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Abstract 

Background: Biofuel production from conversion of biomass is indispensable in the portfolio of renewable ener-
gies. Complex microbial communities are involved in the anaerobic digestion process of plant material, agricultural 
residual products and food wastes. Analysis of the genetic potential and microbiology of communities degrading 
biomass to biofuels is considered to be the key to develop process optimisation strategies. Hence, due to the still 
incomplete taxonomic and functional characterisation of corresponding communities, new and unknown species are 
of special interest.

Results: Three mesophilic and one thermophilic production-scale biogas plants (BGPs) were taxonomically profiled 
using high-throughput 16S rRNA gene amplicon sequencing. All BGPs shared a core microbiome with the thermo-
philic BGP featuring the lowest diversity. However, the phyla Cloacimonetes and Spirochaetes were unique to BGPs 2 
and 3, Fusobacteria were only found in BGP3 and members of the phylum Thermotogae were present only in the ther-
mophilic BGP4. Taxonomic analyses revealed that these distinctive taxa mostly represent so far unknown species. The 
only exception is the dominant Thermotogae OTU featuring 16S rRNA gene sequence identity to Defluviitoga tunisien-

sis L3, a sequenced and characterised strain. To further investigate the genetic potential of the biogas communities, 
corresponding metagenomes were sequenced in a deepness of 347.5 Gbp in total. A combined assembly comprised 
80.3 % of all reads and resulted in the prediction of 1.59 million genes on assembled contigs. Genome binning yielded 
genome bins comprising the prevalent distinctive phyla Cloacimonetes, Spirochaetes, Fusobacteria and Thermotogae. 
Comparative genome analyses between the most dominant Thermotogae bin and the very closely related Defluvii-

toga tunisiensis L3 genome originating from the same BGP revealed high genetic similarity. This finding confirmed 
applicability and reliability of the binning approach. The four highly covered genome bins of the other three distinct 
phyla showed low or very low genetic similarities to their closest phylogenetic relatives, and therefore indicated their 
novelty.

Conclusions: In this study, the 16S rRNA gene sequencing approach and a combined metagenome assembly and 
binning approach were used for the first time on different production-scale biogas plants and revealed insights into 
the genetic potential and functional role of so far unknown species.
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Background
�e reorientation of the global energy industry towards 

renewable energy sources is one of the major challenges 

of this century. �e development of techniques using 

these resources contributes to the reduction of tradi-

tional fossil fuel usage [1]. Within the agricultural sec-

tor of renewable energy sources, energy generation by 

decomposition of organic materials has become one of 

the most important techniques. In particular, the produc-

tion of biogas represents an economically attractive tech-

nology to generate bioenergy [2].

In general, organic material is anaerobically decom-

posed by complex consortia of microorganisms. �e final 

product of this fermentation process is biogas with meth-

ane as the main compound. Several studies investigated 

and characterised the microbial community composi-

tion of agricultural biogas reactors. Among the bacterial 

community members, those of the classes Clostridia and 

Bacteroidetes dominate the biogas microbial subcom-

munities, followed by Proteobacteria, Bacilli, Flavobacte-

ria, Spirochaetes and Erysipelotrichi. Within the domain 

Archaea, the methanogenic orders Methanomicrobi-

ales, Methanosarcinales and Methanobacteriales were 

described to be frequently dominant [3–8].

Usually, the anaerobic fermentation process is practised 

at mesophilic (35–40 °C) or thermophilic (55–60 °C) con-

ditions. Mesophilic biogas plants are typically fed with 

energy crops in contrast to thermophilic reactors which 

also convert complex manure mixtures, industrial food 

residues and organic household wastes [9]. �e digestion 

process under mesophilic conditions requires less pro-

cess heat and is described to be stable due to the larger 

diversity of microorganisms, explaining its broader usage 

[10–12]. In comparison, thermophilic plants show higher 

methane content of the biogas, faster process turnover 

rates and a sanitising effect [10]. Depending on the pro-

cess conditions, such as temperature and fed substrates, 

differences in the biogas microbiome have been observed 

[13, 14].

To analyse the structure and function of biogas com-

munities, high-throughput 16S rRNA gene amplicon 

as well as metagenome sequencing has been applied 

frequently [3, 4, 7, 15–18]. Still, the complex micro-

bial consortia involved in anaerobic digestion are not 

fully understood, since many species of the process are 

unknown and uncharacterised. Culturing of single spe-

cies is mostly difficult and does not cover the commu-

nity’s complexity. For culture-independent functional 

characterisation of microbial species, genome binning 

from metagenome sequence data has been done for labo-

ratory scale, but not yet on production-scale biogas fer-

menters [19].

�e aim of this study was to compare community 

structures of different mesophilic and thermophilic 

production-scale biogas plants for  the identification 

of distinctive taxa and their functional potential. Tax-

onomic community profiling was achieved by high-

throughput 16S rRNA gene amplicon sequencing, 

whereas ultra-deep metagenome sequencing, assem-

bly of metagenome reads and subsequent binning of 

obtained contigs resulted in genome bins providing the 

basis for genome-centred metabolic reconstructions. 

Genome bins enabled functional predictions for so far 

unknown and distinctive taxa of the biogas communi-

ties analysed.

Methods
Sampling at production-scale biogas plants and DNA 

extraction

Fermentation samples were taken directly from the main 

fermenters of four different production-scale biogas 

plants (BGPs 1, 2, 3 and 4, see Table 1). Before sampling 

at the sampling devices installed at the BGPs, the reactor 

content was stirred and dead volumes of the outlet pipe-

lines were discarded. One litre fermentation sludge was 

then filled into a gas tight bottle, respectively, excess air 

was removed and the bottle tightly closed with a screw 

cap. Samples were immediately transferred to the labora-

tory maintaining the process temperature of the sample 

and then processed for total community DNA extraction. 

Whole community DNA was prepared from fermenter 

samples applying the protocol as follows:

A 26  g aliquot of fermenter sludge was mixed with 

50  ml of 1  M phosphate buffered saline solution (PBS, 

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 

KH2PO4), centrifuged at 9000×g for 5 min, the superna-

tant discarded. �e pellet was resuspended in 50 ml PBS 

(4 °C), shaken at 400 rpm, centrifuged at 200×g for 5 min 

and the supernatant collected. �ese steps were repeated 

three times to wash off the microbial biomass off the 

substrate fibres. �e collected supernatant was centri-

fuged at 9000×g for 5  min, the pellet resuspended in 

40 ml PBS and further centrifuged at 5000×g for 15 min, 

supernatant discarded. For cell disruption, the pellet was 

resuspended in CTAB containing DNA extraction buffer 

(DEP, described previously in [20], 5 mg Pronase ε (Serva 
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Electrophoresis GmbH, Heidelberg, Germany) and 2 mg 

RNAse (Qiagen, Germantown, MD, USA) added and 

shaken at 180 rpm and 37 °C for 1 h. Afterwards, 30 ml 

of 10  % SDS solution were added and the suspension 

incubated in a water bath at 65 °C for 2 h, inverting the 

suspension every 15 min. After centrifugation at 3900×g 

for 10 min, the supernatant was filtered through a folded 

filter (pore size 15–18 µm) and the filtrate mixed 1:1 (v/v) 

with a 24:1 chloroform/isoamyl alcohol (v/v) mixture, 

followed by centrifugation at 8000×g and 4 °C for 5 min. 

�e upper phase was taken off, mixed 1:0.7 (v/v) with iso-

propyl alcohol and left at room temperature for 1 h. �e 

DNA was pelleted by centrifugation at 9000×g and 4 °C 

for 20  min. From here, the NucleoBond AX-G (Mach-

erey–Nagel, Düren, Germany) ion exchanger columns 

and solutions were used for DNA purification according 

to the manufacturer’s instructions, starting with resus-

pension of DNA in 2 ml N2-Buffer and overnight incuba-

tion at 60  °C. In the end, the DNA was resuspended in 

100  µl TE buffer (1  m  mM Tris, 1  mM EDTA, pH 8.0) 

and overnight incubated at 4 °C. DNA concentration was 

measured using the NanoDrop 2000 Spectrophotometer 

(�ermo Scientific, Waltham, USA). �e DNA extraction 

above was done in quadruplicates and two DNA repli-

cates were sent to the DOE Joint Genome Institute (JGI) 

in Walnut Creek, California, USA for 16S rRNA gene 

amplicon and metagenomic sequencing. Samples for 

(chemical) process parameter measurements were taken 

and analysed separately and independently by the biogas 

plants’ operators.

High-throughput 16S rRNA gene amplicon sequencing

To describe and characterise the biogas-producing micro-

bial community composition the high-throughput 16S 

rRNA gene amplicon sequencing approach was applied 

as published previously [21]. Library preparation and 

sequencing were done at the DOE JGI. Briefly, to amplify 

the hypervariable region V4 of the 16S rRNA gene, the 

primers 515F 5′-GTGCCAGCMGCCGCGGTAA-3′ and 

806R 5′-GGACTACHVGGGTWTCTAAT-3′, covering 

the domains Bacteria and Archaea [21], multiplex iden-

tifier (MID) tags and Illumina-specific sequencing adap-

tor sequences were used. Afterwards, the fragments of 

expected length (approx. 300 bp) were amplified by PCR. 

Obtained PCR products were purified with AMPureXP® 

magnetic beads (Beckman Coulter GmbH, Brea, CA, 

USA). Qualitative and quantitative analysis of the gener-

ated 16S rRNA gene amplicons was performed using the 

Agilent 2100 Bioanalyzer system (Agilent, Santa Clara, 

CA, USA) and afterwards pooled together in equimolar 

amount. Finally, the constructed amplicon libraries were 

sequenced on the Illumina MiSeq system applying the 

paired-end protocol.

16S rRNA gene sequence processing and quality 
control
�e raw 16S rRNA gene sequencing reads were preproc-

essed by JGI’s iTagger amplicon analysis pipeline as to per-

form quality control. It was used to remove contaminants, 

e.g. PhiX control, sequencing library adapter dimers, etc., 

deplete sequencing primers and merge read pairs. Further 

contaminants removal was performed by DUK (v1.05) 

[22]. Read pairs with at least one read matching against 

the PhiX genome or the Illumina-specific sequencing 

artefact library were removed from the library. Adapter 

trimming was performed through cutadapt (v1.2.1) pro-

viding the sequences of the sequencing primers 515F 

and 806R [23]. Finally, Flash (v1.2.6) was used for itera-

tive read pair merging through consecutive trimming of 

the read pairs until these could be merged by removing 

failing read pairs from the library and a final filter with a 

threshold of 0.3 errors per 100 bp [24]. Before subsequent 

analysis with the QIIME NGS analysis pipeline [25], the 

eight libraries were initially merged into a sample tagged 

QIIME accessible format, including an additional quality 

control step checking for min base quality of 20 on Phred 

scale and truncating sequences if necessary.

Operational taxonomic unit (OTU) clustering 

and taxonomic classi�cation of 16S rRNA gene sequences

Further analysis of the 16S rRNA gene reads was per-

formed within the QIIME analysis pipeline for operational 

taxonomic unit (OTU) clustering and subsequent taxo-

nomic classification of the OTU representatives. From 

these OTUs, distinctive taxa per sample have been identi-

fied and investigated more closely. �e pre-filter +4 step 

open reference based OTU picking workflow from QIIME 

v1.9.1 was used in combination with Usearch (v7.0.1090, 

64bit) and Greengenes 16S rRNA gene database (v13_08, 

97 % identity) as reference dataset [26, 27]. �e represent-

ative sequences of each OTU were aligned using PyNAST 

(v0.1) [28], where OTUs with sequences failing to be 

aligned were removed from the final OTU table. Hence, 

the community profiles were corrected with CopyRighter 

(v0.46) [29] to account for different 16S rRNA gene copy 

numbers within the microbial community. �e OTU rep-

resentatives of the four distinctive phyla were placed into 

the All-Species Living Tree LTPs123 [30]. Sequences were 

aligned using the SINA alignment service v.1.2.11 online. 

�e LTPs123 tree and SINA alignments were loaded into 

ARB [31] and sequences placed into the existing LTP tree 

using ARB’s parsimony method.

Preparation and metagenome sequencing of total DNA 

from biogas-producing microbial communities

Library preparation and sequencing from total DNA were 

done at the DOE JGI. For sequencing purposes, 100  ng 



Page 4 of 18Stolze et al. Biotechnol Biofuels  (2016) 9:156 

of total DNA was sheared to 270  bp fragments using a 

focused-ultrasonicator (Covaris, Woburn, MA, USA). 

�e DNA fragments were purified and size selected 

using SPRI beads (Beckman Coulter, Brea, CA, USA). 

Obtained fragments were blunt-end-repaired, phospho-

rylated and A-tailed. Subsequently, T-tailed adapters, 

containing sequences used during cluster formation and 

Illumina compatible adapters (IDT, San Jose, CA, USA), 

were ligated to the purified DNA fragments applying the 

KAPA-Illumina library creation kit (KAPA Biosystems, 

Wilmington, MA, USA). �e prepared sample libraries 

were quantified applying the KAPA Biosystem’s next-

generation sequencing library qPCR kit (KAPA Bio-

systems, Wilmington, MA, USA) and run on the Roche 

LightCycler 480 real-time PCR instrument (Roche Basel, 

Switzerland). Sequencing of the libraries was performed 

on the Illumina HiSeq 2000 sequencer using the Illumina 

TruSeq SBS v3-HS kit, following a 2 × 150 indexed high 

output run protocol.

Metagenome assembly and binning

To reconstruct low-abundance community members and 

to facilitate downstream genome binning, all sequenc-

ing data was combined after quality control (JGI QC 

pipeline: sequencing artefact removal, removal of reads 

containing ambiguous (N) bases and filtering based on 

quality). Ray Meta (v2.3.0) [32] was used for assembly of 

the pooled sequencing data of all samples, using a k-mer 

size of 31. To estimate the inclusivity of our metagenome 

assembly, all sequencing reads were aligned to the assem-

bled contigs with Bowtie 2 (v2.2.4) [33]. SAMtools (v1.0) 

[34] was used to convert SAM to BAM, sort the align-

ment file and calculate read mapping statistics.

�e gene prediction tool Prodigal v.2.6.0 [35] was used 

to predict genes on assembled contigs larger than 1  kb. 

Predicted protein sequences were compared to NCBI’s 

database using the BLASTP mode of DIAMOND [36]. 

�e resulting output file was loaded into MEGAN5 [37] 

for taxonomic classification of each gene sequence.

To divide the metagenome assembly into genome bins, 

MetaBAT (v0.21.3) [38] was used in its very specific 

mode. Completeness, contamination, and strain hetero-

geneity were estimated with CheckM (v1.0.4) [39], using 

sets of clade-specific single-copy marker genes. Genome 

bins of distinct taxa were identified by (A) counting the 

aforementioned taxonomic assignments on gene level, 

and (B) running taxator-tk (v1.2.1; binning-workflow-

fasta-blast.sh) [40] to additionally assign a taxon label 

on contig level. �ese two approaches were largely in 

agreement, identifying high-confident genome bins for 

the taxa of interest. For each taxon, we considered only 

the most complete and less contaminated genome bin, as 

estimated by CheckM, for further analyses.

Genome bins were annotated and analysed within the 

GenDB 2.0 annotation system [41], additionally using the 

KEGG pathway mapping and BLASTP tool implemented 

in the system. For gene content comparisons, genome 

bins and corresponding reference genomes were ana-

lysed using the EDGAR 2.0 software [42]. Here, ortholo-

gous genes (hereafter referred to as ‘shared genes’) that 

the compared genomes have in common and singletons 

(hereafter referred to as ‘unique genes’) that do not have 

any orthologous counterpart in the respective reference 

genome were determined based on BLASTP.

Results and discussion
Parameters of the three mesophilic and one thermophilic 

industrial biogas plants analysed

In this study, four different production-scale biogas 

plants (BGPs) were compared on taxonomic and func-

tional level, based on high-throughput 16S rDNA ampli-

con and ultra-deep metagenome sequencing. �e BGPs 

analysed are located in North-Rhine-Westphalia, Ger-

many, and regarding their construction, mainly differ in 

the number of fermenters, size, process temperature and 

fed substrates. �e main fermenters of the biogas plants 

BGP1, BGP2 and BGP3 are continuously stirred tank 

reactors (CSTRs), while in the thermophilic BGP4 mix-

ing of the substrate is achieved by pumping it through 

the reactor. Regarding the operating temperature, BGP4 

is a thermophilic biogas plant (54 °C), whereas the other 

three BGPs were operated under mesophilic conditions 

(approx. 40  °C). �e substrates of all four biogas plants 

were based on maize silage with the addition of different 

manure types. In BGP2 and 4, grass silage was also added 

and BPG1 is unique due to its fermentation of sugar beet 

as substrate. All BGPs showed stable biogas production 

and process parameters around the time of sampling 

(data not shown).

To interpret microbial compositions within the fer-

menters, other physico-chemical parameters are of 

importance. Table  1 summarises all parameters of the 

four fermenters, measured around the time of sampling, 

and corresponding optimal parameter ranges as taken 

from different sources [43–45]. Almost all measured 

parameters of the four BGPs are in the recommended 

optimal range. One exception is the total inorganic car-

bon (TIC) value of BGP2, which is above the recom-

mended level and also the volatile organic acids (VOA) 

concentration is relatively high, resulting in a VOA/TIC 

ratio that is within the range of 0.11 to 0.6. �is indicates 

that the system is well buffered [46]. Other characteris-

tics are the acetic acid equivalents (HAC-eq) of BGP2 

and 4, which are below the optimal range. However, all 

other parameters including ammonium/ammonia con-

centrations of these BGPs are within the optimal range. 
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Only BGP2 and 3 have ammonium/ammonia concen-

trations in the higher range of the optimum and are 

considered here as ammonia-stressed. BGP4 shows the 

highest biogas per kg of organic dry matter (l/kg oDM) 

output and also shows the highest percentage of meth-

ane. Both findings are in accordance with increased 

methane content of thermophilic biogas plants found in 

the literature [10, 11, 47] indicating that thermophilic 

biogas plants generally have higher biogas outputs, due 

to heat-induced increase of enzymatic activity. �is is 

also supported by the data in this study. �e finding that 

the other biogas outputs are only slightly lower, especially 

for BGP2, shows that also other process parameters, such 

as substrate type and pH, have a significant influence on 

the microbial community and the biogas output, which 

would be consistent with the literature [10, 12, 48, 49].

Sequencing results for 16S rRNA gene amplicons 

and metagenomes

To study the taxonomic microbial community compo-

sitions of the four studied BGPs, high-throughput 16S 

rRNA gene sequencing was done in duplicates on total 

community DNA extracted from reactor samples of each 

BGP. �e microbial taxonomic composition based on the 

16S rRNA gene sequencing data was determined using 

the QIIME software package and additional CopyRighter 

analysis for gene copy number corrections. 16S rRNA 

gene amplicon sequencing and quality control (QC) 

results are summarised in Table  2. To determine the 

functional potential of the communities, metagenome 

sequencing was done, of which statistics and QC results 

are shown in Table  3. In total, approx. 2.3 billion reads 

(347 Gb; Table 3) were generated, the deepest sequencing 

of biogas community metagenomes so far.

The microbiomes of one thermophilic and three 

mesophilic production-scale biogas plants determined 

by high-throughput 16S rRNA gene amplicon sequencing

Similarities and di�erences of the microbiomes prevailing 

in the four analysed BGPs

To analyse and interpret the taxonomic structure of the 

microbial communities residing in the three mesophilic 

and one thermophilic biogas plants, OTU clustering of the 

16S rRNA gene sequence data was done for two biologi-

cal replicates of each BGP. OTUs were clustered on taxo-

nomic ranks from phylum to genus level, calculating their 

respective percentage share within the respective sample. 

Figure  1 shows the microbial taxonomic profile for each 

replicate, with percentage shares for each phylum. �e vast 

majority of taxa prevailing in all four BGPs was assigned 

to the bacterial superkingdom with between 97.37  % in 

biogas plant 4 (replicate 1) and 99.19 % (replicate 2), while 

Archaea have a share of between 0.36 % (BGP1) and 2.25 % 

(BGP4). �ese results are in accordance with other 16S 

rRNA gene sequencing studies addressing microbial com-

munities of anaerobic methane-producing reactor systems 

[8, 50, 51]. Compared with BGP1, 2 and 3, BGP4 shows the 

lowest diversity among bacterial and archaeal taxa based 

on the Shannon index of 7.5, 7.4, 6.8 and 5.7, respectively. 

�is is most likely due to the higher process temperature 

of BGP4. For similar thermophilic systems, it has been 

shown that the temperature has the main influence on 

microbial community structures [52–54]. Regarding tem-

perature differences between the three mesophilic and the 

Table 1 Physico-chemical characteristics and  fed substrates of  the four di�erent biogas plants analysed in  this study 

and optimal ranges of some of the parameters

VOA Volatile organic acids; TIC Total inorganic carbon; oDM Organic dry matter; n.d. No data

a Acetic acid equivalent calculated from fermentation acids acetic acid, propionic acid, butyric acid, iso-butyric acid, valeric acid, isovaleric acid, caproic acid

b Optimal range of parameters based on [43–45]

Parameters Optimal rangeb BGP1 BGP2 BGP3 BGP4

pH 6.8–8.0 7.7 7.8 7.53 7.8

VOA (mg/l) 2050–6500 4876 5093 3391 3300

TIC (mgCaCO3/l) 8500–15,000 11,040 15,928 14,714 11,600

VOA/TIC 0.11–0.6 0.45 0.32 0.23 0.28

NH4-N (g/kg) 1.2–4.0 1.9 2.32 3.15 n.d.

HAC-eq (g HAceq/l)a 1.3–1.9 2.03 0.40 n.d. 0.57

Temperature (°C) n.d. 40 (mesophilic) 40 (mesophilic) 40 (mesophilic) 54 (thermophilic)

Fed substrates (%) n.d. Maize silage (45), sugar 
beet (22), poultry 
manure (33)

Maize silage (50), grass 
(10), poultry/pig/cattle 
manure (40)

Maize silage (67), pig 
manure (33)

Maize silage (60), grass 
(30), pig manure (10)

Retention time (days) n.d. 92 74 81 28

Biogas yield (l/kg oDM) n.d. 609.87 644.5 528.5 658.11

% Methane n.d. 49.60 52.24 52.4 56
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only thermophilic BGPs, community profiles in general 

reflect previous findings obtained for similar anaerobic 

reactor systems [50, 55, 56].

Within the bacterial superkingdom, ten phyla were 

identified in all BGPs, namely Firmicutes, Spirochaetes, 

Bacteroidetes, Proteobacteria, Tenericutes, Actinobac-

teria, Synergistetes, Fibrobacteres, Chloroflexi and OP9 

division (Fig.  1). �e proportions of these phyla differ 

considerably between the four BGPs. Sequences assigned 

to the phylum Firmicutes are less abundant in BGP2 and 

3 in comparison to BGP1 and 4, with BGP1 having the 

highest share (Fig.  1). �eir dominance in biogas and 

other fermentation reactors with cellulose-rich sub-

strates was found frequently, underlining their impor-

tance and specific adaptation abilities [3, 5, 56–58]. In 

BGPs 1, 3 and 4 members of the phylum Bacteroidetes 

are the second most abundant bacterial group, while in 

BGP2 they feature a lower relative abundance, due to a 

slightly higher proportion of Spirochaetes. �e relatively 

high abundance of Bacteroidetes in BGP4 is surprising, as 

it has been shown that members of this phylum are sensi-

tive to high temperatures [57, 59, 60].

�e archaeal superkingdom in all samples exclusively 

comprises the phylum Euryarchaeota (Fig.  1) that on 

class level, is represented by Methanomicrobia (0.31–

1.84 %), Methanobacteria (0.01–0.34 %) and �ermoplas-

mata (0.03–0.08  %) (data not shown). In all four BGPs, 

the order Methanomicrobiales is the most abundant, with 

Methanoculleus being the dominant genus accounting for 

0.3 % (BGP1) to 1.8 % (BGP4) of all assigned sequences 

(not shown). �is genus was found dominant in several 

other mesophilic and thermophilic biogas-producing 

communities and may outcompete other Archaea due to 

a broad temperature optimum spectrum (20–55 °C) and 

higher growth rate [4, 8, 18, 46, 50, 51, 61, 62]. However, 

the genus Methanothermobacter (order Methanobac-

teriales) is present only in the thermophilic BGP4, with 

a share of 0.29  % (not shown). Members of this genus 

are known to be thermophilic and often are dominant 

in thermophilic methane-producing microbial consor-

tia [52, 60, 61]. In general, the mostly hydrogenotrophic 

genera dominated methanogenic communities indicate 

that they are mostly based on CO2 and formate as elec-

tron acceptors and H2 as electron donors for methano-

genesis in all four BGPs. High affinities towards hydrogen 

and a better adaptation to lower hydrogen pressures may 

explain the strict dominance of the hydrogenotrophic 

metabolism [61, 62]. It is also possible that aceticlastic 

Table 2 16S rRNA gene amplicon sequencing and quality control (QC) results

Sample Replicate No. of read pairs No. of bases No. of QC read pairs No. of QC QIIME read pairs % QC read pairs

BGP1 1 94,167 47,270,830 92,820 91,902 97.59

2 96,103 48,243,706 94,970 94,222 98.04

BGP2 1 203,848 102,331,696 200,788 199,138 97.69

2 84,099 42,217,698 83,077 82,448 98.04

BGP3 1 81,394 40,859,788 80,398 79,681 97.9

2 93,699 47,036,898 91,986 91,078 97.2

BGP4 1 84,704 42,521,408 83,366 82,623 97.54

2 90,079 45,219,658 88,592 87,797 97.47

Total – 828,093 415,701,682 815,997 808,889 97.68

Table 3 Metagenome sequencing and quality control (QC) results and sequence read archive (SRA) accession numbers

Sample Replicate No. of raw reads No. of raw bases No. of QC’ed reads No. of QC’ed bases SRA accession

BGP1 1 267,749,142 40,162,371,300 256,033,246 38,404,986,900 SRA357211

2 289,930,844 43,489,626,600 276,028,796 41,404,319,400 SRA357213

BGP2 1 298,185,500 44,727,825,000 283,504,064 42,525,609,600 SRA357208

2 281,693,590 42,254,038,500 277,123,112 41,568,466,800 SRA357209

BGP3 1 242,121,112 36,318,166,800 208,532,304 31,279,845,600 SRA357214

2 338,184,952 50,727,742,800 326,116,028 48,917,404,200 SRA357221

BGP4 1 307,971,670 46,195,750,500 288,040,900 43,206,135,000 SRA357222

2 290,604,188 43,590,628,200 271,494,384 40,724,157,600 SRA357223

Total – 2,316,440,998 347,466,149,700 2,186,872,834 328,030,925,100 _
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methanogens have been inhibited by elevated ammo-

nium/ammonia concentrations in the reactors BGP2 and 

3 as they all are in the upper part of the optimal range 

regarding this process parameter (Table  1). In case of 

the thermophilic BGP4, the operating temperature also 

drives methanogenesis towards the hydrogenotrophic 

mode, as it is thermodynamically more favourable and it 

has also been reported that hydrogenotrophic methano-

genesis is the dominant pathway in thermophilic meth-

ane-producing reactors [45, 51, 54, 59, 60].

When comparing the phyla percentages of the four 

BGPs, it is noticeable that members of the �ermotogae 

are present in only one, Fusobacteria and Cloacimonetes 

members in only two and Spirochaetes members are pre-

sent in only three of four BGPs, the latter being highly 

abundant in only two BGPs (Fig. 1). To further investigate 

these distinct taxonomic features, community profiles 

were followed down towards deeper taxonomic levels.

The phylum Thermotogae and its members are present only 

in the thermophilic BGP4

�e taxonomic profile of BGP4 features a high share of 

�ermotogae (approx. 7.5 %), which are absent (BGP2/3) 

or present only in very low abundances (approx. 0.02 %, 

BGP1) in the mesophilic BGPs (Fig.  1). All 16S rRNA 

gene sequences assigned to the phylum �ermotogae 

were classified as class �ermotogae, order �ermotogales 

and family �ermotogaceae (see Add. File 1).

Members of the phylum �ermotogae were also found 

to be present in similar reactors operated under meso-

philic conditions (31–41  °C) [18, 54, 63, 64], but were 

identified more frequently and in higher abundances in 

anaerobic reactors operated at thermophilic tempera-

tures (50–60  °C) [54, 59, 64]. �e results of this study 

reflect previous findings, which can be explained by the 

temperature optimum for �ermotogae members being 

mostly in the range of approx. 50–60  °C. �e existence 

of mesophilic (‘mesotoga’) and hyperthermophilic mem-

bers of the phylum were also described and at least for 

the latter group, several genome sequences are avail-

able in the literature [65–68]. However, the prevailing 

temperature of 54 °C in BGP4 meets the preferred tem-

perature demands of thermophilic �ermotogae species, 

explaining their presence in this reactor. Moreover, their 

high share and the lower abundances of other bacterial 

phyla (i.e. Proteobacteria, Tenericutes, Cloacimonetes, 

see Fig.  1) is most likely due to the adaptation-based 

outcompeting effect at the expense of those community 

members that are not adapted to high temperatures. In 

anaerobic fermentation of biomass, �ermotogae mem-

bers are involved in the degradation of cellulose and 

highly complex polysaccharides, producing acetate, car-

bon dioxide and hydrogen, and therefore are involved 

in hydrolysis and acetogenesis [64, 67, 69]. Additionally, 

members of the phylum �ermotogae are thought to be 

syntrophically associated with methanogenic Archaea, 

100%
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Bacteroidetes
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Proteobacteria
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Fig. 1 Taxonomic profiles of the four biogas plants (BGPs) on phylum level, based on 16S rRNA gene amplicon sequencing. The respective relative 
abundances of the replicates for each BGP are shown. Four taxa, distinctly and abundantly present in one or two of the BGPs, were identified: Ther-

motogae, Fusobacteria, Spirochaetes and Cloacimonetes, highlighted with asterisks
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and therefore are essential for the maintenance of meth-

ane production [65, 69, 70]. It can be assumed that �er-

motogae species within BGP4 have a similar metabolism 

and syntrophic character compared to reference species.

The phylum Fusobacteria and its members are solely present 

in the mesophilic BGP3

�e taxonomic profile of BGP3 is distinct due to the pres-

ence of Fusobacteria, having an average share of 8.3 % of 

all rRNA gene sequences in the replicates, compared to 

0–0.02 % in the communities of the other BGPs (Fig. 1). 

All Fusobacteria sequences from BGP3 were assigned to 

the class Fusobacteria and the order Fusobacteriales (see 

Additional file 1).

Fusobacteria were also found in other studies focusing 

on microbial communities in biogas-producing reactors, 

but with a share below 2 % [6, 18]. Naturally, these anaer-

obic, mesophilic bacteria are found, e.g. in the mouth and 

gastrointestinal (GI) tract of humans, rats, cattle, sheep 

and chicken, were they can cause severe diseases [71–73]. 

�erefore, it can be assumed that Fusobacteria in BGP3 

originated from the fed cattle manure. Frequently, the 

Fusobacterium species F. necrophorum and F. nucleatum 

are associated with infections in humans and animals 

[71], but neither of these species was identified within 

BGP3.

Since the focus of research is more on the pathogenic 

Fusobacteria species, nothing is known about the role of 

Fusobacteria within methane-producing biogas plants. 

Hence, the lack of reference genomes of species playing a 

role in these systems hampered a taxonomic classification 

on lower ranks. �eir absence in BGP4 can be explained 

by the high temperature, since these bacteria most likely 

are adapted to the mesophilic body temperatures of their 

hosts. One explanation for their absence in BGPs 1 and 

2, despite added manure, could be the higher pH values 

of corresponding fermentation samples. It is known that 

Fusobacteria prevailing in the microbial communities of 

human oral biofilms live at fluctuating pH values of 6.3–

7.0 [74]. BGP3 had the lowest pH value (7.53) of all BGPs 

analysed. However, due to the lack of information on the 

phylum Fusobacteria in the context of biomass fermenta-

tion, it cannot be understood clearly why these bacteria 

are present only in BGP3.

The phylum Spirochaetes and its members are most abundant 

only in the mesophilic plants BGP2 and BGP3

�e biogas plants 2 and 3 both have the highest pro-

portion of Spirochaetes, with average shares of 10.6 and 

4.7 % of all 16S rRNA gene sequence reads, respectively, 

while in BGP1 the average share of Spirochaetes is 0.92 % 

and BGP4 almost completely lacks this phylum (0.01 %) 

(Fig.  1). All Spirochaetes sequences from BGP3 and the 

majority in BGP2 were assigned to the class Spirochaetes 

and the order Spirochaetales (see Additional file 1).

Not much is known about non-pathogenic Spirochaetes 

since most members of this phylum are described to be 

human or animal pathogens [75]. Non-pathogenic Spi-

rochaetes, especially Treponema species, can be found 

in termite guts, where they form a symbiosis with their 

hosts [76, 77]. In the context of anaerobic digestion of 

municipal and/or agricultural wastes, representatives of 

this phylum were mostly found in mesophilic anaerobic 

reactors fed with swine manure and cellulose-rich sub-

strates. It is assumed that within these environments 

Spirochaetes are involved in cellulose degradation [56, 

78, 79]. In BGP2 and 3, swine manure and the cellulose-

rich substrates maize and grass silage were fed, which 

may explain the high abundance of Spirochaetes in the 

respective microbial communities. Although BGP4 is 

fed with pig manure, the phylum Spirochaetes is under-

represented which may be explained by the thermophilic 

conditions prevailing in BGP4. Spirochaetes are probably 

not adapted to higher temperatures, and therefore, their 

function was adopted by other community members 

such as for example �ermotogae species.

The candidate phylum Cloacimonetes (WWE1) was only 

identi�ed in the mesophilic biogas plants BGP2 and BGP3

In the taxonomic profiles of the BGPs 2 and 3, an average 

share of 3.7 and 4.5  % of all 16S rRNA gene sequences 

was assigned to the candidate phylum Cloacimonetes 

(WWE1), respectively, while in the BGP1 and 4, this 

phylum is almost absent with an average of max. 0.05 % 

(Fig.  1). All Cloacimonetes (WWE1) sequences from 

BGP3 and the majority in BGP2 were assigned to the 

class Cloacamonae and the order Cloacamonales (see 

Additional file  1). Since there is very little information 

about the phylum Cloacimonetes and its lower taxonomic 

levels, there are no alternatives to this class and order 

that were proposed by the RDP classifier used to classify 

the 16S rRNA gene sequence data.

�e phylum was identified in 2005, named WWE1 

(for waste water for Evry 1) and later renamed candidate 

phylum Cloacimonetes (WWE1) [80, 81]. Recently, it has 

been characterised as a separate phylum, belonging to 

the Fibrobacteres-Chlorobi-Bacteroidetes (FCB) super-

phylum and proposed to be a sister group of the phylum 

Spirochaetes [81]. Due to its novelty, missing reference 

genomes most probably hampered a deeper taxonomic 

classification of Cloacimonetes (WWE1) species resid-

ing in BGPs 2 and 3. Members of this phylum are mostly 

present in anaerobic habitats, such as biogas plants and 

the porcine digestive tract. It is assumed, and evidence 

is increasing, that corresponding bacteria are involved 

in mostly cellulose or sugar degradation, directly derived 
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from cellulose and produce primarily acetate and hydro-

gen, which are further metabolised by their syntrophic 

partners, methanogenic Archaea [3, 78–84].

No reports exist for the presence of candidate phy-

lum Cloacimonetes (WWE1) members in thermophilic 

environments. �is supports the assumption that the 

temperatures in BGP4 exceed the optimum for species 

belonging to this candidate phylum. In BGPs 2 and 3, a 

lower share of Firmicutes, also being involved in hydroly-

sis, compared to the other two BGPs, can be observed. 

Possibly, Cloacimonetes (WWE1) species partly com-

plemented the function of Firmicutes species. Recently, 

Cloacimonetes species were shown to increase in their 

abundance when the ammonium/ammonia concentra-

tion was high. �is indicates that they can adapt to this 

condition and even seem to benefit from it when the 

system is ammonium/ammonia adapted [82]. Regard-

ing the addition of swine manure, this may also explain 

the presence of Cloacimonetes species in BGPs 2 and 3, 

as these show the highest ammonia concentrations, espe-

cially BGP3, whose values are in the higher range of the 

optimum.

Most of the dominant distinctive taxa are not represented 

by closely related reference species in databases

Taxonomic profiling of the community structure revealed 

the presence of distinctive taxa that are present only in 

one or two of the four BGPs. �is observation raises the 

question concerning the function of these distinctive taxa 

within the trophic network of the biogas plant’s micro-

bial communities. To determine the closest relatives of 

distinctive taxa, corresponding dominant OTUs deduced 

from clustering of 16S rRNA gene sequence data were 

placed in a phylogenetic tree. Figure 2 shows condensed 

phylogenetic trees considering only the dominant OTUs 

of the taxa �ermotogae (OTU_ 777316, Fig.  2a) Spiro-

chaetes (OTU_1139645), Fusobacteria (OTU_4357841) 

and Cloacimonetes (OTU_575765 and OTU_543067) 

(Fig. 2b). �e complete phylogenetic tree can be found in 

the supplementary material (see Additional file 2).

Of the four distinctive phyla, only the dominant OTU 

of the phylum �ermotogae shows close relatedness to an 

characterised bacterium (purple), followed by the type 

strain Defluviitoga tunisiensis SulfLac1T (green, [85]), 

and the recently characterised and sequenced non-type 

strain Defluviitoga tunisiensis L3 (blue, [86]) .

�e Fusobacteria OTU derived from 16S rRNA gene 

sequence data of BGP3 was placed within a sister group 

of the Leptotrichiaceae. However, its closest relative is an 

uncultured bacterium belonging to the genus Fusobacte-

rium (purple). Interestingly, the closest type strain rela-

tive belongs to the genus Psychrilyobacter (green), while 

the closest characterised and sequenced non-type strain 

relative is Fusobacterium varium ATCC 27725 (blue) 

(accession number NZ_ACIE00000000.2).

�e representative OTU 16S rRNA gene sequence 

from BGP2 belonging to the phylum Spirochaetes was 

placed within the group of the genus Treponema of the 

family Spirochaetaceae. For this OTU, the most closely 

related sequence belongs to the uncultured type strain 

Treponema lecithinolyticum OMZ 684T (green, [87]) 

that is not further characterised. When comparing the 

query OTU to all 16S rRNA gene sequences available 

in the NCBI database, it appeared that the closest non-

type strain relative is the genome sequenced bacterium 

Treponema brennaborense (blue, [88]). �is indicates that 

the dominant OTU represents a new species of the genus 

Treponema that needs further characterisation.

�e two most dominant representative OTU 16S rRNA 

gene sequences belonging to the phylum Cloacimonetes 

(WWE1) originate from BGP2 and 3, respectively, and 

are closely related to each other. �ey were placed within 

the phylum Spirochaetes, which is inconsistent regard-

ing the newer literature, since Cloacimonetes has recently 

been classified as an autonomous sister group of the Spi-

rochaetes [81]. �e closest relative of the Cloacimonetes 

OTUs is an uncultured uncharacterised bacterium (pur-

ple) and the only characterised and closest relative is 

Candidatus Cloacamonas acidaminovorans (blue) [89].

In summary, with the exception of the �ermotogae 

OTU, no clear classification of the dominant OTUs rep-

resenting the distinctive taxa could be achieved. �e lack 

of suitable reference genomes hampers the classification 

of these OTUs and accordingly, information on the func-

tional role of these taxa within the biogas process is cur-

rently not available. �ese issues cannot be solved by 16S 

rRNA gene sequence comparison. Exploration of the cor-

responding metagenome sequence datasets of the four 

biogas plants is needed to uncover the functional role of 

the identified distinctive taxa. �is can be achieved by 

binning of metagenome contigs representing dominant 

species of the four distinctive taxa, their annotation and 

comparative analyses using sequenced and characterised 

relatives (blue, Fig. 2) identified in this section.

Reconstruction of genomes representing distinctive taxa 

applying metagenome assemblies and binning

Metagenome assembly and binning results

A total of 1.49  Gbp metagenomic data were assem-

bled (Table 4) and contigs were sorted into 532 genome 

bins, five of which belong to the taxa of interest and 

met the stringent quality requirements as defined in 

the “Methods” section: One �ermotogae genome bin 

(206_�ermotogae), one Fusobacteria bin (175_Fuso-

bacteria), one Spirochaetes bin (128_Spirochaetes) and 

two Cloacimonetes (WWE1) bins (120_Cloacimonetes; 
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244_Cloacimonetes) were chosen. �e estimated amount 

of contamination is largely negligible and mostly due to 

strain heterogeneity (Table 5). 

To deduce the metabolism of all five genome bins, they 

were annotated and analysed in the annotation plat-

form GenDB 2.0 [41]. Encoded enzymes were mapped 

on KEGG pathways within GenDB to enable metabolic 

pathway reconstructions. An example of this analysis is 

given in Additional file  3, showing the coverage of the 

‘Alanine, Aspartate and Glutamate metabolism’ KEGG 

pathway by enzymes encoded in the genome bin assigned 

to the phylum Fusobacteria.

The genome bin representing a Thermotogae species from the 

thermophilic biogas plant 4

Analyses of 16S rRNA gene sequences revealed a close 

relatedness of the dominant �ermotogae OTU from 

the thermophilic BGP4 to the strain D. tunisiensis L3 

(Fig.  2a). Compilation of a �ermotogae genome bin 

derived from metagenomic contigs of BGP4 and com-

parison with the D. tunisiensis L3 genome was conducted 

to further determine the degree of similarity and evalu-

ate the binning approach itself. �e yielded genome bin 

assigned to the class �ermotogae (Table  5) is covered 

by 4.45 % of all BGP4 metagenome reads. In addition to 

Thermotogaceae and Fervidobacteraceae 22

Petrotogaceae 6

OTU_777316_BGP.4.1.AMP_700282
Defluviitoga tunisiensis, SulfLac1 l[T] s[T] l, sludge from an anaerobic reactor
uncultured bacterium, mesophilic anaerobic digester, municipal wastewater

Defluviitoga tunisiensis L3
Geotoga petraea, type sp., l[T] r[T] s[T]

Geotoga subterranea, CC−1 l[T] r[T] s[T]
Oceanotoga teriensis, type sp., OCT74 l[T] r[T] s[T], oil production wells

Marinitoga 5

Kosmotogaceae 2

Thermotogae

Archaea 449

Treponema 8

Treponema berlinense, 7CPL208 l[T] r[T] s[
Treponema pectinovorum, ATCC 33768 l[T] r[T]

Treponema saccharophilum, ATCC 43261 l[T] r[T]
Treponema brennaborense DSM 12168, DSM 12168 e[G] s[T] 

Treponema brennaborense, l[T] r[T] s[T]
OTU_1139645_BGP.2.1.AMP_294549

Treponema lecithinolyticum, l[T] r[T] s[T]
Treponema maltophilum, l[T] r[T] s[T]

uncultured bacterium, ASBR reactor treating swine waste

Treponema 5

Treponema 5

Spirochaeta 8

Sphaerochaeta 3

Spirochaeta thermophila, type strain: DSM 657

Spirochaeta smaragdinae, SEBR 4228; DSM 11293

Borrelia 15

Spirochaeta aurantia subsp. aurantia, type strain: DSM 190

Spirochaeta 5

Spirochaetaceae

Exilispira thermophila, type sp., RASEN l[T] r[T] s[T]

Brachyspiraceae 7

OTU_575765_BGP.3.1.AMP_467821
OTU_543067_BGP.2.1.AMP_203908

uncultured bacterium, mesophilic anaerobic digester, municipal wastewater
Candidatus Cloacimonas acidaminovorans s, e[G] e[G], Evry mesophilic anaerobic digester

Brevinema andersonii, type sp., ATCC 43811 l[T] r[T]

Leptospiraceae 24

Spirochaetes

Fusobacterium 14

Fusobacterium varium ATCC 27725, ATCC 27725 s[C] s[C]
Fusobacterium varium, ATCC 8501 l[T] r[T] 
Fusobacterium ulcerans, NCTC 12111T l[T] r[T

Fusobacterium 3

Cetobacterium somerae, WAL 14325 l[T] r[T] 

Fusobacteriacecae

Ilyobacter insuetus, DSM 6831 T l[T] r[T]
Propionigenium modestum, type sp., l[T] r[T] s[T]
Ilyobacter polytropus DSM 2926, type sp., DSM 2926 e[G] l[T] r, marine mud

Propionigenium maris, 10succ1 l[T] r[T] s[
Ilyobacter tartaricus, DSM 2382 T l[T] r[T]

Fusobacteriaceae

Leptotrichiaceae 11

Fusobacteria

uncultured bacterium, ASBR reactor treating swine waste
OTU_4357841_BGP.3.1.AMP_467744

uncultured Fusobacterium sp., sediment

Elusimicrobia 6

Armatimonadetes 3

 11

Chrysiogenetes 4

Acidobacteria 25

0.01

a

b

Fig. 2 Partial phylogenetic trees of all available type strains with operational taxonomic units (OTUs) of Thermotogae (a), Fusobacteria, Spirochaetes 
and Cloacimonetes (b) taxa of the studied biogas plants and their closest non-type strain relatives embedded. Type strains are in black, OTUs are in 
red, their closest relatives in purple, their closest sequenced relatives in blue and their closest type strain relatives in green. 16S rRNA sequence tree 
construction was done using the ARB software [31]
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the annotation and functional interpretation in GenDB, 

the genome bin was examined for the presence of genes 

encoding proteins involved in energy generation of D. 

tunisiensis [90]. Enzymes encoded in the �ermotogae 

bin and predicted to be involved in sugar utilisation and 

fermentation metabolism are listed in Additional file  4. 

�ese analyses indicated that the �ermotogae species 

represented by the bin is able to utilise xylose, glucose, 

mannose, galactose, lactose, maltose, fructose, ribose and 

-lactate with acetate, CO2 and H2 as end products of the 

fermentation.

Results of the comparative analysis of the annotated 

�ermotogae genome bin and the reference sequence 

of D. tunisiensis L3 using EDGAR were visualized in a 

Venn diagram (see Fig.  3a, 206_�ermotogae). �e vast 

majority of their genes are shared corroborating that the 

D. tunisiensis and the bin genome are closely related. 

Deeper analysis of the core gene set indicated that both 

species are anaerobic bacteria featuring a metabolism 

based on sugar fermentation (see Additional file 4). How-

ever, the unique gene set of D. tunisiensis L3 indicates 

that it can utilise a broader spectrum of carbohydrates, 

since it encodes genes for the import and fermentation 

of sugars that are missing in the genome bin. Analyses on 

the �ermotogae genome bin’s unique gene set showed 

that the vast majority (approx. 60 %) could not be func-

tionally classified and the remaining ones do not provide 

any further information on this strain’s metabolism.

All above mentioned analyses indicate that the species 

represented by the bin has a metabolism based on sugar 

fermentation, with acetate, CO2 and H2 as end prod-

ucts of this process, which has also been predicted for 

the reference strain D. tunisiensis L3. It therefore can be 

assumed that Defluviitoga strains contribute to acetogen-

esis of biomass digestion within the biogas fermenter. 

Furthermore, obtained comparison results also support 

the idea that the analysed Defluviitoga species may be 

syntrophically associated with methanogenic Archaea 

that can utilise CO2 and H2 for methanogenesis [65, 69, 

70]. Additionally, comparative analyses between the 

genome bin und the highly related reference genome to 

evaluate the binning approach were done with the out-

come that the approach proved valuable and reliable.

The genome bin representing a Fusobacteria species from the 

mesophilic biogas plant 3

To analyse the most dominant Fusobacteria species of 

BGP3 on the genomic level, genome bins assigned to 

corresponding taxa were extracted. �e most domi-

nant Fusobacteria bin featuring the highest complete-

ness and lowest contamination (Table  5) is covered by 

1.4  % of all BGP3 metagenome reads. Since the repre-

sentative Fusobacterium OTU (Fig.  2b) is moderately 

related to the reference strain Fusobacterium varium (see 

Fig.  2b, blue), the corresponding genome bin was com-

pared to this sequenced and annotated reference genome 

(NZ_ACIE00000000.2).

�e Fusobacteria genome bin was annotated, analysed 

and compared with the F. varium genome in GenDB. 

Results of these analyses suggest that the Fusobacteria 

species represented by the genome bin is an acidogenic 

bacterium, whose metabolism is mainly based on amino 

acids as energy and carbon source. �is is also known 

for most Fusobacteria species, including the reference 

Table 4 Assembly and mapping results (contigs >1 kbp)

Total Bases No. of contigs N50 Largest contig No. of genes % reads of BGP1 % reads of BGP2 % reads of BGP3 % reads of BGP4

1,488,298,777 330,955 10,556 668,635 1,591,820 74.83
75.14

78.07
78.34

81.11
81.29

86.53
86.50

Table 5 Genome binning results and statistics

Bin ID Total bases % G/C content No. of contigs N50 Largest contig % complete-
ness

% contamina-
tion

% strain hetero-
geneity

206_Thermoto-
gae

1,904,666 30.7 277 8541 50,211 82.81 7.37 87.50

175_Fusobacteria 2,063,893 26.2 143 26,189 112,070 94.38 3.37 100.00

138_Spirochaetes 2,196,644 59.0 86 38,653 114,681 96.48 4.16 100.00

244_Cloacimon-
etes

1,745,914 54.6 101 25,062 99,397 96.70 2.33 75.00

120_Cloacimon-
etes

2,265,914 51.4 162 18,253 44,371 95.60 28.42 97.44
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strain F. varium [91–94], suggesting that they take part 

in acidogenesis having a metabolism based on sugars and 

amino acids. Genome bin analysis also indicates that cor-

responding pathways lead to the production of the end 

products CO2, NH3, H2, acetate and lactate that can be 

partly further metabolised by methanogenic Archaea. 

Results of the comparative analysis of the annotated 

Fusobacteria genome bin and the reference sequence of F. 

varium using EDGAR were visualized in a Venn diagram 

(see Fig. 3b, 175_Fusobacteria). It shows that they share a 

comparatively low number of genes. Further analyses on 

the unique genes of the Fusobacteria bin did not result 

in additional metabolic information, as for most of them 

no functional prediction could be obtained (76.03  %). 

1235 2410597

175_Fusobacteria Fusobacterium varium

b

398 1438 373

206_Thermotogae  L3

a

1508 503 2020

138_Spirochaetes Trepnonema brennaborense

c

663

335

511

103

921

130

127

120_Cloacimonetes

244_Cloacimonetes

Candidatus Cloacimonas acidaminovorans

d

Fig. 3 Venn diagrams showing the number of unique and shared genes between the five genome bins and their respective reference strains. 
Diagrams are shown for genome bins assigned to the phyla Thermotogae (206_Thermotogae, a), Fusobacteria (175_Fusobacteria, b), Spirochaetes 
(138_Spirochaetes, c) and Cloacimonetes (120_Cloacimonetes, 244_Cloacimonetes; d). Venn diagrams were redrawn manually, based on the original 
EDGAR output, with their areas drawn to scale
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�is suggests that the genome bin strain is highly differ-

ent from other known Fusobacteria species and specific 

genome features remain to be determined.

In conclusion, the analysed Fusobacteria species rep-

resented by the genome bin most likely is involved in 

amino acid fermentation and produces CO2, NH3, H2, 

acetate and lactate, making it an acidogenic bacterium. It 

may be syntrophically associated with hydrogenotrophic 

methanogens. Due to a high number of unique unknown 

genes, this new and uncharacterised species requires fur-

ther analyses.

The genome bin representing a Spirochaetes species from the 

mesophilic biogas plant 3

To analyse the most dominant Spirochaetes species of 

BGP3 on the genomic level, genome bins assigned to cor-

responding taxa were extracted. �e largest and most 

complete Spirochaetes (Table  5) genome bin is covered 

with 0.2 % of all BGP3 metagenome reads and was chosen 

for further analyses. Since the representative Spirochaetes 

OTU (Fig.  2b) is moderately related to the reference 

strain T. brennaborense (see Fig.  2b, blue), the corre-

sponding genome bin was compared to this sequenced 

and annotated reference genome [NC_015500].

Genome annotation and metabolic reconstruction in 

GenDB revealed that the corresponding Spirochaetes 

species is a hydrolytic bacterium. �e presence of a large 

number of transporters and a number of genes encod-

ing enzymes involved in sugar utilisation indicates that 

it primarily uses sugars for energy generation, namely 

glucose, mannose, fructose, rhamnose, xylose, melibi-

ose, stachyose, raffinose and additionally L-lactate. End 

products of this fermentation were predicted to be ace-

tate, CO2 and hydrogen, which can be directly used by 

methanogenic Archaea. Since some Treponema species 

are found in termite guts producing acetate from CO2 

and H2, the presence of the gene (fhs) for this reaction’s 

key enzyme, formyl tetrahydrofolate synthetase [76], was 

searched by BLAST analysis implemented in GenDB. Its 

absence indicated that this species is not able to perform 

homoacetogenesis. Interestingly, no motility genes were 

found, although it is known that Spirochaetes species 

possess flagella and are motile [95].

To enable a comparison with the reference strain T. 

brennaborense, the EDGAR software was used, result-

ing in a Venn diagram (Fig.  3c, 138_Spirochaetes). It 

shows that the genomes share a relatively low number 

of genes, of which 91.54 % were functionally annotated, 

most being housekeeping genes and others predicted to 

be involved in sugar metabolism. In contrast, 47.35 % of 

the unique bin genes are uncharacterised or hypothetical, 

while 52.65 % were characterised. Of these, many encode 

for ABC transporters, sugar transporters and enzymes 

involved in sugar utilisation, underlining the assumption 

that the corresponding species is particularly depend-

ent on sugars. �is and the comparatively low number of 

shared genes highly suggest that the genome bin repre-

sents a new Spirochaetes species.

In conclusion, the analysed Spirochaetes species rep-

resented by the genome bin most likely ferments sugars 

and produces acetate, CO2 and H2. It was predicted to 

utilise a wide range of carbohydrates.

The genome bins representing Cloacimonetes species 

from mesophilic biogas plants 2 and 3

To deduce the functional role of dominant Cloacimonetes 

species from BGP2 and 3, the two genome bins repre-

senting species, assigned to this phylum with the highest 

completeness and lowest contamination, were analysed. 

�e Cloacimonetes genome bin 1 and 2 are covered 

by 0.08  % BGP3 reads and 0.23  % BGP2 reads, respec-

tively. �e only sequenced species of the phylum Cloaci-

monetes, Candidatus Cloacamonas acidaminovorans 

(Fig. 2b), is larger in size and also has a significantly lower 

GC-content of 37.9  % [89]. Candidatus Cloacamonas 

acidaminovorans, whose genome was reconstructed 

from metagenomic data, may produce hydrogen, and 

therefore, most likely is syntrophically associated with 

hydrogenotrophic methanogens [89].

Gene prediction, annotation and interpretation of 

genome bin 1 in GenDB showed that it lacks genes 

encoding enzymes involved in the synthesis of eleven 

amino acids, namely arginine, cysteine, histidine, iso-

leucine, leucine, lysine, methionine, phenylalanine, tryp-

tophane, tyrosine and valine. Different from what was 

proposed for species of the candidate phylum Cloaci-

monetes (WWE1) [78], the analysed bin does not have 

the genetic potential to degrade cellulose or cellobiose. 

Genome bin 1 possesses genes encoding enzymes for 

energy generation from glucose via glycolysis, but in 

addition to this also has the potential to generate energy 

by degrading the amino acids proline, alanine, aspar-

tate, glutamate, lysine and asparagine with CO2 and H2 

as products. Additionally, corresponding species may be 

able to produce energy via proton and sodium pumps in 

combination with hydrogenases. For gaining additional 

information, proteins involved in fermentation, and 

energy metabolism compiled in a corresponding study on 

the reference strain [89] were compared to those encoded 

by the genome bins (see Additional file  5). It appeared 

that bin 1 encodes all listed proteins, suggesting that this 

species can shortly tolerate small amounts of oxygen, but 

is adapted to an anaerobic lifestyle. Additionally, this spe-

cies presumably generates energy by Fe-hydrogenases, 

with H2 as end product. Analyses on Cloacimonetes 

bin 2 showed that it was predicted to feature the same 
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metabolism as compared to Cloacimonetes bin 1 regard-

ing amino acid fermentation metabolism yielding CO2 

and H2 as products.

To enable further comparison with the reference strain 

Candidatus Cloacamonas acidaminovorans (see Fig. 2b), 

the EDGAR software was used. To further analyse the 

degree of genetic similarity between both annotated 

Cloacimonetes genome bins and Candidatus Cloaca-

monas acidaminovorans, the number of all shared and 

unique genes was determined. A resulting Venn dia-

gram (Fig.  3d, 120_Cloacimonetes, 244_Cloacimonetes) 

shows that all three genomes share the vast majority of 

genes. Further analyses on the unique genes of Cloaci-

monetes bin 1 and 2 did not result in additional informa-

tion, since for only 17 and 20 % of these genes, functional 

prediction could be obtained. �ese comparative analy-

ses indicate that corresponding microorganisms share a 

similar metabolism based on utilisation of certain amino 

acids. However, specific genome features remain to be 

determined.

In conclusion, the two analysed Cloacimonetes species 

represented by genome bins are most likely amino acid 

fermenting, CO2 and H2 producing anaerobes that might 

be syntrophically associated with hydrogenotrophic 

methanogens.

Conclusions
To understand, evaluate and optimise the  production 

process in biogas fermenters, it is crucial to study their 

microbial communities with all their members and 

interactions, which are diverse and highly dependent on 

different process parameters. In this study, three differ-

ent mesophilic and one thermophilic production-scale 

biogas plant (BGP) were comparatively characterised. For 

taxonomic investigation and comparison, the approach 

of high-throughput 16S rRNA gene sequencing was 

used. Results showed that microbial communities of 

biogas plants are taxonomically complex and the process 

temperature is an important parameter shaping biogas 

consortia. Still, a core microbiome seems to be present 

in all BGPs, including taxa belonging to the phyla Fir-

micutes and Bacteroidetes and with lower abundances to 

the Euryarchaeota. �ese are commonly found in BGPs, 

especially the former two in those fed with cellulose-

rich substrates, as they are responsible for the hydrolysis 

and acetogenesis/acidogenesis steps of anaerobic diges-

tion, while members of the Euryarchaeota are involved 

in methanogenesis. Differences in taxonomic profiles 

between the BGPs, most probably, are due to adapta-

tions of particular community members to prevailing 

process parameters, especially when comparing tem-

perature, as the overall diversity is lower within the ther-

mophilic BGP. However, the identification of four highly 

distinctive phyla characteristic for one (�ermotogae, 

Fusobacteria) or two (Cloacimonetes, Spirochaetes) of the 

biogas plants was notable and represented the main dif-

ferences between the BGPs. �ey showed a high preva-

lence within their respective reactor environment and 

seemed to be mostly dominated by only a small number 

of genera.

To additionally uncover the genetic potential of the 

four studied BGPs, ultra-deep Illumina HiSeq metage-

nome sequencing was done. In contrast to read-based 

approaches on microbial metagenomes in the past, a 

combined assembly of all metagenomes was done in our 

study. It resulted in a high number of taxonomically and 

functionally characterised contigs enabling context-based 

community analyses. Based on the contigs, a genome 

binning approach was applied successfully. Comparative 

analyses of the genome bin representing a dominant spe-

cies belonging to the �ermotogae with its closest rela-

tive Defluviitoga tunisiensis L3 were done. �ey showed 

a high similarity and with this confirmed the applicability 

and reliability of the binning approach. Further exploita-

tion of genome bin information also enabled evaluation 

of so far unknown biogas species belonging to the phyla 

Fusobacteria, Spirochaetes and Cloacimonetes. Insights 

into their genetic potential and putative roles within the 

biogas fermentation process were obtained. In the past, 

this was achieved only by cultivation and subsequent 

genome sequencing or single cell sequencing, which can 

be difficult especially for taxonomically diverse commu-

nities. �e assembly based genome binning approach 

therefore can be seen as an alternative regarding the 

identification and genetic evaluation of unknown species 

circumventing the limitations of the methods mentioned 

before.

�is is the first study to use the genome binning 

approach on deeply sequenced metagenome data origi-

nating from different production-scale biogas plants. 

�e combined assembly based binning strategy enabled 

the identification of five high quality genome bins, rep-

resenting dominant but mostly unknown species within 

the complex biogas microbiome. In combination with the 

taxonomic evaluation of the community by 16S rRNA 

gene amplicon sequencing and its relation to prevailing 

process parameters, it allows deep insights into the mem-

bers’ functional roles and genetic potentials. �e next 

step will be to characterise binned genomes by elucidat-

ing their actual transcriptional activity. In this aspect, 

metatranscriptome analyses will enable identification 

of predominantly transcribed genes which are believed 

to encode important functions within the biogas pro-

duction process with respect to prevailing fermentation 

conditions. Accordingly, integrative analyses of deeply 

sequenced metagenome and metatranscriptome data will 
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provide cultivation-independent insights into the per-

formance of so far uncharacterized biogas community 

members.
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