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Background: Phenotypes have been identified within heterogeneous disease, such as

acute respiratory distress syndrome and sepsis, which are associated with important

prognostic and therapeutic implications. The present study sought to assess whether

phenotypes can be derived from intensive care patients with coronavirus disease 2019

(COVID-19), to assess the correlation with prognosis, and to develop a parsimonious

model for phenotype identification.

Methods: Adult patients with COVID-19 from Tongji hospital between January 2020

and March 2020 were included. The consensus k means clustering and latent class

analysis (LCA) were applied to identify phenotypes using 26 clinical variables. We then

employed machine learning algorithms to select a maximum of five important classifier

variables, which were further used to establish a nested logistic regression model for

phenotype identification.

Results: Both consensus k means clustering and LCA showed that a two-phenotype

model was the best fit for the present cohort (N = 504). A total of 182 patients (36.1%)

were classified as hyperactive phenotype, who exhibited a higher 28-day mortality and

higher rates of organ dysfunction than did those in hypoactive phenotype. The top

five variables used to assign phenotypes were neutrophil-to-lymphocyte ratio (NLR),

ratio of pulse oxygen saturation to the fractional concentration of oxygen in inspired air

(Spo2/Fio2) ratio, lactate dehydrogenase (LDH), tumor necrosis factor α (TNF-α), and
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urea nitrogen. From the nested logistic models, three-variable (NLR, Spo2/Fio2 ratio, and

LDH) and four-variable (three-variable plus TNF-α) models were adjudicated to be the

best performing, with the area under the curve of 0.95 [95% confidence interval (CI) =

0.94–0.97] and 0.97 (95% CI = 0.96–0.98), respectively.

Conclusion: We identified two phenotypes within COVID-19, with different host

responses and outcomes. The phenotypes can be accurately identified with

parsimonious classifier models using three or four variables.

Keywords: COVID-19, phenotypes, machine learning, intensive care unit, 28-day mortality

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) pneumonia is a newly recognized infectious disease first
reported inWuhan, China, and expeditiously spread to hundreds
of countries with massive mortality rate (1–4). The clinical
spectrum of coronavirus disease 2019 (COVID-19) ranges from
asymptomatic infection to critical illness and results in high
rates of hospitalization and intensive care unit (ICU) admission
(5). However, COVID-19 ICU mortality was various (6–8), and
the treatment responses were disparate (9–11), indicating that
COVID-19 is clinically and biologically heterogeneous.

Various studies have proposed different phenotypes of
COVID-19. According to 85 consecutive ICU COVID-
19 patients, Azoulay et al. identified three clinical and
biological phenotypes at ICU admission using hierarchical
clustering. ICU mortality rates were 8, 18, and 39% in
clusters 1, 2, and 3, respectively (12). Gattinoni et al.
identified two primary phenotypes based on respiratory
mechanics and response to ventilatory support (13).
Rello et al. classified COVID-19 patients into five specific
individual phenotypes, according to the disease severity
and hypoxemia management strategy (14). Whereas these
phenotypes were isolated and limited by sample size,
host responses to SARS-CoV-2 infection were vast and
multidimensional and include immune dysfunction, abnormal
coagulation, and varying degrees of organ failure (15). Different
combinations of these features may cluster into novel clinical
phenotypes, and patients in each phenotype may respond
differently to treatments. However, whether such COVID-19
phenotypes can be derived from clinical data have never
been explored.

Unsupervised machine learning approaches, such as
consensus k means clustering (16) and latent class analysis
(LCA) (17), have been used to identify distinct phenotypes in
sepsis (18), acute respiratory distress syndrome (ARDS) (19) and
other critical illnesses (20). Consensus clustering is a partitioning
approach in which the clustering framework incorporates results
from multiple runs of an inner-loop clustering algorithm. LCA
is a well-validated statistical technique, which is a form of
distribution mixture modeling used to estimate the best-fitting
model for a dataset, based on the hypothesis that the data
contain several unobserved groups or classes that are concealed
within the observed multivariate distribution. Here, we used

consensus k means clustering to derive phenotypes and assessed
the reproducibility of the phenotypes using LCA.

The first goal of the study was to identify novel clinical
phenotypes in ICU COVID-19 patients, using consensus k
means clustering and LCA. The second goal was to develop
parsimonious models that could ultimately be used prospectively
to identify COVID-19 phenotypes.

MATERIALS AND METHODS

Study Design and Participants
This single-center, retrospective, observational study was
performed at Tongji Hospital, which was designated to admit
patients with SARS-CoV-2 infection in Wuhan. Adult patients
(≥18 years) with laboratory-confirmed SARS-CoV-2 infection
and admitted to ICUs between January 2020 and March 2020
were included in the present study. According to the World
Health Organization guidance (21), laboratory confirmation
for SARS-Cov-2 was defined as a positive result of real-time
reverse transcriptase–polymerase chain reaction assay of nasal
and pharyngeal swabs.

This study was approved by the Research Ethics Commission
of Tongji Hospital. Written informed consent was waived by
the Ethics Commission because of the emergency circumstance.
Patient-level informed consent was not required. Part of present
patients have been described previously by Chen et al. (22) and
Wang et al. (23).

Data Collection
All data were drawn from electronic health record data at
Tongji hospital (Tongji cohort). Demographic data, chronic
comorbidities, vital signs, and laboratory results within the first
24 h after ICU admission were collected, as well as treatments and
outcomes. Because of incomplete measurement and recording of
arterial oxygen partial pressure (PaO2), we adopted pulse oxygen
saturation (SpO2) instead of PaO2, as well as the fraction of
inspired oxygen (FIO2). Sequential Organ Failure Assessment
(SOFA) scores were calculated to determine the severity of
illness using data from the first 24 h of ICU admission. All
patients were closely followed until 28 days after ICU admission.
Data were collected using a case record form modified from
the standardized International Severe Acute Respiratory and
Emerging Infection Consort.
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Outcomes
The primary outcome in the present study was 28-day mortality.
Secondary outcomes were the duration of hospital stay and
complications during hospitalization, which included ARDS,
septic shock, acute kidney injury, acute cardiac injury, and
coagulopathy. The diagnosis of complications is presented in the
Supplementary Material.

Clinical Variables for Phenotyping
We selected 26 candidate clinical variables based on their
association with severity or outcome of COVID-19, including
age, vital signs (heart rate, respiratory rate, temperature, mean
blood pressure), markers of inflammation [white blood cell
count (WBC count), neutrophil-to-lymphocyte ratio (NLR),
high-sensitivity C-reactive protein (hs-CRP), interleukin 2R
(IL-2R), IL-6, IL-8, and tumor necrosis factor α (TNF-α)],
markers of organ dysfunction [hypersensitive troponin I (hs-
TnI), international normalized ratio (INR), platelet (PLT) count,
total bilirubin, creatinine, urea nitrogen, lactate dehydrogenase
(LDH), and SpO2/FIO2 ratio], hemoglobin, red blood cell
distribution width (RDW), D-dimer, fibrinogen, albumin, and
glucose. All variables were collected within 24 h of ICU
admission, and we recorded the most abnormal value if a variable
was recorded more than once.

Consensus k Means Clustering
Consensus k means clustering was conducted to 26 variables
using a partitioning approach. We first assessed the candidate
variable distributions, missingness, and correlation. Multiple
imputations with chained equations (Additional Methods in
Supplementary Material) were used to account for missing data;
standardized transformation was used for the dataset, and non–
normally distributed variables were log-transformed prior to
standardized transformation. We then determine the optimal
number of phenotypes with consensus k means clustering,
according to the gap statistics, consensus matrix heatmaps, and
adequate pairwise-consensus values between cluster members
(>0.8). Once the optimal number was determined, we selected
rank plots of variables by mean standardized difference between
phenotypes to visualize the patterns of clinical variables. We also
conducted a sensitivity analysis after excluding highly correlated
variables using rank-order statistics (r > 0.5). Additional
details of consensus k means clustering are presented in
Supplementary Material.

Latent Class Analysis
We further employed LCA to assess the reproducibility of
the phenotypes. Similarly, all variables underwent standardized
transformation and were log-transformed as appropriate. In
the LCA, we estimated models ranging from to five classes.
Akaike information criterion (AIC), Bayesian information
criteria, entropy, class size (classes containing relatively small
numbers were not considered clinically meaningful), and the
Vuong–Lo–Mendell–Rubin (VLMR) likelihood ratio test (which
compares fit of model k classes to k-1 classes) were used to
determine the optimal number of classes. Once determined,

each individual was assigned a class according to model-
generated probabilities. More details of LCA are presented in the
Supplementary Material.

Parsimonious Algorithms to Classify
COVID-19
Based on previous research, we attempted to construct a
parsimonious model (three-variable or four-variable model)
to predict phenotypes. First, machine learning algorithms,
including classification tree with bootstrapped aggregating
(bagging), extreme gradient boosting (XGBoost), and gradient
boosted model (GBM), were used to identify the most important
classifier variables. To select the most important variables,
variable importance was used for the bagging model and
XGBoost. Relative influence factor of variable was used for GBM.
More details of machine learning algorithms are presented in
the Supplementary Material. Second, the five most important
classifier variables common to all three machine learning
algorithms were then used to generate five logistic regression
models (generated by sequential addition of the variables), and
the receiver operating characteristic curve and area under the
curve (AUC) were calculated for each model. AIC and DeLong’s
test were used to compare model performance. The best model
was determined by a combination of accuracy, parsimony, and
simplicity in clinical. Additionally, to assess the clinical usefulness
of the best model, decision curve analysis (DCA) was conducted
by quantifying the net benefits at different threshold probabilities.
Finally, after the best model selected, a 10-fold cross-validation
was applied to internally validate the stability of the model.
This was performed by randomly splitting the patients into
10 equal samples. Nine-tenths of these samples were used to
construct logistic regression models, and the model coefficients
were applied to the remaining sample (1/10). This process was
repeated 10 times, and the AUC to each fold was generated.

Statistical Analysis
Values are presented as the mean (standard deviation) or median
(interquartile range) for continuous variables as appropriate
and as the total number (percentage) for categorical variables.
Comparisons between groups were made using the χ

2 test
or Fisher exact test for categorical variables and Student t-
test or Mann–Whitney U-test for continuous variables as
appropriate. A p < 0.05 was used to determine statistical
significance for all tests. LCA was conducted using Mplus
software (version 8.3). All other analyses were done using R
(version 3.6.0).

RESULTS

Patients
During the study period, a total of 504 patients with COVID-
19 were included in the Tongji cohort. The schematic of
study is shown in Figure 1. Among the Tongji cohort,
259 patients (51.4%) were male, the age was 64 (52–
72) years, and the SOFA score was 3 (2–6). Within the
first 24 h after ICU admission, 16 patients (3.2%) received
vasopressor therapy, and 23 patients (4.6%) received invasive
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FIGURE 1 | Schematic of study. LCA, latent class analysis.

mechanical ventilation. The overall 28-day mortality rate
was 33.7%.

Derivation of Clinical Phenotypes for
COVID-19
In Tongji cohort, based on gap statistics, consensus matrix plots,
and consensus values (Supplementary Figure 1), the consensus
k means clustering found that a two-class model was the optimal
fit with the two distinct phenotypes of COVID-19. Ultimately,
322 patients (63.9%) were classified as hypoactive phenotype,
and 182 (36.1%) were classified as hyperactive phenotype.
Sensitivity analysis indicated that no substantial changes
were evident after excluding variables with high correlation
(Supplementary Table 3 and Supplementary Figure 2).

The characteristics of phenotypes in the two-class model
are shown in Table 1 and Supplementary Figure 3. Rank plots
of variables by the standardized mean difference between
phenotypes are presented in Figure 2. Most variables were
significantly different between the two phenotypes. Compared
to patients with the hypoactive phenotype, those with the
hyperactive phenotype were older, prone to have elevated
measures of inflammation (e.g., WBC count, NLR, hs-CRP,
IL-2R, IL-6, IL-8, TNF-α), higher D-dimer, higher heart
rate, higher respiratory rate, and extreme laboratory values
regarding the organ dysfunction (e.g., hs-TnI, INR, PLT
count, total bilirubin, creatinine, urea nitrogen, LDH, and
SpO2/FIO2). Additionally, in comparison with the hypoactive
phenotype, the hyperactive phenotype had significantly higher
SOFA score on ICU admission and higher comorbidity rates
(Supplementary Table 4).

Treatments and Outcomes in COVID-19
Phenotypes
A large proportion of patients with the hyperactive phenotype
received corticosteroid therapy (78.6 vs. 44.1%; p < 0.001),
high-flow nasal cannula oxygen therapy (17.0 vs. 4.7%; p
< 0.001), non-invasive mechanical ventilation (45.6 vs. 7.1%;
p < 0.001), invasive mechanical ventilation (59.3 vs. 3.4%;
p < 0.001), and renal replacement therapy (11.5 vs. 1.6%;
p < 0.001) during their ICU stay, compared to those
with hypoactive phenotype (Supplementary Table 4). Patients
assigned to hyperactive phenotype had significantly higher 28-
daymortality (74.3 vs. 10.8%; p< 0.001) and higher rates of organ
dysfunction during their ICU stay compared to those assigned to
hypoactive phenotype (Table 2).

Reproducibility Using LCA
LCA confirmed statistical fit of the two-class model. In LCA,
using the VLMR test, a two-class model showed significantly
improved fit compared with one-class mode (p = 0.0066), and
no further improvement in model fit was observed when the
three-class (p = 0.058), four-class (p = 0.41), or five-class
model (p = 0.40) was involved. Good class separation was
observed in the two-class model (entropy > 0.80), indicating
strong separation between the classes (Supplementary Table 5).
The two-class model classified 341 patients (67.7%) in class 1
(referred as hypoactive phenotype) and 163 patients (32.3%)
in class 2 (referred as hyperactive phenotype). Average latent
class probabilities were 0.98 for class 1 and 0.96 for class 2.
The clinical characteristics of the phenotypes were similar when
derived using this method, as well as by rank plots (Figure 2 and
Supplementary Table 6).
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TABLE 1 | Class-defining variables of phenotypes using consensus k means clustering.

Variables Hypoactive phenotype (n = 322) Hyperactive phenotype (n = 182) p-value

Age (years) 58 (48–69) 69 (62–77) <0.001

Heart rate (bpm) 89 (78–101) 95 (82–108) <0.001

Respiratory rate (bpm) 20 (20–22) 24 (20–32) <0.001

Temperature (◦C) 37.0 (36.5–37.8) 37.2 (36.5–38.0) 0.063

MAP 96.0 (89.7–104.7) 99.7 (89.0–106.0) 0.209

Spo2/Fio2 ratio 297 (259–433) 131 (90–229) <0.001

WBC count (×109/L) 5.2 (4.0–6.6) 9.4 (7.0–13.1) <0.001

NLR 3.4 (2.0–5.4) 13.5 (8.6–25.3) <0.001

Platelet count (×109/L) 213 (159–278) 164 (121–225) <0.001

Hemoglobin (g/L) 126 (115–137) 129 (115–143) 0.043

RDW (%) 12.4 (11.9–13.2) 13.0 (12.2–13.9) <0.001

High-sensitivity C-reactive protein (mg/L) 26.2 (5.6–65.2) 104.6 (65.0–163.4) <0.001

Interleukin 2R (U/mL) 658 (426–906) 1,262 (904–1648) <0.001

Interleukin 6 (pg/mL) 10.2 (2.3–31.1) 64.8 (31.0–157.0) <0.001

Interleukin 8 (pg/mL) 11.4 (6.5–19.5) 32.3 (20.0–66.4) <0.001

Tumor necrosis factor α (pg/mL) 7.8 (5.8–10.0) 12.8 (8.9–18.8) <0.001

d–Dimer (µg/mL) 0.7 (0.4–1.4) 5.3 (1.8–21.0) <0.001

Fibrinogen (g/L) 4.8 (4.0–5.9) 5.4 (3.3–6.5) 0.152

INR 1.0 (1.0–1.1) 1.2 (1.1–1.4) <0.001

Hypersensitive troponin I (pg/mL) 3.8 (1.9–8.4) 40.1 (13.3–296.2) <0.001

Albumin (g/L) 36.0 (33.3–38.6) 29.9 (27.1–32.7) <0.001

Total bilirubin (µmol/L) 8.7 (6.5–11.7) 13.2 (9.9–19.2) <0.001

Creatinine (µmol/L) 66.0 (55.8–82.0) 89.0 (71.5–119.0) <0.001

Urea nitrogen (mmol/L) 4.2 (3.2–5.5) 9.3 (6.4–15.2) <0.001

Lactate dehydrogenase (U/L) 260 (203–334) 511 (415–678) <0.001

Glucose (mmol/L) 6.1 (5.2–7.2) 8.1 (6.3–11.8) <0.001

MAP, mean arterial pressure; Spo2/F io2 ratio, ratio of pulse oxygen saturation to the fractional concentration of oxygen in inspired air; WBC, white blood cell count; NLR,

neutrophil-to-lymphocyte ratio; RDW, red blood cell distribution width; INR, international normalized ratio.

Parsimonious Algorithms to Predict
Phenotypes of COVID-19
The most important classifier variables from the bagging,
XGBoost, and GBM are presented (Supplementary Table 7,
Supplementary Figures 4, 5). The top five variables were
consistent across all three machine learning models, which
included NLR, SpO2/FIO2 ratio, LDH, TNF-α, and urea nitrogen,
and were therefore selected as the best predictors for the
parsimonious models. After five logistic models constructed by
sequential addition of the best predictors, an improved model
performance, increased AUC, and decreased AIC were observed
when model 1 went to model 4 (Supplementary Table 8).
Considering that TNF-α was not routinely tested in other
hospitals, therefore, the three-variable (NLR, SpO2/FIO2 ratio,
and LDH) and four-variable models (NLR, SpO2/FIO2 ratio,
LDH, TNF-α) were both the best in terms of balancing classifying
accuracy and model simplicity.

Multivariable analyses showed that three variables or four
variables in the model were all predictors of the phenotypes
(Supplementary Table 9). The AUC was 0.95 [95% confidence
interval (95% CI) = 0.94–0.97] for the three-variable model
and 0.97 (95% CI = 0.96–0.98) for the four-variable model.

The DCA curves indicated that the threshold probabilities were
0–0.95 for the three-variable model and 0–0.94 for the four-
variable model (Figure 3). The mean AUCs of cross-validation
for the three- and four-variable models were 0.95 (0.03) and 0.97
(0.02), respectively.

DISCUSSION

The novel findings of our analyses can be summarized as
follows. We identified two distinct COVID-19 phenotypes with
different clinical and biological characteristics, mortality, and
other clinical outcomes. We also developed a parsimonious
model to predict phenotypes of COVID-19 using machine
learning algorithms. These findings have important implications
for early detection of patients who are likely to develop critical
illness, as well as future researches in COVID-19.

Clinical and biological heterogeneity of critical illness (e.g.,
ARDS, sepsis) is thought to be dead ends for pharmacotherapy
trials. Not a single clinical or biological variable was sufficient
to identify phenotype (24). To put it simple, none of the
clinical variables could be used to subdivide COVID-19. By
contrast, based on 26 candidate clinical variables, we found two
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FIGURE 2 | Comparison of variables that contribute to clinical phenotypes in the Tongji cohort. Clinical phenotypes were derived from consensus k means clustering

(A) and LCA (B). In all panels, the variables are standardized such that all means are scaled to 0 and SDs to 1. A value of 1 for the standardized variable value (x-axis)

signifies that the mean value for the phenotype was 1 SD higher than the mean value for both phenotypes shown in the graph as a whole. RDW, red blood cell

distribution width; MAP, mean arterial pressure; TNF-α, tumor necrosis factor α; INR, international normalized ratio; hs-CRP, high-sensitivity C-reactive protein; BUN,

urea nitrogen; hs-TnI, hypersensitive troponin I; NLR, neutrophil-to-lymphocyte ratio.

TABLE 2 | Comparison of clinical outcomes according to phenotypes using

consensus k means clustering.

Hypoactive

phenotype

(n = 322)

Hyperactive

phenotype

(n = 182)

p-value

ARDS 46 (14.3%) 149 (81.9%) <0.001

Septic shock 25 (7.8%) 128 (70.3%) <0.001

Coagulopathy 14 (4.3%) 84 (46.2%) <0.001

Acute kidney injury 16 (5.0%) 96 (52.7%) <0.001

Acute cardiac injury 32 (10.0%) 120 (65.9%) <0.001

28-d mortality 35 (10.8%) 135 (74.3%) <0.001

ARDS, acute respiratory distress syndrome.

distinct phenotypes of COVID-19 most sufficiently describing
the present cohort using consensus k means clustering,
which strongly correlated with degrees of the host response
to SARS-CoV-2 infection. Specifically, compared to patients
with hypoactive phenotype, the host response of patients
with hyperactive phenotype seems to be more dysregulated,

characterized by high plasma concentrations of inflammatory
biomarkers, extreme coagulation, and high proportion of organ
failure or injury on ICU admission. Furthermore, replication of
these findings using LCA substantiates the robustness of the two
phenotypes in the present cohort.

Several phenotypes of COVID-19 have been documented,
with the aim to receive “precision therapy.” Patients with
COVID-19 pneumonia presents with low elastance, low
ventilation-to-perfusion ratio, low lung weight, and low lung
recruitability were classified as type L, whereas type H patients
were characterized by high elastance, high ventilation-to-
perfusion ratio, high lung weight, and high lung recruitability.
Response to treatments, including higher FIO2 and higher
positive end-expiratory pressure (PEEP), and prone positioning
may differ in type L and type H (13). Compared to phenotypes
in the present study, similarly, hyperactive phenotype and type
H seemed to represent a subset of COVID-19 patients who were
severely ill. Unlike previous COVID-19 phenotypes, the COVID-
19 phenotypes in the present study only used routinely available
data associated with the degrees of host response, regardless of
the characteristics of chest imaging or the respiratory mechanics,
which can be identified at the time of patient admitted to the
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FIGURE 3 | Receiver operating characteristic curves (A) and DCA (B) of the two best-performing regression models in Tongji cohort.

ICU. Besides, these phenotypes were multidimensional, differed
in their laboratory abnormalities, patterns of organ dysfunction,
and were not homologous with traditional patient groupings
such as by severity score or a single variable.

We proposed a three-variable (NLR, SpO2/FIO2 ratio, and
LDH) and four-variable model (NLR, SpO2/FIO2 ratio, LDH, and
TNF-α) for identifying the hyperactive phenotype of COVID-
19. Unlike traditional forward stepwise modeling, we used three
machine algorithms to identify the most important classifier
variables. The ability to identify phenotypes using a small set of
variables is a crucial step toward their clinical application. On the
one hand, to predict the occurrence of critical illness in COVID-
19: according to 1,590 COVID-19 patients, Wenhua Liang et al.
(25) constructed a predictive risk score including 10 variables
to predict a patient’s risk of developing critical illness; likewise,
NLR [odds ratio (OR) = 1.06; 95% CI = 1.02–1.10] and LDH
(OR = 1.002; 95% CI = 1.001–1.004) were included in the risk
model. However, the definition of “critical illness” was obscure,
which was described as a composite of admission to the ICU,
invasive ventilation, or death. Besides, the overall mortality was
only 3.2%, implying that such risk score may not be validated in
real intensive care patients with COVID-19. In the present study,
the ICUmortality of Tongji cohort was in line with prior reports,
and critically ill patients (hyperactive phenotype) were identified
based on the clustering analysis and LCA, which maximized the
differences between patients, without taking the clinical outcome
into account (26). On the other hand, to select more homogeneity
patients for clinical trials: hypothetically, like the series research
of ARDS, the interactions between phenotypes and treatments
(PEEP, fluid management, and simvastatin) were significant.

Interestingly, different from the ARDS phenotypes (24, 27),
we observed that none of inflammatory cytokines could predict

COVID-19 phenotypes, except for TNF-α. Proinflammatory
cytokines levels (IL-6, IL-8) in hyperinflammatory ARDS were
at least 20-fold higher than hyperactive COVID-19 in our
study, suggesting that COVID-19 is associated with only mild
inflammatory cytokine elevation. An alternative mechanism
of disease therefore seems likely (28) and warrants further
researches. Additionally, pulmonary-specific variables, such
as PaO2/FIO2 ratio, seem to contribute less to phenotype
identification in ARDS; nevertheless, SpO2/FIO2 ratio is a
primary variable to classify COVID-19 phenotype in the present
study. A potential explanation for this finding is that patients
were enrolled into ARDS clinical trials based on specific
pulmonary criteria (e.g., PaO2/FIO2 ratio), but COVID-19
patients in Tongji cohort are more heterogeneous with respect
to pulmonary variables (e.g., SpO2/FIO2 ratio).

The first strength of our study is the identification of two
class phenotypes for intensive care patients with COVID-19
and development of the first parsimonious model for predicting
hyperactive phenotype. The observational nature of the present
study is another strength as it included all consecutive patients
with COVID-19 during 3 months, and the results are therefore
more likely to represent the population as encountered in the
ICU in clinical practice.

This study also has several limitations. First, our study
is a single-center, retrospective, observational study, and we
lack the external validation of the phenotypes and the
parsimonious model. Testing for COVID-19 phenotypes in
more heterogeneous samples is an important direction in future
researches. Second, the 26 candidate clinical variables did
not fully reflect the host response to SARS-CoV-2 infection;
we cannot exclude that adding other markers would provide
different phenotypes. Third, whether these phenotypes are
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dynamic and change over time, resulting in distinct COVID-
19 trajectories, is unknown. Finally, although a three- or four-
variable model has a good accuracy in predicting the phenotypes,
when phenotypes are defined by the parsimonious model
rather than the clustering analysis or LCA, we may no longer
detect the statistically significant differences in outcomes and
treatment responses.

CONCLUSION

In summary, this analysis confirmed the existence of two distinct
phenotypes for intensive care patients with COVID-19. We also
provide evidence for accurate parsimonious classifier models
of COVID-19 phenotypes. Promisingly, these simple models
may aid clinicians in predicting which COVID-19 patients are
likely to develop critical illness, delivering timely treatments, and
improving patient selection in clinical trials, which in turn could
significantly impact patient outcomes.
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