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Although the human genome is 30× larger than that of 

Caenorhabditis elegans, each species is endowed with 

a similar number of protein-coding genes, a fact seemingly 

in support of an abundance of junk DNA within our genome.1 

Two major discoveries during the past 10 years challenge this 

decades-old concept. First, genome-wide RNA expression 

studies show widespread transcription across the mouse and 

human genomes with roughly equal amounts of polyadenyl-

ated and nonpolyadenylated RNA.2–7 Second, the combined 

efforts of the Encyclopedia of DNA Elements Consortium and 

many other laboratories have revealed the existence of mil-

lions of codes that punctuate the human genome, most notably 

codes for transcription factor binding.8–12 These findings, cou-

pled with the notion that much of the human genome is func-

tional with 50% to 90% comprising transcribed sequences,13,14 

debunk the concept of junk DNA and point to a genome 

replete with information essential for human life.

Much of the noncoding RNA (ncRNA) in a cell func-

tions to orchestrate basic translation (transfer and ribo-

somal RNA); however, 2 broad classes of ncRNA expanded 

greatly at the turn of the millennium, primarily as a result of 

large-scale transcriptomics projects.2,3,15 These ncRNAs are 

classified subjectively as either short (processed transcript 

length <200 nucleotides) or long (processed transcript length 

>200 nucleotides). Short ncRNAs include small nucleolar 

RNA and their derivatives that act as guide RNAs to mod-

ify ribosomal and transfer RNAs,16 as well as microRNA, 

small interfering RNA, and PIWI-interacting RNA that use 

Argonaute proteins to mediate endonucleolytic cleavage of 

target RNAs.17
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Long ncRNAs (lncRNAs) function in a myriad of biologi-

cal processes and may be classified loosely based on their 

physical location in the genome. Long intervening ncRNAs 

(lincRNAs) are a subclass of lncRNAs found between 2 

transcription units, and they exhibit similar active chromatin 

signatures as those found around protein-coding genes.18–20 

LincRNAs may display tissue-specific patterns of expres-

sion and function principally as scaffold or guide RNAs that 

facilitate chromatin remodeling in cis or trans to directly 

influence gene transcription (nuclear lincRNAs) or effect 

changes in mRNA stability/protein translation (cytoplasmic 

lincRNAs).20–22 Examples of lincRNAs include the abundantly 

expressed MALAT1 that functions in processing of mRNAs23 

and the epidermal prodifferentiating TINCR.24 A recent report 

defined long intervening ncRNAs (≤700 kb) whose expression 

correlates with malignancy; these transcripts may encompass 

previously annotated lincRNAs.25 LincRNAs may also over-

lap transcriptional enhancers to effect cis-mediated changes in 

gene expression.26,27

Intragenic lncRNAs represent another subclass of RNA 

genes that reside on the sense or antisense strand of an over-

lapping gene. Sense lncRNAs have been reported only spo-

radically,28 although a recent report contends there exists a 

large number of ill-defined sense ncRNAs within introns.29 

Antisense lncRNAs occur in a significant number of 

 protein-coding genes and may overlap the 5′ or 3′ end of a gene, 

occur entirely within an intron, or overlap multiple exons.30–32 

Antisense lncRNAs whose exons overlap  protein-coding (or 

ncRNA) exons are known as natural antisense transcripts and 

these can function in cis or trans to negatively or positively 

regulate gene expression through RNA interactions with chro-

matin remodeling factors.33 Examples of natural antisense 

transcripts include the X chromosome inactivating XIST34 and 

the cell cycle regulator ANRIL.35 Some processed antisense 

lncRNAs do not overlap sense exons and thus may have unex-

pected functions (below). The number of human lncRNAs 

is soaring with the current catalogue of LNCipedia36 listing 

>32 000 (http://www.lncipedia.org/), a number that exceeds 

all protein-coding genes. Thus, lncRNAs embody a rapidly 

growing class of genes with functions related primarily to the 

regulation of gene/protein expression.

Cellular differentiation requires the coordinated activation 

of unique gene sets through transcription factors in associa-

tion with cofactors over discrete cis elements. For example, 

vascular smooth muscle cell (SMC) differentiation is chiefly 

a function of ubiquitously expressed serum response fac-

tor37 binding a cardiovascular-restricted cofactor called 

myocardin (MYOCD)38 over CArG elements located in the 

proximal promoter region of many SMC-associated genes.39 

Similarly, endothelial cell (EC) differentiation proceeds, in 

part, through the FOXC240 and ETV241 transcription factors 

binding a composite cis element, the FOX-ETS motif, found 

in promoter/enhancer sequences of several EC-specific 

genes.42 Normal differentiated properties of SMC and EC 

further require fine tuning of gene expression through the 

action of microRNAs.43 Because lncRNAs are prevalent 

and play key roles in modulating gene expression,44 they 

too may have functions linked to vascular cell phenotype. 

Little is known, however, about the expression or function 

of lncRNAs in vascular cells,45–49 and there is nothing known 

about human-specific, vascular cell–selective lncRNAs. 

Accordingly, we performed RNA-seq in human coronary 

artery smooth muscle cell (HCASMC) as a first step toward 

understanding the potential role of lncRNAs in human SMC 

phenotypic control. Here, we report on the identification of 

31 lncRNAs, including 1 named SENCR (for smooth muscle 

and endothelial cell–enriched  migration/differentiation-

associated long noncoding RNA). We have characterized 

the expression, splicing, and localization of SENCR and 

have identified unique gene signatures on its knockdown in 

SMC. SENCR seems to play a role in maintaining the normal 

SMC differentiated state as its attenuated expression leads to 

reduced MYOCD and contractile gene expression with ele-

vations in migratory genes that foster a hyper-motile state. 

This report outlines the first foray into lncRNA discovery in 

human vascular cells and establishes a foundation for further 

inquiry into SENCR biology, as well as the identification, 

expression, and function of other human vascular-selective 

lncRNAs under normal and pathological cell states.

Materials and Methods
Materials and Methods are available in the online-only Supplement.

Results

Identification and Validation of 
lncRNAs in HCASMC

We have developed a rigorous workflow for the identifica-

tion and study of lncRNAs in primary-derived HCASMC 

using RNA-seq methodology (Figure I in the online-only 

Data Supplement). A total of 79.41% of filtered reads could 

be aligned to the human reference genome. Thirty-one 

lncRNAs met our strict inclusion criteria (Methods in the 

online-only Data Supplement) with the majority (22/31) 

falling into the lincRNA subclass (Table II in the online-

only Data supplement). Conventional reverse transcription 

polymerase chain reaction (RT-PCR) showed detectable 

expression of 21 of 31 lncRNAs in a panel of human cell 

types, including HCASMC and human umbilical vein EC 

(HUVEC; Figure 1A). Sequence analysis of the PCR prod-

ucts confirmed the identity of each lncRNA (not shown). 

The majority of HCASMC lncRNAs are distributed widely 

across human tissues with several detected in dated human 

Nonstandard Abbreviations and Acronyms

EC endothelial cell

FLI1 Friend leukemia virus integration 1

HCASMC human coronary artery smooth muscle cell(s)

HUVEC human umbilical vein endothelial cell(s)

lincRNA long intervening noncoding RNA

lncRNA long noncoding RNA

MYOCD myocardin

RT-PCR reverse transcription polymerase chain reaction

SENCR smooth muscle and endothelial cell enriched  migration/differ-
entiation-associated long noncoding RNA

SMC smooth muscle cell
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plasma (Figure 1B and 1C). One of the lncRNAs (lncRNA9) 

exhibited a selective pattern of expression in cell lines 

(Figure 1A and 1D) and human tissues (Figure 1A and 1B). 

We refer to this lncRNA as SENCR because of its enriched 

expression in both smooth muscle and ECs (Figure 1A and 

1D) and its proposed function (below).

SENCR Is a Vascular Cell–Selective 
Antisense lncRNA
RNA-seq alignment, 5′ RACE, and RT-PCR with oligo-dT 

and strand-specific primers established that SENCR com-

prises 3 exons and is transcribed in the antisense orienta-

tion from within the first intron of Friend leukemia virus 

integration 1 (FLI1), an important transcription factor pro-

gramming EC and blood cell formation50 (Figure 2A). There 

is no overlap between SENCR and FLI1 exonic sequences, 

indicating that SENCR is not a natural antisense transcript33 

(Figure 2A). The longest open reading frame flanked by start 

and stop codons is 61 amino acids; however, analysis of this 

and other predicted open reading frames in SENCR failed to 

reveal any known protein-coding domains, suggesting that 

this transcript has no or low protein-coding potential (not 

shown). Primers to exons 1 and 3 of SENCR showed the 

presence of 2 distinct PCR products (Figure 2B). Sequence 

analysis confirmed these products as full length (SENCR_

V1) and an alternatively spliced variant (SENCR_V2) of the 

SENCR gene (Figure 2A and 2B). These sequences have been 

deposited in GenBank under accession numbers KF806591 

and KF806590, respectively. We used specific primer pairs 

to examine SENCR isoform expression in a panel of human 

tissues and cell lines. Results showed SENCR_V1 to be 

more broadly expressed than SENCR_V2 (Figure 2C and 

2D). In general, there was coincident expression of SENCR 

with FLI1, suggesting that these transcripts may be under 

similar transcriptional control processes (Figure 2E and 2F). 

Quantitative RT-PCR analysis suggested the FLI1 transcript 

to have higher expression than SENCR (Figure II in the 

online-only Data Supplement).

Exon 1 of FLI1 shows high conservation across 46 mam-

malian species; however, much less conservation exists 

across the 3 exons of SENCR (Figure 3), consistent with the 

fact that no orthologous SENCR transcripts have yet been 

found outside human/chimp lineages. Interestingly, exons 2 

and 3 of SENCR harbor single nucleotide polymorphisms, 

suggesting potential deleterious effects on SENCR function 

(Figure 3). Analysis of Encyclopedia of DNA Elements 

data on the UCSC Genome Browser (http://genome.

ucsc.edu/) supports the enriched expression of SENCR 

in HUVEC with lower levels in other cell types. Further, 

there is a prominent HUVEC-associated H3K4me3 mark 

near exon 1 of SENCR, suggesting the presence of an active 

promoter (Figure 3). As a first step toward delineating 
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Figure 1. Validation of Long noncoding RNA (lncRNA) expression in human cells and tissues. Reverse transcription polymerase chain 
reaction (RT-PCR) analysis of 21 lncRNAs (arbitrarily numbered) in indicated human cells (A) and tissues (B). Bold lncRNA9 and asterisk 
denote SENCR. C, RT-PCR of indicated lncRNAs in dated human plasma. All reactions were done using the same PCR parameters.  
D, Quantitative RT-PCR of lncRNA9 in the indicated human cell types. HCASMC indicates human coronary artery smooth muscle cell; 
HF, human fibroblasts; HUVEC, human umbilical vein endothelial cell; and SKLMS, uterine leiomyosarcoma cell line.
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SENCR transcription, we cloned and tested several lucifer-

ase reporter constructs. Luciferase assays showed little to 

no detectable SENCR promoter activity in HUVEC unless 

sequences encompassing the 5′ FLI1 promoter region were 

included, although even these reporters showed much lower 

activity than a control promoter construct (not shown). 

Collectively, these results define an alternatively spliced, 

vascular cell–enriched antisense lncRNA that overlaps the 

5′ end of the FLI1 transcription factor yet, in its mature 

form, does not harbor exonic sequences that could undergo 

Watson–Crick base-pairing with corresponding exonic 

sequences in FLI1.

SENCR Is a Cytoplasmic lncRNA
Quantitative RT-PCR showed SENCR RNA to be most abun-

dant in HUVEC with undetectable transcripts in HeLa cells 

(Figure 1D). We used high-resolution RNA fluorescence in 

situ hybridization51 in these 2 cells types to unambiguously dis-

cern the intracellular compartment where SENCR transcripts 

reside. Consistent with quantitative RT-PCR, no SENCR tran-

scripts were seen in individual HeLa cells (Figure 4A, bottom). 

However, we observed variably low numbers of SENCR RNA 

molecules in the cytoplasm of individual HUVEC (Figure 4A, 

top and middle). We sometimes observed SENCR RNA in 

the nucleus although this probably reflects either active tran-

scription or unprocessed RNA. The cytoplasmic, low-level 

expression of SENCR RNA contrasts with the higher-level 

nuclear accumulation of NEAT1 lncRNA as well as cytoplas-

mic PP1B mRNA (Figure 4A). Biochemical fractionation 

followed by RT-PCR further documented cytoplasmic local-

ization of SENCR in both HUVEC and HCASMC. In contrast, 

the lncRNAs NEAT1 and XIST show predominantly nuclear 

accumulation in these cell types (Figure 4B; Figure III in 

the  online-only Data Supplement). We next used 2 distinct 

probe sets to SENCR in HUVEC treated with a control dicer 

substrate RNA or 2 dicer substrate RNAs targeting different 

regions of SENCR to further demonstrate the specificity of the 

signal (Figure 4C). Quantitative analysis of coincident hybrid-

ization of each probe set demonstrated a likely underestimate 

of ≈0.8 copies of SENCR per cell, a value that was approxi-

mately halved on SENCR knockdown (Figure 4D). These 

results establish the cytoplasmic localization of SENCR and 

indicate its relatively weaker level of expression as compared 

with housekeeping mRNA molecules (PP1B) and at least one 

other lncRNA (NEAT1).

SENCR Knockdown Exerts Little Effect 
on FLI1 mRNA in Vascular Cells
Many lncRNAs that overlap protein-coding genes in the anti-

sense orientation exert cis or trans effects on gene expression 

through the recruitment of chromatin remodeling factors.52 

However, no uniform cis-acting effect on FLI1 or neighbor-

ing gene expression was observed on knocking down SENCR 

with multiple dicer substrate RNAs in HCASMC (Figure 5A–

5C) or HUVEC (Figure 5D and 5E), consistent with its cyto-

plasmic localization. There was also little effect of SENCR 

knockdown on the nuclear accumulation of FLI1 protein or 

steady-state FLI1 protein levels (Figure 6G and 6H). Further, 
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the transcription start sites and bent lines 
in SENCR indicate splicing patterns. B, 
Reverse transcription polymerase chain 
reaction (RT-PCR) of SENCR with primers 
to exons 1 and 3 showing the presence of 
2 transcripts reflecting full length (V1) and 
alternately spliced (V2) SENCR. RT-PCR 
of 2 SENCR isoforms and FLI1 in vari-
ous human tissues (C) and cell lines (D). 
Quantitative RT-PCR of SENCR and FLI1 in 
select human tissues (E) and cell lines (F). 
Bars here and below represent the SD of 1 
experiment with 3 biological replicates. All 
expression data here and below represent 
≥2 (more typically multiple) independent 
studies performed by >1 author. Unless 
indicated otherwise, SENCR expression 
here and below reflects both isoforms using 
primers to a common exon. HCASMC 
indicates human coronary artery smooth 
muscle cell; HF, human fibroblasts; HUVEC, 
human umbilical vein endothelial cell; and 
SKLMS, uterine leiomyosarcoma cell line.
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knockdown of FLI1 effected no significant change in levels 

of SENCR RNA (Figure 5F). We occasionally observed mild 

variation in FLI1 mRNA expression (either up or down) with 

some dicer substrate RNAs in certain isolates of vascular 

cells; however, these changes were sporadic and not repro-

ducible when tested by multiple investigators. We therefore 

conclude that reducing SENCR RNA has little to no cis-acting 

effect on local gene expression.

SENCR Knockdown Alters the Normal 
Contractile Gene Program in HCASMC
Several cytoplasmic lncRNAs effect changes in a cell’s tran-

scriptome through post-transcriptional control processes.53 As 

an initial step toward understanding the function of SENCR, 

we performed RNA-seq in HCASMC after knockdown of 

SENCR to assess changes in the transcriptome. Most sequenc-

ing reads were aligned to the reference genome and scat-

terplots of replicates showed similar transcript profiles (not 

shown). Statistical analysis of each set of replicates revealed 

hundreds of genes that were significantly induced or repressed 

on SENCR knockdown (Figure 6A; Table III in the online-

only Data supplement). Strikingly, many SMC contractile 

genes showed significant reduction in mRNA expression with 

SENCR knockdown (Figure 6B; Table III in the online-only 

Data supplement). Gene ontology analysis using DAVID 

revealed biological processes associated with this reduced 

contractile gene signature (Table IV in the online-only Data 

supplement). Of note, the key transcriptional switch for SMC 

contractile gene expression, MYOCD,39 was also reduced with 

SENCR knockdown (Figure 6B), and several dicer substrate 

RNAs to SENCR validated such downregulation in HCASMC 

(Figure 6D). We also confirmed reduced expression of sev-

eral of the SMC contractile genes at both the mRNA level 

(Figure 6E) and the protein level (Figure 6G). Although 

the SMC contractile program was reduced with SENCR 

knockdown, several genes associated with cell migration 

were induced (Figure 6C; Table III in the online-only Data 

Supplement). DAVID analysis supported biological processes 

linked to cellular locomotion with SENCR knockdown (Table 

V in the online-only Data Supplement). We validated 2 migra-

tory genes (MDK and PTN) at the mRNA level in HCASMC 

(Figure 6F) and HUVEC (Figure IV in the online-only Data 

Supplement). Collectively, these data show that reduced 

SENCR expression compromised the SMC contractile pheno-

type and promoted a promigratory gene signature.

Attenuated SENCR Expression Confers a 
Hyper-Motile Phenotype in HCASMC
To ascertain whether the increase in promigratory gene 

expression on knockdown of SENCR translates into a 

Figure 3. UCSC genome browser track of the human FLI1-SENCR sense–antisense gene pair. The SENCR gene comprises 3 exons 
(shown as dark rectangles) and 2 introns. The first exon of SENCR initiates on the opposite strand ≈1.5 kb downstream from the first 
exon of FLI1. The dotted vertical lines serve to highlight several features, including (from the top) mammalian conservation (Mammal 
Cons), reference SNPs (rs numbers), H3K4Me3, and RNA-seq (Transcription) in Tier 1 and Tier 2 cells from Encyclopedia of DNA Ele-
ments (ENCODE). Note the lower conservation and selective transcription in human umbilical vein endothelial cell (HUVEC; blue peaks at 
bottom) for SENCR as compared to FLI1. See Results for more details.
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functional phenotype, we performed 2 independent measures 

of cell migration. Using a scratch wound assay, we observed 

hyper-motile HCASMC with SENCR knockdown (Figure 7A 

and 7B). Many of these cells exhibited reorganization of 

the actin cytoskeleton with formation of lamellipodia, con-

sistent with a migratory cell phenotype (Figure 7A and 7F, 

arrows). Importantly, the increase in HCASMC migration 

could be completely rescued on simultaneous knockdown 
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of either of 2 promigratory genes shown to be induced on 

knockdown of SENCR (Figure 7C; Figure V in the online-

only Data Supplement). To further confirm this accentuated 

cell migration phenotype on knockdown of SENCR, we 

used a modified Boyden chamber assay. Consistent with the 

scratch wound assay, we noted that HCASMC migration was 

elevated with SENCR knockdown although not as much as 

that observed with the potent migratory stimulus, PDGF-BB 

(Figure 7D and 7E). We also observed augmented PDGF-

BB–induced cell migration on concomitant knockdown of 

SENCR (Figure VI in the online-only Data Supplement). 

Taken together, these results strongly support a role for 

SENCR in the regulation of HCASMC differentiation and 

cellular motility.

Discussion
Contrary to the historical notion of pervasive junk DNA,1 

most of the human genome is transcribed signifying a 

 treasure-trove of previously unrecognized functional DNA 

sequences. These include tens of millions of regulatory 

elements as well as the expansive class of lncRNA genes. 

LncRNA genes already outnumber protein-coding genes 

and they exhibit diverse functions related to gene expression 

and splicing; protein translation, activity, and trafficking; 

as well as the formation of specialized microenvironmen-

tal niches.54,55 Here, we present the first RNA-seq study 

in a human vascular cell type for the specific discovery of 

lncRNA genes. We used strict criteria and discovered 31 

previously unannotated lncRNAs, 21 of which we vali-

dated in human cell lines and human tissues. In addition, we 

detected a few lncRNAs in dated human plasma, suggest-

ing that these may have potential utility as biomarkers of 

clinical disease.56 One of the lncRNA genes, named here as 

SENCR, shows a selective pattern of expression in cells and 

tissues with highest levels in human vascular SMC and ECs. 

We discovered that SENCR undergoes alternative splicing, 

consistent with widespread splicing of transcripts across the 

human genome.57 SENCR overlaps the 5′ end of the FLI1 

transcription factor in the antisense orientation, but does not 

seem to regulate local gene expression in cis. Indeed, our 

extensive RNA fluorescence in situ hybridization and bio-

chemical fractionation studies clearly indicate SENCR to be 

a cytoplasmic lncRNA supporting an extranuclear function. 

Using RNA-seq after knockdown of SENCR, we observed 

uniform decreases in expression of SMC contractile–asso-

ciated genes as well as attenuated expression of the major 
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transcriptional switch (Myocardin) for the differentiation of 

vascular SMC.39 However, knockdown of SENCR augments 

a promigratory gene signature that facilitates heightened 

SMC migration. Thus, we have uncovered a new vascular 

cell–enriched lncRNA that seems to function in the mainte-

nance of a normal, nonmotile SMC phenotype.

An analysis of 707 sense–antisense gene pairs annotated 

in the UCSC genome browser58 shows diversity in struc-

tural orientation, with most lncRNAs representing natural 

antisense transcripts (47.0%), followed by intronic (18.8%), 

divergent (16.4%), completely overlapping (7.4%), 5′ over-

lapping (7.1%), and 3′ overlapping (3.4%) lncRNAs (Table VI 

in the online-only Data Supplement). Much of what is known 

about sense–antisense gene pairs relates to natural antisense 

transcripts and effects on local gene expression through such 

processes as transcriptional interference, double-stranded 

RNA-mediated events, or the guidance of chromatin remod-

eling complexes that repress or enhance protein-coding gene 

expression in cis or trans.33,53,59 SENCR falls within the sub-

class of 5′ overlapping lncRNAs whose exons do not overlap 

with those of the sense protein-coding (or noncoding) gene. 

The terminal portion of intron 1 of SENCR overlaps a region 

of high homology, likely representing conserved sequences 

corresponding to the proximal 5′ promoter of FLI1. There is 

another island of homology within intron 2 of SENCR, sug-

gesting SENCR could be a precursor for conserved small RNA 

molecules. Although the second and third exons of SENCR 

overlap the 5′ promoter region of FLI1, there is compara-

tively weak sequence conservation suggesting SENCR does 

not sponge critical DNA-binding transcription factors neces-

sary for FLI1 mRNA expression (Figure 3). In fact, SENCR 

and FLI1 seem to be coexpressed in several cells and tissues, 

including vascular SMC. This is entirely congruent with our 

inability to show a consistent effect of knocking down either 

SENCR or FLI1 on the other gene’s level of expression. It is 

interesting to note that there are little, if any, data on expres-

sion of FLI1 mRNA and protein in vascular SMC. Further, the 

functionality of FLI1 in vascular SMC has not been assessed 

although an EC-specific knockout of Fli1 showed reduced 

pericytes and vascular SMC investing the dermal microvas-

culature.60 In light of FLI1 expression in vascular SMC as 

reported here, it will be important to directly assess the role 

of FLI1 in vascular SMC differentiation and function through 

conditional gene ablation studies.

We know little as to how sense–antisense gene pairs 

involving lncRNAs are transcriptionally controlled. 
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(HCASMCs) were transfected with ds-Ctrl (a–c) or ds-SENCR-3 (d–f) for 72 hours after which a scratch wound was created and cell 
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Presumably, divergent (head to head) sense–antisense 

pairs share a common promoter as has been described for 

many bidirectionally transcribed protein-coding genes.61 

However, it is completely unclear how other sense–anti-

sense pairs may be transcribed, particularly a lncRNA 

that is coexpressed with the sense mRNA as shown in this 

report. Simultaneous expression of FLI1 and SENCR would 

seem unlikely because of transcriptional collision.62 How 

then might SENCR and FLI1 be transcribed? Perhaps there 

are shared promoter elements that facilitate alternating 

transcription between SENCR and FLI1. Consistent with 

this idea, no SENCR promoter activity was detected unless 

sequences encompassing the FLI1 5′ region were included, 

although the level of activity remained much lower when 

compared with an EC-restricted promoter (DLL4; not 

shown). Interestingly, a previous report showed undetect-

able activity of the FLI1 promoter in cells expressing high 

levels of FLI1 mRNA.63 This could imply there exists a 

remotely acting enhancer element critical for alternating 

transcription of SENCR and FLI1. Another possibility is 

that SENCR and FLI1 are monoallelically expressed in a 

mutually exclusive manner.64 Recently, single-cell RNA-seq 

analysis demonstrated that as much as 24% of autosomal 

genes exhibit monoallelic expression thus providing sup-

port for this hypothesis.65 Clearly, a major task for future 

investigative work will be to elucidate the transcriptional 

control of SENCR and other lncRNAs during vascular cell 

differentiation or pathological conditions.

Elucidating the function of lncRNAs has been ham-

pered by the absence of any obvious lncRNA sequence 

code. One approach to begin understanding lncRNA func-

tion is to reduce the level of lncRNA expression and then 

evaluate the transcriptome of a cell type.66 In this study, 

we knocked down SENCR in HCASMC and found that 

the contractile phenotype of these cells was attenuated 

with concomitant increases in several promigratory genes 

leading to enhanced cell motility. The mechanism for 

such changes in cell phenotype is unknown at this time; 

however, because SENCR is localized to the cytoplasm 

it seems unlikely that it acts through direct interaction 

with DNA or the recruitment of  chromatin-modifying 

complexes to target genes as shown for many nuclear 

lncRNAs.53,67 It is more probable that SENCR functions in 

some post-transcriptional capacity to effect the observed 

changes in gene expression. Because all SMC contrac-

tile genes were attenuated with SENCR knockdown, a 

 post-transcriptional mechanism would likely involve the 

targeting of a protein or RNA that is antecedent to the 

SMC contractile gene program. One possibility would be 

that SENCR sponges a low abundant microRNA that oth-

erwise would function to mute the SMC contractile gene 

program, similar to what has been shown for linc-MD1 

in skeletal muscle.68 Other potential post-transcriptional 

mechanisms of action for SENCR include stabilization, 

destabilization, or enhanced ribosomal translation of 

pivotal RNA transcripts, as proposed for other recently 

defined lncRNAs.24,69–71 The results of this study provide 

a foundation for exploration of these and other possible 

mechanisms of SENCR activity using emerging biochemi-

cal tools to analyze lncRNA interactions with other mac-

romolecules in the cytoplasm.72

The explosive rise of lncRNAs in human and mouse 

genomes has profound implications for future research in 

vascular biology. First, unlike microRNAs, which number 

≈1000 and almost universally function through a predict-

able and well-defined process, lncRNAs number in the tens 

of thousands and their functions and mechanisms of action 

will be, arguably, as diverse as those for protein-coding genes. 

This will necessitate a global effort to define all lncRNAs in 

the vasculature (especially nonpolyadenylated) under nor-

mal and stress-induced conditions and delineate their mode 

of regulation and function. Second, lncRNAs such as SENCR 

are poorly conserved and lack easily defined sequences that 

would imply a clear function in blood vessels. The apparent 

lack of orthologous mouse lncRNA genes such as SENCR 

constrains the extent to which experimental analyses can be 

done in a rigorous and controlled manner to gain functional 

insights. However, mouse-specific lncRNAs may have limited 

translational relevance to the study of human development and 

disease. Structural similarity between lncRNAs having little 

sequence homology may, nevertheless, exhibit comparable 

functions across species.73,74 In this context, there is a pressing 

need to gain insight into the structure of lncRNAs to develop 

lncRNA codes that would facilitate functional classification 

across species. As a first approximation of the structure of 

SENCR, we used mFold (http://mfold.rna.albany.edu) and 

RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) and 

found it to exhibit a stable RNA structure (Figure VII in the 

online-only Data Supplement) with minimum free energies of 

−486 and −470 kcal/mol, respectively. Another implication of 

widespread lncRNA genes will be the need for extreme caution 

and strategic design in the creation of genetically altered mice, 

especially when targeting the 5′ end of a gene where inadver-

tent disruption of other sequences such as lncRNAs is likely 

to occur. The emergence of precision-guided genome editing 

(eg, CRISPR/Cas9) will be of great value in this context.75 

Finally, most genetic variation occurs in non–protein-coding 

sequence space,76 which is interposed with transcription fac-

tor binding sites such as CArG boxes11 and lncRNAs such as 

ANRIL.35 Historically, there has been a notable lack of under-

standing as to how noncoding sequence variations associated 

with disease perturb function in a cell. Now, with increasing 

efforts devoted to understanding noncoding sequences, there 

will be an effort to model human SNPs associated with vas-

cular disease through, for example, CRISPR/Cas9-mediated 

point mutations in the mouse genome. In this context, it will 

be important to know whether the sequence variants in exons 

2 and 3 of SENCR confer differential expression, localization, 

or function in a disease setting. Altered lncRNA expression 

of TIE1-AS146 and ANRIL48 has already been noted in human 

vascular disease.

In summary, we have developed a rigorous experimental 

pipeline for the discovery and study of lncRNAs in human vas-

cular cells (Figure I in the online-only Data Supplement). This 

approach uncovered many previously unrecognized lncRNAs, 

including the human-specific, vascular cell–selective SENCR, 
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which we show is an alternatively spliced and weakly 

expressed cytoplasmic 5′ overlapping antisense lncRNA. 

Loss-of-function studies support the concept of SENCR act-

ing as a fine-tuner of the vascular SMC phenotype. Of note, 

SENCR is one of the first 5′ overlapping antisense lncRNAs (as 

defined here in Table VI in the online-only Data Supplement) 

to be studied in detail. Future work should aim to elucidate 

the regulatory control and function of SENCR in models of 

human vascular SMC and EC development as well as disease-

associated processes.
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For the first time, RNA-seq has been performed in human coronary artery smooth muscle cell for the discovery of long noncoding RNA genes. 

We report the gene structure, expression, splicing, and spatial localization of a new vascular cell–selective long noncoding RNA we call 

SENCR. Although SENCR has no apparent cis effect on gene expression, there is a compromise in the smooth muscle cell contractile gene 

program on its knockdown with elevations in many promigratory genes. Accordingly, these cells exhibit a hyper-motile phenotype, which 

can be reversed by knocking down 2 promigratory genes that are induced with SENCR knockdown. These results report the first novel long 

noncoding RNA gene selectively expressed in human vascular cells and provide a framework for further study of long noncoding RNA genes 

during vascular cell development and in disease processes.
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Supplemental Figure I.  Summary of experimental workflow.  We developed this workflow for the study of 

SENCR and other unannotated or uncharacterized lncRNAs.  Primary cultures of HCASMC were chosen that 

express contractile proteins (such as CNN1 in red) as well as the SRF transcription factor (shown in green).  See 

Materials and Methods and Results for further details. 
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Supplemental Figure II. Relative level of SENCR versus FLI1 in HCASMC.  One divided by the 

delta Ct value for SENCR (n=9) and FLI1 (n=9) RNA expression in HCASMC. 
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Supplemental Figure III.  Localization of SENCR.  (A) Higher magnification image of boxed region in Figure 4A.  

Arrows indicate SENCR transcripts localized to the cytoplasm of two HUVEC. Omission of labeled probes 
revealed no background fluorescence (not shown). (B) SENCR versus XIST RNA localization in cytoplasmic (C) 

or nuclear (N) fractions of the indicated cell types. 
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Supplemental Figure IV 

Supplemental Figure IV.  Effect of SENCR knockdown on expression of pro-migratory genes in HUVEC.  

Quantitative RT-PCR of indicated genes following transfection with either control dicer substrate RNA or either of 

two dicer substrate RNAs that target different regions of SENCR.  Note obvious reductions in SENCR upon its 

targeted knockdown with minimal effects on FLI1, but associated induction of PTN and MDK. 



Supplemental Figure V 

Supplemental Figure V.  siRNA knockdown of PTN and MDK.  Quantitative RT-PCR analysis of PTN (left) and 

MDK (right) mRNA levels after siRNA knockdown.  The y-axis represents the normalized levels of each transcript 

with si-Controls set to 1. 
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Supplemental Figure VI 

Supplemental Figure VI.  Effect of combined PDGF-BB treatment and SENCR knockdown on HCASMC 

migration.  Boyden chamber assay with HCASMC transfected with either control (A) or SENCR (B) dicer substrate 

RNA followed by 6 hr stimulation with 25 ng/ml PDGF-BB.  Note accentuated HCASMC migration with combined 

PDGF-BB/SENCR knockdown. 



Supplemental Figure VII 

Supplemental Figure VII.  Predicted secondary structure of SENCR_V1.  This secondary structure was 

generated with the program RNAFold. See Discussion for more details. 
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Materials and Methods 
 

 
Cells and Tissues – Several independent isolates of primary HCASMC and human 

umbilical vein endothelial cells (HUVEC) were maintained in growth medium supplied by the 
manufacturer (Invitrogen).  HUVEC were obtained from the Cell Culture Core in the Aab CVRI 
and plated onto gelatin-coated plates/chambers.  HeLa, HEK293, SKLMS (a human 
leiomyosarcoma cell line of uterine SMC origin), LnCAP, and MCF7 cells were grown in medium 
as specified by the manufacturer (ATCC).  Human tissue RNA samples were obtained from a 
commercial source (Zyagen).  Dated human plasma was obtained through the University of 
Rochester Medical Center Blood Bank. 
 RNA-Sequencing Analysis – Total RNA was isolated from HCASMC using RNeasy 
extraction kit (Qiagen) under normal growth conditions or where SENCR was knocked down for 
3 days with 25 nM of either a dicer substrate RNA to exon 2 (ds-SENCR-5, Table I in the online 
only Data supplement) or a control dicer substrate RNA.  Following bioanalyzer quality control 
confirmation, RNA-seq was performed on the polyadenylated fraction using Illumina Genome 
Analyzer IIx platform at the University of Rochester Medical Center Genomics Research Center 
(http://www.urmc.rochester.edu/fgc/).  Single-end sequencing was done at a depth of 20 million 
reads per replicate (n=3).  Pre-processing of raw sequence reads included demultiplexing with 
CASAVA 1.8.2, transcript trimming of contaminating sequences with Sequence Cleaner 
(http://sourceforge.net/projects/seqclean/), removal of vector sequences with UniVec database 
(http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html), and FASTQ quality trimming using the 
FASTX Toolkit (http://cancan.cshl.edu/labmembers/gordon/fastx_toolkit/index.html).  
SHRiMP2.2.3 was used to align sequence reads to annotated transcripts on the UCSC 
Reference Genome (build GRCh37/hg19).  Quantitative analysis, including the statistical 
analysis of differentially expressed genes was done with Cufflinks 2.0.2 and Cuffdiff2 
(http://cufflinks.cbcb.umd.edu).  For the SENCR knockdown RNA-seq experiment, the 
Benjamini-Hochberg method was applied for multiple test correction (FDR < 0.05).  Data output 
files such as Volcano plots and scatterplots were generated with cummerbund 
(http://compbio.mit.edu/cummeRbund/).  Gene ontology (GO) analysis was done using DAVID 1.  
All RNA-seq data were deposited into NCBI’s Gene Expression Omnibus (GSE51878). 

Bioinformatics Methods for Identifying Novel LncRNAs – RNA-seq reads were aligned to 
the human genome (hg19) using TopHat 1.4 2.  In this analysis, two iterations of TopHat 
alignment were performed in order to maximize the chance of identification of exon-exon 
junctions.  The alignment data were used to define novel lncRNAs following the method 
described for lncRNA identification 3.  The aligned data for each sample were used 
independently by two complementary programs, Scripture 4 and Cufflinks 5, for assembling 
transcripts independent of gene annotation.  We determined the threshold for the read coverage 
of each transcript across all samples by optimizing the sensitivity and specificity for identifying 
full length versus partial length transcripts of protein coding genes in RefSeq 3.  In the end, we 
kept assembled transcripts present in both Scripture and Cufflinks outputs, and with ≥2 exons, 
≥200 bp and ≥ 2.7 read coverage as reads below this threshold were deemed unreliable in 
predicting exon structure.  Next, we eliminated all transcripts that had an exon overlapping in 
the same strand with known transcripts from available databases.  We then computed the 
coding potential of all remaining putative novel transcripts using PhyloCSF 6 and removed any 
transcripts containing an open reading frame with PhyloCSF score ≥ 100 across any of three 
reading frames.  We further removed transcripts that were homologous to known protein coding 
domains in the Pfam database (release 26; both PfamA and PfamB) 7 using the program 
HMMER-3 (e-value = 10) 8.  Lastly, we computed expression values (in FPKM, fragments per 
kilobase of exon per million fragments mapped) of all remaining transcripts, together with all 
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coding and known non-coding genes.  The final list of lncRNAs (Table II in the online only Data 
supplement) comprises transcripts with FPKM >0.7. 

Dicer-Substrate RNA Knockdown – Several dicer-substrate RNA (dsRNA) molecules to 
different exons of SENCR or control dsRNA (ds-Ctrl) were synthesized (Integrated DNA 
Technologies) and pre-tested in HCASMC and HUVEC (see Table I in the online only Data 
supplement for list of all DNA molecules used in this study).  The ds-Ctrl does not target known 
transcribed sequences in human, mouse, or rat genomes and thus serves as a negative control 
for dsRNA transfections.  Briefly, cells were Lipofectamine-transfected with each dsRNA (20-30 
nM) for three days and then total RNA or protein was isolated for further analysis.  Results were 
confirmed using at least two independent dsRNA constructs to SENCR, in up to five 
independent isolates of HCASMC and HUVEC, often times by multiple investigators. 

Gene Expression Assays – Total RNA was isolated using the RNeasy kit (Qiagen).  RNA 
integrity was assessed by spectrophotometery (NanoDrop, Thermo Scientific) and agarose gel 

electrophoresis.  cDNA was synthesized from 1g of total RNA using iScript (Bio-Rad) plus 
random decamers and/or an oligodT primer.  RT-PCR was performed using Platinum PCR 
Supermix (Invitrogen) with a MyCycler thermocycler (BioRad) and PCR products were resolved 
in a 1% agarose gel.  Some gels shown were adjusted uniformly in Photoshop using the “invert” 
function.  For lncRNA validations, we included a no RT step that revealed little to no products 
indicating authentic polyA+ RNAs were amplified as opposed to contaminating genomic DNA 
(data not shown).   Quantitative RT-PCR was performed using IQ SYBR Green Supermix with a 
MyiQ single color real-time PCR detection system (BioRad).  Experiments shown are 
representative of multiple independent experiments using different lots of HCASMC and 
HUVEC, performed by separate investigators to ensure quality control and accurate 
interpretation of observed changes in gene expression. 

Western Blotting – Total protein was isolated from HCASMC following ds-SENCR or ds-
Ctrl knockdown using RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCI, 0.1% SDS, 1.0% NP-40, 
0.5% sodium deoxycholate and Roche protease inhibitor cocktail) and resolved in acrylamide 
gels for Western blotting as previously done 9.  Antibodies were LMOD1 (ProteinTech, 1:2000), 
TAGLN (Abcam, 1:4000), CNN1 (DAKO, 1:2000), ANPEP (R&D, 1:1000), FLI1 (Santa Cruz, 
1:250) and PPIA (Santa Cruz, 1:2000), used as an internal control.  

RNA Fluorescence In Situ Hybridization (FISH)  – RNA FISH with single-molecule 
sensitivity was performed using QuantiGene® (QG) ViewRNA ISH Cell Assay reagents 
(Affymetrix) based on branched DNA technology 10.  Custom probe oligonucleotide pair pools 
specific for SENCR long and short isoforms were designed and synthesized by Affymetrix as 
“Type 6” (50 pairs targeting all 3 exons; product ID, VA6-14704) and “Type 4” (19 pairs 
excluding exon 2; product ID, VA4-14958), respectively.  A probe pair pool specific for human 
PP1B housekeeping mRNA (VA1-10148, “Type 1”) and the lncRNA, NEAT1 (VA1-12621, “Type 
1”) were used as cytoplasmic and nuclear controls, respectively, to assist in interpreting spatial 
localization of SENCR RNA.  HUVEC (± SENCR knockdown) were grown on acid-washed #1.5 
glass cover slips (Thermo Scientific) to 70%-80% confluence, washed with PBS, and fixed for 
30 min in fresh 0.45µm-filtered 4% paraformaldehyde (Electron Microscopy Sciences) dissolved 
in Dulbecco’s PBS without CaCl2 and MgCl2 (Invitrogen).  RNA-FISH was performed with minor 
modifications from the manufacturer’s protocol as follows: After permeabilization using QG 
Detergent Solution, cells were treated with 0.5% Triton X-100/PBS for 5 min at room 
temperature.  Partial protease digestion was carried out with a 1:6,000 dilution of QG Protease 
K for 10 min at room temperature.  Coverslips were incubated with primary probe pair sets (3-
color multiplexing) or QG Probe Set Diluent as negative control at 40oC for 3 hr.  Pre-amplifiers 
were incubated for an extended period of 1 hr.  Between probe set incubations, cells were 
washed 4 times each in QG Wash Buffer for a total of 10 min.  After counter-staining with DAPI, 
coverslips were mounted in home-made anti-fade mounting medium 
(www.spectorlab.cshl.edu/protocols) and sealed with nail polish. 
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Image Acquisition and Analysis – Cells were imaged on a DeltaVision Core system 
(Applied Precision) based on an inverted IX-71 microscope stand (Olympus) equipped with a 
60x U-PlanApo 1.40 NA oil immersion lens (Olympus).  Images were captured using a 
CoolSNAP HQ CCD camera (Photometric) as 10µm image stacks with a z-spacing of 0.2µm at 
a 1x1 binning.  Stage, shutter and exposure were controlled through SoftWorx (Applied 
Precision).  Image deconvolution was performed using SoftWorx.  Parameters for acquisition 
and post-acquisition processing were identical for all coverslips.  Analysis was done on 
individual image stacks in 3D space by counting the number of SENCR hybridization signals 
divided by the number of cells in each field of view (≥50 cells in ≥10 randomly chosen fields per 
experiment).  In some experiments, we employed two fluorescently-tagged probe sets (above) 
in the absence or presence of SENCR knockdown to further confirm spatial localization.  Only 
signals that showed overlap of QG “Type 4” and “Type 6” probe sets were considered, thus 
minimizing potential false-positive signal counts when using single color analysis. 
 Luciferase Assay – The putative promoter of SENCR was defined through 5’ RACE 
(Ambion).  Several constructs of varying 5’ and 3’ length were PCR amplified from HCASMC 
genomic DNA, cloned into the pGL3 Basic Vector (Promega), and sequence confirmed (URMC 
Genomics Research Center).  HUVEC were plated in 12-well dishes and grown to ~60%-70% 
confluency and transfected with various SENCR promoter constructs or a DLL4 reporter gene 
as a positive control. Lipofectamine was used in transfections and the normalized average 
luciferase activity calculated for each reporter plasmid. 

Migration Assays – HCASMC were plated onto coverslips and transfected with either ds-
Ctrl or dsRNAs targeting non-overlapping sequences in SENCR.  Sixty hr after transfection, 
cells were “scratched” with a sterile P200 pipette tip and the culture medium immediately 
changed to DMEM containing 10% FBS.  12 hr after scratch wounding, the cells were fixed and 
stained with Alexa Fluor® 660 Phalloidin and DAPI (Invitrogen) according to manufacturer’s 
instructions.  The cells were then imaged by confocal microscopy (Olympus FV1000) and the 
migratory index (percentage of cells that migrated into the time 0 wound area) was calculated 
using NIH Image J software.  An independent assay for migration was done using a modified 
Boyden chamber (Corning).  Briefly, HCASMC were transfected for three days with either ds-
Ctrl or ds-SENCR (25 nM) and then seeded into a 24-well Boyden chamber plate.  Cells were 
then serum-deprived overnight and subsequently treated either with PDGF-BB (25 ng/ml) or 
vehicle for 6 hr.  Cells were then fixed, stained with hematoxylin, and imaged with an inverted 
phase contrast microscope.  Migration assays are representative of multiple experiments 
performed independently by two authors (RDB and XL). 

Statistical Analysis – Student’s t-test or one way ANOVA followed by Tukey’s post-hoc 
test were used to determine statistical significance of the means (± standard deviation) and 
graphs were plotted (Graph-Pad Prism 5.0).  Statistical significance was assumed at p < 0.05. 
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