a number of strands of recent work on external 

instruments in macroeconometrics. The idea that constructed shock series are best thought of as 

instruments is not new: Blanchard and Sims made this observation in the published general 

discussion of Romer and Romer (1989), but it seems not have been followed up. To our 

knowledge, the earliest work to use constructed shocks as an instrument in a SVAR is Beaudry 

and Saito (1998), who use the Romer and Romer (1989) indicators to estimate impulse responses 

to monetary shocks. The method of external instruments for SVAR identification (SVAR-IV) 

was introduced by Stock (2008), and has been used by Stock and Watson (2012), Mertens and 

Ravn (2013), Gertler and Karadi (2015), Caldara and Kamps (2017), and a growing list of other 

researchers. Turning to single-equation methods, Hamilton (2003) developed a list of exogenous 

oil supply disruptions, which he used as an instrument for autoregressive-distributed lag 

estimation of the effect of oil supply shocks on GDP. The modern use of external instruments to 

estimate structural impulse response functions directly (that is, without estimating a VAR or 

iterating) dates to independent contributions by Jordà, Schularick, and Taylor (2015) and Ramey 

and Zubairy (2017), and is clearly exposited in Ramey (2016). The condition for instrument 

validity in the direct regression without control variables, given in Section 2 below, appears in 
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unpublished lecture notes by Mertens (2015). Those notes and Fieldhouse, Mertens, and Ravn 

(2017) discuss the extension of these conditions to control variables. Jordà, Schularick, and 

Taylor (2015) and Ramey (2016) call these direct IV regressions “local projections-IV” (LP-IV) 

in reference to Jordà’s (2005) method of local projections (LP) on which it builds. We adopt this 

terminology while noting that these IV regressions emerge from the much older tradition of 

simultaneous equations estimation in macroeconomics pioneered by Sargan and his 

contemporaries. Although these methods increasingly are being used in applications, we are not 

aware of a unified presentation of the econometric theory and theoretical connections between 

the SVAR-IV and LP-IV methods. 

In addition to expositing the use of external instruments in macroeconomics, this lecture 

makes five contributions to this literature. 

First, we provide conditions for instrument validity for LP-IV, and show that under those 

conditions LP-IV can estimate dynamic causal effects without assuming invertibility, that is, 

without assuming that the structural shocks can be recovered from current and lagged values of 

the observed data. Because of the dynamic nature of the macroeconometric problem, exogeneity 

of the instrument entails a strong “lead-lag exogeneity” requirement that the instrument be 

uncorrelated with past and future shocks, at least after including control variables. This condition 

provides concrete guidance for the construction of instruments and choice of control variables 

when undertaking LP-IV. 

Second, we recapitulate how IV estimation can be undertaken in a SVAR (the SVAR-IV 

method). This method is more efficient asymptotically than LP-IV under strong-instrument 

asymptotics, and it does not require lead-lag exogeneity. But to be valid, this method requires 

invertibility. Invertibility is a very strong, albeit commonly made, assumption: under 

invertibility, a forecaster using a VAR would find no value in augmenting her system with data 

on the true macroeconomic shocks, were they magically to become available. 

Third, having a more efficient estimator of the structural impulse response function 

(SVAR-IV) that requires invertibility for consistency, and a less efficient estimator (LP-IV) that 

does not, gives rise to a Hausman (1978) -type test for whether the SVAR is invertible. We 

provide this test statistic, obtain its large-sample null distribution, introduce the concept of local 

non-invertibility, and derive the local asymptotic power of the test against this alternative. The 

focus of this test on the impulse response function – the estimand of interest – differs from 
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existing tests for invertibility, which examine the no-omitted-variables implication by adding 

variables, see for example Forni and Gambetti (2014). 

Fourth, lest one think that LP-IV is too good to be true, we provide a “no free lunch” 

result. Suppose an instrument satisfies a contemporaneous exogeneity condition, but not the no 

lead-lag exogeneity condition because it is correlated with past shocks. A natural approach is to 

include additional regressors – lagged macro variables – that control for the lagged shocks. We 

show, however, that the condition for these control variables to produce valid inference in LP-IV 

is in general equivalent to assuming invertibility of the corresponding VAR, in which case 

SVAR-IV provides more efficient inference. 

Fifth, we discuss some econometric odds and ends, such as heteroskedasticity- and 

autocorrelation-robust (HAR) standard errors, what to do if the external instruments are weak, 

estimation of cumulative dynamic effects, forecast error variance decompositions, and the pros 

and cons of using generic controls including factors (factor-augmented LP-IV). 

Following Ramey (2016), we illustrate these methods using Gertler and Karadi’s (2015) 

application, in which they estimate the dynamic causal effect of a monetary policy shock using 

SVAR-IV, with an instrument that captures the news revealed in regularly scheduled monetary 

policy announcements by the Federal Open Market Committee. 

Before proceeding, we note two substantial simplifications made throughout this lecture. 

First, we focus exclusively on linear models and identification through second moments, so that 

conditional expectations are typically replaced by projections. Second, we assume homogenous 

treatment effects so that valid instruments all have the same estimand (that is, the local average 

treatment effect equals the average treatment effect). Both these simplifications are nontrivial. 

The assumption of nonlinearity in particular rules out a frequent justification for using LP 

methods (either OLS or LP-IV), which is that LP methods can estimate nonlinear effects without 

needing to model them as a system. That said, there is a tension between the assumption that the 

control variables and specification are correct in the single-equation specification, and what this 

must imply for the full system, and this tension is unresolved in the literature and merits further 

investigation. We return to this point in the conclusions. 

Finally, we use two notational devices: the subscript “2:n” denotes the elements of a 

vector or matrix other than the first row or column, and {…} denotes a linear combination of the 

terms inside the braces. 
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2. Identifying Dynamic Causal Effects using External Instruments and Local Projections 

 

The LP-IV method emerges naturally from the modern microeconometrics use of 

instrumental variables. Making this connection requires some translation between two sets of 

jargon, however, so we start with a brief review of causal effects and instrumental variables 

regression in the microeconometric setting.  

 

2.1 Causal effects and instrumental variables regression 

Our starting point is that the expected difference in outcomes between the treatment and 

control groups in a randomized controlled experiment with a binary treatment is the average 

treatment effect.1 In brief, if a binary treatment X is randomly assigned, then all other 

determinants of Y are independent of X, which implies that the (average) treatment effect is 

E(Y|X=1) – E(Y|X=0). In the linear model Y = γ +X + u, where β is the treatment effect, random 

assignment implies that E(u|X) = 0 so that the population regression coefficient is the treatment 

effect. If randomization is conditional on covariates W, then the treatment effect for an individual 

with covariates W = w is estimated by the outcome of a random experiment on a group of 

subjects with the same value of W, that is, it is E(Y|X=1,W=w) – E(Y|X=0,W=w). With the 

additional assumptions of linearity and homogeneous treatment effects, this treatment effect is 

estimated by ordinary least squares estimation of 

 

Y = X + γW + u,         (1) 

 

where the intercept has been subsumed in 'W. 

In observational data, the treatment level X is often endogenous. This is generally the 

case when the subject has some control over receiving the treatment in an experiment. But if 

there is some source of variation Z that is correlated with treatment, such as random assignment 

to the treatment or control group, conditional on observed covariates W, then the causal effect 

                                                 
1 This starting point is actually a result, or conclusion, of a vast literature on defining causal 
effects for statistical analysis. See Imbens (2014) for a review, including discussion of both the 
potential outcomes framework and graphical models.  
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can be estimated by instrumental variables. Let “” denotes the residual from the population 

projection onto W, for example Proj( | )X X X W   . If the instrument satisfies the conditions 

 

(i) ( )E X Z    0 (relevance)        (2) 

(ii) ( )E u Z  = 0 (exogeneity),             (3) 

 

and if the instruments are strong, then instrumental variables estimation of (1) consistently 

estimates the causal effect . 

 

2.2 Dynamic causal effects and the structural moving average model  

In macroeconomics, we can imagine a counterpart of randomized controlled experiment. 

For example, in the United States, the Federal Open Market Committee (FOMC) could set the 

Federal Funds rate according to a rule, such as the Taylor rule, perturbed by a randomly chosen 

amount. Although we have only one subject (the U.S. macroeconomy), by repeating this 

experiment through time, the FOMC could generate data on the effect of these random 

interventions. 

More generally, let 1,t  denote the mean-zero random treatment at date t. Then the causal 

effect on the value of a variable Y2, h periods hence, of a unit intervention in 1  is 

   2, 1, 2, 1,| 1 | 0t t h t t t h tE Y E Y     .  

We now assume linearity and stationarity, assumptions we maintain henceforth. With 

these assumptions, the h-lag treatment effect is the population coefficient in the regression, 

 

2, ,21 1,t h h t t hY u    ,         (4) 

 

where throughout we omit constant terms for convenience. Because 1,t is randomly assigned, 

 1|t h tE u   = 0, so    ,21 2, 1, 2, 1,| 1 | 0h t h t t h tE Y E Y       . Thus ,21h  is the causal effect 

of treatment 1 on variable 2, h periods after the treatment. Were 1,t  observed, this causal effect 

could be estimated by OLS estimation of (4). 
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The path of causal effects mapped out by h,21 for h = 0, 1, 2,… is the dynamic causal 

effect of treatment 1 on variable 2. 2 

The macroeconometric jargon for this random treatment 1,t  is a structural shock: a 

primitive, unanticipated economic force, or driving impulse, that is unforecastable and 

uncorrelated with other shocks.3 The macroeconomist’s shock is the microeconomists’ random 

treatment, and impulse response functions are the causal effects of those treatments on variables 

of interest over time, that is, dynamic causal effects. 

The Slutzky-Frisch paradigm represents the path of observed macroeconomic variables as 

arising from current and past shocks and measurement error. If we collect all such structural 

shocks and measurement error together in the m×1 vector t , the n×1vector of macroeconomic 

variables Yt can be written in terms of current and past t : 

 

Yt = (L) t ,          (5) 

 

where L is the lag operator and (L) = 0 + 1L + 2L2 + …, where h is an n×m matrix of 

coefficients. The shock variance matrix Σεε = t tE    is assumed to be positive definite to rule out 

trivial (non-varying) shocks. We assume that the shocks are mutually uncorrelated. Throughout, 

we treat Yt as having been transformed so that it is second order stationary, for example real 

activity variables would appear in growth rates. 

The assumption that the structural shocks are mutually uncorrelated accords both with 

their interpretation as randomly assigned treatments and with their being primitive economic 

forces; see Ramey (2016) for a discussion. We assume that any measurement error included in 

t  is uncorrelated with the structural shocks, although measurement error could be correlated 

                                                 
2 There is a literature that defines dynamic causal effects in terms of primitives and connects 
those to what can be identified in an experiment with data collected over time; see Lechner 
(2009), Angrist, Jordà, and Kuersteiner (2017), Jordà, Schularick, and Taylor (2017), and 
especially Bojinov and Shephard (2017) for discussion and references. With the additional 
assumptions of linearity and stationarity, Bojinov and Shephard’s (2017) dynamic potential 
outcomes framework leads to (4). 
3 For an extensive discussion, see Ramey (2016). 
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across variables. Because 1,t  is uncorrelated with the other shocks and with any measurement 

error, the causal effect can be written as  2, 1, 2: ,| 1, , ,t h t n t sE Y s t      –

 2, 1, 2: ,| 0, , ,t h t n t sE Y s t     . Although conditioning on the other shocks is redundant by 

randomization, this alternative expression connects with the definition, seen in the older macro 

literature, of the causal effect as the partial derivative  2, 1,t h tY   , holding all other shocks 

constant. 

Representation (5) is the structural moving average representation of Yt. The coefficients 

of (L) are the structural impulse response functions, which are the dynamic causal effects of 

the shocks. In general, the number of shocks plus measurement errors, m, can exceed the number 

of observed variables, n. 

The recognition that, if 1,t  were observed, h,21 could be estimated by OLS estimation of 

(4) – or by OLS estimation of the distributed lag regression of Yt on 1, 1, 1 1, 2, , ,...t t t     – underpins 

a productive and insightful research program. In this program, which dates to Romer and Romer 

(1989), researchers aim to measure directly a specific macroeconomic shock. Influential 

examples include Rudebusch (1998), who measured monetary shocks by Fed Funds surprises 

controlling for employment report announcements, and Kuttner (2001), Cochrane and Piazzesi 

(2002), and Faust, Rogers, Swanson, and Wright (2003), Gürkaynak, Sack, and Swanson (2005), 

and Bernanke and Kuttner (2005), all of whom used interest rate changes around Federal 

Reserve announcement dates to measure monetary policy shocks.  

 

2.3 Direct estimation of structural IRFs using external instruments (LP-IV) 

One difficulty with directly measured shocks is that they capture only part of the shock, 

or are measured with error. For example, Kuttner (2001)-type variables measure that part of a 

shock revealed in a monetary policy announcement but not the part revealed, for example, in 

speeches by FOMC members. This concern applies to other examples, including Romer and 

Romer’s (1989) binary indicators, Romer and Romer’s (2010) measure of exogenous changes in 

fiscal policy, and Hamilton’s (2003) and Kilian’s (2008) lists of exogenous oil supply 

disruptions. In all these cases, the constructed variable is correlated with the true (unobserved) 

shock and, if the author’s argument for exogeneity is correct, the constructed variable is 
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uncorrelated with other shocks. That is, the constructed variable is not the shock, but is an 

instrument for the shock. This instrument is not obtained from restrictions internal to a VAR (or 

some other dynamic simultaneous equations model); rather, it is an external instrument. 

This reasoning suggests using instrumental variables methods to estimate the dynamic 

causal effects of the shock. To do so, however, requires resolving a difficulty not normally 

encountered in microeconometrics, which is that the shock/treatment 1,t  is unobserved. As a 

result, the scale of 1,t  is indeterminate, that is, (4) holds for all h if 1,t is replaced by 1,tc  and 

h,21 is replaced by c-1h,21. This scale ambiguity is resolved by adopting, without loss of 

generality, a normalization for the scale of 1,t . Specifically, we assume that 1,t  is such that a 

unit increase in 1,t  increases Y1,t by one unit: 

 

0,11 = 1 (unit effect normalization).      (6) 

 

For example, if 1,t  is the monetary policy shock and Y1,t is the federal funds rate, (6) fixes the 

scale of 1,t  so that a 1 percentage point monetary policy shock increases the federal funds rate 

by 1 percentage point. 

The unit effect normalization has advantages over the more common unit standard 

deviation normalization, which sets 1,var( )t  = 1. Most importantly, the unit effect normalization 

allows for direct estimation of the dynamic causal effect in the native units relevant for policy 

analysis. While one can convert one scale normalization to another, doing so entails rescaling by 

estimated values and care must be taken to conduct inference incorporating that normalization 

(we elaborate on this below). As discussed in Stock and Watson (2016), the unit effect 

normalization also allows for direct extension of SVAR methods to structural dynamic factor 

models. 

The unit effect normalization underpins the local projection approach because it allows 

the regression (4) to be rewritten in terms of an observable regressor, Y1,t. Specifically, use the 

unit effect normalization to write Y1,t = 1, 2: , 1 2{ , , ,...}t n t t t      (recall the notational devices that 
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2: , 2, ,( ,..., )n t t n t     and that {…} denotes a linear combination of the terms in braces).  

Rewriting this expression in terms of 1,t  and substituting it into (4) yields, 

 

Yi,t+h = h,i1Y1,t + ,
h
i t hu   ,        (7) 

 

where ,
h
i t hu  =  1 2: , 1 2{ ,..., , , , ,...}t h t n t t t        . Because Y1,t is endogenous, it is correlated with 

,
h
i t hu  , so OLS estimation of (7) is not valid. But with a suitable instrument, (7) can be estimated 

by IV. 

Let Zt be a vector of instrumental variables.  These instruments can be used to estimate 

the dynamic causal effect using (7) if they satisfy: 

 

Condition LP-IV 

 (i)  1, 0t tE Z      (relevance) 

(ii)  2: , 0n t tE Z     (contemporaneous exogeneity) 

(iii)   0t j tE Z 
    for j ≠ 0 (lead/lag exogeneity). 

 

Conditions LP-IV (i) and (ii) are conventional IV relevance and exogeneity conditions, 

and are the counterparts of the microeconometric conditions (2) and (3) in the absence of control 

variables.  

Condition LP-IV (iii) arises because of the dynamics. The key idea of this condition is 

that Y2,t+h generally depends on the entire history of the shocks, so if Zt is to identify the effect of 

shock 1,t  alone, it must be uncorrelated with all shocks at all leads and lags. The requirement 

that Zt be uncorrelated with future ε’s is generally not restrictive: when Zt contains only variables 

realized at date t or earlier, it follows from the definition of shocks as unanticipated structural 

disturbances. In contrast, the requirement that Zt be uncorrelated with past ε’s is restrictive and 

strong.  
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We will refer to Condition LP-IV (iii) as requiring that Zt be unpredictable given past 's, 

although strictly the requirement is that it not be linearly predictable given past ε’s. Note that Zt 

could be serially correlated yet satisfy this condition. For example, suppose Zt = 1,t t  , where 

t is a serially correlated error that is independent of {εt}; then Zt satisfies Condition LP-IV. 

The IV estimator of h,i1 obtains by noting two implications of the assumptions. First, 

Condition LP-IV and equation (5) imply that ,E( )i t h tY Z
  = h,i1. Second, Condition LP-IV, the 

unit effect normalization (6), and equation (5) imply that 1,E( )t tY Z   =. Thus when Zt is a scalar, 

 

,
, 1

1,

E( )

E( )
i t h t

h i
t t

Y Z

Y Z
   .         (8) 

 

For a vector of instruments, , 1, 1, 1, , 1( )H ( ) ( )H ( )i t h t t t t t t t h iE Y Z E Z Y E Y Z E Z Y
     for any positive 

definite matrix H. These are the moment expressions for IV estimation of (7) using the 

instrument Zt. 

These moment expressions provide an intuitive interpretation of LP-IV. Suppose that Yi,t 

is GDP growth, Y1,t is the Federal Funds rate, and Zt is a monetary policy announcement 

instrument, constructed so that it satisfies Condition LP-IV. Then the causal effect of a monetary 

policy shock on GDP growth h periods hence is estimated by regressing ΔlnGDPt+h on FFt, using 

the announcement surprise Zt as an instrument. In this two stage least squares interpretation, the 

unit effect normalization is imposed automatically. 

Another interpretation of the moment condition (8) relates to the distributed lag 

representation of Yt in terms of Zt, 

 

(L)t t tY Z v  .          (9) 

 

This is Theil and Boot’s (1962) final form of the dynamic model for (Yt, Zt). It is also the time 

series counterpart to what is (somewhat confusingly) called the reduced form for non-dynamic 

simultaneous equations systems. In the non-dynamic setting with a single instrument, a familiar 

result is that the Wald IV estimator is the ratio of the reduced-form coefficients. Similarly, in the 
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dynamic context, when Zt is serially uncorrelated and a scalar, h,1 is the ratio of the hth 

distributed lag coefficient in the Yi,t equation, Πh,i to the impact effect on the first variable, Π0,1; 

that is, h;i1 = Πh,i/ Π0,1. In the monetary policy announcement example, Π(L) is the impulse 

response function of Yt with respect to the announcement surprise. The older literature treated 

this as the causal effect of interest, but as explained in Gertler and Karadi (2015), the surprise is 

better thought of as an instrument for the shock. Akin to the Wald estimator in the static setting, 

the IV estimator of the dynamic causal effect is the impulse response function of the effect of the 

shock on ΔlnGDP, divided by the impact effect of the announcement on the Federal Funds rate. 

The lag exogeneity condition LP-IV(iii) is testable: Zt should be unforecastable in a 

regression of Zt on lags of Yt. If the lag exogeneity condition fails, then the LP-IV methods laid 

out in this section are not valid because Zt will be correlated with the error ut+h in (4). This 

problem can potentially be addressed by adding control variables to the LP-IV regression.  

 

2.4. Extension of LP-IV to Control Variables 

There are two reasons to consider adding control variables to the IV regression (7).  

First, although an instrument might not satisfy Condition LP-IV, it might do so after 

including suitable control variables; that is, the instruments might satisfy the exogeneity 

conditions only after controlling for some observable factors. As discussed in Section 5, this is 

the case in the Gertler-Karadi (2015) application. 

Second, even if Condition LP-IV is satisfied, including control variables could reduce the 

sampling variance of the IV estimator by reducing the variance of the error term. The reasoning 

is standard: because the variance of the LP-IV estimator depends on the scale of the errors, 

including control variables that explain the error term can reduce the variance of the estimator. 

Here, the relevant variance is the long-run variance of the instrument-times-error, so the aim of 

including additional control variables is to reduce this long-run variance. Under Condition LP-

IV, Yt-1, Yt-2,… and possibly future Zt+h,…, Zt+1 are candidate control variables. 

Adding control variables Wt to (7) yields,  

 

, , 1 1, ,
h

i t h h i t h t i t hY Y W u 
 

    ,        (10) 
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where tx  = xt   Proj(xt | Wt) for some variable xt. and ,
h
i t hu 
 = 1 2: , 1 2{ ,..., , , , ,...}t h t n t t t        

    . 

With control variables W, the conditions for instrument validity are, 

 

Condition LP-IV  

(i)    1, 0t tE Z      

(ii)   2: , 0n t tE Z     

(iii)   0t j tE Z  


   for j ≠ 0. 

 

By projecting on Wt, (10) can be written, , , 1 , ,
h

i t h h i i t i t hY Y u  
    . For a scalar instrument, 

multiplying both sides of this expression by tZ   and using Condition LP-IV and the unit effect 

normalization (6) yields, 

 

,
, 1

1,

E( )

E( )
i t h t

h i
t t

Y Z

Y Z

 

    .          (11) 

 

For a vector of instruments, , 1, 1, 1, , 1( )H ( ) ( )H ( )i t h t t t t t t t h iE Y Z E Z Y E Y Z E Z Y       


     for any positive 

definite matrix H. Equation (11) is the moment condition for IV estimation of (10) using 

instrument Zt. 

Equation (11) holds for all h, including the impact effect h = 0, with the proviso that for h 

= 0, the effect for the first variable is normalized to 0,11 = 1. Under the unit effect 

normalization, for h = 0 and i = 1, (10) become the identity Y1,t = Y1,t (or 1. 1.t tY Y  ).  

The question of what control variables to include, if any, is a critical one that depends on 

the application. 

Even if condition LP-IV (iii) holds, including control variables could reduce the variance 

of the regression error and thus improve estimator efficiency. This suggests using control 

variables aimed at capturing some of the dynamics of Y1,t and Y2,t. Such control variables could 

include lagged values of Y1 and Y2, or additionally lagged values of other macro variables. Such 
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control variables could also include generic controls, such as lagged factors from a dynamic 

factor model. Whether or not lagged Y’s are used as controls, under condition LP-IV(iii), leads 

and lags of Zt can be included as controls to improve efficiency. 

A more difficult problem arises if Conditions LP-IV (i) and (ii) hold, but Condition LP-

IV (iii) fails because Zt is correlated with one or more lagged shocks. Then instrument validity 

hinges upon including in W variables that control for those lagged shocks, so that Condition LP-

IV (iii) holds. It is useful to think of two cases.  

In the first case, suppose Zt is correlated with past values of 1,t , but not with past values 

of other shocks. As we discuss below, this situation arises in the Gertler-Karadi (2015) 

application, where the construction of Zt induces a first-order moving average structure. In this 

case, including lagged values of Z as controls would be appropriate. Another example is oil 

supply disruptions arising from political disturbances as in Hamilton (2003) and Kilian (2008), 

where the onset of the disruption might plausibly be unpredictable using lagged 's, but the 

disruption indicator could exhibit time series correlation because any given disruption could last 

more than one period. If so, it could be appropriate to include lagged values of Z as controls, or 

otherwise to modify the instrument so that it satisfies condition LP-IV (iii). 

A second case arises when Zt is correlated with past shocks including those other than 1,t . 

If so, instrument validity given the controls requires that the controls span the space of those 

shocks. If it were known which past shocks were correlated with Z, then application-specific 

reasoning could guide the choice of controls, akin to the first case. But without such information, 

the controls would need to span the space of all past shocks. This reasoning suggests using 

generic controls. One such set of generic controls would be a vector of macro variables, say Yt. 

Another such set could be factors estimated from a dynamic factor model; using such factors 

would provide a factor-augmented IV estimate of the structural impulse response function. We 

show in Section 3.2 that the requirement that Condition LP-IV (iii) be satisfied by generic 

controls, when Condition LP-IV (iii) does not hold, is quite strong. 

 

2.5 LP-IV: Econometric Odds and Ends 

Levels, differences, and cumulated impulse responses. In many applications, Yi,t will be 

specified in first differences, but interest is in impulse responses for its levels.  Impulse responses 
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for levels are cumulated impulse responses for first differences. The cumulated impulse 

responses can be computed from the IV regression, 

 

,
, , 1 1, ,

0

h
cum cum h cum

i t k h i t h t i t h
k

Y Y W u 
 



          (12) 

 

where , 1 , 10

hcum
h i k ik

   . For example, if Yi,t = ΔlnGDPt, then the left-hand side of (12) is 

ln(GDPt+h) – ln(GDPt), that is, the log-point change in GDP from t to t+h.   

If Zt satisfies LP-IV, it is a valid instrument for IV estimation of (12). 

Another measure of a dynamic causal effect is the ratio of cumulative impulse responses. 

For example, a shock to government spending typically induces a flow over time of government 

outlays. As discussed by Ramey and Zubairy (2017, Section 3.2.2), a useful measure of the effect 

on output of government spending is the cumulative GDP gain resulting from cumulative 

government spending over the same period. Fieldhouse, Mertens, and Ravn (2017) make a 

similar argument for considering ratios of cumulative multipliers in their study of the effect on 

residential investment of U.S. housing agency purchases of mortgage-backed securities. As 

Ramey and Zubairy (2017) point out, this ratio of cumulative multipliers can be estimated in the 

LP-IV regression, 

 

1

1 1

1

, ,
, 1 1, , ,

0 0

i

i i

i

h h
h h h hcum

i t k i t k h h t i t h
k k

Y Y W u   
 

    ,     (13) 

 

where 1,
1
ih h

i  = 1

, 1 ,110 0

ih h

k i kk k 
    (in (13), we generalize Ramey and Zubairy (2017) slightly 

to allow for different cumulative periods for Yi and Y1). When the instrument Zt satisfies 

condition LP-IV, ,0

ih

i t k tk
E Y z 

  = , 10

ih

k ik



  and 1

1,0

h

t k tk
E Y z 

  = 1

,110

h

kk



 . Thus, 

when there is a single instrument, the IV moment condition is 1

, 1,0 0

ih h

i t k t t k tk k
E Y z E Y z   

     = 

1

, 1 ,110 0

ih h

k i kk k 
    = 1,

1
ih h

i . Thus, if Zt satisfies LP-IV, it is a valid instrument for IV 

estimation of (13). 
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HAC/HAR inference and long-horizon impulse responses. When the instruments are 

strong, the validity of inference can be justified under standard assumptions of stationarity, weak 

dependence, and existence of moments (see for example Hayashi (2000)). However, the 

multistep nature of the direct regressions in general requires an adjustment for serial correlation 

of the instrumenterror process: the error terms in (7), (10), and (12) include future and lagged 

values of t, and in general terms like Ztt+j and Zt+jt will be correlated.  Inference based on 

standard heteroskedasticity- and autocorrelation robust (HAR) covariance matrix estimators are 

valid at short to medium horizons. 

One special case in which HAR inference is not needed is when the Ws are lagged Ys, the 

VAR for Y is invertible, and the Zs are serially uncorrelated conditional on the Ws. In this case, 

h
t t hZ u 

  is serially uncorrelated4 and standard heteroskedasticity-robust standard errors can be 

used. If in addition the errors are homoskedastic, homoskedasticity-only standard errors can be 

used. 

Historical and forecast error variance decompositions. The historical decomposition 

decomposes the path of Yt to the contributions of the individual shocks. The contribution of 

shock 1,t  to Yi,t+h can be read off the structural moving average representation (5): 

 

Historical contribution of 1,t  to Yi,t+h = , 1 1,h i t .     (14) 

  

The forecast error variance decomposition (FEVD) decomposes the variance of the 

unforecasted change in a variable h periods hence to the variance contributions from the shocks 

that occurred between t and t+h. Because the shocks are uncorrelated over time and with each 

other, this decomposition, expressed in R2 form, is 

 

 
1

1
2 2

, 1
0

, 1

, 1var | , ,...

h

k i
k

h i

i t h t t

FEVD
Y



 





 





.       (15) 

 

                                                 
4 This result follows by direct calculation using the invertibility results in Section 3.2. 
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If 1,t  can be recovered, then the historical decomposition can be computed using the LP-

IV estimates of {h,j1}, h = 0, 1, 2,….. Similarly, if 
1

2
  and  , 1var | , ,...i t h t tY     are identified, 

then the forecast error variance decomposition is identified and also can be computed using the 

LP-IV estimates of h,j1, h = 0, 1, 2,…. 

In general, even though Conditions LP-IV and LP-IV serve to identify the impulse 

response function, they do not identify either 1,t  or 
1

2
  without additional assumptions. A 

sufficient condition for identifying 1,t  and the FEVD is that the VAR for Yt is invertible; a 

somewhat weaker condition for identifying 1,t  (but not the FEVD) is that Yt is partially 

invertible. Weaker yet is the “recoverability” condition discussed in Plagborg-Møller and Wolf 

(2017) and Chahrour and Jurado (2017). Further discussion, including expressions for 1,t , 
1

2
 , 

and the FEVD, are deferred until the next section.  

Smoothness restrictions. The IV estimator of (7), (10), and (12) impose no restrictions 

across the values of the dynamic causal effects for different horizons.  In many applications, 

smoothness across horizons is sensible. The VAR methods discussed in the next section impose 

smoothness by modeling the structural moving average (5) as the inverse of a low-order VAR, 

however as is discussed in that section those methods require the additional assumption that 

(L) is invertible. A few recent papers develop methods for smoothing IRFs estimated by local 

projections using OLS.  Plagborg-Møller (2016a) and Barnichon and Brownlees (2017) use 

smoothness priors to shrink the IRFs across horizons. Miranda-Agrippino and Ricco (2017) 

smooth LP IRFs by shrinking them towards SVAR IRVs. Although these papers develop these 

methods for OLS estimates of LP and SVARs, the extension to IV estimates seems 

straightforward.  

Weak instruments. If the instruments are weak, then in general the distribution of the IV 

estimator in (7), (10), and (12) is not centered at h,i1, and inference based on conventional IV 

standard errors is unreliable. However, a suite of heteroskedasticity- and autocorrelation-robust 

methods now exists to detect weak instruments and to conduct inference robust to weak 

instruments in linear IV regression. For example, see Kleibergen (2005) for a HAR version of 

Moreira’s (2003) conditional likelihood ratio statistics, and Andrews (2017) and Montiel Olea 
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and Pflueger (2013) for HAR alternatives to first-stage F statistics for detecting weak 

identification.  

As previously discussed, HAR inference is not needed in the special case that the Ws are 

lagged Ys, the VAR for Y is invertible, and the Zs are serially uncorrelated conditional on the Ws. 

If in addition the errors are homoskedastic, then the suite of tools for weak identification in 

homoskedastic cross-section data can be applied, including the usual first-stage F statistic for 

assessing instrument strength. 

News shocks and the unit-effect normalization. In some applications interest focuses on 

a “news shock,” which is defined to be a shock that is revealed at time t, but has a delayed effect 

on its natural indicator. For example, Ramey (2011) argues that many fiscal shocks are news 

shocks because they are revealed during the legislature process but have direct effects on 

government spending and/or taxes only with a lag. Despite this lag, forward looking variables, 

like consumption, investment, prices, and interest rates may respond immediately to the shock. 

This differential timing changes the scale normalization for the shock because 0,11 may equal 

zero; that is, the news shock 1,t affects its indicator Y1,t only with a lag. Thus, the 

contemporaneous unit-effect normalization (0,11 = 1) is inappropriate. 

Instead, for a news shock, a k-period ahead unit-effect normalization, k,11 = 1 for pre-

specified k, should be used.  For example, if government spending reacts to news about spending 

with a 12-month lag, then the 12-month-ahead unit-effect normalization 12,11 = 1 would be 

appropriate: this normalizes the spending shock so that a 1 pp increase in the shock at time t 

corresponds to a 1 pp increase in observed government spending 12 months hence. With this k-

period ahead normalization, Y1,t+k = 1, 1 2: , 1 2{ ,..., , , , ,...}t t k t n t t t         . Accordingly, Y1,t+k 

replaces Y1,t in the IV regressions (7), (10), and (12). In practice, implementing this strategy 

requires a choice of the news lead-time k, and this choice would be informed by application-

specific knowledge. 

 

3. Identifying Dynamic Causal Effects using External Instruments and VARs 

  

Since Sims (1980), the standard approach in macroeconomics to estimation of the 

structural moving average representation (5) has been to estimate a structural vector 
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autoregression (SVAR), then to invert the SVAR to estimate (L). This approach has several 

virtues. Macroeconomists are in general interested in responses to multiple shocks, and the 

SVAR approach provides estimates of the full system of responses. It emerges from the long 

tradition, dating from the Cowles Commission, of simultaneous equation modeling of time series 

variables. It imposes parametric restrictions on the high-dimensional moving average 

representation that, if correct, can improve estimation efficiency. And, importantly, it replaces 

the computationally difficult problem of estimating a multivariate moving average with the 

straightforward task of single-equation estimation by OLS.  

These many advantages come with two requirements. The first is that the researcher has 

some scheme to identify the relation between the VAR innovations and the structural shocks, 

assuming that the two span the same space; this is generally known as the SVAR identification 

problem. The second is that, in fact, this spanning condition holds, a condition that is generally 

referred to as invertibility. Here, we begin by discussing how IV methods can be used to solve 

the thorny SVAR identification problem. We then turn to a discussion of invertibility, which we 

interpret as an omitted variable problem.  

 

3.1. SVAR-IV  

A vector autoregression expresses Yt as its projection on its past values, plus an 

innovation νt that is linearly unpredictable from its past: 

 

A(L)Yt = vt,         (16) 

 

where A(L) = I – A1L – A2L2   … . We assume that the VAR innovations have a non-singular 

covariance matrix (otherwise a linear combination of Y could be perfectly predicted). Because 

the construction of νt = Yt – Proj(Yt|Yt-1, Yt-2,…) is the first step in the proof of the Wold 

decomposition, the innovations are also called the Wold errors.  

In a structural VAR, the innovations are assumed to be linear combinations of the shocks 

and, moreover, the spaces spanned by the innovations and the structural shocks are assumed to 

coincide: 

 

0t t     where 0 is nonsingular .      (17) 
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A necessary condition for (17) to hold is that the number of variables in the VAR equal the 

number of shocks (n = m). 

Because Yt is second order stationary, A(L) is invertible. Thus (16) and (17) yield a 

moving average representation in terms of the structural shocks, 

 

0C(L)t tY   ,        (18) 

 

where C(L)=A(L)-1 is square summable. 

If (17) holds, then the SVAR impulse response function reveals the population dynamic 

causal effects; that is, C(L)o = (L).5 Condition (17) is an implication of the assumption that 

the structural moving average is invertible. This “invertibility” assumption, which underpins 

SVAR analysis, is nontrivial and we discuss it in more detail in the next subsection. 

Under the assumption of invertibility, the SVAR identification problem is to identify 0. 

Here, we summarize SVAR identification using external instruments. 

Suppose there is an instrument Zt that satisfies the first two conditions of condition LP-

IV, which we relabel as Condition SVAR-IV: 

 

Condition SVAR-IV 

(i) 1 0t tE Z      (relevance) 

(ii) 2: , 0n t tE Z    (exogeneity w.r.t. other current shocks) 

 

Condition SVAR-IV and (17) imply that, 

 

  0,111

0 0 0
0,2: ,12: ,

0
t t

t t t t
nn t t

Z
E Z E Z E

Z

 
 



                       
.  (19) 

                                                 
5 Note that from (5) and (16), νt = A(L) (L) t . With the addition of condition (17), we have 

0 t  = A(L) (L) t , so that 0 = A(L)(L), so that (L) = A(L)-10 = C(L)0. 

 



 21

 

With the help of the unit effect normalization (6), it follows from (19) that, in the case of 

scalar Zt, 

 

,
0, 1

1,

( )

( )
i t t

i
t t

E Z

E Z




  ,        (20) 

 

with the extension to multiple instruments as follows (8). Thus 0,i1 is the population estimand of 

the IV regression, 

 

, 0, 1 1, 2: ,{ }i t i t n t              (21) 

 

using the instrument Zt.  

Because the innovations νt are not observed, the IV regression (21) is not feasible. One 

possibility is replacing the population innovations in (21) with their sample counterparts t̂ , 

which are the VAR residuals. However, while doing so would provide a consistent estimator 

with strong instruments, the resulting standard errors would need to be adjusted because of 

potential correlation between Zt and lagged values of Yt  since 1,ˆ t  is a generated regressor. 

Instead, 0,i1 can be estimated by an approach that directly yields the correct large-

sample, strong-instrument standard errors. Because νi,t =  , , 1 2Proj | , ,...i t i t t tY Y Y Y  , equation 

(21) can be rewritten as  

 

, 0, 1 1, 1 2: ,(L) { }i t i t i t n tY Y Y     ,       (22) 

 

where γi(L) are the coefficients of  , 0, 1 1, 1 2Proj | , ,...i t i t t tY Y Y Y  . The coefficients 0,i1 and γi(L) 

can be estimated by two-stage least squares equation-by-equation using the instrument Zt. By 

classic results of Zellner and Theil (1962) and Zellner (1962), this equation-by-equation 

estimation by two stage least squares entails no efficiency loss – is in fact equivalent to – system 

estimation by three stage least squares. 
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To summarize, SVAR-IV proceeds in three steps: 

1. Estimate (22) using instruments Zt for the variables in Yt, using p lagged values of Yt 

as controls. This, along with the unit effect normalization 0,11 = 1, yields the IV 

estimator of the first column of 0, 0,1
ˆ SVAR IV . 

2. Estimate a VAR(p) and invert the VAR to obtain Ĉ(L)  = 1Â(L) .  

3. Estimate the dynamic causal effects of shock 1 on the vector of variables as 

 

,1 0,1
ˆˆ ˆCSVAR IV SVAR IV

h h
     .       (23) 

 

It is useful to compare the SVAR-IV and LP-IV estimators. For h = 0, the SVAR-IV and 

LP-IV estimators of 0,i1 are the same when the control variables Wt are Yt-1, Yt-2,…, Yt-p. For h > 

0, however, the SVAR-IV and LP-IV estimators differ. In the SVAR-IV estimator, the impulse 

response functions are generated from the VAR dynamics. In contrast, the LP-IV estimator does 

not use the VAR parametric restriction: the dynamic causal effect is estimated by h distinct IV 

regressions, with no parametric restrictions tying together the estimates across horizons. 

Inference. Let  denote the unknown parameters in A(L) and 0,1 (the first column of 

0). Under standard regression and strong instrument assumptions (e.g., Hayashi (2000)), 

 ˆ N(0, )pT    . And, because estimator ,1
ˆ SVAR IV

h
  from Step 3 is a smooth function of 

̂ ,  ,1 ,1
ˆ N(0, )dSVAR IV

h hT 
     where   can be calculated using the -method.  

Alternatively, and often more conveniently, confidence intervals can be computed using a 

parametric bootstrap. Doing so requires specifying an auxiliary process for Zt. We provide some 

details in the appendix in the context of our empirical illustration. 

When instruments are weak, the asymptotic distribution of ,1
ˆ SVAR IV

h
  is not normal; 

Montiel-Olea, Stock and Watson (2017) discuss weak-instrument robust inference for SVARs 

identified by external instruments. 

We stress that the normalization of ultimate interest – typically the unit effect 

normalization – needs to be incorporated into the computation of standard errors. In general, it is 

incorrect to use a different normalization (such as the unit standard deviation normalization), 
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compute confidence bands, then rescale the bands and point estimates to obtain the unit effect 

normalization. In practice, this means the unit effect normalization must be “inside” the 

bootstrap, not “outside.” 

Different data spans for Z and Y (“unbalanced panels”). The SVAR-IV estimator of the 

impulse response function in (23) has two parts, Ĉh  and 0,1
ˆ SVAR IV . In general these can be 

estimated over different sample periods. For example, in Gertler-Karadi (2015), the data on the 

macro variables Yt are available for a longer period than are data on the instruments, and they 

estimate the VAR coefficients A(L) over the longer sample and 0,1
ˆ SVAR IV  over the shorter sample 

when Zt is available. Using the longer sample for the VAR improves efficiency at all horizons. 

In contrast, there is less opportunity to improve efficiency by using the longer sample for 

Y using LP-IV. If Z satisfies condition LP-IV, then the estimation must all be done on the shorter 

sample because the moments in (8) are only available over the period of overlap of the Y and Z 

samples. If control variables are included, the longer sample can be used to estimate tY   and t hY 


, but the moments in (11) must still be estimated over the period of overlap of the Y and Z 

samples. 

A related limitation of LP-IV is that the number of observations available for estimation 

decreases with the horizon h. This is true regardless of whether the data samples for Z and Y are 

the same, but becomes more of an issue (compared to SVAR-IV) if the sample for Z is already 

short. 

News shocks and the unit-effect normalization. A structural moving average may be 

invertible even when it includes news shocks as long as Yt contains forward-looking variables. 

But, as in analysis in the previous section, news variables require a change in the unit-effect 

normalization from contemporaneous 0,11 = 1 to k periods ahead k,11 = 1. To implement this 

normalization in the SVAR, note that the effect of t on Yt+k is given by ηt = kt = Ck0t  = Ckvt. 

The k-period ahead unit-effect normalization is k,11 = 1, so η1,t = 1, 2: ,{ }t n t  . Thus, letting Xt = 

ˆ
kC Yt, the normalization is implemented by replacing Y1,t with X1,t in (22) and carrying out the 

three steps given above. Because X1,t is a generated regressor, standard errors differ from the 

model using Y1,t and are most easily calculated using simulation (parametric bootstrap) methods 

like those outlined in the appendix. 
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Historical and forecast error variance decompositions.  As discussed in Section 2.4, if 

the shock 1,t  is identified, then the historical decomposition can be computed using (14). The 

forecast error variance decomposition, given in (15), further requires identification of 
1

2
  and the 

object in the denominator of that expression. The IRFs (’s) appearing in (14) and (15) can be 

estimated using either LP-IV or SVAR-IV. By using the same estimator for the IRFs and the 

historical decompositions, the set of results will be internally consistent. 

The shock 1,t , 
1

2
 , and the denominator of (15) are all identified from 0,1 if the VAR is 

invertible. Specifically, if (17) holds, then 1,t t   , where λ =  1 1
0,1 0,1 0,1 

       .6 It 

follows from this expression that 
1

2
  =    =   1

1
0,1 0,1


   . Also, under invertibility the 

denominator of (15) is , 1var( | , ,...)i t h t tY     = , 1var( | , ,...)i t h t tY     = , , 1var( | ,...)i t h t tY Y Y  , so the 

denominator is also identified. Thus, if 0,1 is identified and if the VAR is invertible, the 

historical decomposition and FEVD are also identified. 

Recall that if LP-IV is implemented using the control variables Wt = Yt-1, Yt-2,…, then  

0,1
ˆ LP IV = 0,1

ˆ SVAR IV . If so, the values of λ and 
1

2
  computed using LP-IV and SVAR-IV are the 

same, as is the expression in the denominator of (15). Even if LP-IV is implemented using a 

reduced set of controls or, if Condition LP-IV holds, no controls, the full VAR must be used to 

obtain the innovations needed to compute λ and 
1

2
 . 

 

3.2. Invertibility, Omitted Variable Bias, and the Relation between Assumptions SVAR-IV 

and LP-IV  

                                                 

6 To show this result, first write 1
0,1 t

   =   1

0,1 0 0 t 


      = 1 1 1
0,1 0 0( ) t         = 

1
1 te 

  = 
1

2
1, /t   , where the first line uses (17) to write 0 0 

     ; the second line uses 

invertibility of 0; the third line uses the fact that A-1A1 = e1 (the first unit vector) where A1 is 

the first column of the invertible matrix A and uses (17) plus invertibility to write 1
0t t   ; and 

the final line uses the assumption that 1,t  is uncorrelated with 2: ,n t . Similar algebra shows that 

1
0,1 0,1

    = 
1

21 /  , and the result follows. 
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The structural moving average (L) in (5) is said to be invertible if t can be linearly 

determined from current and lagged values of Yt : 

 

 1Proj , ,...t t t tY Y   .      (invertibility)     (24) 

 

In the linear models of this lecture, condition (24) is equivalent to saying that (L)-1 exists.7 The 

reason we state the invertibility condition as (24) is that it is closer to the standard definition, t = 

E(t | Yt, Yt 1, … ), which applies to nonlinear models as well. 

In this subsection, we make four points. First, we show that (24), plus the assumption that 

the innovation covariance matrix is nonsingular, implies (17). Second, we reframe (24) to show 

how very strong this condition is: under invertibility, a forecaster using a VAR who magically 

stumbled upon the history of true shocks would have no interest in adding those shocks to her 

forecasting equations. Third, this reframing provides a natural reinterpretation of invertibility as 

a problem of omitted variables; thus LP-IV can be seen as a solution to omitted variables bias, 

akin to a standard motivation for IV regression in microeconometrics. Fourth, we show that there 

is, at a formal level, a close connection between the choice of control variables in LP-IV and 

invertibility. Specifically, we show that, for a generic instrument Zt, using lagged Yt as control 

variables to ensure that Condition LP-IV holds is equivalent to assuming that Condition SVAR-

IV and invertibility (24) both hold. 

Demonstration that invertibility (24) implies (17). This result is well known but we show 

it here for completeness.  Recall that by definition, νt =  1 2- Proj | , ,...t t t tY Y Y Y   = 

 1 2(L) Proj (L) | , ,...t t t tY Y       =  0 1 21
Proj | , ,...t i t i t i t ti

Y Y  
   

      , where the 

second equality uses (5), and the third equality uses the fact that  1 2Proj | , ,...t t tY Y    = 0 and 

collects terms. Equation (24) implies that  1 2Proj | , ,...t i t t t iY Y     , so the term in brackets in 

the final summation is zero for all i; thus we have that 0t t    as in (17).  

                                                 
7 By (L)-1 existing we mean that it is a square-summable limit of a sequence of matrix 
polynomials in positive powers of L 
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To see why (24) implies that 0 is invertible, note that t  =  1Proj | , ,...t t tY Y   = 

 1Proj | , ,...t t t     =  0 0 1Proj | , ,...t t t      =  0Proj |t t   =  Proj |t t  , where the first 

equality is (24), the second follows because current and past innovations span the space of 

current and past Y’s, the third and fifth follows from 0t t   , and the fourth follows from the 

serial independence of t . Because t  =  Proj |t t  , the equation 0t t     must yield a 

unique solution for t , so that 0 has rank m. Moreover, because var(vt) is assumed to have full 

rank, n ≤ m.  Taken together these imply that n = m and 0 has rank n. Therefore, if (24) holds, 

then (17)  holds.  

Invertibility as omitted variables.  One interpretation provided in the literature on 

invertibility is that invertibility implies that there are no omitted variables in the VAR (e.g. 

Fernández-Villaverde et. al. (2007)): because invertibility implies that the spans of εt and νt are 

the same, there is no forecasting gain from adding past shocks to the VAR. That is, the 

invertibility condition (24) implies that,8 

 

1 2 1 2 1 2Proj( | , ,..., , ,...) Proj( | , ,...)t t t t t t t tY Y Y Y Y Y       .     (25) 

 

Condition (25) both shows how strong the assumption of invertibility is, and provides an 

interpretation of invertibility as a problem of omitted variables. If invertibility holds, then 

knowledge of the history true shocks would not improve the VAR forecast. If instead those 

forecasts were improved by adding the shocks to the regression – infeasible, of course, but a 

thought experiment – then the VAR has omitted some variables, and that omission is an 

indication of the failure of the invertibility assumption.9 

                                                 
8 Equation (25) follows from (17) by writing,  1 2 1 2Proj | , ,..., , ,...t t t t tY Y Y       = 

 1 2 1 2Proj | , ,..., , ,...t t t t tY         =  1 2Proj | , ,...t t tY     =  1 2Proj | , ,...t t tY Y Y  , where the first 

and third equalities uses the fact that the innovations are the Wold errors, and the second equality 
uses the implication of (17) that span(εt) = span(νt) . 
9 Condition (25) is closely related to Proposition 3 in Forni and Gambetti (2014), which states 
(with some refinements) that the structural moving average is invertible if no added state variable 
in a VAR have predictive content for Yt. That observation leads to their test for invertibility, 
which involves estimating factors using a dynamic factor model and including them in the VAR. 
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In general, one solution to omitted variable problems is to include the omitted variables 

in the regression. In the case at hand, that is challenging, because the omitted variables are the 

unobserved structural shocks. Pursuing this line of reasoning suggests using a large number of 

variables in the VAR, a high dimensional dynamic factor model, or a factor-augmented vector 

autoregression (FAVAR). This is a potentially useful avenue to dealing with the invertibility 

problem, see for example Forni, Giannone, Lippi, and Reichlin (2009) and the survey in Stock 

and Watson (2016).10 

It is important to note that expanding the number of variables will not necessarily result 

in (24) being satisfied, so that moving to large systems does not assure invertibility. 

Relation between assumptions SVAR-IV, LP-IV, and invertibility. A major appeal of 

LP-IV is that the direct regression approach does not explicitly assume invertibility. If, however, 

the instrument depends on lagged shocks and lagged Ys are used as control variables, then in 

general the instrument is valid with these controls (i.e., condition LP-IV⊥ holds) if and only if 

condition SVAR-IV holds and that the SVAR is invertible. Intuitively, if the instrument depends 

on lagged shocks, the control variables must span the space of those shocks; but the requirement 

that the Ys span the space of the shocks is simply the invertibility condition. This result is stated 

in the following theorem. 

 

Theorem 1. Let Z denote the set of scalar stochastic processes (instruments) such that for 

all Z ∈ Z, Z satisfies LP-IV conditions (i), (ii), and (iii for j > 0), but not (iii for j < 0). 

Let Wt = {Yt-1, Yt-2, …}. Then LP-IV⊥ is satisfied for all Z ∈ Z if and only if (a) Z 

satisfies Condition SVAR-IV and (b) the invertibility condition (24) holds. 

 

Proof. We first show that condition SVAR-IV plus invertibility (24) implies condition 

LP-IV⊥. First note that for j ≥ 0, 1 2Proj( | , ,...)t j t tY Y     = 0 so t j 
  = 1 2Proj( | , ,...)t j t j t tY Y      

                                                 
10 Aikman, Bush, and Taylor (2016) use lagged macro factors as controls in local projection OLS 
regression, which they call factor-augmented local projections. This method is the local 
projection counterpart of FAVARs. 



 28

t j  . Thus, for j ≥ 0,  t j tE Z  
  =  1 2Proj( | , ,...)t j t t t tE Z Z Y Y       =  t j tE Z  . Setting j = 

0, it follows that SVAR-IV (i) and (ii) are equivalent to LP-IV (i) and (ii). In addition, 

Condition LP-IV (iii for j > 0) (which holds by definition of Z) is equivalent to Condition LP-

IV (iii for j > 0). For j < 0, (24) directly implies that t j  =  1 2Proj | , ,...t j t tY Y    , so t j 
  = 0 

and thus  t j tE Z  
  = 0 trivially; thus (24) implies LP-IV⊥(iii for j < 0). Thus condition SVAR-

IV plus (24) implies condition LP-IV⊥ for all Z ∈ Z. 

We now show that, if condition LP-IV⊥ holds for all Z ∈ Z, then conditions SVAR-IV 

and (24) hold. First, as noted above, LP-IV⊥ (i) and (ii) are equivalent to SVAR-IV (i) and (ii). It 

remains to show that, if LP-IV⊥ (iii) holds for all Z ∈ Z, then (24) holds. Consider Z ∈ Z, and let 

tZ


 = 1t tZ   ; by construction, Z

∈ Z. Because LP-IV⊥ holds by assumption for all Z ∈ Z, it 

holds in particular for Z  and Z


, so  LP-IV⊥ (iii, j < 0) implies that  1t tE Z  



 =  1t tE Z  


  = 0. 

But  1t tE Z  



 =    2

1 1t t tE Z E   
  , so it must be that  2

1tE  
  = 0; but E( te

^
-1 )2 = 0 implies 

that (24) holds. � 

 

We interpret this theorem as a “no free lunch” result. Although LP-IV can estimate the 

impulse response function without assuming invertibility, to do so requires an instrument that 

either satisfies LP-IV (iii) or that can be made to do so by adding control variables that are 

specific to the application. Simply including past Y’s out of concern that Zt is correlated with past 

shocks is in general valid if and only if the VAR with those past Y’s is invertible; but if so, it is 

more efficient to use SVAR-IV.11 

                                                 
11 It is well known that in VARs, distributions of estimators of impulse response functions are 
generally not well approximated by their asymptotic distributions in sample sizes typically found 
in practice. A more relevant comparison would be of the efficiency of the estimators in a 
simulation calibrated to empirical data. Kim and Kilian (2011) did such an exercise comparing 
LP and SVAR estimators, with identification by a Cholesky decomposition (what we would call 
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3.3. Observable Shocks, VAR Misspecification, and Partial Invertibility  

The external instrument approach to impulse response estimation treats shock measures, 

such as the Romer and Romer (1989) narrative shocks or a monetary announcement surprise as 

in Kuttner (2001), as instrumental variables. Originally, however, that literature treated those 

measures as the shocks directly. Given our focus on invertibility, we therefore briefly digress to 

consider issues of VAR specification when the shock of interest is observed. We will refer to the 

situation in which 1,t  is observed, or at least is recoverable from the VAR innovations νt, as 

partial invertibility: we will say that the VAR is partially invertible if there is some λ such that 

1,t  = λ´νt. The leading case is the observed shock case in which λ = (1 0 … 0)´, with the 

observed shock ordered first in the VAR. Here, we first consider partial identification in the case 

that λ is identified without assuming full invertibility (the “observed shock” case), so that the 

shock can be used directly as a regressor. We then contrast this with the case of identification by 

external instruments.  

First consider the case that 1,t  is observed, and let 1,tY  = 1,t , and as usual let 2: ,n tY  denote 

the remaining Y’s. Write the structural moving average representation for 2: ,n tY  as 2: ,n tY  = 

1 1,(L) t t   , where ωt is the distributed lag all the shocks other than 1,t . Because ωt is 

stationary, it has a population VAR representation, ωt = 22 1(L) t tA    . Premultiplying 2: ,n tY  = 

1 1,(L) t t    by 22L (L)I A  and rearranging yields, 2: ,n tY  = 

22 1 1, 22 2: , 1( L (L)) (L) (L)t n t tI A A Y      = 21 1, 1 22 2: , 1 0,1 1,(L) (L)t n t t tA A Y      , where 

21( )A L  = 1
22 1 0,1L ( L (L)) (L)I A       (note that the leading term of 22 1( L (L)) (L)I A   is 

0,1). The expressions for 1,tY  and 2: ,n tY combine to yield the VAR, 

 

1, 1, 1 1, 1, 1,

2: , 2: , 1 2: , 2: , 0,121 22

1 00 0
, where  

(L) (L)
t t t t t

t
n t n t n t n t t

Y Y
Y

Y Y IA A

  
  





           
                           

.  (26) 

                                                 
internal instruments). Their results are consistent with improvements in efficiency, and tighter 
confidence intervals, for SVARs than LP.  
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Assuming correct lag specification, the VAR coefficient estimator is consistent for the 

population lag matrix in (26). The lack of feedback in the population VAR coefficient matrix to 

the first variable, combined with the lower triangular error structure in (26), imply that the IRFs 

produced by a Cholesky factorization of the VAR innovations, with the observed shock ordered 

first, produce an IRF that simply iterates on the second block of equations. That is, the IRF is 

computed from the difference equation 2: ,n tY  = 22 1 1, 22 2, 1( L (L)) (L) (L)t tI A A Y    , which yields 

the IRF 1(L) .  

The conclusion that the VAR “ 1,t  first” IRF is consistent for 1(L)  was reached without 

ever assuming that t spans the space of the remaining shocks: the VAR can have omitted 

variables in the sense that the shocks are not fully observable. The reason for this result is that 

1,t  is strictly exogenous. Because of this strict exogeneity, 1(L)  can be consistently estimated 

by a distributed lag regression of 2: ,n tY  on 1,t , an autoregressive distributed lag regression, by 

GLS, or using a VAR with arbitrary choice of VAR variables, including a choice of VAR 

variables that differs from one variable of interest to the next. 

These observations all extend to the case of partial invertibility, in which there is an 

identified λ such that 1,t  = t  . Let   be a n×(n-1) matrix such that    = 0 and     = I. Then 

the algebra of the preceding paragraph goes through using the transformed variables tY  = 

 1, 2: ,,t n tY Y   =  ,tY Y   . 

Returning to IV methods, an implication of these observations is that if the IV methods 

identify λ such that 1,t  = t  , then the additional assumption of invertibility of the SVAR can 

be dispensed with for the validity of SVAR-IV. This said, as discussed in Section 3.2, 

identification of 0,1 is insufficient to identify λ, and the expression for λ given there (that λ =  

 1 1
0,1 0,1 0,1 

        was derived under the invertibility assumption (17). While the partial 

invertibility assumption that 1,t  = t   is weaker than invertibility assumption (17), it remains 
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to be seen whether there are empirical applications in which this weaker condition would hold 

but invertibility does not.12 

 

4. A Test of Invertibility  

 

Suppose one has an instrument that satisfies condition LP-IV. Under invertibility, SVAR-

IV and LP-IV are both consistent, but SVAR-IV is more efficient, at least under 

homoskedasticity. If, however, invertibility fails, LP-IV is consistent but SVAR-IV is not. This 

observation suggests that comparing the SVAR-IV and LP-IV estimators provides a Hausman 

(1978)-type test of the null hypothesis of invertibility. Throughout, we maintain the assumption 

that Yt has the linear structural moving average (5). We additionally assume the VAR lag length 

p is finite and known. 

Before introducing the test, we make precise the null and alternative hypothesis. We also 

provide a nesting of local departures from the null, which we refer to as local non-invertibility.  

Null and local alternative. Under invertibility (24), the structural moving average can be 

written Yt = 0( ) tC L   as in (18), where C(L) = A(L)-1; that is, that (L) = C(L)0. The null and 

alternative hypotheses thus are, 

 

H0: Ch0,1 = h,1, all h  v.  H1: Ch0,1 ≠ h,1, some h.   (27) 

 

In addition to establishing the null distribution of the test, we wish to examine its 

distribution under an alternative to check that the test has power against non-invertibility. 

Beaudry et. al. (2015) and Plagborg-Møller (2106b) provide numerical evidence that in many 

cases the noninvertible (nonfundamental) representation of a time series may be very close to its 

invertible representation. With this motivation, we focus on noninvertible IRFs that represent 

small departures from an invertible null.  

                                                 
12 Evidently, without partial invertibility or recoverability, the historical and forecast error 
variance decompositions in (14) and (15) are not point-identified. Plagborg-Møller and Wolf 
(2017) derive set identification results for these decompositions using external instruments in the 
absence of invertibility or recoverability. 
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Specifically, we consider the drifting sequence of alternatives: 

 

1/2 1/2
, 0,1 ,1 ( )h T h hC T d o T      ,      (28) 

 

where under the null dh = 0, while under the alternative dh is a nonzero n×1 vector for at least 

some h > 0. In Appendix A.1, we construct a sequence of models that are noninvertible because 

of a small amount (specifically, Op(T-1/4)) of measurement error contamination, and show that 

this sequence of models induces local non-invertibility of the form (28).  

Test of invertibility. We now turn to the test statistic. Let ˆSVAR IV    denote an m×1 vector 

of SVAR -IV estimators (23), computed using a VAR(p), for different variables and/or horizons, 

and let ˆLP IV   denote the corresponding LP-IV estimators. Compute the LP-IV estimator using 

as control variables the p lags of Y that appear in the VAR; because Zt satisfies condition LP-IV, 

including these lags as controls is not necessary for consistency but makes the two statistics 

comparable for use in the same test statistic. 

It is shown in the appendix that, with strong instruments and under standard 

moment/memory assumptions, under the null and local alternative, 

 

( )ˆ ˆ N( , )dLP IV SVAR IVT d Vq q- -- ¾¾ ,     (29)  

 

where d consists of the elements of {dh} corresponding to the variable-horizon combinations that 

comprise ˆLP IVq -  and ˆSVAR IVq - .   

The Hausman-type test statistic is, 

 

ˆ ˆ ˆ ˆˆ( ) ( )LP IV SVAR IV LP IV SVAR IVT Vx q q q q- - - - -¢= - -1 ,     (30) 

 

where V̂  is a consistent estimator of V. Under the null of invertibility, d
mx c¾¾ 2 . 

We make four remarks about this test. 

1. We suggest computation of the variance matrix V̂ using the parametric bootstrap, and we 

discuss some specifics in Appendix A.2. 
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2. The LP-IV and SVAR-IV estimators for the impact effect (h = 0) are identical when 

lagged Ys are used as controls. Thus this test compares the LP-IV and SVAR-IV 

estimates of the impulse responses for h  1. This test therefore assesses the validity of 

the parametric restrictions imposed by inverting the SVAR, compared to direct estimation 

of the impulse response function by LP-IV. Here, we have maintained the assumption 

that the structural moving average is linear and the VAR lag length is finite and known. 

Under these maintained assumptions, any divergence between the SVAR impulse 

responses and the direct estimates, in population, is attributable to non-invertibility.  

3. Under the local alternative (28), the test statistic has a noncentral chi-squared distribution 

with m degrees of freedom and noncentrality parameter 2 = dV-1d . The expressions in 

the Appendix show that, for a given local alternative d, the noncentrality parameter is 

zero if  = 0, and increases to a finite limit as  increases. Thus the power of the test is 

increasing as the strength of the instrument increases, according to this local strong-

instrument approximation. 

4. Existing tests for invertibility (e.g. Forni and Gambetti (2014)) test the implication of 

invertibility that Zt does not Granger-cause Yt. The test here differs because it focuses not 

on forecasting contribution, but on the object of interest in the analysis, the impulse 

response function. In both approaches – directly testing Granger non-causality and the 

Hausman-type test approach here, the testable implications all stem from moments 

involving Z: second moments of Y alone cannot distinguish invertible from non-invertible 

processes. 

 

5. Illustration: Gertler-Karadi (2015) Identification of the Dynamic Causal Effect of 

Monetary Policy 

 

Gertler and Karadi (2015) use the SVAR-IV method to estimate the effect of a monetary 

policy shock on real output, prices, and various credit variables, and Ramey (2016) applies LP-

IV to their data to illustrate the differences between the two methods. Here, we extend Ramey’s 

comparison and formally test invertibility. We use this application to discuss several 

implementation details.  
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Gertler and Karadi’s (2015) benchmark analysis uses U.S. monthly data to estimate the 

effect of Federal Reserve policy shocks on four variables: the index of industrial production and 

the consumer price index (both in logarithms, denoted here as IP and P), the interest rate on 1-

year U.S. Treasury bonds (Rt), and a financial stress indicator, the Gilchrist and Zakrajšek (2012) 

excess bond premium (EBP). We first-difference IP and P, so the vector of variables is Yt = (Rt, 

100IP, 100P, EBP), where R and EBP are measured in percentage points at annual rate and 

IP and P are multiplied by 100 so these variables are measured in percentage point growth 

rates. 

Gertler and Karadi (GK) identify the monetary policy shock using changes in Federal 

Funds futures rates (FFF) around FOMC announcement dates. In doing so, they draw on insights 

from Kuttner (2001) and others who argued that this measure is plausibly uncorrelated with other 

shocks because they are changes across a short announcement window. Whereas the original 

literature treated such a measure as the shock, GK use it as an instrument; that is, Zt = FFFt.  

Column (a) of Table 1 shows results for the LP-IV regression (7), the equation without 

controls, using the GK data that span 1990m1 – 2012m6. Standard errors in Table 1 for LP-IV 

impulse responses are Newey-West with h+1 lags. We highlight three results. First, the table 

shows that the estimated contemporaneous (h = 0) effect of monetary policy shocks on interest 

rates (R) is 0,11 = 1.0; this is the unit-effect normalization.  Second, the first-stage F-statistic   

that is the (standard) F-statistic from the regression of Rt onto FFFt  is small, only 1.7, raising 

weak instrument concerns. Third, the estimated standard errors for the estimated causal effects 

are large, particularly for large values of h.  

These final two results are related.  To see why, rewrite equation (5) to highlight the 

various components of Yi,t+h: 

 

, , 1 1, 1 2: , 1{ ,..., } { } { ,...}i t h h i t t h t n t tY                 (31) 

 

where, again, the notation {∙} denotes a linear function of the variables included in the braces. 

The first-stage F-statistic is from the regression of Y1,t (= Rt) onto Zt (= FFFt). From (31), the 

error term in the first-stage regression is comprised of 2: ,{ }n t  and 1{ ,...}t  . Because interest 

rates are very persistent, only a small fraction of the variance is attributable to contemporaneous 
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shocks, t; a fraction of this contemporaneous effect is associated with the monetary policy shock 

1,t , and only a fraction of 1,t  can be explained by the instrument Zt.  Taken together, these 

effects yield a first-stage regression with R2 = 0.006 and a correspondingly small F-statistic.  

Similar logic explains the large standard errors for the estimated causal effects because these are 

associated with IV regressions with error terms comprised of 1 2: , 1{ ,..., } { } { ,...}t h t n t t       . 

Column (b) of Table 1 repeats the estimation, but now using four lags of Yt and Zt as 

controls. The controls serve two purposes. First, because these controls are correlated with 

lagged values of ε, they reduce the variance of the regression error term and, for example, the 

first-stage (partial) R2 in (b) increases to R2 = 0.09 with a first-stage F-statistic increases to F = 

23.7.  Second, the controls adjust for a data processing issue that makes the FFF variable an 

invalid instrument in the LP-IV regression without controls. Specifically, as pointed out by 

Ramey (2016), Gertler and Karadi (2015) form their FFF instrument as a moving average of 

returns from month t and month t 1. Thus, FFFt will be correlated with both 1,t  and 1, 1t  , 

violating Assumption LP-IV (iii). Because Zt has an MA(1) structure, using lags of Zt as controls 

eliminates the correlation with 1, 1t  , so that Condition LP-IV٣ (iii) is satisfied. Despite the 

MA(1) structure, it is plausible that this instrument is uncorrelated with other shocks. Thus, to 

satisfy Condition LP-IV٣ (iii), it would suffice to include Zt-1 as a control; including lagged Ys 

and additional lags of Z serves to improve precision (increase the first-stage F).13  

If there are more than four shocks that affect Yt, or if some elements of Yt are measured 

with error (as IP and P surely are), then the innovations to the four variables making up Yt will 

not span the space of the shocks. This is not a problem for the validity of LP-IV with lagged Zs, 

however it does suggest that including additional variables that are correlated with the shocks 

could further reduce the regression standard error and thus result in smaller standard errors. One 

plausible set of such variables are principal components (factors) computed from a large set of 

macro variables. With this motivation, column (c) adds lags of four factors computed from the 

                                                 
13 The construction of Zt is described in footnote 6 in GK. The MA(1) structure invalidates the 
LP-IV regression reported in column (1), but it does not affect its validity in the SVAR-IV 
regression  used by GK. An additional issue is that the weights used in GK’s construction of Zt 
are time varying because of floating FOMC meeting dates. In principle this could yield a time-
varying MA(1) structure but we approximate the MA coefficients as constant. 
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FRED-MD dataset (McCracken and Ng (2016)).  In this illustration, these additional controls 

yield results that are largely consistent with the results using lags of Z and Y. 

Both specification (b) and (c) in Table 1 improve on the model without controls, (a), by 

eliminating some of the variability associated with lagged  and in particular by making Z satisfy 

LP-IV (iii), whereas (a) does not satisfy LP-IV (iii).  However, neither eliminates the variability 

associated with of future ’s, the 1{ ,..., }t h t    component of the error term shown in (31). The 

variability of this component increases with the horizon h, and this is evident in the large 

standard errors in estimates associated with long-horizons. When the structural moving average 

model is invertible, it is in effect possible to control for both lagged and future values of  in the 

IV regression using VAR methods.  

Column (d) of Table 1 shows results from a SVAR with 12 lags, with monetary policy 

identified by the FFF instrument. Because the data on the Ys are available for a longer span than 

the data on the instrument, we follow Gertler and Karadi (2015) and estimate the VAR over the 

sample 1980m7-2012m6, while 0,1 is estimated over the sample 1990m1-2012m6 (see the 

discussion of data spans towards the end of Section 3.1). Standard errors for the SVAR-IV 

estimate are computed by the parametric bootstrap described in the Appendix. Because the VAR 

uses 12 lags of Y instead of the 4 lags used as controls in the local projections, the first stage F-

statistics differ slightly in columns (b) and (d).  As expected, the standard errors for the estimated 

dynamic causal effects are smaller for the SVAR than for the local projections, particularly for 

large values of h, for two reasons. First, the local projections are estimated using regressions with 

error terms that include leads and lags of  (see (31)), and these terms are absent from the IV 

regression used in the SVAR, because only the impact effect, 0, is estimated by IV. Second, the 

VAR parameterization imposes smoothness and damping on the moving average coefficients in 

Ch, which further reduces the standard errors. Still, in this empirical application, the standard 

errors in the SVAR remain large. 

The final column of Table 1 shows the difference in estimates of dynamic causal effects 

from the LP-IV estimator in column (b) and the SVAR-IV estimator in column (d). These 

differences form the basis for the invertibility test developed in the last section, and the standard 

errors shown in final column are computed from the parametric bootstrap, which imposes 

invertibility. Some of the differences between the SVAR and LP estimates are large, but so are 
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their estimated errors, and none of the differences are statistically significant. Relative to the 

sampling uncertainty, the differences in the LP and SVAR estimates shown in Table 1 are not 

large enough to conclude that the SVAR suffers from misspecification associated with a lack of 

invertibility.  

Table 2 shows results for two additional tests for invertibility. The first row shows results 

for the test  in (30) for the differences of the LP-IV and SVAR-IV estimates jointly across the 

lags shown in Table 1. The second row shows results from Granger-causality tests that include 

four lags of Z in each of the VAR equation. Despite the large differences, in economic terms, 

between the two estimates of the impulse responses, the table indicates that there is no 

statistically significant evidence against the null of hypothesis of invertibility.  

 

6. Conclusions 

 

It is well known that, with Gaussian errors, every invertible model has multiple 

observationally equivalent noninvertible representations, so if one is to distinguish among them, 

some external information must be brought to bear. One approach is to assume that the shocks 

are independent and non-Gaussian, and to exploit higher order moment restrictions to identify 

the causal structure (cf. Lanne and Saikkonen (2013), Gospodinov and Ng (2015) and 

Gouriéroux, Monfort, and Renne (2017)). A second approach is to use a-priori informative 

priors (Plagborg-Møller (2016b)). Here, we have shown that there is a third approach, which is to 

use an external instrument. Through an external instrument, additional information can be 

brought to bear to identify dynamic causal effects. Under a lead-lag exogeneity condition, the 

external instrument identifies the structural impulse response function without assuming 

invertibility. 

A number of methodological issues concerning the use of external instruments merit 

further research. For example, this discussion assumes homogenous treatment effects. Although 

this assumption seems plausible in a macroeconomic setting (there is only one “subject,” 

although effects may be state-dependent), more work is warranted. Also, the usual weak-

instrument toolkit does not cover all the methods used here, for example one open question is 

how to robustify our test of invertibility to potentially weak instruments. 
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Additionally, an informal argument sometimes made in favor of the local projections 

method is that it is robust to VAR misspecification concerning lag length, nonlinearities, and 

state dependence. In this lecture, we have put these arguments to one side by assuming a linear, 

constant-coefficient structural moving average representation. To us, the robustness of LP-IV to 

nonlinearities is not obvious, particularly when the instrument depends in part on lagged shocks: 

if so, the control variables would need to span the space of those shocks, and it seems that there 

would be a nonlinear counterpart to our no free lunch theorem (Theorem 1). In any event, it 

would be of interest to see these arguments made precise.  

In our view, the most exciting work to be done in this area is empirical. We look forward 

to the development of new external instruments that provide plausibly exogenous variation to 

provide more credible identification of dynamic causal effects. 
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Appendix 
 

A.1 Asymptotic distribution of the Hausman test statistic for invertibility 
 

This appendix derives the asymptotic distribution (29) under the null of invertibility and 

under a sequence of local alternatives. For simplicity, we consider the case that the test is based 

on all impulse responses for a single horizon h and that the instrument is a scalar; extensions to 

multiple horizons and a vector of instruments is straightforward. Accordingly, we show that 

 1/2
,1 ,1

ˆ ˆ ( , )dSVAR IV LP IV
h h h hT N d V    . This result implies that the test statistic  given in (30) 

has an asymptotic chi-squared distribution with n degrees of freedom under the null, and a 

noncentral chi-squared distribution with noncentrality parameter 2 = 1
h h hd V d  under the local 

alternative. 

We begin with the analysis under the null of invertibility.  The SVAR is 

 

A(L) (L)t tY   ,        (A.1) 

 

where A(L) is a polynomial of order p. The Wold moving average polynomial is C(L) = A(L)-1 = 

I + C1L + … . Under the null hypothesis of invertibility (17), with the maintained hypothesis that 

Yt has the linear structural MA representation (5), the structural IRF satisfies H0 in (27), that is, 

h,1 = Ch0,1 for all h.  

For future reference, we note that the SVAR can be written in state-space form as   

 

  
1

S

A G
t t

t t t

Y X

X X 


 

        (A.2) 

 

where Xt = (Yt' Yt-1' … Yt-p+1')', A is the VAR companion matrix, the upper block of G is 0 and 

all other elements of G are zero, and  I 0 0nS    is a selection matrix.  

 The local projection equation, written for the vector Y, is  

      

Yt+h = h,1Y1,t + hWt + h
t hu 
  ,       (A.3) 



 40

 

where the control variables are Wt = Xt-1 and, from (A.2) , h = SAh+1. Consistent with 

Assumption LP-IV⊥, we represent Zt as  

 

Zt = 1, Bt t tW e   ,        (A.4) 

 

where et is uncorrelated with s  for all t and s. All variables are assumed to be second-order 

stationary with sample moments that satisfy  

 

 1/2 E( ) (0, )d
t t t t abT vec a b a b N           (A.5) 

 

for any variables (at, bt).  

 The LP-IV estimator is  

 

,1
ˆ LP IV

h
  = (Z'MWY1,0)-1(Yh'MWZ),      (A.6) 

 

where Z denotes the T×1  vector of instruments, Y0,1 denotes the T×1 vector (Y1,1 … Y1,T)', Yh 

denotes the T×n matrix with t'th row Yt+h', and MW = I – W(W'W)-1W, where W is a T×(np) matrix 

with tth row Wt'. The SVAR-IV estimator is 

 

,1 0,1
ˆˆ ˆCSVAR IV LP IV

h h
    ,        (A.7) 

 

where 1ˆ ˆC(L) A(L) , where Â(L)  is the OLS estimator of A(L). 

Under H0 in (27) and the assumption that Zt is a strong instrument, a straightforward 

calculation then yields: 
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   
 

1/2 1/2
,1 ,1 0,1

1 1/2 0 1/2

ˆˆ ˆ C C

C (1)

(0, )

SVAR IV LP IV LP IV
h h h h

h
h t t t t h p

d
h

T T

T Z u T Z u o

N V



  

      


    

  



    (A.8) 

 

where the result uses Z'MWY1,0 = Z⊥'MW 1,0Y 
 = Z⊥' 1,0Y 

 + Op(1) and similarly for Yh'MWZ,  

T-1Z⊥' 1,0Y  p =  1,t tE Z  , and the delta-method.   

We now consider a sequence of stochastic processes that are local to the invertible model 

and the resulting estimators.  Specifically, maintain the definitions of all of the variables and 

parameters given above (so that Yt is generated by the invertible model, etc.), but now consider 

the sequence of stochastic processes Yt,T : 

 

Yt,T = SXt + T-1/4t,        (A.9) 

 

where t is white noise and uncorrelated with  for all t and . Notice that Yt,T = Yt + T-1/4t, so 

that var(Yt,T) = var(Yt) + T-1/2var(t), and the autocovariances of Yt,T and Yt coincide for all non-

zero lags. The measurement error T-1/4t in (A.9) means that  Xt cannot be perfectly recovered 

from current and lagged values of Yt,T and t ≠ Proj(t|Yt,T, Yt-1,T, …), so the model is not 

invertible. 

The implied p-th order VAR for Yt,T is local to the VAR for Yt; that is, 

 

AT(L) = A(L) + T-1/2a(L) + o(T-1/2),      (A.10) 

 

where AT(L) denotes the projection of Yt,T onto (Yt-1,T, … , Yt-p,T).  Similarly, the implied moving 

coefficients, AT(L)-1 = I + C1,TL + … satisfy 1/2 1/2
, ( )h T h hC C T c o T    . Because Ch0 = h 

(the invertible null), we have that 1/2 1/2
, 0 0 0 ( )h T h hC C T c o T        = 1/2 1/2( )h hT d o T    , 

where dh = ch0. Thus, the local contamination in (A.9) implies that the nearly invertible moving 

average sequence (28). 
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Let Â (L)T  denote the OLS estimator of AT(L) using Yt,T. A calculation shows that  

 1/2 ˆ ˆA (L) A(L) (L) (1)T pT a o   and  

 

 1/2
,

ˆ ˆC C (1)h T h h pT c o   .       (A.11) 

 

Although the VAR and MA models for Yt and Yt,T differ by a T-1/2 component, the LP-IV 

estimators using Yt,T and Yt are equivalent to order T-1/2.  To see this, write the LP equation as  

   

Yt+h,T = h,1Y1,t,T + h,TWt,T + ,
h
t h Tu 
 ,       (A.12) 

 

where Wt,T = (Yt-1,T … Yt-p,T). From (A.2) and (A.12), h,TWt,T = SAh+1× Proj(Xt-1|Wt,T) and ,
h
t h Tu 
 = 

1/4h h
t h t h t hu T g 
    , where h

t hg  = SAh+1× [Xt 1   Proj(Xt-1|Wt,T)] = Op(T-1/4). Similarly, let the 

instruments satisfy 

 

Zt,T = 1, ,Bt t T tW e   ,       (A.13) 

 

where now et is assumed to be uncorrelated with  and  for all t and . Using instruments that 

satisfy (A.13) ensures that Condition LP-IV⊥ holds under both the null and local alternative. Let 

  ,1 , ,
ˆ ,LP IV

h t T t TY Z  denote the LP-IV estimators using {Yt,T, Zt,T}. Using (A.12) and (A.13), it 

follows that  

 

     1/2
,1 , , ,1

ˆ ˆ, ,LP IV LP IV
h t T t T h t tT Y Z Y Z      = op(1).    (A.14) 

 

Finally, the SVAR estimator constructed from {Yt,T, Zt,T} is  

 

     , , , 0 , ,
ˆˆ ˆ, ,SVAR IV LP IV

h t T t T h T t T t TY Z C Y Z    .    (A.15) 
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Equations (A.8), (A.11), (A.14) and (A.15) imply 

 

     
     

1/2
,1 , , ,1 , ,

1/2
,1 ,1 0,1

ˆ ˆ, ,

ˆ ˆ, , (1)

( , )

SVAR IV LP IV
h t T t T h t T t T

SVAR IV LP IV
h t t h t t h p

d
h h

T Y Z Y Z

T Y Z Y Z c o

N d V

 

 

   
       



   (A.16) 

where dh = ch0,1. 

 
A.2 Parametric Bootstrap Estimation of hV  

 
The standard errors of the estimators in Tables 1 and 2 were computed using the sample 

variances computed from 1000 draws from a parametric bootstrap. For each draw, we generated 

samples of size T for ( , )t tY Z    from the stationary VAR, 

  

ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ 0A(L) 0
,  where . . . ,

0ˆ0 (L)
t t vv vet

t t ev eet

S SY
i i d N

e e S SZ

 



           
            

          

  
  

,  (A.17) 

 

where Â(L)  is estimated from a VAR(12), ˆ (L) is estimated from an AR(4), and ˆˆvvS , ˆˆvvS , and 

ˆˆeeS  are sample covariances for the VAR/AR residuals.  These samples are used to compute the 

SVAR-IV and LP-IV estimates of h,1. 
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Table 1: Estimated causal effect of monetary policy shocks on selected economic 
variables: Gertler-Karadi (2015) variables, instrument and sample period 
 

  LP-IV SVAR  SVAR – LP  
 lag (h) (a) (b) (c) (d)  (d)-(b) 
R 0 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)  0.00 (0.00) 
 6 -0.07 (1.34) 1.12 (0.52) 0.67 (0.57) 0.89 (0.31)  -0.23 (1.19) 
 12 -1.05 (2.51) 0.78 (1.02) -0.12 (1.07) 0.78 (0.46)  0.00 (1.79) 
 24 -2.09 (5.66) -0.80 (1.53) -1.57 (1.48) 0.40 (0.49)  1.19 (2.57) 
        
IP 0 -0.59 (0.71) 0.21 (0.40) 0.03 (0.55) 0.16 (0.59)  -0.06 (0.35) 
 6 -2.15 (3.42) -3.80 (3.14) -4.05 (3.65) -0.81 (1.19)  3.00 (2.32) 
 12 -3.60 (6.23) -6.70 (4.70) -6.86 (5.49) -1.87 (1.54)  4.83 (4.00) 
 24 -2.99 (10.21) -9.51 (7.70) -8.13 (7.62) -2.16 (1.65)  7.35 (6.40) 
        
P 0 0.02 (0.07) -0.08 (0.25) -0.04 (0.25) 0.02 (0.23)  0.10 (0.13) 
 6 0.16 (0.42) -0.39 (0.52) -0.79 (0.83) 0.31 (0.41)  0.71 (0.98) 
 12 -0.26 (0.88) -1.35 (1.03) -1.37 (1.23) 0.45 (0.54)  1.80 (1.53) 
 24 -0.88 (3.08) -2.26 (1.31) -2.58 (1.69) 0.50 (0.65)  2.76 (2.60) 
        
EBP 0 0.51 (0.61) 0.67 (0.40) 0.82 (0.49) 0.77 (0.29)  0.09 (0.24) 
 6 0.22 (0.30) 1.33 (0.81) 1.66 (1.04) 0.48 (0.20)  -0.85 (0.51) 
 12 0.56 (0.91) 0.84 (0.65) 0.91 (0.80) 0.18 (0.13)  -0.66 (0.55) 
 24 -0.44 (1.29) 0.94 (0.66) 0.85 (0.76) 0.06 (0.07)  -0.88 (0.62) 
        
Controls  none 4 lags of (z,y) 

 
4 lags of (z,y,f) 

 
12 lags of y 
4 lags of z 

 na 

First-stage FHom  1.7 23.7 18.6 20.5  na 
First-stage FHAC 1.1 15.5 12.7 19.2  na 

Notes: The instrument, Zt, is available from 1990m1-2012m6; the other variables are available 
from 1979m1-2012m6. The LP-IV estimates in (a)-(c) use data from 1990m1-2012m6. The VAR 
for (d) is computed over 1980m7-2012m6; and the IV-regression computed over 1990m5-
2012m6. The numbers in parentheses are standard errors computed by Newey-West HAC with 
h+1 lags for the local projections, and using a parametric Gaussian bootstrap for the SVAR and 
the SVAR – LP differences shown in (e). In the final two rows FHom is the standard (conditional 
homoscedasticity, no serial correlation) first-stage F-statistic, while FHAC is the Newey-West 
version using 12 lags in (a) and heteroskedasticity-robust (no lags) in (b), (c), and (d). 
 
 

Table 2: Tests for VAR Invertibility (p-values) 
 

 1Year Rate ln(IP) ln(CPI) GZ EBP 
VAR-LP difference (lags 0,6,12,24) 0.95 0.55 0.75 0.26 
VAR Z-GC test 0.16 0.09 0.38 0.97 

Notes: The first row is the bootstrap p-value for the test  in (30) of the null hypothesis that IV-
LP and IV-SVAR causal effects are same for h = 0, 6, 12, and 24. The second row shows p-
values for the F-statistic testing the null hypothesis that the coefficients on four lags of Z are 
jointly equal to zero in each of the VAR equations.  
 


