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A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii

introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total,

679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary

metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess

the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations

with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight

into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar,

naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative

mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on

domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the

use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary

metabolism obtained from the same material and to other studies of natural variance of secondary metabolism.

INTRODUCTION

Over the last 20 or so years, the adoption of quantitative trait
locus (QTL) analysis of natural variation in segregating pop-
ulations has become an increasingly popular approach (Jansen,
1993; Frary et al., 2000; Koornneef et al., 2004; Ashikari et al.,
2005; Xue et al., 2008; Bagheri et al., 2012). While the majority
of early studies focused on easy-to-measure morphological
traits or simple chemical compositional analyses (reviewed in
Koornneef et al., 2004; Fernie et al., 2006), more recently the
arsenal of postgenomic tools has been brought to bear on such
segregating populations. For instance, genome-wide evaluation
in levels of gene expression and metabolite levels have been
recently performed (Keurentjes et al., 2006; Fu et al., 2009; Lisec
et al., 2009). While the majority of these studies have been
performed in segregating populations of Arabidopsis thaliana,

a number of studies at the metabolite level have also been
performed in the crop species: tomato (Solanum lycopersicum),
potato (Solanum tuberosum), maize (Zea mays), and rice (Oryza
sativa) (Schauer et al., 2008; Carreno-Quintero et al., 2012;
Matsuda et al., 2012; Hu et al., 2014; Wen et al., 2014).
In tomato, the majority of both natural variance and metabolite

quantitative trait loci (mQTL) studies have focused on primary
metabolism (Schauer et al., 2005, 2006, 2008; Stevens et al.,
2007; Do et al., 2010; Maloney et al., 2010; Quadrana et al.,
2013, 2014). They have revealed the critical importance of cell
wall invertase and fruit yield (Fridman et al., 2004; Ruan et al.,
2012) and have identified the genomic regions underlying vita-
min content in fruit (Stevens et al., 2007; Fitzpatrick et al., 2013;
Quadrana et al., 2013, 2014). In addition, these studies high-
lighted a strong negative correlation between fruit amino acid
content and the harvest index (i.e., the ratio of total fruit weight
to total plant weight; Schauer et al., 2006; Do et al., 2010).
Targeted QTL analyses have also been performed on volatile
organic compounds, pigments, cell wall components, sesqui-
terpenes, and acyl-sugars in the Solanum pennellii introgression
line population (Liu et al., 2003; Tieman et al., 2006; Fraser et al.,
2007; Schilmiller et al., 2010; de Godoy et al., 2013). Screens of
natural variance have additionally focused on a similar range of
compounds (Sallaud et al., 2009; Gonzales-Vigil et al., 2012;
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Schilmiller et al., 2012; Matsuba et al., 2013; Tikunov et al., 2013),
but also of cuticle composition (Yeats et al., 2012). In some cases,
the observed considerable variation in the contents of these
chemical constituents has been related to the growth habit to
which the wild species of tomato have adapted (Schauer et al.,
2005; Yeats et al., 2012; Ichihashi and Sinha, 2014). Furthermore,
these studies were able to elucidate the biosynthetic pathways
of the volatiles phenylethanol and phenylacetaldehyde (Tieman
et al., 2006), as well as specific glycoalkaloids (Itkin et al., 2011;
Iijima et al., 2013; Itkin et al., 2013). Such research thus contrib-
utes considerably to the enhancement of our understanding of
fruit specialized metabolism (Tohge et al., 2014).

In this study, a broader scale analysis of secondary fruit me-
tabolite levels was performed in two independent harvests, in-
cluding an analysis of lines heterozygous for the introgression of
chromosomal segments from the S. pennellii genome in the
second harvest. In doing so, it was possible to evaluate the
heritability of the mQTLs of secondary metabolism. Furthermore,
we were able to determine their mode of inheritance, a highly
important characteristic to study from a breeding perspective, but
one that has been overlooked in all but a handful of metabolic
studies (Dhaubhadel et al., 2003; O’Reilly-Wapstra et al., 2005;
Schauer et al., 2008). Given that these results indicated that only
a few of introgression lines (ILs) harbored secondary metabolite
QTL hot spots, we further evaluated two additional features. We
first checked whether known gene clusters involved in the bio-
synthesis (or degradation) of the metabolites in question, for in-
stance, the recently described glycoalkaloid cluster (Field and
Osbourn, 2008; Itkin et al., 2013), colocalized to these hot spots.
Second, we evaluated the expression level of transcription factors
in a subset of the lines in which the most QTLs were found, since
secondary metabolism is well documented as being under strict
transcriptional control and the influence of a number of important
transcription factors has already been well characterized (Butelli
et al., 2008; Luo et al., 2008; Adato et al., 2009; Dubos et al.,
2010; Chan et al., 2011; Shi et al., 2013). Finally, we compared the
combined data, with those earlier obtained for morphological and
primary metabolite traits, in an attempt to better understand
network interactions between the various parts of fruit metabo-
lism and fruit and plant growth. Performance of various cellular
tasks ensuring viability of a given genotype is usually achieved
by the capacity to change the phenotype with respect to a given
trait while maintaining the phenotype of other traits under differ-
ent environments, referred to as plasticity and robustness, re-
spectively. These phenomena have already been studied to
a certain degree for different molecular traits on various levels of
cellular organization, from gene expression to protein abundan-
ces and metabolite levels. Robustness of phenotypic traits co-
incides with the concept of canalization: the ability to maintain
a standard phenotype despite environmental and genetic per-
turbations, coined by Waddington (1942), and is an established
theme in evolutionary genetics. However, the robustness and
plasticity of the relationships between molecular traits, as man-
ifested in the correlation patterns, remain less well understood. To
this end, we distinguish the following: environmental robustness
to changing conditions and genetic robustness to heritable mu-
tations (Flatt, 2005). Analogously, one can define the notions of
environmental and genetic plasticity. Phenotyping of interspecific

introgression lines grown in different conditions provides a valu-
able resource to dissect the concept of environmental robustness
and plasticity not only of individual traits, but also their relation-
ships. In addition, the availability of homozygous and heterozy-
gous lines allows them to be used to obtain insights in genetic
robustness and plasticity underlying a phenotypic trait. Results
are discussed both in the context of the regulation of secondary
metabolism in tomato fruits and with respect to attempts at nu-
tritional fortification and antinutrient reduction in crop breeding.

RESULTS

Identification of Conserved QTL for Secondary Metabolites

in the S. pennellii IL Population

We previously reported 889 single-trait QTLs for metabolite ac-
cumulation following a gas chromatography-mass spectrometry
(GC-MS)-based survey of a tomato IL population in which marker-
defined regions of the wild species S. pennellii were replaced with
homologous intervals of the cultivated variety S. lycopersicum

M82 (Eshed and Zamir, 1995). This study was based on the
evaluation of fruit pericarp material harvested from two in-
dependent field trials (2001 and 2004). As an initial approach to
assess the variability in secondary metabolite, we inventoried
which metabolites were present in mature pericarp extracts from
S. pennellii or S. lycopersicum M82 by ultraperformance liquid
chromatography-Fourier transform mass spectrometry (UPLC-
FTMS) using the same protocol as described by Tohge et al.
(2011). With minor optimizations for the tissue type, we were able
to annotate the chemical structure of 43 metabolites, including
nine flavanols, 23 hydroxycinnamate derivatives, six glyco-
alkaloids, two acyl-sugars, one amino acid, one polyamine, and
one unclassified nitrogen containing compound. In addition, eight
flavonols, 21 hydroxycinnamate derivatives, 16 glycoalkaloids, and
three acyl-sugars were putatively identified on the basis of their
mass spectral properties and literature information (for example,
see Schwahn et al., 2014; Supplemental Data Set 1).
Having optimized the protocol for tomato pericarp, we next

used it to evaluate extracts from the introgression lines from the
exact same samples that we profiled previously for primary me-
tabolite abundances (Schauer et al., 2006, 2008). Figure 1 pro-
vides an overlay heat map from samples harvested in the 2001
and 2004 seasons superimposed on one another in an additive
manner such that consistently large increases, with respect to the
S. lycopersicum content, are displayed in a deep red color, while
those that display consistently large decreases in a deep blue
color and those that increase in one year and decrease in the
other are displayed in a purple color (a fully annotated version of
the figure is available as Supplemental Figures 1 to 3 and
Supplemental Data Set 2). In instances where the changes were
smaller, a paler coloration was used. Interestingly, the range in
content was far larger than that seen between the parental lines
(Koenig et al., 2013; T. Tohge and A.R. Fernie, unpublished data)
and additionally is beyond that recorded for primary metabolites
in this population (with the secondary metabolites ranging from
0 [absent] to 95-fold that of the M82, while the primary metabo-
lites only ranged between 0.18- and 17.7-fold of the M82 value;
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Figure 1. Overlay Heat Map of the Metabolite Profiles of Two Independent Studies of the Pericarp Metabolite Content of the ILs Compared with the
Parental Control (M82).
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Schauer et al., 2006). This is additionally reflected in the distri-
bution of log-fold changes, as seen in Figure 2, which shows that
the median of log-fold changes of secondary metabolites is
consistently lower than that of primary metabolites both in the
2001 and 2004 field trials (Figures 2A and 2B) and when the data
are combined (Figure 2C).

As can be seen in the plot, a large number of the observed
changes in abundance were conserved, with 15% being dark blue
and 27% dark red, although some 11% were purple (suggesting
that there was no strong genetic control underlying their changes
in abundance). Indeed, carrying out a correlation analysis for all
metabolite pairs across the whole spectrum of combinations
revealed that 23% of these showed significant correlations (P #

0.05) between the two harvests, further demonstrating the strong
genetic influence on metabolite abundance. These features are
discussed further below in the section on heritability of secondary
metabolites.

QTLs were next determined using ANOVA tests. These were
performed at two levels of significance hereafter referred to as
permissive (P # 0.05) and stringent (P # 0.01) (the results are
available as Supplemental Data Sets 3 and 4). Although the vast
majority of QTLs reported here were previously unknown, it is
important to note that QTLs for total phenolic content as well as
total antioxidant content have been reported previously for to-
mato (Rousseaux et al., 2005; Di Matteo et al., 2013) as well as
QTLs for specific compounds of the hydroxycinnamates, fla-
vonol, and glycoalkaloid families (Itkin et al., 2013; Kim et al.,
2014; Perez-Fons et al., 2014). We found a total of 679 QTL at
the permissive and 340 QTL at the stringent threshold corre-
sponding to between 0 permissive (0 stringent) and 26 permis-
sive (19 stringent) per (putative) compound. When broken down
into compound class, this corresponded to 147 permissive (67
stringent) hydroxycinnamates, 75 permissive (30 stringent) fla-
vonols, 151 permissive (84 stringent) glycoalkaloids, 13 permis-
sive (5 stringent) acyl-sugars, 111 permissive (67 stringent)
N-containing compounds, 80 permissive (38 stringent) phenolics,
and 102 permissive (49 stringent) unclassified compounds.

Analysis of the stable mQTLs of secondary metabolism from
the perspective of their genomic location revealed that while they
were generally well spread across the genome with all chromo-
somes, there were a few hot spots particularly notable being the
loci on chromosomes 6 (IL6-2 and IL6-3), 8 (IL8-2 and IL8-2-1),
and 10 (IL10-2 and IL10-3). These can be best seen in Figure 3
where the number of QTLs per IL is presented in a compound
class dependent manner with the size of the circle next to the
genome segment being proportional to the number of QTLs for

each compound class and the circles being presented from left to
right in the order: flavonoids, hydroxycinnamates, glycoalkaloids,
N-containing, acyl-sugars, and others. In Figure 4, we zoomed in
on a few select QTLs for nutritionally important metabolites,
showing their levels in overlapping ILs against the M82 control.

Heritability of Secondary Metabolites

When the combined metabolite data sets were evaluated, we
noted that there was a trend toward negative QTLs, although
this was somewhat dependent on the compound class with
glycoalkaloids exhibiting twice as many positive as negative
QTLs. This is in sharp contrast to what we previously observed
for primary metabolites in the pericarp for the population, which
were dominated by positive QTLs (Schauer et al., 2006, 2008).
We next assessed the heritability of the various metabolic traits
by statistical analysis. These analyses allowed us to calculate
the broad sense heritability (H2); values for selected identified
metabolites, as well as their E and G 3 E values, are presented
in Figure 5, while those for all spectral features are given in
Supplemental Data Set 5. In both instances, we classified the
heritability as high, intermediate, or low using thresholds of >0.4,
between 0.2 and 0.4, and below 0.2, respectively. Reassuringly,
the only metabolite that we determined by GC-MS in our pre-
vious study (Schauer et al., 2008), namely, tryptophan, was
determined to have a low heritability and thus to be highly re-
producible in both data sets. Of the other metabolites, the two
acyl-sugars display a high heritability, the 10 known flavonoids
tended to display high heritability; however, two of them dis-
played intermediate and one, low heritability. Among the 23
hydroxycinnamates, 11 displayed high heritability, four in-
termediate, and eight low, while the N-containing panthothenic
acid-hexose and the polyamine feroyltyramine both displayed
intermediate heritability.
Next, we evaluated these trends from the perspective of the

metabolic network (Figure 6). When doing so, several trends
emerge, the nontoxic glycoalkaloids (esculeosides) tended to
have high heritability (e.g., dihydro-esculeoside A, esculeoside
A, and lycoperoside G/F (Figure 6A), and naringenin, chlorogenic
acid I, coumaric acid-hexose I, and caffeic acid-hexose 2 dis-
played high heritability (Figure 6B), whereas dihydroxybenzoic
acid displays a low heritability similar in range to those of earlier
precursors in the phenylalanine and tryptophan pathways.
However, the patterns of heritability are by no means as closely
related to metabolic pathway position as they were for the
mQTLs of primary metabolism (Schauer et al., 2008). Given the

Figure 1. (continued).

Data represent measurements of material harvested in field trials performed in 2001 and 2004 and are presented as a heat map. Large sections of the
map are white or pale in color, reflecting that many of the chromosomal segment substitutions do not have an effect on the amount of every metabolite.
Regions of red or blue indicate that the metabolite content increased or decreased, respectively, after introgression of S. pennellii segments. Very dark
coloring indicates that a large change in metabolite content was conserved across both harvests, whereas purple indicates an inconsistent change in
that IL relative to M82. For each harvest, UPLC-FTMS was used to quantify 145 metabolites, including flavanols, hydroxycinnamate derivatives,
glycoalkaloids, and acyl-sugars. Due to space constraints, this heat map is not annotated; however, fully annotated heat maps for the individual data
sets are provided in Supplemental Figures 1 to 3. The introgression lines are presented in chromosomal order from top of chromosome 1 to base of
chromosome 12 from left to right.
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nutritional properties of several of these compounds, such as
naringenin, caffeoylquinic acids, and caffeoyl derivatives, and the
antinutritional properties of some of the glycoalkaloids, the evalu-
ation of their heritability is also of interest. In general, the heritability
values of the known compounds we documented here are con-
siderably higher than those of the primary metabolites determined
previously, suggesting that metabolic engineering of the levels of
these metabolites via breeding will be feasible. When evaluating
the heritability of all determined features, a similar pattern emerged,
with three of the putative flavonoids displaying low heritability, one
high, and six very low heritability; similarly, eight putative glyco-
alkaloids showed high heritability, and seven low heritability, while
three hydroxycinnamates showed high to medium heritability and
five low heritability (Supplemental Data Set 5). We initially hoped
that these analyses might aid in the better identification of the
chemical nature of these metabolites; however, given that the
heritability was not closely associated to position of the metabo-
lites within the metabolic pathways of their synthesis, this was not
the case. Given these findings, we also determined the extent to
which heritability is reflected in the metabolic correlation networks
extracted from the data (see below).

Analysis of Secondary Metabolite Contents in a Population

Heterozygous for the S. pennellii Introgression

The above-described experiments indicated the important genetic
influence underlying many of the mQTLs of secondary metabo-
lism. To extend our understanding of this, we next analyzed the
metabolite content of the fruit pericarp in hybrids between ILs and
M82, which were grown alongside the ILs in the 2004 field trial as
described previously (Semel et al., 2006; Schauer et al., 2008). A
heat map of the metabolic profiling results of the heterozygous
introgression lines (ILHs) is presented in Figure 7 (with the full data
sets available in Supplemental Data Set 6 and Supplemental
Figure 4). It is immediately apparent that some of the changes in
metabolites are conserved in the ILs and ILHs, while others are

not. Furthermore, there are clear quantitative differences in those
traits that are conserved. Some metabolites, such as coumaric
acid hexose I (F203), homovanillic acid hexose II (F204) both in
IL10-3 and coumaric acid hexose II (F304) in IL11-1, are present at
lower levels. Others, such as ferulic acid hexose III (F612) in IL3-3,
homovanillic acid hexose II (F619) in IL8-1, naringenin chalcone
hexose I (F411) in IL10-1, and 1-caffeoylquinic acid I (F026) in IL7-
4, are present at approximately the same level in the ILH as its
parent IL. Some, such as naringenin chalcone hexose I (F411) in
IL3-2, sinapic acid hexose (F214) in IL6-3, and naringenin hexose II
(F061) in IL1-3 are present at even higher levels.

Assessment of the Mode of Inheritance of Secondary

Metabolite QTL

To assess whether these changes are associated with a particular
mode of inheritance, we subjected the combined data set to
a QTL analysis in which the ILs and ILHs were compared with
a common control and only lines in which the significance was
below the 1% threshold were considered to harbor a QTL. In
addition to allowing point-by-point analysis, the inclusion of ILHs
in the analysis enables us to classify each putative wild species
QTLs into the following mode-of-inheritance categories: recessive,
additive, dominant, or overdominant (for detailed explanation, see
Semel et al., 2006). Evaluation of the results of this classification,
presented in Figure 8 (full data set available in Supplemental Data
Set 7), reveals that several of the putative wild species QTLs have
an increasing effect on metabolite content. Although, in sharp
contrast to mQTLs of primary metabolism (Schauer et al., 2006),
the majority have a decreasing effect on metabolite content. What
was similar between the mQTLs of secondary metabolism pre-
sented here and those presented for primary metabolism pre-
viously was that in both instances the vast majority of the QTLs
exhibit either dominant or additive modes of inheritance with only
a minority displaying recessive modes of inheritance and no in-
cidence of overdominance.

Figure 2. Distributions of Log-Fold Changes.

Box plots of the log-fold changes of all primary and secondary metabolites, measured with GC-MS and LC-MS technologies, respectively, from the
considered ILs with respect to M82 are shown. Note that the median of the log-fold changes of secondary metabolites is smaller than that of the primary
metabolites.
(A) Data from 2001 field trail.
(B) Data from 2004 field trail.
(C) Data from both field trails combined.
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When the distribution of mode of inheritance is compared
across the different compound classes, some clear differences
can be observed. x2 tests also revealed significant differences
across compound types in the level of both positive and negative
dominant modes of inheritance (Table 1). We observed a relatively
high proportion of additive negative QTLs for all compound
classes. The proportion between all other mode-of-inheritance
types was significantly different between the compound class
types. For instance, glycoalkaloids displayed a particularly high
proportion of positive additive and dominant QTLs, acyl-sugars
and hydroxycinnamates showed a very high proportion of domi-
nant negatives, and all other classifications exhibited a fairly even
split between dominant and additive negative QTLs. Taken to-
gether, the total proportion of QTLs were dominant irrespective of
classification with most other QTLs being additive and there was
very little recessive behavior evident.

Comparisons of Secondary Metabolite-Secondary

Metabolite, Secondary Metabolite-Primary Metabolite,

and Secondary Metabolite-Yield-Associated Trait

Correlation Networks

In previous studies, we investigated the network behavior of
primary metabolite traits in this population in correspondence to

yield-associated traits (Schauer et al., 2006, 2008). Here, we
decided to expand such analyses to include the secondary
metabolite traits evaluated within this study. We investigated
two aspects of the metabolic correlation networks extracted
from metabolic traits between seasons and genotypes: (1) the
extent to which they differ and (2) how heritability of the traits
can be analyzed within the network context.
Networks were generated from the profiles comprising the

measured metabolite levels together with phenotypic data from
the 74 tomato ILs and the recurrent parental control M82. Each
node in the network represents a metabolite or a composite
phenotypic trait; an edge is established between two nodes if
the corresponding traits are correlated, based on the Pearson
correlation coefficient, above a threshold which guarantees false
discovery rate (FDR) of 0.05 (see Methods). Altogether, we used
the profiles of 145 compounds from secondary metabolism,
from the investigated homozygous introgression lines in two
seasons, 2001 and 2004, as well as from the heterozygous in-
trogression lines from season 2004. In addition, 47 compounds
participating in pathways from primary metabolism, profiled by
GC-MS technology, were available for homozygous lines in two
different seasons, 2001 and 2004 (Schauer et al., 2008). In-
tegration of data from 38 phenotypic traits from homozygous
and heterozygous lines from 2004 was also performed.
Altogether, seven networks were extracted by combining

different data types, resulting in the following three groups of
networks: (i to iii) three networks based on the liquid chroma-
tography-mass spectrometry (LC-MS) data from the homozy-
gous lines in 2001, homozygous lines in 2004, and heterozygous
lines in 2004, respectively (Figures 9A to 9C); (iv and v) two net-
works based on the combined LC-MS and phenotypic data from
the homozygous and heterozygous lines in 2004 (Figures 10A and
10B); and (vi and vii) two networks based on the combined LC-
MS and GC-MS data from the homozygous lines in 2001 and
2004, respectively (Supplemental Figures 6A and 6B). Seminal
properties of these networks are presented in Table 2.
For the first group of networks (i to iii), with the LC-MS data from

homozygous lines, a FDR of 0.05 was ensured by threshold values
of 0.34 and 0.33 in seasons 2001 and 2004, respectively. These
two networks will be referred to as HO1 and HO4 (Figures 9A and
9B). For the heterozygous data from 2004, the threshold value was
smaller, at a value of 0.28; this network is referred to as HE4
(Figure 9C). Despite the similarity in the thresholds, HO1 contained
1567 edges, while HO4 included only 1088 edges; in addition,
HE4 included almost double the number of edges despite the
small difference in the thresholds used for establishing the edges.
Only 0.04% and 5.1% of the significant correlations were nega-
tive, respectively. Moreover, all except for 11 and two isolated
nodes were mutually connected in both HO1 and HO4. By com-
parison, in HE4, 6.9% of the significant correlations were negative
and only one node was isolated, while the rest were connected in
a single component. Based on their connectivity, the largest
component in HO1 and HO4 could be partitioned into four and five
communities, respectively, based on greedy optimization of
modularity (value of 0.36 and 0.51); however, these communities
showed little correspondence with the partitions of metabolites
into chemical classes, which is in line with the lack of concordance
between changes of metabolites and their heritability in the

Figure 3. Metabolic Hot Spots.

Chromosome mapping of (P # 0.01) QTLs location based on a genetic
map of S. pennellii introgression lines (http://www.sgn.cornell.edu); circles
next to the genome segment indicate the positions and are proportional to
the number of QTLs for each compound class. The circle color is pre-
sented in the order of flavonoids, hydroxycinnamates, glycoalkaloids,
N-containing, other phenolic, and acyl-sugars from left to right.
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Figure 4. Schematic Representation of S. pennellii ILs for Four Chromosomes, Showing the Effect of Genomic Regions on the Levels of Secondary
Metabolites.

(A) Region on chromosome 1 (IL1-1) for dehydroesculeoside A or B.
(B) Region on chromosome 6 (IL6-2 and IL6-2-2 for lycoperoside F [B-1] and IL6-3 and IL6-4 for pregnane derivative [B-2]).
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context of the metabolic pathways. In addition, the modularity of
the partition based only on the chemical compounds was very
close to zero (<22.298*1024), indicating that there might be
a significant crosstalk between pathways of different compound
classes.

However, despite the similarities in the global structural prop-
erties, these networks differed in their fine structure: Only 26% of
all edges in HO1 and HO4 were shared, and 64.9% and 49.5%
were specific to the HO1 and HO4 networks (see Table 3 for
additional parameters characterizing the network difference). Any
pair of nodes adjacent in at least one of these networks contrib-
uted on average 0.37 to the difference of the total weight of net-
work associations, quantified by the absolute value of the Pearson
correlation coefficients. The shared edges on average differed by
0.13 with respect to their weights, indicating that the shared edges
may be canalized, i.e., are robust. Indeed, there was no significant
difference between the average correlation values of the shared

edges in HO1 and HO4 (Kruskal-Wallis test, P value = 0.492).
From the 549 shared correlations, 391 appeared to be canalized
(Fisher z-transformation, P value > 0.05) and included a total of
125 compounds including representatives of all chemical classes
measured.
In total, 32.4% of the edges were shared between HO4 and

HE4, while 21.5% and 64.4% of the edges were specific to HO4
and HE4, respectively. In comparison to the difference between
HO1 and HO4, the smaller contribution of shared edges between
HO4 and HE4 suggested that the associations between metabolic
profiles were more affected by seasonal differences (Table 3).
Indeed, there was no significant difference between the average
correlation values of the shared edges in HO1 and HO4 (Kruskal-
Wallis test, P value = 0.464). Of 854 shared correlations, 733
appeared to be canalized (i.e., did not differ in value, Fisher
z-transformation, P value > 0.05), and these correlations comprised
137 compounds including representatives of all chemical classes

Figure 4. (continued).

(C) Region on chromosome 7 (IL7-4 and IL7-4-1) for glycoalkaloids derivatives (1363.528 m/z).
(D) Region on chromosome 8 (IL8-2 and IL8-2-1) for acylated hexoses.
(E) Region on chromosome 10 (IL10-2 and IL10-3) for lycoperoside G and F or esculeoside A (IL10-3) for coumaric acid hexose.
(F) Region on chromosome 12 (IL12-4 and IL12-4-1) for chlorogenic acid isomers.
Data are shown as a fold changes compared with recurrent parent M82. All the QTLs are conserved in both harvests; all significance at P # 0.01.

Figure 5. Heritability of Secondary Metabolite Traits in the S. pennellii Introgression Population.

Environment (E) + E 3 genotype (G) effect of selected secondary metabolites using a mixed-effect model to combine the data from the two years (2004
and 2001).
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Figure 6. Metabolites That Display High, Moderate, and Low Hereditability as Assessed from 2 Years of Growth Trials.

Data are taken from Figure 5 and displayed in a pathway-based manner: glycoalkaloids (A) and flavonoids (B). Metabolites marked in red were
determined to be highly hereditable, those in yellow to display low hereditability, and those in orange to be intermediate. Heritability for metabolites
marked in pale gray was not calculated. Values for shikinate and phenylalanine were taken from Schauer et al. (2008). Heritability is classified as high,
intermediate, or low using thresholds of >0.4, between 0.2 and 0.4, and below 0.2, respectively.
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Figure 7. Heat Map of the Metabolite Profiles of M82 Lines Heterozygous (ILH) for the Chromosomal Segmental Substitution from S. pennellii.
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measured. Interestingly, 301 of the canalized correlations be-
tween HO4 and HE4 were also canalized between HO1 and HO4
and included 116 compounds from all different classes.

For the second group of networks (iv and v), the two networks
are based on the combined metabolic and phenotypic data from
the homozygous and heterozygous lines in 2004, referred to as HO
and HE, respectively. They included 38 phenotypic variables in
addition to the 145 metabolites measured via LC-MS (Figures 10A
and 10B). Since the relationships between the metabolites were
investigated in the previous section, here, we focused on identi-
fying the phenotypic variables that can be best predicted by in-
dividual metabolites. From the 104 significant correlations between
the phenotypic variables and compounds in HO, 76 were positive
and the remaining 28 were negative. In addition, only 18 of the 38
phenotypic variables were correlated with the secondary metab-
olites, with on average approximately six regressors per pheno-
typic variable. The phenotypic variables with the largest number of
associations were: EA, yield associated traits (19); BX, brix (18); HI,
harvest index (16); PW, plant weight (9); SN-fruit unit, seed number/
fruit unit (7); and SN-fruit; seed number/fruit (6), and only two of the
correlations were >0.5. Additional properties and differences be-
tween HO and HE can be found in Tables 2 and 3, respectively.

The third group of networks (vi and vii) can be used to in-
vestigate the extent of concordance between primary metabolite
profiles determined previously (Schauer et al., 2008), with the
secondary metabolite profiles described here by constructing
metabolic correlation networks of homozygous lines in 2001 and
2004, referred to as HOc1 and HOc4 (Supplemental Figures 6A
and 6B). In HOc1, there are altogether 94 correlations of which all
are positive on 70 nodes. The most connected compound is
maltose, associated to 13 secondary metabolites followed by
proline (12), succinate and trehalose (10), glycerol (nine), isoleucine
(eight), and leucine and citramalate (five). More specifically, malt-
ose is connected to five glycoalkaloids, two hydroxycinnamate
derivatives, two nitrogen containing metabolites, and one acyl-
sugar, while proline is connected to eight glycoalkaloids, two fla-
vonoids, and one nitrogen-containing compound, while trehalose
is connected to four glycoalkaloids, two flavonoids, and two ni-
trogen containing metabolites.

In HOc4, there are a total of 14 correlations, of which all are
positive on 22 nodes. The most connected compounds are glu-
conate, isoleucine, and inositol; each of which is associated with
two secondary metabolites followed by maltose, phenylalanine,
succinate, threonate, tryptophan, lysine, galactunorate, and
dehydroascorbate, which all are associated with a single sec-
ondary metabolite. More specifically, gluconate is connected to
two flavonoids, inositol to two hydroxycinnamate derivatives, and
isoleucine to one nitrogen-containing compound and one
hydroxycinnamate derivative. Perhaps surprisingly in the case of

the associations between primary and secondary metabolites, we
did not find any shared correlations between the HO and HE
networks, suggesting a greater environment dependence of the
relationship and crosstalk between pathways of primary and
secondary metabolism than that between yield-associated traits
and secondary metabolism.
Next, in order to investigate whether changes and canalization

of metabolite levels are manifested in the properties of the net-
works, we inspected the correlations between the broad-sense
heritability and the differences in prominent types of node cen-
tralities (e.g., degrees, neighborhoods, betweenness, and close-
ness) in the networks from the two seasons, HO1 and HO4. This
approach aimed at quantifying the extent to which correlation
patterns between traits relate to heritability of the traits them-
selves. A significant correlation of 20.455 (P value = 4.593e207)
between the difference in node degrees and the broad-sense
heritability of the corresponding metabolites thus demonstrated
that the canalization of the metabolite levels is inversely pro-
portional to the changes in the number of relationships in which
metabolites participate; therefore, metabolites whose levels are
maintained across seasons tend to alter their relationships (Figure
9D). This result provided the basis for relating heritability (i.e.,
degree of robustness of phenotype across environments) with the
plasticity of the underlying networks, manifested in the changes of
the correlation patterns. This was further confirmed by the sig-
nificant correlation of 20.376 (p value = 4.391e205) between the
Jaccard distance (see Methods) in the first network neighbor-
hoods of the corresponding nodes in HO1 and HO4. However,
the Eigenvalue centrality as well as the centrality based on dis-
tribution of paths (betweenness and closeness, neglecting the
weights due to the presence of negative correlations; Toubiana
et al., 2013) do not capture this property, as manifested in the
smaller and less significant correlations of 20.241, 20.102, and
20.016. The largest change in degree between the two networks
is observed for glycoalkaloids (maximum of 31 and median of 12)
in comparison to flavonoids (maximum of 37 and median of 10),
hydroxycinnamate derivatives (maximum of 30 and median of 9),
and nitrogen-containing metabolites (maximum 33 and median of
8). Altogether, our findings on the relationship between heritability
of metabolic traits and their placement in metabolic correlation
networks indicate that traits maintained across seasons can be
detected from the respective changes of correlation patterns.

Profiling of Expression Levels of Transcription Factors and

Secondary Metabolism-Related Genes

Having performed the above global network analyses, we next
wanted to focus on beginning to delineate the genetic basis of
some of the mQTLs of secondary metabolism that we determined

Figure 7. (continued).

Results presented are pericarp metabolite content data obtained from the ILHs of the 2004 harvest. Regions of dark red or dark blue indicate that the
metabolite content is increased or decreased, respectively, after introgression of S. pennellii segments. UPLC-FTMS was used to quantify 145 me-
tabolites, including flavanols, hydroxycinnamate derivatives, glycoalkaloids, and acyl-sugars. Due to space constraints, this heat map is not annotated;
however, a fully annotated heat map including the metabolite profiles of the ILHs from the 2004 harvest is provided in Supplemental Figure 2. The
introgression lines are presented in chromosomal order from top of chromosome 1 to base of chromosome 12 from left to right
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here. From prior experience (Fridman et al., 2004), we know that
the ultimate identification of the genetic causes underlying mQTLs
remains an arduous task. For this reason, in order to get a first
idea as to molecular event underlying the QTLs on the basis of the
mQTL analyses described above, eight introgression lines (IL6-2,
IL6-3, IL8-2, IL8-2-1, IL9-1, IL10-2, IL10-3, and IL11-4-1) and the
recurrent parent M82 were selected for gene expression profiling
of transcription factors (TFs) and secondary metabolism-related
genes. This was achieved using the S. lycopersicum quantitative
RT-PCR (qRT-PCR) transcription factor profiling platform that was
recently established in our laboratory (Rohrmann et al., 2011). A
total of 974 TFs were measured in this study. In addition, tomato
genes encoding key enzymes involved in secondary metabolism
(of the phenylpropanoid, flavonoids, and glycoalkaloid pathways)
were obtained by BLAST searches using the sequence of pre-
viously characterized tomato genes. Using this approach, two
phenylpropanoid biosynthetic genes (4-coumarate-CoA ligase
[4CL]; Niggeweg et al., 2004), one hydroxycinnamate biosynthetic
gene (hydroxycinnamoyl CoA quinate transferase [HQT]; Luo et al.,
2008), five flavonoid biosynthetic genes (chalcone synthase
[CHS1]; O’Neill et al., 1990; chalcone isomerase [CHI], flavanone-
3-hydroxylase [F3H], flavonoid-39-hydroxylase [F39H], and flavonol
synthase [FLS]; Groenenboom et al., 2013), and nine glycoalkaloid
related genes (GAME1, 2, and 3; Itkin et al., 2011; GAME4, 8, 11,
12, 17, and 18; Itkin et al., 2013) were obtained for this analysis.
Primers of secondary metabolism-related genes were designed by
QUANTPRIME software (Arvidsson et al., 2008). The same pooled
plant material as used for secondary metabolite analysis was used
for gene expression profiling. The gene expression of TFs and
secondary metabolism-related genes was visualized in the heat
maps of Figures 11 and 12, respectively.
As for the metabolite QTLs, expression QTLs were determined

at both permissive (P # 0.05) and stringent (P # 0.01) thresholds
using ANOVA tests. We found a total of 1347 QTL at the per-
missive and 533 at the stringent threshold corresponding to be-
tween 0 permissive (0 stringent) and 6 permissive (5 stringent)
QTLs per TF. When broken down into TF families, 17 out of 59
families displayed a high number of QTLs. This corresponded to
113 permissive (47 stringent) QTLs for C3H TFs, 108 permissive
(52 stringent) QTLs for AP2/ERF TFs, 87 permissive (37 stringent)
QTLs for MYB-related TFs, 78 permissive (26 stringent) QTLs for
C2H2 zinc finger TFs, 63 permissive (27 stringent) QTLs for HB/
homeobox TFs, 71 permissive (35 stringent) QTLs for basic helix-
loop-helix TFs, 61 permissive (23 stringent) QTLs for MADS box,
46 permissive (19 stringent) QTLs for MYB TFs, 55 permissive (31
stringent) QTLs for basic region/leucine zipper motif TFs, 36
permissive (8 stringent) QTLs for WRKY TFs, 39 permissive (10
stringent) QTLs for CCAAT TFs, 33 permissive (15 stringent) QTLs
for heat shock factor TFs, 45 permissive (11 stringent) QTLs for

Figure 8. Distribution of the QTL Mode of Inheritance for Metabolite
Accumulation.

Each vertical bar represents the number of QTLs for a specific trait,
colored according to mode-of-inheritance categories: additive, domi-
nant, and recessive. The bars above the 0 line represent the number of
increasing QTLs, whereas the negative bars represent the number of
decreasing QTLs relative to M82. A fully annotated figure with the exact
compound ID is provided in Supplemental Figure 5 and Supplemental
Data Set 7.
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NAC TFs, 39 permissive (19 stringent) QTLs for C2C2-DOF TFs,
34 permissive (16 stringent) QTLs for AUX/IAA TFs, 25 permissive
(10 stringent) QTLs for GRAS TFs, and 69 permissive (23 strin-
gent) QTL for orphan TFs. The full data set including QTLs of all
TF families is available in Supplemental Data Sets 8 and 9.

The transcript of tomato MYB TF Solyc10g055410 (THM27) (Lin
et al., 1996) showed higher expression in IL8-2-1 and IL10-3
compared with M82; by contrast, its expression was lower in IL6-
2, IL11-4-1, and IL9-1 compared with M82. The C2H2 TF J0317,
which has been reported as putative regulator of phenylpropanoid
biosynthesis (Rohrmann et al., 2011), is upregulated in seven lines
compared with M82. The tomato ortholog J0088 of the well
characterized ORCA3 AP2/ERF TF known to regulate both primary
and terpenoid alkaloid metabolites in Catharanthus roseus (van der
Fits and Memelink, 2000), showed 4- to 38-fold higher expression
in all introgression lines compared with M82. In addition, a MADS
box TF (J0651) showed higher expression in all the lines with re-
spect to M82. Expression of J0659 (Solyc06g059970, MADS box
family), which is orthologous to PISTILLATA in Arabidopsis (Mara
et al., 2010), was 15 times higher in IL11-4-1 compared with M82.
Naringenin derivative (F061) showed significantly higher accumu-
lation in this lines compared with other lines and M82. On the other
hand, the MYB-related gene J0778 showed no expression in IL11-
4-1. The MYB TF J0715 (tomato ortholog of MYB44 from Arabi-
dopsis), previously reported to be correlated with 13 secondary
metabolites (Rohrmann et al., 2011), showed no significant dif-
ference between ILs and M82. Furthermore, expression of the
C2C2 TF J0310 known as a regulator of fruit size (Cong et al.,
2008) and early response to ethylene during repining (Rohrmann
et al., 2011) was significantly higher in IL10-2 than in M82, and no
expression was observed in IL11-4-1. The TF SI_IAA9 (J0141),
which plays an important role in fruit development (Wang et al.,
2005), showed significantly lower expression in IL6-2 and IL10-2
compared with M82, while higher expression was found in IL8-2
and IL8-2-1 compared with other introgression lines and M82. The
CNR_Colorless nonripening TF showed slightly higher expression
in all lines except IL8-2-1. Significantly higher expression was found
in IL6-2 and IL6-3 compared with M82 for NOR_non-ripening
(J0824). In addition, the MADS box TF RIN (J0650) showed sig-
nificantly higher expression in IL6-3 compared with M82.

Furthermore, IL6-2 and 6-3, which indicate most significant
mQTL hot spots of several secondary metabolites, showed higher
expression of the genes involved in the early step of hydrox-
ycinnamate biosynthesis, such as 4CL and HQT (Figure 8), despite
the fact that the expression level of glycoalkaloid biosynthetic
genes clearly decreased. The introgression line IL8-2 and its
subline IL8-2-1 showed slightly higher expression of phenyl-
propanoid biosynthesis genes, but flavonoid biosynthetic genes
are highly expressed only in IL8-2, but other genes such as hy-
droxycinnamate and flavonoid biosynthetic genes are highly ex-
pressed only in IL10-2. In the IL9-1 region, the expression level of
phenylpropanoid related genes such as 4CL and HQT were higher
than M82. However, flavonoid biosynthetic genes (CHS, CHI, F3H,
and FLS) were clearly decreased in IL9-1. On the other hand, IL11-
4 showed lower expression of all genes involved in secondary
metabolism
In order to provide additional support for the observed phe-

notypes, we conducted a pairwise comparison between M82 and
S. pennellii to detect possible sequence polymorphisms at the
level of TF-encoding genes. As a first approach, we defined the
total number of genes in these eight ILs (this ranged from 103 and
1095), the number of predicted transcription factors (which
ranged from 8 to 81), and the number of transcription factors for
which we detected expression using our qRT-PCR platform
(varied from 2 to 29; see Table 4 for details). Although it must be
kept in mind that the qRT-PCR platform does not cover all TFs in
tomato, this approach dramatically reduced the number of puta-
tive regulators in the ILs. Following this, we performed sequence
analyses focused on the identification of SNPs and InDels at
coding and promoter regions of all the TF genes contained within
the exact physical location of each introgression (Chitwood et al.,
2013). The list of TF-encoding genes along with a summary of
detected polymorphisms is reported in Supplemental Data Set 11.
Single intolerant amino acid changes, as predicted by SIFT BLink
(P < 0.05), were found for 15 TF genes. On the basis of the ex-
pression data presented here, two of these were of high potential
interest, namely, polymorphisms in highly conserved residues of
the DNA binding domains (such as the Tyr-to-His change in the
AP-2 ethylene-responsive TF gene, Solyc06g068570, from IL6-2)
and specific residues maintaining the stable fold needed for

Table 1. Qualitative Distribution of Mode of Inheritance Showing the Numbers of QTLs That Were Classified in Each Category for Each Chemical
Compound Class

Acyl-Sugars Flavonoids Glycoalkaloids Hydroxycinnamates
N-Containing
Compounds

Others
(Phenolics) Unspecified

(5 Traits) (19 Traits) (21 Traits) (34 Traits) (25 Traits) (14 Traits) (27 Traits) P (x2)

Additive 2 34 (31.7) 78 (29.4) 41 (15.1) 157 (31.1) 84 (26.7) 93 (40.6) 117 (34.4) 0.292336757440
Additive + 4 (3.7) 33 (12.4) 97 (35.7) 32 (6.3) 38 (12.1) 22 (9.6) 49 (14.4) 0.002225045604
Dominant 2 57 (53.2) 95 (35.8) 37 (13.6) 238 (47.2) 101 (32.1) 83 (36.2) 105 (30.8) 0.000013253208
Dominant + 6 (5.6) 38 (14.3) 60 (22.1) 27 (5.3) 38 (12.1) 14 (6.1) 42 (12.3) 0.000000000001
Recessive 2 6 (5.6) 11 (4.1) 15 (5.5) 21 (4.1) 23 (7.3) 8 (3.4) 12 (3.5) 0.000000000275
Recessive + 0 (0) 10 (3.7) 21 (7.7) 29 (5.7) 30 (9.5) 9 (3.9) 15 (4.4) 0.000000000001
Total 107 (100) 265 (100) 271 (100) 504 (100) 314 (100) 229 (100) 340 (100)

The numbers in parentheses represent the percentage of this category among all QTLs in that group. The signs that follow the mode of inheritance
indicate whether it is an increasing (+) or decreasing (2) QTL relative to M82. A statistical comparison between the different metabolite groups was
conducted in each mode of inheritance using a x2 test (with 1 df) by classifying the QTL into those that belong to this mode of inheritance and those that
do not belong for each group.
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phosphorylation or other posttranslational modifications (such as
the Ile-to-Phe change in the response regulator MYB-like TF
gene, Solyc11g072330, from IL11-4-1).

Wide(r) structural variation, involving, for example, several in-
tolerant amino acid polymorphisms, or large insertion/deletions
(InDels) in the coding sequences, was found in a few instances,
such as in the GRAS TF genes from IL10-3. This is of interest
given that members of the GRAS TF family have a role in gib-
berellin signaling, root/shoot development, and fruit set (Pysh
et al., 1999; Carrera et al., 2012). In the case of Solyc10g086370,
a large nucleotide insertion (87 bp) in the S. pennellii allele in-
terrupted the GRAS domain, and several interspersed SNPs
along the conserved portions led to 12 amino acid changes, three
of which were predicted as intolerant substitutions for protein

function. In the case of Solyc10g086380, also a member of the
GRAS TF family, the occurrence of several InDels in the coding
sequence of S. pennellii led to a truncated product: the predicted
gene model lacked 165 amino acids from the C terminus and
a number of additional interspersed SNPs resulted in five in-
tolerant amino acid changes.
Pairwise analysis of the alignments of TF genes from all eight

ILs was also extended to include noncoding sequences upstream
their start codon ATG (up to around 21000 bp): Sequence vari-
ation in this region, in fact, may affect various conserved binding
motifs and have a large impact on initiation of translation, stability
of the downstream mRNAs, global gene expression level, and
tissue specificity (Mignone et al., 2002). Following this analysis,
large alignment gaps (at least one InDel with length > 30 bp)

Figure 9. Correlation Networks for the LC-MS Data Assessed in This Study.

The network comprises nodes representing primary metabolites, secondary metabolites, and phenotypic traits, denoted by the following colors:
N-containing compounds (brown), hydroxycinnamate derivatives (blue), acyl-sugars (red), glycoalkaloids (orange), flavonoids (green), polyamines
(coral), amino acids (yellow), organic acids (pink), sugars (white), and all other metabolites without compound class (gray). Homozygous lines ([A] and
[B]) from 2001 and 2004, respectively, and heterozygous introgression lines from 2004 (C), denoted by HO1, HO4, and HE4 networks. The networks are
sparsified by removing 30% of the edges at random for easy visualization, while maintaining the relative ordering of nodes based on their degrees in the
original network. (D) shows a scatterplot and linear fit between absolute value of the difference in node degrees of HO1, HO4, and the heritability of the
respective metabolites.
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emerged for 16 (out of 107) TF genes (Supplemental Data Set 11):
These large InDels frequently included core promoter elements
(e.g., GATA/TATA box) and/or putative binding motifs for various
TFs. The aligned upstream sequences of a G2-like TF gene from
IL6-3 (Solyc06g076350), for example, showed several contiguous
insertions of varying length in S. pennellii (from 8 to 101 bp), with
the presence of at least 20 putative cis-acting elements. In the
case of Solyc10g078700, a SBP (Squamosa binding protein) TF
gene from IL10-2, the upstream sequences of S. lycopersicum
and S. pennellii differed for the presence of three InDels (located
from 2900 to 2640 bp with respect to the ATG and ranging in
length from 22 to 39 bp), containing at least 12 different putative
TF binding sites. In many cases (although not all), the extent of
structural promoter variation was correlated with the magnitude of
differential expression between a specific IL and S. lycopersicum

M82 (Supplemental Data Set 11). However, the most important
observation here is that a combination of expression and se-
quence analyses can be used to predict transcriptional regulators,
although this is perhaps not as facile as would be expected. As
a consequence, further (reverse) genetic experimentation will be
required to validate all or even any of these candidate regulators
of secondary metabolism.

Combined Analysis for Identification of Regulatory Circuits

In order to better understand the relationship between meta-
bolic and gene expression changes, we next performed corre-
lation network analysis (Supplemental Figure 7). The MADS box
TF J0645 showed a positive correlation (>0.97) with an un-
characterized gene (Solyc06g062290, putative glycosyltransfer-
ase) involved in glycoalkaloid biosynthesis (Itkin et al., 2013).

Significantly lower expression (P # 0.01) of Solyc06g062290 was
found in IL6-2, while a number of glycoalkaloid derivatives (lyco-
peroside G, F, or esculeoside A with m/z = 1268.592, 14.2 times
higher; F407 with m/z = 1340.994, 3.5 times higher) were signifi-
cantly higher in this line with respect to M82. F036, a glycoalkaloid
derivative withm/z = 1224.565, was below the level of detection in
this line. In addition, a strong positive correlation was found be-
tween the expression of Solyc06g062290 and the two TFs,
TA38003_4081 and TA38817_4081. Moreover, a significant neg-
ative correlation of this gene was found with MYB TF J0713, while
MYB TF J0707, homologous to MYB73 in Arabidopsis (responsive
to salt stress, abscisic acid, and auxin stimuli; Kim et al., 2013;
Zhao et al., 2014), is positively correlated (> 0.90) with an un-
characterized UDP-glycosyltransferase gene (Solyc10g085230)
previously documented to be coexpressed with other genes in-
volved in glycoalkaloid biosynthesis (Itkin et al., 2013). This gene is
located in the overlapping region of IL10-2 and IL10-3 where it
displayed significantly lower expression. A number of glycoalkaloid
derivatives were found to be correlated to the expression of this
gene and furthermore were lowly abundant or absent in these lines
(e.g., lycoperoside G, F, or A, F063, and F229). Other glycoalkaloid
derivatives showed high accumulation in these lines (e.g., F227,
m/z = 1226.580). When taken together, these data identify TF J0707
as a putative regulator of the gene expression of Solyc10g085230
and consequently of the glycoalkaloid metabolism.

Evaluation of Genomic Polymorphism at Key mQTLs

In order to investigate key genes potentially involved in the
mQTLs found in this study, we next attempted the prediction of
candidate genes. First, we focused on the case of “transcriptional

Figure 10. Combined Correlation Networks for the LC-MS Data and Phenotypic Traits.

The network comprises nodes representing primary metabolites, secondary metabolites, and phenotypic traits, denoted by the following colors: N-
containing compounds (brown), hydroxycinnamate derivatives (blue), acyl-sugars (red), glycoalkaloids (orange), flavonoids (green), polyamines (coral),
amino acids (yellow), organic acids (pink), sugars (white), all other metabolites without compound class (gray), and composite traits (black) from
homozygous (A) and heterozygous (B) introgression lines from 2004, denoted by HO and HE networks. The networks are sparsified by removing 30%
of the edges at random for easy visualization, while maintaining the relative ordering of nodes based on their degrees in the original network.
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differences,” which were mainly caused by the differences within
the promoter sequences of these genes. For this purpose, we
focused on regions showing both global metabolic changes and
a high density of secondary metabolite associated gene families,
such as UGT, P450, and OMTs. Among the eight mQTL regions
we discussed in the section on TF networks above, we focused
on two QTL regions on chromosomes 6 and 10, which showed
significant global metabolic changes [sinapic acid hexose (F214),
homovanillic acid hexose II (F619), and 3-(2-hydroxy-4-methox-
yphenyl] propanoic acid hexose [F027] metabolites were all al-
tered) and a high density of secondary metabolism-related genes
(such as P450s, laccase and oxidase genes; UGT, hydrolase and
hydroxycinnamoyl transferase genes; OMT, chalcone isomerase,
4-coumarate-CoA ligase genes, and 2-OGDs). In the mQTL re-
gions 695 (IL6-3) and 737 (in overlapping region of IL10-3 and
IL10-2), genes were found by searching the parental genome
sequences (Bolger et al., 2014). MapMan bin analysis revealed
that 10 and 12 secondary metabolism-related genes are con-
tained in these regions, respectively. Next, we performed geno-
mic sequence analysis of the promoter regions (defined as 1000
bp upstream of start codon) of candidate genes and compared
the promoter sequences of candidate genes by aligning the se-
quences from S. lycopersicum cv M82 and S. pennellii genome
sequences (Bolger et al., 2014). Following this approach, three
P450 genes, namely, Solyc06g076160, Solyc10g084590 (ortho-
logs of AT3G26300/AtCYP71B34), and Solyc10g080870 (ortho-
log of AT4G39490), as well as OMT1 (Solyc10g084590, ortholog
of AT5G54160/AtOMT1) were selected for detailed analysis.
Solyc06g076160 was selected as candidate gene for QTLs lo-
cated in IL6-2. For this gene there is a 44-bp deletion in the M82
sequence (at position 2326 bp) and a further deletion of 11 bp
at position 2200 bp, in addition to other small gaps. Similarly,
Solyc10g079540 was located within the overlapping region of
IL10-2 and IL10-3. In addition, promoter sequence compression
revealed a 60-bp deletion in M82 at position 2362, in addition to
an 8 bp at position2671 bp. However, both Solyc06g076160 and
Solyc10g079540 were highly similar in sequence in their coding
regions. Solyc10g080870 displayed high divergence in upstream
sequences, with four deletions in M82 ranging between a few to
up to 50 bp, in addition to other smaller gaps. The coding region

of Solyc10g080870 is quite similar between M82 and S. pennellii

(97%); however, it does contain a few polymorphisms, such as
deletions in M82 at the first exon (length of deletion: 5 bp) and
second exon (6 bp), while S. pennellii contains two 3-bp deletions
in the first exon. Solyc10g084590 contained two clear deletions in
the promoter region at2170 bp upstream (68 bp) and at2506 bp
upstream (11 bp) of this gene. However, the coding region was
very similar between M82 and S. pennellii with the exception of
a 3-bp deletion in M82 at position 163.
Based on the genomic analysis of S. pennellii and M82 in the

hot spot region, qRT-PCR was used to measure the expression of
several genes related to secondary metabolism. As would be
anticipated from the genomic sequence analysis of the promoter
regions, the P450 genes Solyc10g084590 and Solyc10g080870
showed altered expression in IL10-2 and IL10-3, while little or no
expression was found in the other lines and in M82 (Supplemental
Figure 8). In addition, OMT1 (Solyc10g084590) was also highly
expressed specifically in both IL10-2 and IL10-3. Cytochrome
P450 gene Solyc06g076160 showed higher expression (5 times)
in IL6-3, while little or no expression was found in the other lines
and in M82 (Supplemental Figure 8).

Validation of Candidate Genes: A Case Study for Genes

Associated with Glycoalkaloid Biosynthesis

As a first test of the involvement of Solyc06g062290 (annotated as
a UDP-glycosyltransferase) and Solyc10g085230 (annotated as
a UDP-glycosyltransferase) in the pathway of glycoalkaloid bio-
synthesis, we tested their expression levels in ILs that harbored
QTLs for these metabolites (Figures 1 and 4). For this purpose, we
selected ILs 6-2, 6-3, 10-2, and 10-3 and evaluated the levels of
Solyc06g062290 (Figure 13A) and Solyc10g085230 (Figure 13B)
by qRT-PCR. The expression of Solyc06g062290 was significantly
decreased only in IL6-2, whereas Solyc10g085230 was signifi-
cantly decreased in IL10-2 and 10-3. We next specifically
independently silenced these two genes in tomato fruit using
virus-induced gene silencing (VIGS). Following agroinjection, ripe
tomatoes were harvested at 10 d after the breaker stage. qRT-
PCR results revealed reductions of ;71% and 76% in mRNA
levels of Solyc06g062290 and Solyc10g085230, respectively, in

Table 2. Network Properties

Threshold

2

Threshold

+

No. of

Nodes

No. of

Edges

Positive

Weight

Negative

Weight

Isolated

Nodes

Connected

Components

Largest

Component

Average

Degree Density Communities Modularity

Rand Index

Chemical

Classes

HO1 20.39 0.34 145 1567 1561 6 11 12 134 21.61 0.15 15 0.36 0.02

HO4 20.36 0.33 145 1088 1032 56 2 3 143 15.01 0.10 7 0.51 0.08

HE4 20.33 0.29 145 2401 2236 165 1 2 144 33.12 0.23 4 0.28 0.02

HO 20.38 0.34 183 1356 1267 89 1 2 182 14.82 0.08 7 0.50 0.17

HE 20.35 0.29 183 2719 2479 240 1 2 182 29.72 0.16 4 0.29 0.007

HOc1 20.44 0.36 192 1569 1565 4 19 20 173 16.34 0.08 25 0.44 0.09

HOc4 20.38 0.36 192 959 924 35 24 25 168 9.99 0.05 31 0.53 0.16

Summary of the seminal network properties for the three groups of networks. The columns correspond to the following properties: threshold value for
negative correlations, threshold value for positive correlations, number of nodes, number of edges, number of edges with positive weight, number of
edges with negative weight, number of isolated nodes, number of connected components, the number of nodes in the largest component, the average
degree, density, number of communities (determined by the greed community finding algorithm based on modularity), the modularity of the
corresponding partition into communities, and the Rand index for the correspondence between the determined communities and the chemical classes
for the compounds.
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silenced fruits compared with the fruits set from plants infiltrated
with a pTRV2-empty vector (Figures 13C and 13D). Despite some
variability, the mRNA levels of other major genes of glycoalkaloid
biosynthetic pathway (GAME1, 4, and 12) were unchanged in
these lines (Figures 13F to 13H).

Secondary metabolite profiles of methanol-extracted fruit
pericarp were obtained from the same plant material by LC-MS
analysis. Several glycoalkaloid derivatives were present at
significantly different levels between silenced and nonsilenced
fruits; the levels of a-tomatine in silenced mature ripe fruit of
Solyc06g062290 and Solyc10g085230 were significantly higher
compared with fruit infiltrated with empty vectors (Figure 13E). It is
worth noting, however, that the levels of a-tomatine were much
higher in fruit of silenced Solyc10g085230 compared with fruit of
silenced Solyc06g062290. Importantly, a delay in fruit ripening
was observed following silencing of Solyc10g085230, which may
be of importance since it is often reported that green fruit accu-
mulate considerably higher levels of a-tomatine compared with
ripe fruit (Itkin et al., 2011, 2013; Iijima et al., 2013). That said,
silencing of either gene resulted in significant changes in the
levels of several other glycoalkaloids within the fruit (Figure 13E).
Silencing Solyc06g062290 resulted in the accumulation of puta-
tive glycoalkaloid annotated as lycoperoside G/F (Figure 13I, ii)
and reduced levels of the unknown glycoalkaloid of m/z = 1122.6
(Figure 13I, vi) or esculeoside A + hexose (Figure 13I, iii), sug-
gesting that this enzyme is indeed involved in the glycoalkaloid
biosynthetic pathway. By contrast, silencing Solyc10g085230
resulted in reduced levels of glycoalkaloid peak annotated as ly-
coperoside G/F or esculeoside A (Figure 13I, iv) and unknown
glycoalkaloid of m/z = 1341.1 (Figure 13I, v) compared with the
empty vector control. Interestingly, with the exception of a single
ripening-related flavonoid (naringenin chalcone), which changed
in Solyc10g085230-silenced plants, no other secondary metab-
olite changes were apparent in these lines.

Following the same approach as described above, a pairwise
comparison between S. lycopersicum cv M82 and S. pennellii

was conducted to detect possible sequence polymorphisms at
the level of encoding and promoter regions of the candidate
genes. For the first candidate, Solyc06g062290, which was
annotated as a UDP-glucosyltransferase in the tomato ITAG 2.3,
the sequence analysis revealed that the gene prediction in
S. pennellii is that of a truncated product that corresponds to the

terminal part of the S. lycopersicum protein. In addition, sequence
alignments showed two open reading frames, which give partial
alignments to the original S. lycopersicum protein; consequently,
the predicted product(s) is a nonfunctional glucosyltransferase
since it is lacking most of the functional domain. Furthermore, the
sequence variation of the noncoding region 21000 bp upstream
of the start codon ATG revealed the presence of a long terminal
repeat-retrotransposon whose terminal sequence spreads over
the promoter of the S. pennellii gene. Regarding the second
candidate Solyc10g085230, annotated as a glycosyltransferase,
our BLAST results indicate that no ortholog is present in the
S. pennellii genome, consistent with the lack of expression of this
gene in IL10-2 and IL10-3.

DISCUSSION

This study identified numerous mQTLs for secondary metabolite
accumulation in tomato fruit pericarp. While only a handful of
studies have used broad genetic crosses to identify mQTLs for
a broad range of secondary metabolites (Kliebenstein et al.,
2001a, 2001b; Keurentjes et al., 2006; Morreel et al., 2006; Khan
et al., 2012; Matsuda et al., 2012; Routaboul et al., 2012; Gong
et al., 2013; Wahyuni et al., 2014) and previous studies have
largely been focused on Arabidopsis, considerable research has
been focused on defining QTLs for volatile organic compounds
from tomato fruit (Tieman et al., 2006; Mathieu et al., 2009;
Mageroy et al., 2012; Rambla et al., 2014) and acyl-sugars in
tomato leaf trichomes (Schilmiller et al., 2012, 2010). In addition,
the levels of primary metabolites have been evaluated in multiple
different breeding populations (Schauer et al., 2006, 2008; Do
et al., 2010) as well as in association mapping panels (Sauvage
et al., 2014). These previous studies provide an interesting con-
text in which to evaluate the results of this study. We observed on
average fewer mQTLs per metabolite for those secondary me-
tabolite families studied here, 4.68, than we did for the primary
metabolites we reported previously 11.86 (Schauer et al., 2006,
2008). When comparing our results with those for other second-
ary metabolite pathways in this population, we obtained consid-
erably more QTLs than observed for the volatile organic
compounds, 0.75 mQTLs per compound (Mathieu et al., 2009),
but a similar amount in comparison to the trichome acyl-sugars,
4.57 per compound (Schilmiller et al., 2010).

Table 3. Difference between Networks

Jaccard
Index

Specific
to First

Specific
to Second

Average
Difference in
Correlation

Average
Difference in
Shared
Correlations

Difference
in Degree

Difference in
Closeness

Difference in
Betweenness

Difference in
Eigenvector
Centrality

HO1-HO4 0.26 0.65 0.49 0.37 0.13 11.620 0.001 91.66 0.28
HO4-HE4 0.32 0.22 0.64 0.29 0.09 18.410 0.001 81.88 0.22
HOc1-HOc4 0.23 0.49 0.69 0.40 0.13 9.625 7.46e25 169.56 0.22
HO-HE 0.32 0.26 0.63 0.30 0.09 15.770 0.0003 121.01 0.19

The difference between the considered networks is assessed based on the seminal network properties, including the ratio of shared edges to the union
of edges of the two networks (Jaccard index), proportion of edges specific to the first network, proportion of edges specific to the second network, the
average absolute value of the difference of shared correlations, the absolute value of the difference between the degrees, closeness, and betweenness,
and eigenvector centralities of the nodes.
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Figure 11. TF Profiles of Tomato Fruits of Selected ILs.

Heat map showing the fold changes of 974 TFs relative to recurrent parent (M82) in 2001 (three biological replicates were measured). TFs grouped
based on the TF families and sorted according to average of fold change within the same group (full data set available in Supplemental Data Set 8).
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These analyses likely reflect the observation that primary me-
tabolism is characterized by a greater degree of redundancy than
secondary with there often being several routes to the same end
(for example, see Timm et al., 2011) and therefore exhibits a more
complex genetic architecture. By contrast, the absolute variation
in metabolite abundance across the population was much greater
for secondary metabolites, which showed increases of up to 95-
fold and decreases down to 0 (not produced) of the level found in
the recurrent parental line (while for primary metabolites the
maximal increases and decreases were 17.7 and 0.18, respec-
tively). Two factors that may explain this are (1) that secondary
metabolite abundance is under considerably less intricate control,
which is dominated by transcriptional regulation; and (2) the
prominence of unbranched pathways in secondary metabolism
provides a better concordance of transcript and metabolite levels
in these pathways (Fernie and Stitt, 2012). Additionally, the sec-
ondary metabolite data displayed a different pattern of change
being dominated by decreases as opposed to the tendency to
increase observed in the primary metabolite data set (Schauer
et al., 2008). It is conceivable that this is due to differences in the
natural variance of the primary and secondary metabolites be-
tween S. lycopersicum and S. pennellii.Many primary metabolites
occur in higher concentrations in S. pennellii fruit (Schauer et al.,

2005) and our own unpublished data suggest that mature fruit of
S. pennellii also contain much higher levels of hydroxycinnamates,
a-tomatine, and acyl-sugars, but contains lower levels of flavonols
(T. Tohge and A.R. Fernie, unpublished data). Similarly, evaluation
of the relative expression of key genes of secondary metabolism
reveals that these have lower expression levels in fruit of S.

pennellii than in the elite cultivar (Koenig et al., 2013; Bolger et al.,
2014). A second possibility is that the divergence of pathways is
considerably greater in S. pennellii, and this may lead to a re-
routing of carbon into alternate metabolites thereby reducing the
pool sizes of the core pathway intermediates. Given that tran-
scriptional control of secondary metabolism has been demon-
strated to be quite complex, at least occasionally (for instance,
see Li et al., 2014), a third possibility is that primary metabolism is
simply under more constrained evolutionary pressures, while
secondary metabolism might be under more diversifying selec-
tion. While we favor the former two hypotheses, we cannot cur-
rently formally exclude any of them. Future isotope tracing studies
and more detailed gene expression studies may allow this ques-
tion to be addressed more comprehensively.
We also classified the metabolite heritability as high, in-

termediate, or low using thresholds of >0.4, between 0.2 and 0.4,
and below 0.2, respectively. However, it is important to note that
this study was based on only 2 years of data, and our experience
has shown that these values could be anticipated to drop on
addition of data from further harvests (Schauer et al., 2006, 2008).
When looking at heritability on the basis of the individual com-
pounds, a couple of interesting features were apparent. First, as
was also observed for primary metabolites (Schauer et al., 2008),
metabolites that are biochemically similar to one another in some
instances display similar heritabilities, although it must be
stressed that this linkage was by no means as strong for the
secondary as the primary metabolites. Second, those metabolites
that are known to be important stress protectants (Mintz-Oron
et al., 2008, Itkin et al., 2011; Nakabayashi et al., 2014) appeared
to have lower heritability. Similar to our findings described here,
Matsuda et al. (2012) observed high hereditability for rice grain
some secondary metabolites, especially in the case of flavonoids;
however, most other metabolites were highly sensitive to envi-
ronmental factors. Moreover, heritabilities of secondary metabo-
lites in Arabidopsis tended to be considerably higher than those
reported for primary metabolites (Kliebenstein et al., 2001a;
Keurentjes et al., 2006; Wentzell et al., 2007; Rowe et al., 2008;
Joseph et al., 2013). Although from a global perspective there are
large differences in the number, direction, and magnitude of the
mQTLs of tomato primary and secondary metabolism, and to
a lesser extent their heritability in general, their mode or in-
heritance was very similar with the vast majority of secondary
metabolite traits displaying dominant or additive inheritance. In-
triguingly, this reinforces the conclusion of our earlier study that
tomato metabolites do not exhibit overdominance and thus pro-
vide no support for proposed biochemical mechanisms of hybrid
vigor (heterosis; Milborrow, 1998).
In addition to evaluating the metabolite traits on a one-by-one

or even a compound class basis, we additionally performed more
global analyses of trait correlations across the population. This is
by no means the first time that network analyses have been used
to evaluate the relationships between traits in wide genetic

Figure 12. Heat Map Showing the Relative Gene Expression of Phe-
nylpropanoid, Flavonoid, and Glycoalkaloid Genes.

Expression levels were measured by qRT-PCR. 4CL, 4-coumarate-CoA
ligase; HQT, hydroxycinnamoyl CoA quinate transferase; CHS1, chalcone
synthase; CHI, chalcone isomerase; F3H, flavanone-3-hydroxylase; F39H,
flavonoid-39-hydroxylase; FLS, flavonol synthase; GAME, glycoalkaloid
metabolism genes (GAME1, 2, and 3 [Itkin et al., 2011] and GAME4, 8, 11,
12, 17, and 18 [Itkin et al., 2013]). Values are average of three biological
replicates and represent as log2 fold changes compared with M82.

Inheritance in Secondary Metabolism 503

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lc

e
ll/a

rtic
le

/2
7
/3

/4
8
5
/6

1
1
8
1
3
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



populations with many previous examples being published in
Arabidopsis, potato, and maize (Rowe et al., 2008; Lisec et al.,
2011; Carreno-Quintero et al., 2013), as well as for a range of
different traits and tissue types in this very tomato population
(Schauer et al., 2006, 2008; Toubiana et al., 2012). However, this
study revealed several novel insights concerning the interrela-
tion of traits from primary and secondary metabolism with yield-
associated traits. Interestingly, when analyzed on the basis of their
secondary metabolite traits, the ILHs and ILs were broadly similar
in terms of their network structure albeit different in their fine
structure, which is somewhat distinct from our previous compar-
isons on the basis of primary metabolite traits (Schauer et al.,
2008). In addition, analysis of the correlations between primary
and secondary metabolite traits revealed few correlations (either
positive or negative) between secondary metabolites and the pri-
mary metabolites that act as their direct precursors. Indeed, the
tricarboxylic acid cycle intermediate succinate was highly corre-
lated with a large number of secondary metabolites, most likely
reflecting the importance of this pathway for sustaining bio-
synthetic reactions (Fernie et al., 2004), but levels of the universal
phenylpropanoid precursor phenylalanine showed no such cor-
relation. The later observation is in keeping with previous studies in
this population, which revealed that levels of phenylalanine-
derived volatile organic compounds were not correlated with the
levels of phenylalanine (Tieman et al., 2006). However, it is in sharp
contrast to the results of several other studies suggesting that
upregulation of secondary metabolism requires a coordinate up-
regulation of primary metabolism (Adato et al., 2009). In keeping
with a coordinated regulation of primary and secondary metabo-
lism is the observation that proline, glycerol, and succinate were
strongly correlated to the glycoalkaloids given that they can be
readily converted to the precursor of the glycoalkaloids, acetyl-
CoA. These observations suggest that metabolic engineering of
glycoalkaloid but not phenylpropanoid content could likely be
achieved in tomato by strategies enhancing precursor supply. In
addition, we used network analysis to address whether changes in
metabolite levels (or by corollary the canalization of metabolite
levels) observed on a point-by-point basis were also observable
within the networks of correlated data patterns. Put another way,
the heritability analyses discussed above do not take relationships
between traits into account but rather consider the environment
and only the behavior of individual traits. However, since metabolic

networks were established for each season independently, we
were interested in assessing whether heritability could be deduced
from the changes in the networks between the seasons. For this
purpose, we assessed the node centralities. The relationships
between the heritability of metabolic traits and their position within
networks suggested that conserved canalized traits may be de-
tected by evaluating correlation patterns of the broader network.
This approach may be useful in future studies on canalization.
Many of the compounds we detected here have important roles

as nutrients or antinutrients; hence, the information obtained could
prove interesting for informing attempts to produce healthier fruits,
using either classical genetic or transgenic approaches (Martin
et al., 2011; Fitzpatrick et al., 2013). As mentioned above, the
cloning of QTLs from this population remains an arduous task,
and we have genetically confirmed only a handful of the candidate
genes we identified on the basis of our GC-MS screening most
notably those for branched-chain amino acids (Maloney et al.,
2010) and tocopherol (Quadrana et al., 2013, 2014). As a first step,
given that secondary metabolism is predominantly under tran-
scriptional control (Martin et al., 2010; Patra et al., 2013; Tohge
et al., 2014), we used a previously established quantitative real-
time PCR platform to define differences in transcription factor
expression in eight of the ILs, as well as defining the expression
level of a range of genes encoding key enzymes of secondary
metabolism. The rationale behind this was that expression QTL
analysis has previously been demonstrated to provide important
information concerning the molecular basis of trait variance (for
example, see Hansen and Houle, 2008).
Here, we used the approach as a first step in identifying the

genetic basis of the observed changes in several metabolites
notably the important nutrient chlorogenate and antinutrients of the
glycoalkaloid class as well as some hydroxycinnnamates and acyl-
sugars from trichome cells. Reassuringly, the mQTLs for dehy-
droesculeoside A or B we found in IL1-1 (Figure 4A) overlap with
the identification of an isomer of dehydrotomatine (1363.85 m/z),
which accumulated in IL1-1 trichomes but was not found in of M82
trichomes (Schilmiller et al., 2010). A single mQTL was found for
the 693 m/z ion, which we annotated as a putative pregnane de-
rivative (Figure 4B, B-2). Our mQTLs mapped to a small over-
lapping region of IL6-3 and IL6-4 at the end of chromosome 6; in
our data set, the metabolite change is 14 and 12 times increased
compared with M82. No genes involved in pregnane biosynthesis

Table 4. Number of the Genes and Predicted Transcription Factors in Eight ILs

IL Bins
Total No. of Genes in
the Introgression

No. of TF Genes in the Introgression
Predicted by PlantTFDB v3.0

No. of TF Genes in the
Introgression for Which We
Have Expression Data

6-2 d6B, d6C, d6D, d6E 1095 81 29
6-3 d6E, d6F, d6G 696 57 17
8-2 d8D, d8E, d8F 890 52 13
8-2-1 d8D 679 35 7
9-1 d9A, d9B, d9C, d9D, d9E 524 37 7
10-2 d10C, d10D.1, d10E, d10D.2, d10F 693 53 13
10-3 d10F, d10G 387 24 7
11-4-1 d11H 103 8 2
Total 5067 347 95
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Figure 13. Gene Expression and Metabolite Changes in IL6-2, IL6-2, IL10-2, IL10-3, Solyc06g062290, and Solyc10g085230 Transiently Silenced
Tomato Fruits.

(A) Relative levels of mRNA in M82, IL6-2, and IL6-3.
(B) Relative levels of mRNA in M82, IL10-2, and IL10-3.
(C) and (D) Relative levels of mRNA in control (empty vector) and silenced fruit of Solyc06g062290 (C) and Solyc10g085230 (D) harvested from VIGS
agroinfiltrated tomato plants.
(E) Heat map of secondary metabolite changes in the control (empty vector) and silenced fruit of Solyc06g062290 and Solyc10g085230 harvested from
VIGS agroinfiltrated tomato plants.
(F) to (H) Relative levels of mRNA in GAME1 (F), GAME12 (G), and GAME 4 (H) (GAME1; Itkin et al., 2011; GAME4 and 12; Itkin et al., 2013).
(I) Changes in major glycoalkaloids in control (empty vector) and silenced fruit of Solyc06g062290 and Solyc10g085230 (i), a-tomatin (ii), lycoperoside
G/F (iii), esculeoside A + hexose (iv), dehydrolycoperoside G/F or dehydroesculeoside A (v), and unknown glycoalkaloids (vi) (m/z = 1341.1 and 1122.6).
Data are mean 6 SE; asterisks indicate a significant difference at P # 0.05.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lc

e
ll/a

rtic
le

/2
7
/3

/4
8
5
/6

1
1
8
1
3
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



have been characterized until now; however, several strong can-
didate genes, O-methyltransferase (Solyc06g083450), duplicated
genes of 3-ketoacyl-acyl carrier protein reductases annotated
as tropan reductase (Solyc06g083470, Solyc06g083480, and
Solyc06g083490), and ent-copalyl diphosphate synthase
(Solyc06g084240), are present in this region. Another mQTL (that
for a nontoxic form of glycoalkaloid derivatives) was mapped to
chromosome 7 in the overlapping region of IL7-4 and IL7-4-1, in
which the metabolite was absent. These QTLs colocalize to the
cluster of glycoalkaloid metabolism genes (GAME) mapped in these
regions (Itkin et al., 2013). However, direct proof concerning which
gene controls the content of glycoalkaloids remains to be clarified in
future studies. An acyl-sugar mQTL (345.1185 m/z) was found only
in the overlapping region of IL8-2 and IL8-2-1 (Figure 4D). Two
acyltransferases related to secondary metabolism Solyc08g075210
(ortholog of At3g30280 in Arabidopsis) and Solyc08g075180 (or-
tholog of At3g26040) localized to this region appear to be strong
candidate genes for this QTL; however, they remain to be func-
tionally validated. Furthermore, five UDP-glycosyltransferase
1 family (UGT1) genes (Solyc10g085730, Solyc10g085860,
Solyc10g085870, Solyc10g085880, and Solyc10g086240) and one
phenylalanine ammonia lyase (PAL; Solyc10g086180) were found in
the mQTL region that showed higher accumulation of coumaric
acid-hexoside in IL10-3 (Figure 4E, E-2). Finally, the mQTL region of
one of the cholorogenic acid isomers (353m/z) was found in IL12-4
and IL12-4-1 (Figure 4F) and does not contain strong candi-
dates, except MYB genes (Solyc12g099130, Solyc12g099120,
Solyc12g099140, Solyc12g099620, and Solyc12g099850). This last
result suggests the presence of novel regulatory, or even structural,
genes beyond those described to date in plants (Martin, 2013).
Thus, the strategy used here may facilitate the identity of novel
target genes for the metabolic engineering of this important nu-
traceutical. Furthermore, our VIGS data confirmed Solyc06g062290
and Solyc10g085230 as candidates in the control of glycoalkaloid
accumulation, given that lycoperoside G/F increases and esculeo-
side A + hexose decreased in lines silenced in the former, and
esculeoside A increased and the unknown glycoalkaloid of m/z =
1341.1 decreased in lines silenced in the latter. In addition, analysis
of the metabolite profiles suggest that the gene product encoded
by Solyc06g062290 likely acts as UDP-glucose and catalyzes the
conversion of lycoperoside G/F to esculeoside A + glucose, while
Solyc10g085230 catalyzes the conversion of esculeoside A to
esculeoside A + hexose. These data essentially provide a proof-of-
concept that at least for structural genes this approach allows in-
depth characterization of the genetic architecture of secondary
metabolic traits. However, our data concerning transcription factor
networks suggest that these currently remain difficult to disentangle
via the approaches used here and will require further (reverse) ge-
netic studies for clarification.

In conclusion, the data presented here complement and extend
that documented for traits of primary metabolism by Schauer
et al. (2008). In this study, we were able to identify several hundred
QTLs, some of which were of far greater magnitude than those
described for mQTLs of primary traits, but the majority of which
were negatively affected by the substitution of a portion of the S.

pennellii genome into the background of the elite cultivar. Our
results allow several important conclusions to be drawn regarding
the metabolic networks of tomato fruits, including the relative

importance of precursor supply for phenylpropanoid and glyco-
alkaloid metabolism, the lack of difference in network structure
when lines heterozygous for the introgressions are compared with
those homozygous for them, and the value of the use of network
structure as a proxy for heritability analysis. In terms of directed
metabolic engineering strategies, several positive QTLs were
identified that could be used for biofortification of chlorogenic acid,
whereas several negative QTLs for antinutrients such as those of
the glycoalkaloids were also identified. This information could thus
be directly useful for the design of breeding strategies to improve
the nutritional quality of the fruit. One unexpected insight that this
study afforded was the fact that many of the QTLs for secondary
metabolite contents exhibited dominant negative mode of in-
heritance. This is counter to the received wisdom that secondary
metabolite contents were reduced on domestication (Meyer et al.,
2012) and as such is a highly interesting observation worthy of
further study, as it emphasizes the potential importance of main-
taining or improved stacking of domestic alleles in breeding for
these compounds in addition to bringing in wild alleles.
All of the QTLs described, irrespective as to whether they are

positive or negative, could ultimately (once the underlying gene
has been cloned) provide further candidate genes for transgenic
approaches toward fruit compositional improvement. Evaluation
of global gene expression levels in the introgression lines would
likely both deepen our understanding of the molecular basis of the
QTLs described here as well as improve our chances of improving
the nutritional quality of this crop.

METHODS

Growth Conditions

The metabolite data set presented is based on field-grown introgression
lines (and in 2004 their respective heterozygous counterparts; Semel et al.,
2006) over two harvests, 2001 and 2004. The field trials were conducted in
the Western Galilee Experimental Station in Akko, Israel. Plants were grown
in a completely randomized design with one plant per m2. Seedlings were
grown in greenhouses for 35 to 40 d and then transferred to the field. Twelve
seedlings of each homozygous IL and heterozygous ILH (IL*M82) were
transplanted as well as 70 seedlings of M82. Eight ILs were not included in
the analysis of 2004 because of poor germination (ILH2-4, IL3-1, ILH3-4,
ILH6-2, ILH6-2-2, ILH6-4, ILH7-2, and ILH9-3-2). Fruit was harvested when
80 to 100%of the tomatoeswere red (Eshed andZamir, 1995). The fieldwas
irrigated with 320 m3 of water per 1000 m2 of field area throughout the
season. Morphological and reproductive traits have previously been de-
scribed for the 2001 harvest (Schauer et al., 2006) and for the 2004 harvest
(Semel et al., 2006), and variance in primary metabolite traits has also been
recorded for both harvests (Schauer et al., 2006, 2008).

Secondary Metabolite Profiling

Secondary metabolites were profiled by the Waters Acquity UPLC system
coupled to the Exactive Orbitrap mass detector according to the previously
publishedprotocol (Giavalisco et al., 2009). TheUPLCsystemwas equipped
with a HSS T3 C18 reversed phase column (100 3 2.1 mm i.d., 1.8-µm
particle size; Waters) that was operated at a temperature of 40°C. The
mobile phases consisted of 0.1% formic acid in water (Solvent A) and 0.1%
formic acid in acetonitrile (Solvent B). The flow rate of the mobile phase was
400 µL/min, and 2 mL of sample was loaded per injection. The UPLC was
connected to an Exactive Orbitrap (Thermo Fisher Scientific) via a heated
electrospray source (Thermo Fisher Scientific). The spectra were recorded
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using full scan mode of negative ion detection, covering a mass range from
m/z 100 to 1500. The resolution was set to 25,000, and the maximum scan
time was set to 250 ms. The sheath gas was set to a value of 60, while the
auxiliary gas was set to 35. The transfer capillary temperature was set to
150°C, while the heater temperature was adjusted to 300°C. The spray
voltage was fixed at 3 kV, with a capillary voltage and a skimmer voltage of
25 and 15 V, respectively. MS spectra were recorded fromminute 0 to 19 of
the UPLC gradient. Molecular masses, retention time, and associated peak
intensities were extracted from the raw files using RefinerMS (version 5.3;
GeneData), Metalign (Lommen, 2012), and Xcalibur software (Thermo Fisher
Scientific). Metabolite identification and annotation were performed using
standard compounds, literature, and tomato metabolomics databases
(Moco et al., 2006; Iijima et al., 2008; Tohge and Fernie, 2009, 2010;
Rohrmann et al., 2011). Data are reported in a manner compliant with the
standards suggested by Fernie et al. (2011).

Heat Maps

Heat maps were calculated using the “heat map” function of the statistical
software environment R, version 1.9. False color imaging was performed on
the log10-transformed metabolite data. We scaled data internally on a col-
umnbasis to have amean of 0 anda SDof 1.Metabolite datawere only taken
in instances in which metabolite content was determined in all six replicates
of an introgression line (in any given harvest).

IL Mapping

This was performed exactly as described by Schauer et al. (2008). The
broad-sense heritability (H2) was estimated by mixed effect models, with
random effects for genotype (75), environment (years 2001 and 2004), and
genotype-environment interaction.We used the lmer function from the lme4
package in the R environment. For QTL mapping in the ILHs, each IL and
ILH was compared by t test with M82 as well as with each other. If either of
them was significantly different to the M82 reference genotype, the in-
trogression was considered as harboring a QTL. Correlation analysis was
also performed across the entire population by means of the Pearson
correlation coefficient in order to determine possible technical artifacts.

Mode-of-Inheritance Classification and Heritability

The phenotypic effect of a QTL was considered to be the effect of the
significant line (IL or ILH) andwas presented as percentage ofM82 (positive
values for increasing QTL in which the introgression was higher than M82
and negative values for decreasing ones). If both the IL and ILH were
significant but in opposite directions relative to M82, the introgression was
considered as harboring two QTL: One is increasing, and the other is
decreasing. Themode of inheritance of a QTL was determined according to
a decision tree (Semel et al., 2006) with a customR script. In cases in which
the IL was significantly different from M82 and the ILH phenotype was in
between the IL and M82, there were three possibilities: (1) If the ILH was
significantly different from the IL but not from M82, it was considered re-
cessive; (2) If the ILH differed from both parents or did not differ from either
of them, it was considered additive; and (3) If the ILH differed fromM82 but
not from the IL, the QTL was assigned as dominant. The last possibility is
where the ILH was significantly higher or lower than both its parents, in
which case it was considered overdominant. Broad-sense heritability was
determined based on a mixed effect model implemented by the lmer
function from the lme4 R package (Bates et al., 2014).

Transcription Factor Profiling

On the basis of the mQTL analyses described above, eight introgression
lines (IL6-2,IL6-3, IL8-2, IL8-2-1, IL9-1, IL10-2, IL10-3, and IL11-4-1) and
the recurrent parent M82 were selected for transcription factor profiling

using the Solanum lycopersicum qRT-PCR transcription factor profiling
platform capable of sensitive and reproducible quantification of a total of
974 transcription factors in developing tomato fruit (Rohrmann et al.,
2011). Using the same pooled plant material as used for secondary
metabolite analysis, total RNA was extracted from fruit pericarp as de-
scribed by Bugos et al. (1995). DNA digestion and cDNA synthesis were
performed as described previously, and PCR reactions were performed
using an ABI Prism 7900 HT sequence detection system exactly as
described using the same reference genes (Rohrmann et al., 2011).

Mining Sequence Variation of TF Genes

Genes predicted to encode TFs were obtained by querying the full list of
genes contained in each introgression against the Plant Transcription
Factor Database v. 3.0 (Plant TFDB; Jin et al., 2014). The deduced amino
acid sequences of TFs from S. lycopersicum cv M82 and Solanum

pennellii (Bolger et al.. 2014) were then aligned using ClustalW (http://
www.ebi.ac.uk/Tools/msa/clustalw2/), and polymorphic sequences were
submitted to SIFT (Sorting Intolerant From Tolerant, http://sift.jcvi.org/
www/SIFT_BLink_submit.html) to predict the impact of amino acid
substitutions on protein function (Kumar et al., 2009). Promoter regions
(up to 1000 bp upstream the predicted ATG) were aligned using Blast2seq
(http://blast.ncbi.nlm.nih.gov) or NEEDLE (http://www.ebi.ac.uk/Tools/
psa/emboss_needle/nucleotide.html) using default settings. To detect the
presence of transcription factor bindingmotifs, upstream sequences were
analyzed with PLACE (https://sogo.dna.affrc.go.jp; Higo et al., 1999) and
PlantPAN (http://plantpan.mbc.nctu.edu.tw/; Chang et al., 2008).

VIGS

Vector construction, infiltration, and fruit harvesting procedures were
performed as previously described (Orzaez et al., 2006; 2009). Briefly,
280- and 310-bp fragments of Solyc06g062290 and Solyc10g085230,
respectively, were amplified from tomato fruit cDNA using Gateway-
compatible primers and recombined into the pDONR207 vector (Invitrogen)
by the BP reaction to generate an entry clone. The Entry vector was then
recombined with the pTRV2-GW destination vector using an LR reaction to
produce the expression clones pTRV2-Solyc06g062290 and pTRV2-
Solyc10g085230. The sequenced expression vectors were then transferred
into Agrobacterium tumefaciens strain GV3101:pMP90 by electroporation.
Agroinfiltration was modified from the methods described previously as
follows. In order to infiltrate fruit for VIGS, MicroTom tomato was
used and the pTRV1 culture and pTRV2-Solyc06g062290 or pTRV2-
Solyc10g085230 were mixed in a 1:1 ratio. Fruits were labeled and
injected with 0.2 to 0.5 mL of bacterial mixture through the peduncule.
Agroinfiltrated fruit were marked at the breaker stage, and samples were
collected at 2 weeks after breaker.

Network Generation and Visualization

To establish presence of edges, we first determined sign-dependent
thresholds ensuring FDR of 0.05 based on a permutation test, whereby the
profile of each metabolite is shuffled independently of the others (Storey,
2003). Therefore, the thresholds are not hard coded and dependon the data
considered in the network extraction (Toubiana et al., 2013). Positive and
negative thresholds were determined separately due to the asymmetric
distribution of values for the correlation coefficient. To visualize the net-
works, we made use of the chemical compound classes (Supplemental
Data Set 1), and the metabolites of each compound class were plotted
based on a circle layout, which were then merged. For ease of visualization,
only a portion of edges present in the network are drawn, while approxi-
mating the proportions between the degrees of the adjacent nodes. The
canalization of correlation is defined as correlations that do not change over
seasons, as established via Fisher z-transformation.
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Network Properties and Comparisons

Networks were characterized based on their global (weighted) structural
properties, including threshold for positive and negative correlations,
number of nodes, number of sign-dependent edges, number of isolated
nodes and connected components, as well as the size of the largest
component, average degree, density, and number of network communities
(based on modularity). The correspondence between the communities and
the partitioning of the metabolites based on the compound classes were
quantified based on the adjusted Rand index (Hubert and Arabie, 1985). The
comparison of the networks was conducted based on the following
properties: structural difference basedon the Jaccard index of theedgesets,
graph difference, relative weighted Jaccard index, and the relative weighted
difference of the intersection of edge sets, as well as the average difference
based on the local-global network properties, including degree, closeness,
betweenness, and Eigenvalue centrality (Newman, 2003). We additionally
calculated the Pearson correlation values between selected genes and TFs.
All pairs of gene-TF with high (r > 0.95) and significant (P < 0.05, FDR
corrected) correlations were selected in order to construct the coexpression
network. Further on, the correlation values between all gene (nonregulatory
genes and TFs), andmetabolite profileswere estimated andall pairs of gene-
metabolite with significant correlations (P < 0.05, FDR corrected) were
selected for further investigations.

Accession Numbers

The NCBI and SOL numbers for genes used in this study can be found in
Supplemental Data Set 10.

Supplemental Data

Supplemental Figure 1. Annotated Overlay Heat Map of the Metab-
olite Profiles of the ILs in Comparison with That of the Parental Control
(M82) from the Individual Data Sets of 2001 and 2004.

Supplemental Figure 2. Annotated Heat Map of Secondary Metab-
olite Profiles of the Introgression Lines in Comparison to That of the
Parental Control (Solanum lycopersicum cv M82) from the Individual
Data Set of 2001.

Supplemental Figure 3. Annotated Heat Map of Secondary Metab-
olite Profiles of the Introgression Lines in Comparison to That of the
Parental Control (Solanum lycopersicum cv M82) from the Individual
Data Set of 2004.

Supplemental Figure 4. Annotated Heat Map of the Metabolite
Profiles of S. lycopersicum Lines Homozygous (IL) or Heterozygous
(ILH) for Chromosomal Segmental Substitution from S. pennellii.

Supplemental Figure 5. Full Annotated Figure of Distribution of the
QTL Mode of Inheritance for Metabolite Accumulation.

Supplemental Figure 6. Combined Correlation Networks for the
Primary and Secondary Metabolites and Phenotypic Traits.

Supplemental Figure 7. Coexpression Network Based on Person
Correlation between Values of Selected Genes (Structural Genes),
Transcription Factors, and Metabolite Data of Eight Introgression
Lines and the Recurrent Parent M82.

Supplemental Figure 8. Relative Gene Expression of Four Candidates
Genes Was Measured by qRT-PCR.

Supplemental Data Set 1. All Detected Peaks, Putative Metabolite
Name Identified.

Supplemental Data Set 2. Fold Changes of Metabolite Content of the
ILs Compared with the Parental Control (M82).

Supplemental Data Set 3. QTL Detected at a Stringency of 5% for
Each Metabolite.

Supplemental Data Set 4. QTL Detected at a Stringency of 1% for
Each Metabolite.

Supplemental Data Set 5. Heritability of All Secondary Metabolite
Traits in the S. pennellii Introgression Population, and Environmental
Effect (E) and E 3 Genotype (G)

Supplemental Data Set 6. Fold Changes of Metabolite Content of the
Heterozygous (ILH) Compared with the Parental Control (M82).

Supplemental Data Set 7. Qualitative Distribution of Mode of In-
heritance Showing the Numbers of Major QTL That Were Classified in
Each Category for Each Chemical Compound Class.

Supplemental Data Set 8. Results of the qRT-PCR Experiment for
Tomato Fruits of Eight Introgression Lines.

Supplemental Data Set 9. Total Number of eQTL per TF Family.

Supplemental Data Set 10. TF Used in qRT-PCR.

Supplemental Data Set 11. Structural Variations of Transcription
Factors in Eight Introgression Lines.
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