
1

Identification and Management of Technical Debt: A Systematic

Mapping Study

Nicolli S.R. Alves2, Thiago S. Mendes1,4, Manoel G. de Mendonça1, Rodrigo O. Spínola1,2,
Forrest Shull5, Carolyn Seaman3

¹Fraunhofer Project Center for Software and Systems Engineering at Federal University of Bahia
(UFBA), Salvador, Bahia, Brazil

²Graduate Program in Systems and Computer, Salvador University, Salvador, Bahia, Brazil

³Department of Information Systems, University of Maryland Baltimore County, Baltimore, MD,
USA

4Information Technology Department, Federal Institute of Bahia – IFBA, Santo Amaro, Bahia,
Brazil

5Carnegie Mellon University, Software Engineering Institute, Arlington, VA, USA

nicollirioss@gmail.com, thiagomendes@dcc.ufba.br, manoel.mendonca@ufba.br, rodrigo.spinola@pro.unifacs.br,
fjshull@sei.cmu.edu, cseaman@umbc.edu

Abstract

Context: The technical debt metaphor describes the effect of immature artifacts on

software maintenance that bring a short-term benefit to the project in terms of increased

productivity and lower cost, but that may have to be paid off with interest later. Much

research has been performed to propose mechanisms to identify debt and decide the most

appropriate moment to pay it off. It is important to investigate the current state of the art

in order to provide both researchers and practitioners with information that enables

further research activities as well as technical debt management in practice.

Objective: This paper has the following goals: to characterize the types of technical debt,

identify indicators that can be used to find technical debt, identify management strategies,

understand the maturity level of each proposal, and identify what visualization techniques

have been proposed to support technical debt identification and management activities.

Method: A systematic mapping study was performed based on a set of three research

questions. In total, 100 studies, dated from 2010 to 2014, were evaluated.

Results: We proposed an initial taxonomy of technical debt types, created a list of

indicators that have been proposed to identify technical debt, identified the existing

management strategies, and analyzed the current state of art on technical debt, identifying

topics where new research efforts can be invested.

Conclusion: The results of this mapping study can help to identify points that still require

further investigation in technical debt research.

Keywords: Technical Debt, Software Maintenance, Software Engineering, Systematic Mapping.

1. Introduction

 The technical debt (TD) metaphor was first mentioned by Ward Cunningham in 1992
[Cunningham, 1992]. His definition, “not-quite-right code”, remains the most commonly cited, but

© 2015. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

mailto:nicollirioss@gmail.com
mailto:manoel.mendonca@ufba.br

2

it has been extended to refer to those internal software development tasks chosen to be delayed, but
that run a risk of causing future problems if not done eventually. Thus, it describes the debt that the
development team incurs when it opts for an easy or quick approach to implement in the short term,
but with a greater possibility of a negative long-term impact.

 Debt can refer to any aspect of the software that we know is inappropriate, but do not have
time to fix at the moment, such as outdated/missing documentation, planned testing that is not
executed, overly complex code that needs to be restructured or refactored, and known defects that
remain uncorrected. The result of these immature artifacts is observed in unexpected delays in
carrying out necessary modifications, and in difficulties meeting the established quality criteria of
the project [Spínola et al., 2013] [Zazworka et al., 2013].

 TD is usually incurred in software projects when there is a need to choose between
maintaining the quality standards of the system, and putting the software to work in the shortest
possible time, using minimal resources. These TD “items”, or instances, may have to be paid with
interest later in the project. Translating this metaphor into a tractable model for analysis, we identify
the following variables:

 The principal on the debt refers to the cost to eliminate the debt (i.e. the effort required to
complete the task);

 The interest amount is the potential penalty in terms of increased effort and decreased
productivity that will have to be paid in the future as a result of not completing these tasks in
the present [Seaman and Guo, 2011], including the extra cost of paying off the debt later, as
compared to earlier;

 It is also necessary to consider the interest probability, because TD will not always bring
negative impacts on future project activities. For example, the higher the probability that the
artifact that contains the debt will undergo maintenance, the higher the probability that the
interest will negatively impact the project.

 To illustrate the aforementioned variables, we can imagine a scenario where a software
product, over time, becomes highly coupled and contains many redundant modules. Reducing the
coupling and cleaning up the code constitutes the principal on this debt. Although the software may
be functioning properly, any addition of new functionalities may be time consuming and require
extra effort to deal with the coupling or redundancy issues. The probability that extra effort will be
required is the interest probability, while the amount of extra effort that is likely is the interest

amount. Although such design decisions do no harm in the current stage, or may even have benefits
such as reduced design time, these immature artifacts can be seen as a type of debt that may burden
software maintenance in the future.

 Despite similarities between terms and concepts that are used, technical debt is not the same
as financial debt. The major difference is that the interest associated with technical debt may or may
not need to be paid off [Guo et al. 2014]. By incurring technical debt, software managers can trade
off software quality against productivity. If on one side maintenance time or cost is reduced in the
short term (which is the main advantage of incurring technical debt), on the other side, this
advantage is achieved at the cost of extra work in the future [Guo et al. 2014]. Therefore, software
managers have to balance the costs and benefits of technical debt and make informed decisions on
when and what technical debt should be paid off [Lim et al. 2012].

 In order to ensure productivity in the short term and at the same time monitor the progress of
the project so that incurred debt doesn’t impede the development of the project, TD management
techniques have started to be developed [Seaman et al., 2012]. These techniques are generally
concerned with identifying and monitoring TD items (instances of technical debt) so that they are
explicit and are paid at the right time.

 But even before we can effectively work on the management of debt, we need to know what
types of debt can be incurred, how they can be identified, and what strategies can be used to manage

3

it. Although technical debt is being increasingly discussed, as reported by trends.google.com
indicating that over the last seven years more and more Google users have been searching for the
term “Technical Debt”), it is still difficult to have a broad understanding of the area because the
information about it is still spread out in the technical literature.

 Beyond a general investigation of technical debt identification and management techniques,
we focus in particular on software visualization techniques. Software visualization techniques have
been used in software engineering as a possible solution to the task of software systems
understanding. Software visualization uses visual aids to facilitate software comprehension [Novais
et al., 2013]. While it seems clear that tools that have been found useful for software comprehension
should be highly useful in the identification and management of technical debt, it is still not clear
how visualization techniques can support TD related activities. Thus, in this study, we specifically
examine the literature that suggests ways that this might be done.

 In this context, this work presents a systematic mapping of the literature, conducted to
address the following high-level research question: “What are the strategies that have been

proposed to identify or manage TD in software projects?”. The following complementing research
questions were derived from the main question:

 (Q1) What are the types of TD?
 (Q2) What are the strategies proposed to identify TD?

o (Q2.1) Which empirical evaluations have been performed?
o (Q2.2) Which artifacts and data sources have been proposed to identify the TD?
o (Q2.3) Which software visualization techniques have been proposed to identify TD?

 (Q3) What strategies have been proposed for the management of TD?
o (Q3.1) Which empirical evaluations have been performed?
o (Q3.2) Which software visualization techniques have been proposed to manage TD?

 By answering these questions, in this study, we have identified the types of TD, the
indicators of their existence in projects, and the strategies that have been developed for the
management of this debt. Further, we assess the degree of maturity of the existing proposals
through an analysis of the empirical evaluations that have been carried out. In addition, we also
investigated how software visualization capabilities have been used to support the identification and
management of TD by identifying which visual metaphors have been proposed and what platforms
are being used to show the different types of debt. These results contribute to the evolution of the
TD Landscape [Izurieta et al., 2012].

 We believe that the results of the study presented in this paper will be beneficial for both
researchers and practitioners. For the research community, this mapping will provide information
about the current status of TD research, as well as topics that require further investigation. For
practitioners, the paper shows the types of TD currently considered, as well as strategies for their
identification and management. Professionals may use this information as a basis for adapting and
developing strategies to control the TD in their projects.

 Besides this introduction, this paper has seven other sections. Section 2 discusses some
related work. In section 3, the methodology used in this work is presented. Section 4 presents our
implementation of the research methodology, including the process of defining the addressed
research questions, the study selection process, and the classification scheme we used. Next, in
section 5, the results of the systematic mapping are shown. Section 6 discusses the results, compares
them to related work, and presents implications for practitioners and researchers. Section 7 presents
the threats to the validity of the study. Finally, Section 8 presents the conclusions of this work and
directions for further research.

2. Related Work

 Technical debt has been increasingly investigated in recent years. An indicator of this trend

4

is the existence of five other secondary studies in the area. In this section, we will discuss in
chronological order the goals and results of each study.

 Tom et al. (2012) presented, to the best of our knowledge, the first secondary study in the
area. By performing a systematic review, Tom et al. intended to provide a consolidated
understanding of the TD phenomenon (research questions: What are the elements of technical debt?

Why does technical debt arise?), to reflect this consolidated understanding in the form of a
theoretical framework, and discuss the positive and negative outcomes of TD (research question:
What are the benefits and drawbacks of allowing technical debt to accrue?). According to the
authors, the resulting theoretical framework portrayed a holistic view of TD that incorporates a set
of precedents and outcomes, as well as the phenomenon itself (behaviors, metaphors, and elements).
 In another secondary study in the area, Villar and Matalonga (2013) performed an initial
mapping of the area by answering the following research questions:

 Which are the current definitions of technical debt and development debt?
 What research activities have been performed in the area?
 How has the area evolved over time?
 Who are the main researchers in the area?

 As results, the authors presented:

 11 definitions of TD;
 the number of published papers over the years;
 four categories (general papers on TD, code debt, other types of debt, stakeholders that deal

with TD in their projects) that were created to group the analyzed papers, and;
 a list of the most active (in terms of published papers) authors in the area.

 Tom et al. (2013) extended the work from Tom et al. (2012) by performing an exploratory
case study that involved a multivocal literature review, using accessible writings such as internet
blogs, white papers, and trade journal articles, supplemented by interviews with software
practitioners and academics to establish the boundaries of the TD phenomenon. The research goal
of this study was to consolidate understanding of the nature of technical debt and its implications
for software development, thus establishing the boundaries of the phenomenon and a more complete
theoretical framework to facilitate future research. The findings of this study included the creation
of a useful theoretical framework, consisting of a set of TD dimensions, attributes, precedents and
outcomes, as well as the phenomenon itself and a taxonomy that describes and encompasses
different forms of TD. However, it does not provide a comprehensive taxonomy either of the types
of TD, nor of indicators that can be used to support the identification of different types, that is
commonly accepted and broadly used by the research community. Further, this study did not focus
on the research literature in a way that allows future researchers to build on existing work.

 More recently, Ampatzoglou et al. (2015) performed a systematic review focusing on the
financial perspective in the discussion about TD. The goal of their study was to analyze research
efforts on technical debt, by focusing on their financial aspect. Specifically, the analysis was carried
out with respect to how financial terms are defined in the context of technical debt and how they
relate to the underlying software engineering concepts. The authors found that the most common
financial terms that are used in technical debt research are principal and interest, whereas the
financial strategies that have been more frequently applied for managing technical debt are real
options, portfolio management, cost/benefit analysis and value-based analysis. The authors also
emphasized that the application of such strategies lacks consistency, i.e., the same strategy is
differently applied in different studies, and in some cases lacks a clear mapping between financial
and software engineering concepts.

 In another significant related work in this area, Li et al. (2015) performed a systematic

5

mapping study aimed at collecting studies on TD and TD management, and performing a
classification and thematic analysis on these studies. Their main goals were to get a comprehensive
understanding of the concept of TD, an overview of the current state of the research on TD
management, identify the quality attributes that are compromised when TD is incurred, and
promising future research directions. As a result, TD was classified into 10 types, 8 TD
management activities (for instance: TD identification, repayment, prevention, communication, and
monitoring) were identified, and 29 tools for TD management were collected.

 As can be seen, other studies shared research questions Q1 and Q3, but took slightly
different perspectives in terms of scope and how collected data was categorized. A discussion on
the differences will be presented in section 6.1.

 Finally, it should be noted that the previously published preliminary results of this study
[Alves et. al, 2014] consist of a taxonomy of types of TD represented as a lightweight ontology. In
this paper, we also summarize this ontology, and present the rest of the results of the mapping
study.

3. Mapping Study Method

 Systematic literature mapping is a useful tool for achieving quality of information in a
literature review. It provides a means to perform comprehensive and unbiased literature reviews,
providing considerable scientific value. The systematic mapping (SM) is a type of secondary study
that aims to characterize a particular area of research through a systematic procedure whose purpose
is to identify the extent and nature of the primary studies available in the area [Budgen et al., 2008].

 While a systematic review (another controlled approach to conducting secondary studies) is
a way of identifying, evaluating and interpreting all available relevant research on a particular issue
[Kitchenham et al., 2007], the SM intends to "map" the investigation instead of answering the
research question in detail. Budgen et al. (2008) states that the early stages of a mapping study are
generally very similar to those of a systematic literature review, although the research question
itself is likely to be much broader, in order to adequately address the wider scope of such a study. In
this work, we choose to perform systematic mapping rather than systematic review because of the
wider scope of our study. We intend to search the literature to determine what sorts of studies
addressing the research question on TD identification and management have been carried out,
where they are published, in what databases they have been indexed, and what sorts of outcomes
they have assessed. Both data extraction and analysis are largely concerned with classification of
the available studies.

 A well-organized set of guidelines and procedures for carrying out SMs in the context of
Software Engineering is defined [Petersen et al., 2008] [Budgen et al., 2008], which lays the
foundation for the study presented in this paper. The main reasons to perform a SM are to
systematically identify gaps in the current body of research and support the planning of new
research, avoiding the unnecessary duplication of effort and error [Budgen et al., 2008]. It is worth
noting that the importance and use of SM in the area of Software Engineering is growing [Petersen
et al., 2008] [Budgen et al., 2008], showing the relevance and the potential of the method.

 The empirical software engineering research community has defined a standard process for
conducting this type of study [Peterson et al., 2008]. Figure 1 shows the phases of SM used in this
study. The execution of each phase will be explained in detail in the following sections.

6

Figure 1. The systematic mapping process (adapted from [Petersen et al., 2008]).

4. Study Implementation

 In this section, we explain how we implemented the process outlined in Figure 1, including
our research questions, our specific search strategy and terms, our selection criteria and process, and
our classification scheme.

4.1 Definition of Research Questions

 For this study, a primary research question was defined: “What are the strategies that
have been proposed to identify or manage TD in software projects?”. The following
complementary research questions were derived from the main question. By answering these
questions, we will have a detailed characterization of the identified studies:

Q1. What are the types of TD?

 Many initiatives have been undertaken to investigate the TD research area from different
perspectives, e.g. what causes TD, what effects TD has, how to avoid TD, etc. One perspective
involves the different types of TD that can be found in software projects. It is necessary to organize
this knowledge about existing types so that the TD research community can share a common
vocabulary. Thus, this research question aims to identify the different types of TD found in the
study.

Q2. What are the strategies proposed to identify TD?

 Once the types of TD are known, it is also important to know how they can be identified and
documented in software projects. There are several ways of identifying TD of different types. Some
of them involve simply making explicit (and in some cases quantifying) TD that is not really
hidden, e.g. outdated documentation or incomplete tests. Other identification strategies involve the
use of tools to analyze source code or other artifacts to find hidden debt, e.g. poorly structured code,
architecture problems, etc. Each identification strategy has associated with it some kind of
“indicator”, sometimes a metric or sometimes something less formal, that can be used to point to
areas with specific types of debt. This question aims, for each identified type of TD, to identify the
indicators that have been proposed for their identification. This association between types of debt
and their respective indicators is important because it will allow, when choosing to manage a
particular type of TD, informed decisions about the indicators that could be used.

Q2.1. Which empirical evaluations have been performed?

 Beyond proposing technologies for identifying TD, it is important to evaluate technologies
that have been developed so that their effectiveness is characterized. Different types of assessments
can be used, such as survey, case study and controlled experiment.

 In this context, the purpose of this question is to identify what types of empirical studies
have been used to assess strategies for the identification of TD proposed in the literature. Obtaining
this information is important to get an idea of the level of the maturity of the existing proposals.

Q2.2. Which artifacts and data sources have been proposed to identify the TD?

7

 TD of different types can be identified in different artifacts (e.g. requirements, source code)
generated during software development. In addition, various types of data sources (where the
artifacts are organized) may contain relevant information that makes the discovery of TD possible.
Version control and defect management systems are examples of possible data sources that can be
analyzed to discover the debt in a project. The purpose of this question is to know which artifacts
and data sources have been proposed to identify TD.

Q2.3. Which software visualization techniques have been proposed to identify TD?

 Software is becoming increasingly complex in terms of innovation and size. A consequence
of this is the increasing amount of information generated from software development activities. This
further complicates the task of analyzing the project artifacts, looking for TD items and also, once
identified, monitoring their behavior during the evolution of the software. One of the tools that can
be used to make this task easier is software visualization. Visualization techniques allow the
representation of information that is often difficult to analyze in textual or tabular form.
Considering this scenario, this research question seeks to identify whether, and which, visualization
techniques have been proposed in the identification of TD.

Q3. What strategies have been proposed for the management of TD?

 Just as important as identifying the TD items in a project, is to implement an efficient and
effective management strategy for them. Techniques such as Cost-Benefit Analysis [Seaman and
Guo, 2011] and Modern Portfolio Theory [Guo and Seaman, 2011] have been proposed for this
purpose. However, various other strategies have also been defined. The purpose of this question is
to perform a characterization of the strategies that have been proposed for managing TD.
Addressing this question will help us understand, for example, what criteria have been used in the
decision to pay the debt or maintain it in the project.

Q3.1. Which empirical evaluations have been performed?

 The purpose of this question is to identify what types of empirical studies have been used to
assess strategies for the management of TD proposed in the literature.

Q3.2. Which software visualization techniques have been proposed to manage TD?

 This research question seeks to identify whether, and which, visualization techniques have
been proposed in the management of TD.

4.2 Search strategy

 We first chose the following keywords to perform the search in the digital libraries:
● Population:

o Technical Debt;

o Software Project, Software;

● Intervention:
o Practice, technique, method, process;

o Identification, identify, gathering, detection, discovery;

o Management, Monitoring.

 Table 1 presents the search string derived from these keywords.

Table 1. Search String.

(("technical Debt") AND (“Software Project” OR “Software”))

AND

(“Practice” OR “Technique” OR “Method” OR “Process”)

8

 AND

(“Identification” OR “Identify” OR “Gathering” OR “Detection” OR “Discovery”)

OR

(“Management” OR “Monitoring”)

 However, after some tests performed in digital libraries, it was observed that the search
string was too restrictive and returned a small number of papers. This could result in an incomplete
mapping process. Therefore, we chose a more general search strategy, using only the following
keywords:

● Population:
o Technical Debt;

o Software.

 For these keywords, the search string shown in Table 2 was defined. We applied this search
string to Titles and Abstracts. We chose not to do full text search because we found that full text
search resulted in a very large number of studies from domains other than software development.

Table 2. Generic search String.

(“Technical Debt”)

AND

(“Software”)

4.3. Data Sources

 In choosing data sources, we aimed to include important journals and conferences regarding
the research topic. We restricted the search to studies published up to December 2014. We included
publications retrieved from several digital libraries and web search engines: ACM Digital Library,
IEEE Xplorer, Science Direct, Engineering Village, Springer Link, Scopus, Citeseer, and DBLP.
According to [Brereton et al. 2007], these are the recommended data sources of papers for software
engineering researchers as they provide access to important journals and conferences in the area.

4.4. Study selection

 As the search string was generic, the search returned many papers that were not relevant for
this research. Thus, it was necessary to filter out the irrelevant papers, which required a set of
criteria.

 Our inclusion criteria were:

 Published papers that describe how to identify and/or manage TD;
 When several papers reported the same study, only the most recent was included;
 When multiple studies were reported in the same paper, each relevant study was considered

separately.

 The exclusion criteria were:

 Papers that do not have information on how they handle the identification or management of
TD;

 Papers that are only available in the form of workshop/conference reports, abstracts or
Power Point presentations;

 Duplicate papers.

9

 The identification and filtering of the papers was divided into five stages, as shown in Figure
2. The first step consisted of searching for papers using the search string in each of the digital
libraries selected for this study (ACM Digital Library, IEEE Xplore, Science Direct, Engineering
Village, Springer Link, Scopus, Citeseer and DBLP).

 In the second step, the first filtering (Figure 2 - Filter1) took place and was performed by
only one researcher. In this process, the exclusion criteria were used, removing all the proceedings
abstracts, Power Point presentations, and duplicate papers.

 In the third step a second filter (Figure 2 - Filter2) was applied. Each paper was analyzed by
two researchers, and in the event of a conflict, a third researcher analyzed them and took the most
appropriate decision. Filtering was carried out by reading the titles, abstracts and introductions (if
necessary) using the inclusion and exclusion criteria. When a decision was not yet possible, the
paper proceeded to the next step, where it was read in full. After this step, 100 papers were selected
to go on to the next filtering stage.

 In the fourth stage, the last filter (Figure 2 - Filter3) was applied. This time, the selected
papers were read in full. At the end of this stage, 12 more papers were excluded. For example, Cai
et al. (2013) reported on an experiment applying a tool-supported architecture review into software
design education and Tomas et al. (2013) has done a study on the existing tools to calculate metrics
of internal quality on software projects. However, the focus of these studies was different from the
research question and/or did not have enough information about the identification or management
of TD specifically.

 Finally, in the fifth stage we applied the snowballing by checking the references of each
selected study (89) in order not to miss any potentially relevant studies (Budgen et al., 2008). At the
end, the selected studies (11) from the snowballing process were combined into the final results of
the study selection. The remaining 100 (listed in Appendix A) papers were used to extract the
information to answer the research questions.

Figure 2. The filtering process of the papers

 The final number of selected papers from each digital library is shown in Figure 3. Clearly,
most of the selected papers came from ACM Digital Library and IEEE Xplore online libraries.

10

Figure 3. Number of papers included by digital library.

4.5 Classification scheme

 The attributes in the classification scheme were structured into six categories to allow a
better information analysis: metadata about the selected studies, TD types, TD indicators,
management strategies, evaluation studies, and strategies for software visualization. Each category
is related to one or more research questions (as defined in section 3) and is presented below.

− Metadata of the studies

 The first category contains data about the selected studies such as: venues where the studies
were published, authors and affiliations of the papers, type of the papers (e.g. short, full or journal
papers), and year of publication.

 To collect the information for this category, we counted the number of papers per
publication venue, as well as the type of venue (e.g. conference, workshop, or journal) where they
were published. In addition, the papers were classified into two types: short papers and full papers.
Papers with up to 4 pages are considered short papers; longer papers are full papers.

− TD types (Q1)

 This category includes information about the TD types. Basically, its attributes are TD types
and their definitions. TD can occur in different artifacts throughout the life cycle of a product. Even
different instances of debt in the same artifact can be of different types. Different types of TD have
differing nature depending on the moment in which they are incurred or on the activities that they
are associated with. Multiple types of TD have been studied and presented in the literature.

 The types of debt are usually identified in papers in one of the following ways:

 Direct: name of the type + the word debt (for instance: design debt, defect debt) or;
 Indirect: indentified in phrases such as the developer incurred a type of debt related to the

architecture of the project (architecture debt) or this type of debt is derived from late

decisions regarding training people or hiring developers (people debt).

 Thus, in order to identify the different types of debt in each paper, three researchers
documented the types and their definitions from each paper, using terminology straight from the
papers. At the end, this information was consolidated for each type of debt that was found. The
types of debt are not orthogonal, i.e. some instances of TD could conceivably fit into more than one
category.

− TD indicators (Q2, Q2.1, and Q2.2)

11

 In the third category, information about the identified TD indicators is represented.
Basically, its attributes are the list of indicators, their relationship with each TD type, the type of
empirical evaluation performed on each indicator, and where (data source) each indicator can be
found in software projects.

 In order to identify different TD indicators, during the reading of the selected studies, three
researchers collected the mentioned indicators as well as types of debt they are associated with and
software development artifact in which they are identified, following the terminology straight from
the papers. At the end, this information was consolidated.

− TD management strategies (Q3 and Q3.1)

 The fourth category represents the TD management strategies. We listed all strategies
described in the literature with the aim to manage any type of TD in the project. Besides the
strategies and their definitions, we also investigated the type of empirical evaluation performed on
them.

 In order to identify the different strategies, three researchers collected the mentioned
strategies and their corresponding definitions following the terminology straight from the papers.
To be considered a management strategy, we adopted the criteria that the strategy needs to support
decisions about when and if a TD item should be paid. At the end, this information was
consolidated for each management strategy that was found.

− TD evaluation studies (Q2.1 and Q3.1)
Software engineering aims to support the development of software systems within

previously established limits of time, cost and quality [Pfleeger, 2007]. However, according to
Kitchenham et al. (2004), using good processes is not enough to improve quality during software
development. This is because development is dependent on technologies that do not often present
sufficient evidence of their potential benefits, limitations, cost of implementation and associated
risks. To deal with this, Kitchenham et al. (2004) argue that the use of evidence would allow the
characterization of a technology prior to its adoption in software projects by the industry, so that it
would be possible to determine, with reasonable levels of confidence, the feasibility of its use when
considering specific use scenarios.

In this context, there are different types of empirical studies that could be used to gain
evidence about the feasibility and effectiveness of any proposed strategy. The application of these
types of study, and consequently the use of the empirical paradigm, to support evaluation in
software engineering is important because they contribute to a higher level of maturity. This also
applies to research on TD.
 The fifth category shows the collected information about empirical studies found in the
literature. To classify the types of performed evaluations, we used the following taxonomy [Wohlin
et al., 2000]:

 Case study: used to monitor projects, activities or assignments aiming to trace a specific
attribute or establish relationships between different attributes without much formal control
over the activities related to the experimental method;

 Controlled experiment: an empirical enquiry that manipulates one factor or variable of the
studied setting. Based on randomization, different treatments are applied to or by different
subjects, while keeping other variables constant, and the effects on outcome variables are
measured. In human-oriented experiments, humans apply different treatments to objects,
while in technology-oriented experiments, different technical treatments are applied to
different objects;

 Ethnographic study: applied to understand user behavior in detail. This is a specialized
type of case study with focus on cultural practices or long duration studies with large
amounts of participant-observer data.

12

− TD software visualization techniques (Q2.3 and Q3.2)

Software visualization techniques have been investigated in software engineering to help in
understanding, maintaining, testing, and evolving software systems [Novais et al., 2013]. Software
visualization techniques are increasingly researched, motivated by the fact that vision is the most
used sense by humans [Diehl, 2007]. In this sense, software visualization techniques can support the
developer in the identification and/or management of different types of TD in software projects.
Thus, it is important to investigate which software visualization techniques have been proposed to
support the identification and/or management of TD and what platforms are being proposed to show
such visualization techniques.

 The sixth category reflects the papers that make use of software visualization techniques to
identify and manage TD in software projects. We classified the software visualization techniques
according to [Novais et al., 2013].

 Finally, for analysis of the TD indicators and TD evaluation studies, the papers were
classified into two types: papers that analyze (those that present indicators and describe them in
detail) and papers that only cite (those that do not go into details).

5. Mapping Results

 For data extraction, the included studies were read in full by three researchers who were
directly involved in the mapping. A spreadsheet1 was used to collect and to analyze the data.

 In this section we present the analysis of the data extracted from the selected studies. First
we present the analysis of metadata related to publications and authors. In subsequent subsections,
we present the types of TD, their indicators, management strategies, identified evaluation studies
and the types of software visualization strategies being used.

 The largest number (38 out of 100) of papers is concentrated in the International Workshop
on Managing TD. Another small cluster of papers (5) were found from a special issue of IEEE
Software on TD. However, publications are already emerging in other venues, such as the Agile
Conference, the IEEE Annual Computer Software and Applications Conference, the International
Conference on Software Engineering (ICSE), the IEEE International Conference on Software
Maintenance (ICSM), the International Symposium on Empirical Software Engineering and
Measurement (ESEM), the Cutter IT Journal, and the Software Quality Journal. There were a total
of 51 different venues with 1 or 2 papers each.

 As can be seen in Figure 4, the study distribution over publication types is 40% (40 studies)
for workshops, 32% (31 studies) for conferences, 4% (4 studies) for symposia, 15% (15 studies) for
journals, and 9% (9 studies) for magazines. If we merge the publication types conference and
symposium, and journal and magazine (peer-reviewed) into two groups, we will have a distribution
of studies close to that obtained by Li et al. (2015). Besides, there has been an increase in the
number of both full papers and publications in journals, which indicates that the area of research is
maturing.

1 https://drive.google.co]m/file/d/0B_x3JCtCrSomdW56NFJqQnJ2N00

13

Figure 4. Studies by manner of publication, type of paper and by year.

 The 100 selected papers were written by 115 different authors, showing a wide interest on
this subject in the software engineering research community. However, it was found that only 10
researchers (Antonio Vetro’, Carolyn Seaman, Clemente Izurieta, Forrest Shull, Ipek Ozkaya, Nico
Zazworka, Rami Bahsoon, Robert Nord, Yuanfang Cai and Yuepu Guo) were involved in more
than 5 papers each. Of this group, the five most active authors are all very close collaborators (22 of
the 100 papers had at least one of these authors).

5.1. Technical debt types (Q1)

 Here, the types found in this mapping study are presented sorted by frequency, as well as
their definitions (an initial version of this taxonomy of types, based on selected papers up to 2013,
is reported separately [Alves et. al, 2014]):

● Design Debt: Refers to debt that can be discovered by analyzing the source code and
identifying violations of the principles of good object-oriented design (e.g. very large or
tightly coupled classes) [Guo and Seaman, 2011] [Izurieta et al., 2012];

● Architecture Debt: Refers to the problems encountered in product architecture, for
example, violation of modularity, which can affect architectural requirements (performance,
robustness, among others). Normally this type of debt cannot be paid off with simple
interventions in the code, implying more extensive development activities [Brown et al.,
2010] [Kruchten et al., 2012];

● Documentation Debt: Refers to the problems found in software project documentation and
can be identified by looking for missing, inadequate, or incomplete documentation of any
type [Guo and Seaman, 2011];

● Test Debt: Refers to issues found in testing activities that can affect the quality of those
activities. Examples of this type of debt are planned tests that were not run, or known
deficiencies in the test suite (e.g. low code coverage) [Guo and Seaman, 2011];

● Code Debt: Refers to the problems found in the source code that can negatively affect the
legibility of the code making it more difficult to maintain. Usually, this debt can be
identified by examining the source code for issues related to bad coding practices [Bohnet
and Dцllner, 2011];

● Defect Debt: Refers to known defects, usually identified by testing activities or by the user

14

and reported on bug tracking systems, that the Configuration Control Board (CCB) agrees
should be fixed but, due to competing priorities and limited resources, have to be deferred to
a later time. Decisions made by the CCB to defer addressing defects can accumulate a
significant amount of TD for a product, making it harder to fix them later [Snipes et al.,
2012];

● Requirements Debt: Refers to tradeoffs made with respect to what requirements the
development team needs to implement or how to implement them. Some examples of this
type of debt are: requirements that are only partially implemented, requirements that are
implemented but not for all cases, requirements that are implemented but in a way that
doesn’t fully satisfy all the non-functional requirements (e.g. security, performance, etc.)
[Kruchten et al., 2012];

● Infrastructure Debt: Refers to infrastructure issues that, if present in the software
organization, can delay or hinder some development activities. Some examples of this kind
of debt are delaying an upgrade or infrastructure fix [Seaman and Spínola, 2013];

● People Debt: Refers to people issues that, if present in the software organization, can delay
or hinder some development activities. An example of this kind of debt is expertise
concentrated in too few people, as an effect of delayed training and/or hiring [Seaman and
Spínola, 2013];

● Test Automation Debt: Refers to the work involved in automating tests of previously
developed functionality to support continuous integration and faster development cycles
[Codabux and Williams, 2013]. This debt can be considered a subtype of test debt;

● Process Debt: Refers to inefficient processes, e.g. what the process was designed to handle
may be no longer appropriate [Codabux and Williams, 2013];

● Build Debt: Refers to issues that make the build task harder, and unnecessarily time
consuming. The build process can involve code that does not contribute to value to the
customer. Moreover, if the build process needs to run ill-defined dependencies, the process
becomes unnecessarily slow. When this occurs, one can identify build debt [Morgenthaler et
al., 2012];

● Service Debt: Refers to the inappropriate selection and substitution of web services that
lead to mismatch of the service features and applications’ requirements. Besides, this type of
debt also leads to under- or overutilization of the system by integrating a service that does
not use the system resources in the expected way (for instance, lack of memory due to a
service that does not follow the expected data processing process, or lack of performance
due to a service that does not use the available memory for the task). This kind of debt is
relevant for systems with service-oriented architectures [Alzaghoul and Bahsoon, 2013];

● Usability Debt: Refers to inappropriate usability decisions that will need to be adjusted
later. Examples of this debt are lack of usability standard and inconsistence among
navigational aspects of the software [Zazworka et al., 2013][Potdar and Shihab, 2014];

● Versioning Debt: Refers to problems in source code versioning, such as unnecessary code
forks [Greening, 2013].

Table 3 shows the number of papers that analyzed or mentioned each TD type identified in
this mapping. It is also observed that some papers did not discuss a specific type of debt, and
therefore are represented on the graph by the term "Technical Debt".

Table 3. Papers by type of TD over the years.

TD Type 2006 2010 2011 2012 2013 2014 Total

Design 1 5 8 11 9 8 42

Architecture 0 2 3 11 5 9 30

15

Documentation 0 2 4 6 4 12 28

Test 0 2 2 8 6 6 24

(Type not specified) Technical Debt 0 1 1 5 6 10 23

Code 0 3 1 9 5 3 21

Defect 0 1 5 3 3 5 17

Requirement 0 0 0 2 0 2 4

Infrastructure 0 1 0 1 1 0 3

People 0 0 0 1 0 2 3

Test Automation 0 0 0 0 2 1 3

Process 0 0 0 0 2 1 3

Build 0 0 0 1 0 1 2

Service 0 0 0 0 2 0 2

Usability 0 0 0 0 1 1 2

Versioning 0 0 0 0 1 0 1

 Table 3 also shows that, in the years 2010 and 2011, papers were highly concentrated on
architecture, design and documentation debt, along with some papers on code and test debt.
Moreover, it can be seen that the TD types have expanded with time, indicating that new fields are
being included, such as service, process, usability, and versioning. We can also observe that there is
a high concentration of studies on types of debt more related to the source code (design,
architecture, code, and defect). A possible explanation for this is that there is a plethora of tools that
perform source code analysis and can be used to support the detection of TD from the source code.

5.2. Technical Debt Indicators (Q2, Q2.1, Q2.2, Q2.3)

 TD indicators allow the discovery of TD items when analyzing the different artifacts created
during the development of a software project. Table 4 shows the indicators that were identified in
this study organized by the TD type that they are associated with. To map indicators to types of TD,
we used information provided by the papers where each indicator was identified. It is also important
to mention that the identified indicators were explicitly mentioned in the papers as a way to identify
a specific type of debt, for example: god classes were used to support the identification of design

debt or one alternative to identify architectural issues is to look for modularity violations.

 We can observe that some types, such as design, already have a fair number of indicators.
On the other hand, indicators were not identified for some types of debt in the literature: process,
infrastructure, people, and usability debt. We also observe that, just as the types of debt are not
orthogonal, we also have some indicators that are mapped to more than one type. For instance, the
line that separates design and code debt is sometimes tenuous. Design debt is usually more
concentrated on object oriented design practices. On the other side, code debt is more related to
good coding practices. However, as the design is reflected in the code, we clearly have some
overlap between these TD types and, as a consequence, we also have some overlap between their
indicators. Besides, it is also possible to have indicators that can be extracted from the code but that
are related to other types of debt, other than code debt. For example, indicators of design debt are
extracted from the source code, but some of them cannot be considered indicators of code debt
because they reflect the lack of object oriented design practices.

16

 Table 4 also shows the number of papers that identified each indicator. For this analysis, the
papers were classified into two types: papers that analyze (those that present indicators and describe
them in detail) and papers that only cite (those that do not go into details). It can be observed that,
with some exceptions (e.g. Code Smells, Automatic Static Analysis - ASA Issues, Documentation,
Coding Standards, and Modularity Violation), there are few papers detailing each indicator. In fact,
most of the identified indicators are either cited or analyzed by only one paper. This indicates that
more studies need to be performed in order to investigate the real benefits and limitations of each
indicator when identifying items of TD in software projects.

Table 4. Indicators organized by TD type

Indicators

Articles

that

analyze

Articles

that only

cite

TD Type

Violation of Modularity 6 3

Architecture Debt

Software Architecture Issues 7 2

Betweenness Centrality 1 -

Augmented Constraint Network (CAN) 1 -

Pairwise-Dependency Relation (PWDR) 1 -

Index of Package Changing Impact (IPCI) 1 -

Index of Package Goal Focus (IPGF) 1 -

Structural Dependencies 3 - Architecture Debt / Build Debt

Structural Analysis 1 1 Architecture Debt / Design Debt

Build Issues 3 - Build Debt

Code without Standards 3 5

Code Debt Slow Algorithm - 1

Multithread Correctness 1 1

Code Metrics (not specified) 3 3

Design Debt / Code Debt Automatic Static Analysis (ASA) Issues 7 2

Code Smells 38 14

Grime 3 2

Design Debt

Software Design Issues 2 2

Low External / Internal Quality 1 2

Afferent / Efferent Couplings (AC / EC) 1 -

Depth of Inheritance Tree (DIT) 1 -

Referential Integrity Constraints (RICs) 1 -

Uncorrected Known Defects 3 3 Defect Debt / Test Debt

Insufficient Comments in Code - 1

Documentation Debt
Lack of Documentation 1 -

Comments (hack, fixme, is problematic, ...) 1 -

Documentation Issues 6 11

- - - Infrastructure Debt

- - - People Debt

- - - Process Debt

Requirement Backlog List 1 - Requirement Debt

Selection/Replacement of Web Service 1 - Service Debt

Lack of Automated Testing 1 - Test Automation Debt

Incomplete Tests 3 4
Test Debt

Defects Deferred 3 -

17

Insufficient Code Coverage 1 -

Lack of Test Case Documentation 1 -

Lack Test Case planning 1 -

- - - Usability Debt

Unnecessary code forks - 1 Versioning Debt

The results show that the most cited and analyzed TD indicator is Code Smell. Figure 5
shows the detail of the types of code smells that have been considered as indicators. Some authors
did not specify the type of code smell, in these cases we grouped them as "Type not specified". We
can observe that the type of code smell that has been most investigated is God Class. An
explanation for this is that God Classes are conceptually easy to understand, are up to 13 times more
likely to be affected by defects and up to seven times more change-prone than their non-smelly
counterparts, what makes them a good candidate when starting to detect TD from the source code
[Olbrich et al., 2010][Zazworka et al., 2011].

Figure 5. Papers per Code Smell.

5.2.1 Evaluation Studies

 The research community has published work on 45 different TD indicators over the years
we studied. Four TD indicators appeared in 2010, 7 in 2011, 15 in 2012, 8 in 2013, and 11 in 2014.
We also observed that, as the new types of debt appear, new indicators also emerged. Although
many indicators have been characterized in this study, we found that few of them have actually
been evaluated, i.e. had some empirical evidence assessing their usefulness or validity. To classify
the types of evaluation performed, we considered the following taxonomy from Wohlin et al.
[2000]: Case study, Controlled experiment, and Ethnographic study.

 Our results show that case studies and controlled experiments are the most commonly used
types of study among the evaluated indicators. Figure 6 shows the distribution of the number of
papers that used each type of empirical study. The case study method was the most used type, and
only four controlled experiments were identified. This implies that most of the proposals in the TD
area still require more experiments, so that their benefits and limitations can be known with

18

increased confidence.

Figure 6. Papers by type of study.

 Among the indicators evaluated, we can highlight god class, reported by six studies (three
controlled experiments and three case studies). This suggests that the potential usefulness of god
class in supporting the activities of TD identification in software projects is already established.
Another indicator that stands out is ASA issues, which were evaluated through five case studies and
two controlled experiments. Furthermore, Documentation and Software Architecture Issues have
been evaluated in five case studies. Violation of Modularity and Structural Dependency indicators
have been used in four case studies.

5.2.2 Artifacts and Data Sources

Indicators can also be classified by the software development artifact in which they are
identified. Figure 7 shows the artifacts that have most often been used for analysis in the TD
literature. There is a clear focus on strategies for identifying TD items from the source code. The
other artifacts have only been used occasionally. Again, a possible explanation for this is that there
is a set of tools that perform source code analysis and can be used to support the detection of TD
from the source code and that there is a high concentration of studies on types of debt more related
to the source code.

19

Figure 7. Papers by artifact considered.

As a complement to the results shown in Figure 7, Figure 8 shows the different
programming languages used where TD indicators have been investigated in the source code. It
should be noted that although different programming languages have been considered, there is a
higher concentration on Java. A possible explanation for the frequency of Java-based case studies is
the plethora of tools that perform source code analysis in Java.

20

Figure 8. Papers by programming language

Finally, Figure 9 shows the data sources (DS) that have been reported in the literature as
sources of useful information in the strategy of identifying TD. For example, if the TD is located in
the code, the DS refers to the location where the code is stored. The identified DSs were:

● Bug Tracking Systems (BTS): a software application that keeps track of reported software
bugs and records maintenance and change occurrences over the software lifecycle (e.g.
Bugzilla2);

● Configuration Management Systems (CMS): software that enables the project team to
work in a controlled and organized way on the artifacts created during software
development (e.g. SVN3 Systems and GIT4);

● Repositories of Applications: refers to open databases containing information about
products that can be used, free of charge, for collecting metrics and conducting studies (e.g.
Google Repository5);

The most common data source type used was Repositories of Applications and CMS, in six
papers. Repositories of applications are important when conducting studies, however the practical
impact of such studies is questionable given that the applications are very different from those
maintained by practitioners in the software industry. On the other hand, it was observed that BTSs
are also being used in some studies.

2 www.bugzilla.org
3 https://subversion.apache.org/
4 http://git-scm.com/
5 https://code.google.com/

21

Figure 9. Papers by identified data source

5.2.3 Software Visualization Techniques

Only 6 of the 100 primary studies proposed software visualization techniques in the context
of TD identification, indicating a fairly low use of visualization in this area. The types of software
visualization techniques proposed to identify TD were: Flags in code, 2D maps, scatterplot and
correlation matrix, time range, timeline, and treemap. Each type was cited only once.

 Besides, the most common type of platform proposed to display visualizations is an
automatic tool (with 4 citations). Spreadsheet was considered only on two papers. This is an
expected result because TD identification activities usually collect a lot of data from the project,
often more than can be easily handled in a spreadsheet, which is the only other platform used in
studies involving visualization.

5.3. Strategies for Managing Technical Debt (Q3, Q3.1, Q3.2)

 In this section, the TD management strategies found in the literature are presented, along
with their definitions.

 The only strategies with two or more references were:
● Cost-Benefit Analysis: This evaluates whether the expected interest is high enough to

justify the payment of the debt. The interest rate is composed of two parts: the probability of
interest and its value. The first part refers to the probability that the debt, if not paid, will
result in extra cost to the project. The second part is an estimated amount of additional work
that will be required if this item is not paid [Seaman et al., 2012];

● Portfolio Approach: The central concept of this strategy is the list of TD items. This list
contains debt items identified for the project. The registration information is reported in a
table that contains the location of the debt, the time at which it is identified, the responsible
person, the reason why it is considered TD, an estimate of the principal, estimates of the
expected interest amount (EIA) and interest standard deviation (ISD), and estimates of the
correlations of this item with other TD items. During the planning of each software
increment, an analysis of what should be paid and what can be postponed is done [Guo and
Seaman, 2011];

22

● Options: For this strategy, investment in paying off the debt is analogous to purchasing the
option that facilitates change to the software in the future, if the software has to be changed,
but without immediate profits [Seaman et al., 2012];

● Analytic Hierarchy Process (AHP): AHP provides a method for structuring a problem,
comparing alternatives with regard to specified criteria, and determining an overall ranking
for each alternative. When applied to TD, the decision alternatives would be the various
identified instances of technical debt, and the outcome of the strategy would be a prioritized
ranking of these items, indicating which should be paid off first [Seaman et al., 2012];

● Calculation of TD Principal: The strategy focuses on the estimated principal. The
objective is to use a defined process to estimate the TD Principal and to associate the
identified issues with different quality attributes (ISO 9126). According to the authors,
having the principal associated with quality attributes drives managers to make better
decisions [Curtis, 2012];

● Marking of Dependencies and Code Issues: This is a strategy used to manage problems
and dependencies in the project source code. The objective is to insert tags in the project’s
source in a way that is easy for the development team to visualize where TD is inserted and
thus decide when to pay it, based on the involved effort and the availability of project time
[Holvitie and Leppanen, 2013].

 For more information on other management techniques, note the references in Table 5. In
the table we can see that the management strategies “Portfolio Approach” and “Cost Benefit
Analysis” were the most cited. But as the number of papers is still small, and mostly the strategies
have not been evaluated, it is not possible to say whether the two strategies are more effective than
other strategies.

Table 5. References of each management strategy

Management Strategy
(Approaches, Methods and Models)

References
Number
of Papers

Cost-Benefit Analysis [Guo et al., 2011]
[Seaman et al., 2012]
[Stochel, 2012]
[Holvitie and Ville, 2013]
[Monteith and McGregor, 2013]
[Griffith et al., 2014]
[Alzaghoul and Bahsoon, 2014]
[Ojameruaye and Bahsoon, 2014]
[Ramasubbu and Kemerer, 2014]
[Guo et al., 2014]
[Holvitie, 2014]

11

Portfolio Approach [Guo and Seaman, 2011]
[Seaman et al., 2012]
[Stochel, 2012]
[Snipes et al., 2012]
[Power, 2013]
[Zazworka et al., 2013]
[Ken, 2013]
[Griffith et al., 2014]
[Alzaghoul and Bahsoon, 2014]
[Ojameruaye and Bahsoon, 2014]

10

Options [Zazworka et al., 2011]
[Seaman et al., 2012]
[Alzaghoul and Bahsoon, 2013]
[Griffith et al., 2014]
[Alzaghoul and Bahsoon, 2014]
[Ojameruaye and Bahsoon, 2014]

6

23

Analytic Hierarchy Process [Seaman et al., 2012]
[Alzaghoul and Bahsoon, 2014]
[Ojameruaye and Bahsoon, 2014]

3

Calculation of TD-Principal [Curtis et al., 2012]
[Curtis et al., 2012b]

2

Marking of dependencies and Code Issues [Morgenthaler et al., 2012]
[Tom et al., 2013]

2

Debt Symptoms Index [Marinescu, 2012] 1

Empirical Model of Technical Debt and
Interest

[Nugroho et al., 2011] 1

Formal Approach to Technical Debt
Decision Making

[Schmid, 2013] 1

Game Theoretic Competitive Source
Control Approach

[Morrison-Smith et al., 2012] 1

Measuring symptom severity on a smell
thermometer

[Ligu et al., 2013] 1

Metric for Managing Architectural
Technical Debt

[Nord et al., 2012] 1

RE-KOMBINE Model [Ernst, 2012] 1

SQALE Method [Letouzey and Ilkiewicz, 2012] 1

Supply Chain Management [Alzaghoul and Bahsoon, 2013] 1

Framework for Estimating Interest [Singh et al., 2014] 1

Managing TD in database schemas [Weber et al., 2014] 1

Benchmarking-Based Model [Mayr et al., 2014] 1

Model for optimizing technical debt [Ramasubbu and Kemerer, 2013] 1

Finance and accounting practices [Conroy, 2012] 1

 The number of published papers per year discussing management strategies was also
investigated. In 2010, no management strategy was identified in any published paper. Only a
handful of TD management papers were published in 2011, introducing such ideas as cost-benefit
analysis and portfolio management. In 2012, the number of papers, and the number of newly
introduced management techniques, exploded, with 16 papers published that year. In 2013, a total
of 10 TD management papers were identified. Finally, in 2014, the number of papers exploring TD
management was also high reaching 17 papers.

5.3.1 Evaluation Studies

24

 Figure 10 shows the number of papers on management strategies and the type of performed
evaluation. It can be observed that the studies are concentrated on case study method. Besides, not
all strategies were evaluated. This implies that most of the proposals in the TD management area
still require more experiments, so that their benefits and limitations can be known with increased
confidence.

Figure 10. Papers by management strategy and type of study.

5.3.2 Software visualization techniques

As can be seen in Figure 11, 22 of the 100 primary studies proposed software visualization
techniques in the context of TD management. The most proposed visualization techniques were
dependency matrix, bar graph, and pie chart format. One opportunity that arises here is to
investigate different types of software visualization techniques already proposed in other contexts in
software maintenance and evolution [Novais et al. 2013], and adapt them to manage TD.

Figure 11. Types of software visualization techniques proposed to manage TD.

25

 In complement, the most common type of platform proposed to display visualizations is the
spreadsheet (with 15 citations). Automatic tool had only 7 citations. This is interesting in contrast to
results of software visualization for TD identification, which shows that automatic tools are more
prevalent and that papers describing visualization for TD identification are many fewer than those
for TD management. This kind of manual solution, a spreadsheet, is far from ideal, as it requires a
lot of effort to record the data extracted from the software project and keep it up-to-date.

6. Discussion

 In this section, we compare our results to those of other secondary studies in this area,
discuss and synthesize the results presented in section 5, and present the implications of these
results for both researchers and practitioners.

6.1. Comparison to related work

 In this section, we will discuss how this work differs from the related work introduced in
Section 2. Table 6 shows the correspondence among the research questions found in each study.

 Regarding “(Q1) What are the types of TD?”, there is a partial overlapping among the
studies. The overlapping is associated with the goal of the question, but looking into the results
from each study, it is possible to observe a complementary relationship between them. Tom et al.
(2012) classified debt into seven elements and, after, Tom et al. (2013) categorized them into five
dimensions. The work of [Li et al., 2015] and our mapping study have 10 types in common but
differ on 5 that were only identified in this work. Figure 12 represents the intersection among the
studies. Thus, our proposed taxonomy complements other relevant categorizations of TD performed
in the last years [Tom et al., 2013][Li et al., 2015]. However, the identified types of debt still
require some sort of evaluation by the research community and software practitioners.

2
6

T
a

b
le

 6
.

C
o

rr
es

p
o

n
d

en
ce

 a
m

o
n

g
 r

es
ea

rc
h

 q
u

es
ti

o
n

s.

O

u
r

M
a

p
p

in
g

 S
tu

d
y

[T

o
m

 e
t

a
l.

,
2

0
1

2
]

[V
il

la
r

a
n

d
 M

a
ta

lo
n

g
a

,
2

0
1

3
]

[T
o

m
 e

t
a

l.
,

2
0

1
3

]
[A

m
p

a
tz

o
g

lo
u

 e
t

a
l.

,
2

0
1

5
]

[L
i

et
 a

l.
,

2
0
1

5
]

Research Questions

(Q
1

)
W

ha
t a

re
 th

e
ty

pe
s

of
 T

D
?

(R

Q
1

)
W

ha
t a

re
 th

e
el

em
en

ts
 o

f
te

ch
ni

ca
l

de
bt

?

-
(R

Q
1

)
W

ha
t a

re
 th

e
di

m
en

si
on

s
of

 te
ch

ni
ca

l
de

bt
?

-
(R

Q
1

)
W

ha
t a

re
 th

e
ty

pe
s

of
 T

D
 a

nd
 w

ha
t i

s
no

t c
on

si
de

re
d

as
 T

D
?

(R
Q

2
)

W
ha

t T
D

 ty
pe

s
ar

e
re

se
ar

ch
er

s
an

d
pr

ac
ti

tio
ne

rs
 m

os
tl

y
w

or
ki

ng
 o

n
an

d
w

ha
t

ty
pe

s
ar

e
un

de
r-

st
ud

ie
d?

(Q

2
)

W
ha

t a
re

 th
e

st
ra

te
gi

es

pr
op

os
ed

 to
 id

en
ti

fy
 T

D
?

-

-
-

-
-

(Q

2
.1

)
W

hi
ch

 e
m

pi
ri

ca
l

ev
al

ua
ti

on
s

ha
ve

 b
ee

n
pe

rf
or

m
ed

?

-
-

-
-

-

(Q
2

.2
)

W
hi

ch
 a

rt
if

ac
ts

 a
nd

da

ta
 s

ou
rc

es
 h

av
e

be
en

pr

op
os

ed
 to

 id
en

ti
fy

 th
e

T
D

?

-
-

-
-

-

(Q
2

.3
)

W
hi

ch
 s

of
tw

ar
e

vi
su

al
iz

at
io

n
te

ch
ni

qu
es

 h
av

e
be

en
 p

ro
po

se
d

to
 id

en
ti

fy
 T

D
?

-
-

-
-

-

(Q
3

)
W

ha
t s

tr
at

eg
ie

s
ha

ve
 b

ee
n

pr
op

os
ed

 f
or

 th
e

m
an

ag
em

en
t o

f
T

D
?

-
-

-
(R

Q
2

)
W

hi
ch

 f
in

an
ci

al

ap
pr

oa
ch

es
 h

av
e

be
en

ap

pl
ie

d
in

 te
ch

ni
ca

l d
eb

t
m

an
ag

em
en

t?

(R
Q

6
)

W
ha

t a
re

 th
e

di
ff

er
en

t a
ct

iv
it

ie
s

of

T
D

M
?

(R
Q

7
)

W
ha

t a
pp

ro
ac

he
s

ar
e

us
ed

 in
 e

ac
h

T
D

M

ac
ti

vi
ty

?
(R

Q
8

)
W

ha
t t

oo
ls

 a
re

us

ed
 in

 T
D

M
 a

nd
 w

ha
t

T
D

M
 a

ct
iv

it
ie

s
ar

e
su

pp
or

te
d

by
 th

es
e

to
ol

s?

(Q

3
.1

)
W

hi
ch

 e
m

pi
ri

ca
l

ev
al

ua
ti

on
s

ha
ve

 b
ee

n
pe

rf
or

m
ed

?

2
7

(Q
3

.2
)

W
hi

ch
 s

of
tw

ar
e

vi
su

al
iz

at
io

n
te

ch
ni

qu
es

 h
av

e
be

en
 p

ro
po

se
d

to
 m

an
ag

e
T

D
?

-
-

-
-

-
Papers

Published Until

20
14

20

12
 (

pa
rt

ia
ll

y)

20
12

 (
pa

rt
ia

ll
y)

20

12
 (

pa
rt

ia
ll

y)

20
13

 (
pa

rt
ia

ll
y)

20

13

28

Figure 12. Intersection among the studies for Research Question 1 (types of TD)

 The goal of our second research question, “(Q2) What are the strategies

proposed to identify TD?” and its sub-questions (Q2.1, Q2.2, and Q2.3) is not addressed
by any of the other secondary studies.

 For “(Q3) What strategies have been proposed for the management of TD?”,
both the goals and results of each study are different. Ampatzoglou et al. (2015)
presented a list of finance-based TD management strategies. In comparison to our work,
we reached a more comprehensive list of management strategies (including the
strategies found by Ampatzoglou et al. (2015)) because we considered any TD
management strategy. The work of Li et al. (2015) identified activities that are
performed (for instance: TD identification, repayment, prevention, communication, and
monitoring) to manage TD. Our work focuses on strategies that have been proposed to
support the TD management (for instance: cost-benefit analysis, portfolio approach, and
SQALE Method). Thus, this research question has a strong complementary relationship
among the studies and weak overlapping between them as can be seen in Table 7.
Besides, our research question “(Q3.2) Which software visualization techniques have

been proposed to manage TD?” does not overlap with any of the research performed in

29

the other related work.

Table 7. Intersection among the studies for Research Question 3 (TD Management)

 Our
Mapping
Study

[Ampatzoglou
et al., 2015]

[Li et al.,
2015]

T
D

 M
a

n
a

g
em

en
t

A
p

p
ro

a
ch

es

Cost-Benefit Analysis x x

Portfolio Approach x x

Options x x

Analytic Hierarchy Process x x

Calculation of TD-Principal x

Marking of dependencies and Code Issues x

Debt Symptoms Index x

Empirical Model of Technical Debt and
Interest

x x

Formal Approach to Technical Debt Decision
Making

x

Game Theoretic Competitive Source Control
Approach

x

Measuring symptom severity on a smell
thermometer

x

Metric for Managing Architectural
Technical Debt

x

RE-KOMBINE Model x

SQALE Method x

Supply Chain Management x

Framework for Estimating Interest x

Managing TD in database schemas x

Benchmarking-Based Model x

Model for optimizing technical debt x x

Finance and accounting practices x x

T
D

M
a

n
a

g
em

en
t

A
ct

iv
it

y
 Prevention x

Communication x

Representation/Documentation x

30

Repayment x x

Monitoring x x

Prioritization x X

Measurement x X

Identification x x

 Regarding “(Q2.1 and Q3.1) Which empirical evaluations have been

performed?”, there are no similar research questions in the other studies. However, we
analyzed each of the other studies more closely in order to identify possible
intersections. Li et al. (2015) was the only study that took into consideration if the
identified technique had been evaluated. The authors used this information to represent
a general view of the evidence levels of their selected studies. In contrast, in our work
we used this information to characterize the level of confidence we have about TD
indicators and TD management strategies.

 Finally, the mapping study presented in this work considers papers published up
to 2014. Specifically, this means 27 additional papers published in the last year selected
for analysis.

6.2. Synthesis of the results

 In this section, we present a discussion of the results. The objective of this
systematic mapping was to identify strategies that have been proposed to identify or
manage TD in software projects. For this, we analyzed 100 studies in order to identify
types of TD, strategies proposed to identify them, and strategies proposed to support
their management.

 In order to consolidate the results achieved in the mapping, Figure 13 details the
relationship between the number of analyzed papers by subject (indicators, artifacts,
data sources, management strategy, and software visualization), the types of TD and the
number of performed empirical studies. Through this figure, one can observe that most
studies deal with TD at the source code level, i.e. design, defect, code and architecture
debt (i.e. in the upper left area of the bubble chart).

It is also possible to observe that there is debt throughout the whole lifecycle of
the project. Thus, ensuring the quality of the project’s source code is not the only way to
enhance project quality. However, despite many types of TD, much of the work focuses
on studying existing problems in the source code. The emphasis on source code in TD
research may be explained by the fact that there are already a set of metrics and
automated support tools to extract information that can be used as indicators of TD (e.g.
ASA Issues, Code Smells, among others). Another possible explanation is that the body
of knowledge in TD is still consolidating itself. For example, the TD types
infrastructure, process, service, and test automation debt were only first cited in 2013.
These newer types are not yet fully vetted by the community. Thus, it is too soon to say
whether these newer types will be accepted as “real” types of TD, or a case of stretching
the metaphor too far. If they appear to be useful categorizations of debt, then work will
proceed on developing indicators and tools and techniques to use those indicators.
Management of these new types of TD will then be addressed.

We were able to identify several studies on strategies to manage TD. However,

31

although this is a considerable number, only five strategies (Portfolio Approach, Cost-
Benefit Analysis, Analytic Hierarchy Process, Calculation of TD Principal, and
Marking of dependencies and Code Issues) were cited in more than two papers and few
of them were evaluated. This shows that most of the authors propose new strategies, but
few are conducting studies to evaluate their real applicability.

 We can also see in Figure 13 that there are still few studies conducted on using
software visualization techniques to support TD related activities. However, we believe
that the use of software visualization techniques can facilitate the work of identification
and management of TD in the evolution of software projects.

Figure 13. A visualization of the systematic mapping in the form of a bubble chart

Furthermore, when looking at the right side of the graph in Figure 13, where the
empirical studies in the area are presented, we can see that our knowledge regarding the

32

real benefits and limitations of what has been proposed by the research community is
still limited. Figure 14 summarizes the number of studies by research topic. The
categories used to group the research topics were extracted from the goal of each
analyzed empirical study:

● Evolution: research that investigates the behavior of the TD items during the
evolution of the software;

● Identification: studies whose focus is on the definition of processes/activities
and indicators that allow the discovery of TD items in software projects;

● Management: papers that propose strategies to measure the quantity and value
of incurred TD, as well as criteria to define the best moment to pay the debt;

● Perception of TD: studies that investigate TD in a more generic perspective,
dealing with issues such as the developer’s perception of TD.

 Our results show that there is a balance between efforts aimed at the evaluation
of TD management and TD identification strategies. This result is expected, since these
activities are the first ones that the development team has to consider when servicing the
debt in its projects. However, little effort has been spent on studies related to the
evolution of debt during the development and maintenance of the project.

Figure 14. Papers by research topic.

6.3 Implications for Practitioners and Researchers

 This mapping study has primarily focused on facilitating and guiding future
research in TD identification and management. However, our results have important
implications for practitioners as well, particularly those looking to the literature for
guidance on how to manage TD on real projects:

 TD can be found in many different artifacts produced during the software
development process. As consequence, a variety of strategies must be employed if
the goal is to find all types of TD that might have a negative impact;

 There are several indicators for each type of TD. So developers have choices
when defining a strategy to identify and track TD in their projects, and should define
criteria for choosing indicators;

33

 Visualizing TD through software visualization techniques is still a hard task due
to the lack of support tools and research;

 Most research regarding TD identification is code-related. This could suggest
that focus on TD identification activities considering, initially, code-related debt
(code, design, and architecture debt) would make sense. However, this must be
assumed to be a risk because debt can be hidden in the project in different ways (not
only code-related) and non-code-related debt can bring significant negative impacts
to the project. Thus, our suggestion is to avoid the temptation to limit the focus to
code-related debt;

 We also have identified several TD management strategies. Most of them still
require further investigation and empirical evaluation. However, they can be a good
starting point for customizing or defining a TD management strategy for a real
software project.

 For researchers, the findings of this mapping study point to the following
implications:

 There are different types of TD and some indicators for each of them, but we
have not identified any evidence on how to use this set of information to guide
initiatives of TD identification in real settings. Despite progress in different areas of
TD, there is still a need to take a look at the big picture and investigate holistic
strategies to managing TD effectively in the software industry;

 Despite the fact that software visualization has been shown to benefit the
process of software understanding, there is still little investigation relating TD and
software visualization;

 Few empirical studies have been performed in real settings. This is an indicator
that, for some areas, we still do not fully understand all the costs or benefits of the
proposed TD indicators and management strategies. Many of these proposals require
deeper investigation. Some of them were just cited in some papers;

 Research on TD is highly concentrated on a few types of debt (design,
architecture, code, and defect) while other types are currently under-investigated.
This shows a clear gap that could be explored in the coming years.

 Our results clearly show an active and fruitful area of investigation that is
continuing to grow and is still in need of maturation, in terms of consolidating concepts
and empirically validating new proposals. In order for this body of work to present a
useful contribution to practice, the research community must find ways to guide
practitioners to those strategies most likely to be helpful in a particular context, and to
adapt those strategies to a given situation.

7. Threats to validity
The results of this systematic mapping may have been affected by some threats to
validity, such as:

● Research Question: The defined research questions in this study may not cover
the entire area of TD. To address this risk, the defined questions were analyzed
by at least two researchers, one of whom acted as an external reviewer of the
protocol. In addition, the protocol was presented at the 1st Latin American
School of Software Engineering6 and evaluated by at least two other
independent researchers. All comments were considered in defining the final list

6 www.inf.ufrgs.br/elaes2013

34

of research questions.
● Publication Bias: It is difficult to ensure that all relevant work was returned as

results in the performed searches. To minimize this threat, the main digital
libraries in computing were considered.

● Search string: There are two main concerns regarding the search string. Both
are related to the using of the term “technical debt” as part of the search string:

o First, there are potentially some relevant studies published before
the term “technical debt” was widely used. For example, god classes (a
type of code smell) are considered a good indicator of design debt, but
they existed before they were associated with design debt. Thus, there
are some papers discussing god classes that do not mention TD in their
text (and so are not included in our mapping study). However, the scope
of this mapping study was limited to how those subjects have been
discussed from the point of view of TD. Thus, rather than presenting a
comprehensive view of what the technical literature has said about god
classes, we were interested in how the research community relates god
classes and TD;
o Second: there is a risk of excluding some papers that just use the
term “debt” or a particular type of debt without using the term “technical
debt”. To investigate the extent of this risk, before performing the search
in this study, we tested the search string using the string ("debt" AND
"software”). The result was too generic and returned a substantial
number of papers (for example, 1738 and 5032 papers in digital libraries
ACM Digital Library and Science Direct respectively) that were not
related to the research goal. On the other side, for the search using the
terms (“technical debt" AND "software"), the results were more
restrictive (152 in ACM Digital Library and 34 in Science Direct). We
took both datasets and did a manual search to evaluate if the more
restrictive string was causing the loss of any relevant study. The result
was negative. Despite the fact that we do not have any guarantee that this
manual search is 100% accurate, we believe that it indicated that we
could use the more restrictive search string.

● Data Extraction: it is difficult to ensure that all the relevant primary studies
were selected for this mapping or that the returned studies were appropriately
analyzed. To reduce this risk, the classification and extraction of information
was performed by at least two researchers.

Finally, it is also important to consider that the term TD is new. Papers began to
be published recently. On the other side, related research may have been performed
before. As this is a complex variable to be assessed and cannot be easily controlled, in
this study we chose to only consider studies if they were developed by the research
community from the TD perspective.

8. Concluding remarks and future work

The goal of this work was to conduct a systematic mapping of the literature to
investigate strategies that have been proposed to identify and manage TD in the
software lifecycle. Therefore, through the mapping it was possible to provide a
comprehensive view about the current state of TD research.

35

 We have identified 100 primary studies, covering strategies, techniques and/or
tools for dealing with TD in software projects. These strategies vary in terminology,
descriptions, artifacts, indicators, management strategies, empirical studies, data
sources, and software visualization techniques to identify and/or manage the TD. We
summarized the results and created a spreadsheet for organizing and analyzing the
collected data. At the end, we provide the following contributions:

(i) an improved version of the taxonomy published previously in [Alves et
al., 2014];

(ii) a list of indicators used to support the identification of TD;
(iii) a list of proposed TD management strategies;
(iv) an analysis of the types of empirical evaluation performed on the studies;
(v) a list of data sources used in TD identification activities;
(vi) a list of software visualization techniques used to identify and manage

TD.

 Moreover, we have characterized the current state of the art in TD by identifying
possible gaps and topics where new research efforts can be invested.

 The study shows growing interest of researchers in the TD area. Further, the
number of new proposals for TD indicators and types is also growing. However,
empirical evaluation of these new proposals is lagging behind. This indicates that the
TD research area is in a phase of expansion and innovation, but just beginning a phase
of careful evaluation and narrowing down the field to the most effective practices.
Further, new proposals for types of TD raise the need for new proposals for indicators
to help find those types, and management strategies to control them. Thus, despite a
good number of proposed strategies, it is necessary to conduct further studies in the area
to investigate new techniques and tools that could support developers with the control of
TD. In addition, is necessary to carry out more empirical studies to validate the
strategies that have been proposed.

 In our future research agenda, we will work with the research gaps identified in
this paper. We intend to evaluate the proposed taxonomy by the research community
and software practitioners. We also intend to combine the evidence identified in this
work with new theories and empirical studies developed by our research group in order
to design new methods and tools to support TD identification and management
activities.

Acknowledgments

The authors would like to thank CAPES for the financial support to this work. This
work was also partially supported by CNPq Universal 2014 grant 458261/2014-9. Dr.
Shull’s contribution to this material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded
research and development center. This material has been approved for public release
and unlimited distribution. DM-0002227.

Appendix A. Papers identified in the systematic mapping study

Al Mamun, M.; Berger, C. & Hansson, J. (2014), Explicating, Understanding, and
Managing Technical Debt from Self-Driving Miniature Car Projects, in Managing
Technical Debt (MTD), 2014 Sixth International Workshop on, pp. 11-18.

36

Allman, E. (2012), Managing Technical Debt, Queue, 10(3).

Alzaghoul, E. & Bahsoon, R. (2013), CloudMTD: Using real options to manage
technical debt in cloud-based service selection, in Managing Technical Debt (MTD),
2013 4th International Workshop on, pp. 55-62.

Alzaghoul, E. & Bahsoon, R. (2013), Economics-Driven Approach for Managing
Technical Debt in Cloud-Based Architectures, in Utility and Cloud Computing
(UCC), 2013 IEEE/ACM 6th International Conference on, pp. 239-242.

Alzaghoul, E. & Bahsoon, R. (2014), Evaluating Technical Debt in Cloud-Based
Architectures Using Real Options, in Software Engineering Conference (ASWEC),
2014 23rd Australian, pp. 1-10.

Barton, B. & Sterling, C. (2010), Manage Project Portfolios More Effectively by
Including Software Debt in the Decision Process, Cutter IT Journal, Vol. 23, No. 10,
19-24.

Bohnet, J. & Dцllner, J. (2011), Monitoring code quality and development activity by
software maps, MTD 11: Proceedings of the 2nd Workshop on Managing Technical
Debt.

Brondum, J. & Zhu, L. (2012), Visualising architectural dependencies, in Managing
Technical Debt (MTD), 2012 Third International Workshop on, pp. 7-14.

Brown, N.; Cai, Y.; Guo, Y.; Kazman, R.; Kim, M.; Kruchten, P.; Lim, E.;
MacCormack, A.; Nord, R.; Ozkaya, I.; Sangwan, R.; Seaman, C.; Sullivan, K. &
Zazworka, N. (2010), Managing technical debt in software-reliant systems, FoSER
10: Proceedings of the FSE/SDP workshop on Future of software engineering
research.

Codabux, Z. & Williams, B. (2013), Managing technical debt: An industrial case study,
in Managing Technical Debt (MTD), 2013 4th International Workshop on, pp. 8-15.

Conroy, P. (2012), ‘‘Technical Debt: Where Are the Shareholders’ Interests?’’,
Software, IEEE Computer Society, 29 (6), p. 88, November/December 2012.

Curtis, B.; Sappidi, J. & Szynkarski, A. (2012), Estimating the Principal of an
Applications Technical Debt, Software, IEEE 29(6), 34-42.

Curtis, B.; Sappidi, J. & Szynkarski, A. (2012), Estimating the size, cost, and types of
Technical Debt, in Managing Technical Debt (MTD), 2012 Third International
Workshop on, pp. 49-53.

Davis, N., (2013), Driving Quality Improvement and Reducing Technical Debt with the
Definition of Done, Syst., Pittsburgh, PA, USA, Agile Conference (AGILE), pp.
164-168.

de Groot, J.; Nugroho, A.; Back, T. & Visser, J. (2012), What is the value of your
software?, in Managing Technical Debt (MTD), 2012 Third International Workshop
on, pp. 37-44.

Ernst, N. (2012), On the role of requirements in understanding and managing technical
debt, in Managing Technical Debt (MTD), 2012 Third International Workshop on,
pp. 61-64.

Falessi, D.; Shaw, M.; Shull, F.; Mullen, K. & Keymind, M. (2013), Practical
considerations, challenges, and requirements of tool-support for managing technical
debt, in Managing Technical Debt (MTD), 2013 4th International Workshop on, pp.

37

16-19.

Fontana, F.; Ferme, V. & Spinelli, S. (2012), Investigating the impact of code smells
debt on quality code evaluation, in, pp. 15-22.

Gat, I. & Heintz, J. D. (2011), From assessment to reduction: how cutter consortium
helps rein in millions of dollars in technical debt, MTD’11: Proceedings of the 2nd
Workshop on Managing Technical Debt.

Giraldo, F.; España, S.; Pineda, M.; Giraldo, W. & Pastor, O. (2014), Integrating
technical debt into MDE, CEUR Workshop Proceedings 1164, 145-152.

Gomes, R.; Siebra, C.; Tonin, G.; Cavalcanti, A.; Silva, F. Q. D.; Santos, A. L. &
Marques, R. (2011), An extraction method to collect data on defects and effort
evolution in a constantly modified system, MTD’11: Proceedings of the 2nd
Workshop on Managing Technical Debt.

Greening, Daniel R. (2013), Release Duration and Enterprise Agility, 46th Hawaii
International Conference on System Sciences (HICSS), pp. 4835-4841.

Griffith, I.; Izurieta, C.; Taffahi, H. & Claudio, D. (2014), A Simulation Study of
Practical Methods for Technical Debt Management in Agile Software Development,
in Proceedings of the 2014 Winter Simulation Conference, IEEE Press, Piscataway,
NJ, USA, pp. 1014--1025.

Griffith, I.; Reimanis, D.; Izurieta, C.; Codabux, Z.; Deo, A. & Williams, B. (2014), The
Correspondence Between Software Quality Models and Technical Debt Estimation
Approaches, in Managing Technical Debt (MTD), 2014 Sixth International
Workshop on, pp. 19-26.

Guo, Y. & Seaman, C. (2011), A portfolio approach to technical debt management,
MTD 11: Proceedings of the 2nd Workshop on Managing Technical Debt.

Guo, Y.; Seaman, C.; Gomes, R.; Cavalcanti, A.; Tonin, G.; da Silva, F.; Santos, A. L.
M. & Siebra, C. (2011), Tracking technical debt - An exploratory case study, in
Software Maintenance (ICSM), 2011 27th IEEE International Conference on, pp.
528-531.

Guo, Y.; Seaman, C.; Zazworka, N. & Shull, F. (2010), Domain-specific tailoring of
code smells: an empirical study, ICSE 10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering.

Guo, Y.; Spínola, R. & Seaman, C. (2014), Exploring the costs of technical debt
management – a case study, Empirical Software Engineering, 1-24.

Ho, J. & Ruhe, G. (2014), When-to-Release Decisions in Consideration of Technical
Debt, in Managing Technical Debt (MTD), 2014 Sixth International Workshop on,
pp. 31-34.

Holvitie, J. & Leppanen, V. (2013), DebtFlag: Technical debt management with a
development environment integrated tool, in Managing Technical Debt (MTD), 2013
4th International Workshop on, pp. 20-27.

Holvitie, J. (2014), Software implementation knowledge management with technical
debt and network analysis, in Research Challenges in Information Science (RCIS),
2014 IEEE Eighth International Conference on, pp. 1-6.

Holvitie, J.; Laakso, M.-J.; Rajala, T.; Kaila, E. & Leppänen, V. (2013), The Role of
Dependency Propagation in the Accumulation of Technical Debt for Software

38

Implementations, in Ákoss Kiss, ed., 13th Symposium on Programming Languages
and Software Tools, University of Szeged, pp. 61–75.

Holvitie, J.; Leppanen, V. & Hyrynsalmi, S. (2014), Technical Debt and the Effect of
Agile Software Development Practices on It - An Industry Practitioner Survey, in
Managing Technical Debt (MTD), 2014 Sixth International Workshop on, pp. 35-42.

Izurieta, C.; Griffith, I.; Reimanis, D. & Luhr, R. (2013), On the Uncertainty of
Technical Debt Measurements, in Information Science and Applications (ICISA),
2013 International Conference on, pp. 1-4.

Izurieta, C.; Vetro, A.; Zazworka, N.; Cai, Y.; Seaman, C. & Shull, F. (2012),
Organizing the technical debt landscape, in Managing Technical Debt (MTD), 2012
Third International Workshop on, pp. 23-26.

Kaiser, M. & Royse, G. (2011), Selling the Investment to Pay Down Technical Debt:
The Code Christmas Tree, in Agile Conference (AGILE), 2011, pp. 175-180.

Klinger, T.; Tarr, P.; Wagstrom, P. & Williams, C. (2011), An enterprise perspective on
technical debt, MTD 11: Proceedings of the 2nd Workshop on Managing Technical
Debt.

Krishna, V. & Basu, A. (2012), Minimizing Technical Debt: Developers viewpoint, in
Software Engineering and Mobile Application Modelling and Development
(ICSEMA 2012), International Conference on, pp. 1-5.

Krishna, Vinay; Basu, A. (2013), Software Engineering Practices for Minimizing
Technical Debt, Proceedings of the International Conference on Software
Engineering Research and Practice (SERP), 1-5.

Kruchten, P.; Nord, R. & Ozkaya, I. (2012), Technical Debt: From Metaphor to Theory
and Practice, Software, IEEE 29(6), 18-21.

Ktata, O. & Lévesque, G. (2010), Designing and implementing a measurement program
for Scrum teams: what do agile developers really need and want?, C3S2E 10:
Proceedings of the Third C* Conference on Computer Science and Software
Engineering.

Letouzey, J. & Ilkiewicz, M. (2012), Managing Technical Debt with the SQALE
Method, Software, IEEE 29(6), 44-51.

Letouzey, J.-L. (2012), The SQALE method for evaluating Technical Debt, in
Managing Technical Debt (MTD), 2012 Third International Workshop on, pp. 31-36.

Li, Z.; Liang, P.; Avgeriou, P.; Guelfi, N. & Ampatzoglou, A. (2014), An Empirical
Investigation of Modularity Metrics for Indicating Architectural Technical Debt, in
Proceedings of the 10th International ACM Sigsoft Conference on Quality of
Software Architectures, ACM, New York, NY, USA, pp. 119-128.

Ligu, E.; Chatzigeorgiou, A; Chaikalis, T.; Ygeionomakis, N. (2013), Identification of
Refused Bequest Code Smells, Dept. of Appl. Inf., Univ. of Macedonia,
Thessaloniki, Greece, 29th IEEE International Conference on Software Maintenance
(ICSM), pp. 392-395.

Lim, E.; Taksande, N. & Seaman, C. (2012), A Balancing Act: What Software
Practitioners Have to Say about Technical Debt, Software, IEEE 29(6), 22-27.

Lindgren, M. (2012), Bridging the software quality gap, Department of Computing
Science, Umea University.

39

Marinescu, R. (2012), Assessing technical debt by identifying design flaws in software
systems, IBM Journal of Research and Development 56(5), 9:1-9:13.

Martini, A.; Bosch, J. & Chaudron, M. (2014), Architecture Technical Debt:
Understanding Causes and a Qualitative Model, in Software Engineering and
Advanced Applications (SEAA), 2014 40th EUROMICRO Conference on, pp. 85-
92.

Mayr, A.; Plosch, R. & Korner, C. (2014), A Benchmarking-Based Model for Technical
Debt Calculation, in Quality Software (QSIC), 2014 14th International Conference
on, pp. 305-314.

McGregor, J. D.; Monteith, J. & Zhang, J. (2012), Technical debt aggregation in
ecosystems, in Managing Technical Debt (MTD), 2012 Third International
Workshop on, pp. 27-30.

Mo, R.; Garcia, J.; Cai, Y. & Medvidovic, N. (2013), Mapping architectural decay
instances to dependency models, in Managing Technical Debt (MTD), 2013 4th
International Workshop on, pp. 39-46.

Monteith, J. & McGregor, J. (2013), Exploring software supply chains from a technical
debt perspective, in Managing Technical Debt (MTD), 2013 4th International
Workshop on, pp. 32-38.

Morgenthaler, J.; Gridnev, M.; Sauciuc, R. & Bhansali, S. (2012), Searching for build
debt: Experiences managing technical debt at Google, in Managing Technical Debt
(MTD), 2012 Third International Workshop on, pp. 1-6.

Morrison-Smith, S.; Dighans, S.; Daniels, T.; Marmon, C. & Izurieta, C. (2012),
Technical debt reduction using a game theoretic competitive source control
approach, in , pp. 157 - 162.

Nacimento, C.; Matalonga, S. & Rossa Hauck, J. (2014), Identifying technical debt cost
factors in reflection activities of an agile projects, in Computing Conference (CLEI),
2014 XL Latin American, pp. 1-11.

Neill, C. & Laplante, P. (2006), Paying down design debt with strategic refactoring,
Computer 39(12), 131-134.

Nord, R.; Ozkaya, I.; Kruchten, P. & Gonzalez-Rojas, M. (2012), In Search of a Metric
for Managing Architectural Technical Debt, in Software Architecture (WICSA) and
European Conference on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pp. 91-100.

Nugroho, A.; Visser, J. & Kuipers, T. (2011), An empirical model of technical debt and
interest, MTD 11: Proceedings of the 2nd Workshop on Managing Technical Debt.

OConnor, D. (2010), Technical debt in semiconductor equipment: Its time to pay it
down, Solid State Technology 53(7), 34-35.

Ojameruaye, B. & Bahsoon, R. (2014), Systematic Elaboration of Compliance
Requirements Using Compliance Debt and Portfolio Theory, in Camille Salinesi &
Inge van de Weerd, ed., Requirements Engineering: Foundation for Software
Quality, Springer International Publishing, pp. 152-167.

Olbrich, S.K., Cruzes, D.S., and Sjoberg, D. I. K. (2010), “Are all code smells harmful?
a study of god classes and brain classes in the evolution of three open source
systems,” in Proceedings of the 2010 IEEE International Conference on Software

40

Maintenance, ser. ICSM ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–10. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2010.5609564

Potdar, A. & Shihab, E. (2014), An Exploratory Study on Self-Admitted Technical
Debt, in Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pp. 91-100.

Power, K. (2013), Understanding the impact of technical debt on the capacity and
velocity of teams and organizations: Viewing team and organization capacity as a
portfolio of real options, in Managing Technical Debt (MTD), 2013 4th International
Workshop on, pp. 28-31.

Prause, C. R. (2011), Reputation-based self-management of software process artifact
quality in consortium research projects, ESEC/FSE’11: Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering.

Pugh, K. (2010), The Risks of Acceptance Test Debt, Cutter IT Journal, Vol. 23, No.
10, 23-29.

Ramasubbu, N. & Kemerer, C. (2013), Towards a model for optimizing technical debt
in software products, in Managing Technical Debt (MTD), 2013 4th International
Workshop on, pp. 51-54.

Ramasubbu, N. & Kemerer, C. (2014), Managing Technical Debt in Enterprise
Software Packages, Software Engineering, IEEE Transactions on 40(8), 758-772.

Schmid, K. (2013), A formal approach to technical debt decision making, QoSA 13:
Proceedings of the 9th international ACM Sigsoft conference on Quality of software
architectures.

Schmid, K. (2013), On the limits of the technical debt metaphor some guidance on
going beyond, in Managing Technical Debt (MTD), 2013 4th International
Workshop on, pp. 63-66.

Schumacher, J.; Zazworka, N.; Shull, F.; Seaman, C. & Shaw, M. (2010), Building
empirical support for automated code smell detection, ESEM’10: Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement.

Seaman, C. & Guo, Y. (2011), Measuring and Monitoring Technical Debt, Advances in
Computers 82, 25-46.

Seaman, C.; Guo, Y.; Zazworka, N.; Shull, F.; Izurieta, C.; Cai, Y. & Vetro, A. (2012),
Using technical debt data in decision making: Potential decision approaches, in
Managing Technical Debt (MTD), 2012 Third International Workshop on, pp. 45-48.

Shafer, A. C. (2010), Infrastructure Debt: Revisiting the Foundation, Cutter IT Journal,
Vol. 23, No. 10, 36-40.

Shah, S.; Torchiano, M.; Vetro, A. & Morisio, M. (2013), Exploratory testing as a
source of testing technical debt, IT Professional, pp. (99), 1-1.

Shah, S.; Torchiano, M.; Vetro, A. & Morisio, M. (2014), Exploratory Testing as a
Source of Technical Debt, IT Professional 16(3), 44-51.

Sharma, T. (2012), Quantifying Quality of Software Design to Measure the Impact of
Refactoring, in Computer Software and Applications Conference Workshops
(COMPSACW), 2012 IEEE 36th Annual, pp. 266-271.

41

Shull, F. (2011), Perfectionists in a World of Finite Resources, Software, IEEE 28(2), 4-
6.

Siebra, C. A.; Tonin, G. S.; Silva, F. Q.; Oliveira, R. G.; Junior, A. L.; Miranda, R. C. &
Santos, A. L. (2012), Managing technical debt in practice: an industrial report,
ESEM 12: Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement.

Siebra, C.; Cavalcanti, A.; Silva, F.; Santos, A. & Gouveia, T. (2014), Applying Metrics
to Identify and Monitor Technical Debt Items during Software Evolution, in
Software Reliability Engineering Workshops (ISSREW), 2014 IEEE International
Symposium on, pp. 92-95.

Singh, V.; Snipes, W. & Kraft, N. (2014), A Framework for Estimating Interest on
Technical Debt by Monitoring Developer Activity Related to Code Comprehension,
in Managing Technical Debt (MTD), 2014 Sixth International Workshop on, pp. 27-
30.

Skourletopoulos, G.; Bahsoon, R.; Mavromoustakis, C.; Mastorakis, G. & Pallis, E.
(2014), Predicting and quantifying the technical debt in cloud software engineering,
in Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), 2014 IEEE 19th International Workshop on, pp. 36-40.

Snipes, W.; Robinson, B.; Guo, Y. & Seaman, C. (2012), Defining the decision factors
for managing defects: A technical debt perspective, in, pp. 54-60.

Spínola, R.; Zazworka, N.; Vetro`, A.; Seaman, C. & Shull, F. (2013), Investigating
technical debt folklore: Shedding some light on technical debt opinion, in Managing
Technical Debt (MTD), 2013 4th International Workshop on, pp. 1-7.

Stephen Chin, Erik Huddleston, W. B. & Gat, I. (2010), The Economics of Technical
Debt, Cutter IT Journal, Vol. 23, No. 10, 11-15.

Stochel, M.; Wawrowski, M. & Waskiel, J. (2012), Adaptive Agile Performance
Modeling and Testing, in Computer Software and Applications Conference
Workshops (COMPSACW), 2012 IEEE 36th Annual, pp. 446-451.

Theodoropoulos, T.; Hofberg, M. & Kern, D. (2011), Technical debt from the
stakeholder perspective, MTD 11: Proceedings of the 2nd Workshop on Managing
Technical Debt.

Tom, E.; Aurum, A. & Vidgen, R. b. (2013), An exploration of technical debt, Journal
of Systems and Software 86(6), 1498-1516.

Tom, E.; Aurum, A. & Vidgen, R. T. (2012), A Consolidated Understanding of
Technical debt, in 20th European Conference on Information Systems, ECIS 2012,
Barcelona, Spain, June 10-13, 2012, pp. 16.

Vetro, A. (2012), Using automatic static analysis to identify technical debt, ICSE 2012:
Proceedings of the 2012 International Conference on Software Engineering.

Wang, P.; Yang, J.; Tan, L.; Kroeger, R. & David Morgenthaler, J. (2013), Generating
precise dependencies for large software, in Managing Technical Debt (MTD), 2013
4th International Workshop on, pp. 47-50.

Weber, J.; Cleve, A.; Meurice, L. & Bermudez Ruiz, F. (2014), Managing Technical
Debt in Database Schemas of Critical Software, in Managing Technical Debt (MTD),
2014 Sixth International Workshop on, pp. 43-46.

42

Wiklund, K.; Eldh, S.; Sundmark, D. & Lundqvist, K. (2012), Technical Debt in Test
Automation, in Software Testing, Verification and Validation (ICST), 2012 IEEE
Fifth International Conference on, pp. 887-892.

Xuan, J.; Hu, Y. & He, J. (2012), Debt-prone bugs: Technical debt in software
maintenance, International Journal of Advancements in Computing Technology
4(19), 453-461.

Yli-Huumo, J.; Maglyas, A. & Smolander, K. (2014), The Sources and Approaches to
Management of Technical Debt: A Case Study of Two Product Lines in a Middle-
Size Finnish Software Company, in 15th International Conference, PROFES 2014,
Springer International Publishing, pp. 93-107.

Zazworka, N. b.; Vetro, A. c.; Izurieta, C.; Wong, S.; Cai, Y.; Seaman, C. g. & Shull, F.
(2013), Comparing four approaches for technical debt identification, Software
Quality Journal, 1-24.

Zazworka, N.; Seaman, C. & Shull, F. (2011), Prioritizing design debt investment
opportunities, MTD 11: Proceedings of the 2nd Workshop on Managing Technical
Debt.

Zazworka, N.; Shaw, M. A.; Shull, F. & Seaman, C. (2011), Investigating the impact of
design debt on software quality, MTD 11: Proceedings of the 2nd Workshop on
Managing Technical Debt. New York, NY, USA: ACM, 2011, pp. 17–23. [Online].
Available: http://doi.acm.org/- 10.1145/1985362.1985366

Zazworka, N.; Spinola, R. O.; Vetro, A.; Shull, F. & Seaman, C. (2013), A case study
on effectively identifying technical debt, EASE 13: Proceedings of the 17th
International Conference on Evaluation and Assessment in Software Engineering.

Zazworka, N.; Vetró, A.; Izurieta, C.; Wong, S.; Cai, Y.; Seaman, C. & Shull, F. (2014),
Comparing four approaches for technical debt identification, Software Quality
Journal 22(3), 403-426.

References

Alves, N. S. R., Ribeiro, L. F., Caires, V., Mendes, T. S., and Spínola, R. O. 2014.
“Towards an Ontology of Terms on Technical Debt”. In Proceedings of the 2014
Sixth International Workshop on Managing Technical Debt (MTD '14). IEEE
Computer Society, Washington, DC, USA, 1-7. DOI=10.1109/MTD.2014.9
http://dx.doi.org/10.1109/MTD.2014.9.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P. 2015. The
financial aspect of managing technical debt: A systematic literature review,
Information and Software Technology, Volume 64, April 2015, Pages 52-73, ISSN
0950-5849, http://dx.doi.org/10.1016/j.infsof.2015.04.001.

Basili, V. R., Shull, F., Lanubile, F. (1999), Building Knowledge Through Families of
Experiments. IEEE Transactions on Software Engineering, Vol. 25, No. 4,
July/August.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M. (2007). Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software 80, 571–583.

Budegn, D., Turner, M., Brereton, P., Kitchenham, B. (2008), Using Mapping Studies

43

in Software Engineering. In the Proceedings of PPIG Psychology of Programming
Interest Group, Lancaster University, UK, pp. 195–204.

Cai Y., Kazman R., Jaspan C., Aldrich J. (2013), Introducing Tool-Supported
Architecture Review into Software Design Education, on IEEE 26th Conference on
Software Engineering Education and Training (CSEE&T), vol., no., pp.70,79, 19-21.

Cunnigham, W. (1992), The WyCash Portfolio Management System, in Addendum to
the proceedings on Object-oriented programming systems, languages, and
applications, pp. 29-30.

Diehl, S. (2007), Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer-Verlag New York, Inc.

Guo, Y., Spínola, R.O., Seaman, C., 2014. “Exploring the costs of technical debt management - a
case study” in Empirical Software Engineering Journal, v.1, p.1 - 24. DOI:10.1007/s10664-
014-9351-7

Kitchenham, B., Dybå, T., Jorgensen, M. (2004) Evidence-based Software Engineering,
Proceedings of the 26th ICSE, Scotland, UK.

Kitchenham, B., Charters, S. (2007), Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report.

Kitchenham, B., Mendes, E., Travassos G.H., (2007a), Cross versus within-company
cost estimation studies: a systematic review, IEEE Transactions on Software
Engineering 33 (5) (2007) 316–329.

Li, Z., Avgeriou, P., Liang, P. (2015). A systematic mapping study on technical debt
and its management. In Journal of Systems and Software, Volume 101, March 2015,
Pages 193–220. doi:10.1016/j.jss.2014.12.027

Novais R. L., Torres A., Mendes, T. S., Mendonca M., and Zazworka N. (2013),
Software evolution visualization: A systematic mapping study, IST, 55(11):1860 –
1883.

Nunamaker, Jr., Jay F. and Chen, Minder and Purdin, Titus D. M. (1990) Systems
Development in Information Systems Research, J. Manage. Inf. Syst., Armonk, NY,
USA, pp. 89-106.

Petersen, K., Feldt, R., Mujtaba, S., Mattson, M. (2008), Systematic mapping studies in
software engineering. In the 12th International Conference on Evaluation and
Assessment in Software Engineering, University of Bari, Italy.

Petticrew, M. & Roberts, H. (2006), Systematic Reviews in the Social Sciences: A
Practical Guide, Blackwell Publishing.

PFleeger, S. (2005) Software Engineering: Theory and Practice. Third Edition. Prentice
Hall.

Pressman, R. S. (1997), Software Engineering: A Practitioner's Approach, McGraw-
Hill, pp. 253-259

Seaman, C., and Spínola, R.O. (2013), Managing Technical Debt, [Short Course] XVII
Brazilian Symposium on Software Quality, Salvador, Brazil.

Tomas, P., Escalona, M.J., Mejias, M., (2013), Open source tools for measuring the
Internal Quality of Java software products. A survey, Computer Standards &
Interfaces, vol 36, Issue 1, pp. 244-255.

44

Villar, A., Matalonga, S. (2013), Definiciones y tendencia de deuda técnica: Un mapeo
sistemático de la literatura. Anais do CIBSE13 - Congresso Ibero-Americano em
Engenharia de Software, Montevideo, Uruguai, Abril 8, 9 e 10, 2013, pp 33-46.

Wohlin, C. Runeson, P., Host, M., Ohlsson, M., Regnerll, B., Wesslén, A. (2000),
Experimentation in Software Engineering: an introduction, Kluwe Academic
Publishers, USA.

