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Abstract 

Schizophrenia polygenic risk is plausibly manifested by complex transcriptional dysregulation in 

the brain, involving networks of co-expressed and functionally related genes. The main purpose 

of this study was to identify and prioritize co-expressed gene sets in a hierarchical manner, based 

on the strength of the relationships with clinical diagnosis and with the polygenic risk for 

schizophrenia. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to 

RNA-quality adjusted DLPFC RNA-Seq data from the LIBD Postmortem Human Brain 

Repository
 
(90 controls, 74 schizophrenia; Caucasians) to construct co-expression networks and 

detect modules of co-expressed genes. After internal and external validation, modules of selected 

interest were tested for enrichment in biological ontologies, association with schizophrenia 

polygenic risk scores (PRS), with diagnosis and for enrichment in genes within the significant 

GWAS loci reported by the Psychiatric Genomic Consortium (PGC2). The association between 

schizophrenia genetic signals and modules of co-expression converged on one module showing a 

significant association with diagnosis, PRS and significant overlap with 36 PGC2 loci genes, 

deemed as tier 1 (strongest candidates for drug targets).   Fifty-three PGC2 loci genes were in 

modules associated only with diagnosis (tier 2) and 59 in modules unrelated to diagnosis or PRS 

(tier 3). In conclusion, our study highlights complex relationships between gene co-expression 

networks in the brain and polygenic risk for SCZ and provides a strategy for using this 

information in selecting potentially targetable gene sets for therapeutic drug development. 
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INTRODUCTION 

Schizophrenia, the rubric for the most severe psychiatric syndromes in the psychoses spectrum, 

continues to be an enigmatic human condition. Large-scale genomic [1], transcriptomic [2] and 

epigenomic [3] studies have started to reveal not only the multifactorial biological substrate of 

schizophrenia (SCZ), but also new challenges especially from the clinical translational 

perspective. While it has long been clear that genes and their proteins do not act in isolation to 

build brain circuitries and maintain their functionality [4], the subtle and complicated genetic and 

environmental interactions that influence the development and function of the brain remain 

largely a mystery. Consequently, translating new discoveries into efficient therapies is probably 

the most difficult and frustrating endeavor in contemporary psychiatry.  

Taking into account that transcriptional regulation plays a major role in neurodevelopment and 

neuronal activity [5], a promising approach to study genetic interactions and their implications in 

risk for schizophrenia is gene co-expression analysis. The logic behind this approach is that 

functional gene assemblies probably require a co-regulated transcriptional profile. Consequently, 

networks of co-expressed genes from postmortem brain gene expression data could mirror such 

functional gene assemblies. A popular bioinformatics tool for constructing and studying gene co-

expression networks is Weighted Gene Co-Expression Analysis (WGCNA) [6]. This approach 

has been used to characterize patterns of co-expression in the normal brain [7], in autism 

spectrum disorders [8], in schizophrenia (human and animal modeling studies) [9-12] and across 

mental disorders [13]. Importantly, co-expression network analysis has also been used to 

understand the partitioning of polygenic SCZ risk in the brain transcriptome. 

For example, in a recently published study, Fromer et al took a stepwise approach by combining 

transcriptomics and genetics techniques, including gene co-expression analysis, and identified a 
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sub-network of co-expressed genes with roles in synaptic transmission that was highly enriched 

for SCZ genetic associations [14]. In another study, Pergola et al used a multi-modal approach 

including co-expression analysis and found that a co-expression profile including DRD2 and 

other SCZ risk genes was associated with intermediate phenotypes of schizophrenia [15].  While 

these earlier studies provide potentially important evidence for gene network associations in 

SCZ, they focused on rather particular aspects of genetic risk integration with co-expression in 

the brain transcriptome. 

In the present study, we have taken a more global and stepwise approach to characterize brain 

networks of co-expressed genes and their association with the clinical state of schizophrenia and 

with polygenic risk of SCZ. We first perform a systematic characterization of gene co-expression 

in postmortem DLPFC tissue from controls (CTRL) and patients with schizophrenia (SCZ). We 

also critically address the potential influence of RNA quality on network association, which has 

not been specifically considered in earlier work.  This is an important potential confounder as co-

expression may be subsumed by co-degradation.  Most importantly, we then develop a pipeline 

to identify the gradual convergence between the DLPFC co-transcriptome and SCZ genetic 

signals, in order to select and prioritize gene sets as potential drug targets in schizophrenia. 

MATERIALS AND METHODS 

General pipeline of data processing  

Human Postmortem Tissue 

We used postmortem human brain tissue from the LIBD Human Brain Repository (HBR) for 

testing and the CommonMind Consortium (CMC) brain collection for validation
 
[16, 2]. 

Dorsolateral prefrontal cortex grey matter tissue from both collections was used for RNA 
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extraction. The protocol of brain acquisition (location, legal authorizations, informed consent, 

clinical review/ diagnosis), pre-processing and tissue quality check is detailed in
 
[16, 2]. Briefly, 

the samples selected included tissue from adults (age of death=16-80), healthy controls (CTRL; 

N=90; M/F=72/18) and patients with schizophrenia (SCZ; N=74; M/F=52/22) donors, 

Caucasians (CAUC), all with RIN≥7.  

RNA-Seq data processing 

For the LIBD dataset, RNA was extracted from DLPFC gray matter (BA9/46) and RNA 

sequencing libraries were constructed with the Illumina poly A+ kit; the resulting sequencing 

reads were aligned to the human genome (UCSC hg 19 build) with TopHat (v2.0.4) [17]; 

following alignment, the expression for genes and exons was summarized in counts based on 

Ensembl v75 [18], then converted to RPKM (Reads Per Kilobase of transcript per Million 

mapped reads) and normalized by log2+1 transformation. Normalized expression data from all 

samples were adjusted to remove unwanted variance potentially explained by RNA quality (i.e. 

technical or biological artifacts) (details below and in supplementary material). All analyses 

were performed on expression data quantified at the gene-level; consequently only genes with 

sufficient abundance (median RPKM ≥ 0.1 across all samples) were retained for analysis. This 

selection yielded 22,945 genes for the LIBD dataset and 27,779 genes for CMC data.  

Processing CMC gene expression data is described in [2]. CMC library preparation utilized the 

Illumina Ribozero kit.  We downloaded CMC BAM files from Synapse 

(https://www.synapse.org/); the BAM files were aligned with TopHat2 and expression of genes 

was quantified in counts relative to Ensembl v75 and subsequently converted to RPKM and 

normalized by log2+1 transformation. 

Genotype data processing and Polygenic Risk Scores (PRS) calculation 
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DNA extracted from cerebellar tissue was processed and normalized as described in [16, 2]. 

Genotype imputation and quality check was performed with IMPUTE2 [19] and Shape-IT [20]. 

Only common SNPs in Hardy-Weinberg Equilibrium (at p>1e-6) with MAF>5% were retained 

for analysis [2]. 

Polygenic risk scores (PRSs) were calculated for each sample by summing the imputation 

probability of the reference allele of the clumped SNPs using PLINK v1.07 

(http://pngu.mgh.harvard.edu/purcell/plink/) [21] and weighted by the natural log of the odds 

ratio from PGC2 GWAS results [1]. We used PRS based on 10 clinical SNP sets, corresponding 

to GWAS p values of p=5e-8 (PRS1), p=1e-6 (PRS2), p=1e-4 (PRS3), p=0.001 (PRS4), p=0.01 

(PRS5), p=0.05 (PRS6), p=0.1 (PRS7), p=0.2 (PRS8), p=0.5 (PRS9), p=1 (PRS10) [22].  

Selection and prioritization of gene sets associated with risk for SCZ based on gene co-

expression analysis 

Processing the gene expression data to remove unwanted variability associated with sequencing 

and tissue confounders is presented in figure 1-A1 and supplementary material. 

The adjusted/”cleaned” expression data were then used as input for weighted gene co-expression 

analysis performed with functions implemented in the WGCNA package [23, 24].  

Details about the next WGCNA steps are presented in figure 1 (A2-7) and supplementary 

methods. In brief: 

1. The co-expression network based on empB-adjusted expression data was created for the 

combined sample of CTRL+SCZ with WGCNA. This method uses correlation between pairs of 

genes to construct co-expression modules. The modules can then be summarized by the first 
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principal component (i.e. the “eigengene”) for each module (ME) [7, 23, 24]. The MEs can be 

regarded as expression profiles that best characterize the gene correlations within modules. 

Biological inference can be drawn from the genes in the constructed modules by using gene set 

enrichment analyses and by correlating module eigengenes with biological covariates. Likewise, 

intramodular analysis can be used to assess the degree of connectivity for the genes within 

modules and the gene-wise significance relative to association with traits of interest or diagnosis. 

The major advantage of MEs’ is in dimensionality data reduction, which makes them particularly 

suitable for correlation with traits of interest by eliminating the problem of multiple comparison 

corrections.  

2. Internal validation 

a. Additional diagnostics of the co-expression modules was also performed (figure 1-A3).  

Previous studies in our group have highlighted the importance of RNA quality in gene 

expression analysis, especially in detection of differential diagnosis effects [25]. However, 

selecting the best method for controlling for these effects is not straightforward and relies much 

on the type of analysis performed. Methods using empirical Bayes moderated regression (e.g. 

ComBat [26] or empiricalBayesLM function used by us in this study) are stringent but they 

perform correction based only on “known” sources of unwanted variance. One possibility to 

remove variability from “unknown” sources of technical error can be performed by modelling 

“unknown” (latent) variables with “quality” surrogate variables (qSVs) [25].  This approach is 

based on data from a human brain RNA degradation experiment.  Here, in addition to our main 

network construction with “cleaned” data after removing unwanted variance for “known” 

sources, we performed a complementary post-hoc analysis (figure 1-A4) with the purpose of 

confirming the modular pattern of the main network after adjusting also for unknown sources of 
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variance represented by qSVs calculated from the “degradation matrix” [25] of the entire sample 

(90 CTRL + 74 SCZ).   

3. External validation  

a. Module preservation analysis was performed in the CMC expression data selected and treated 

similarly with LIBD data (same parameters for RIN, age and application of empB adjusting for 

the unwanted variation) (figure 1-A5). This approach strengthened the comparability between 

the two datasets, necessary for testing the preservation. Moreover, module preservation in the 

context of the different library protocols in the LIBD and CMC datasets further supports their 

validity (details in supplementary methods and [27]. 

b. Further external validation was represented by enrichment in putatively meaningful ontologies 

and comparisons with modules previously identified by other groups. We tested for enrichment 

in Gene Ontology- biological processes (GO-BP) with functions implemented in clusterProfiler 

R package [28] (figure 1-A6).  

c. As a further approach to module validation, we sought to see if our modules are similar to 

those reported in the study by Oldham et al (2008), which provided the initial characterization of 

the gene co-expression relationships in the human brain [7]. For this analysis, we tested for 

enrichment of our modules in cellular markers based on the cortex modules reported in [7] and 

additionally, on a transcriptome database including markers for neurons, astrocytes and 

oligodendrocytes by Cahoy et al (2008) [30] (figure 1-A7). 

4. Identification of gene sets associated with the genetic risk for SCZ within the co-expression 

networks 
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Figure 1-B describes a hierarchical approach of grouping gene sets within the co-expression 

modules by association with genetic risk for SCZ informed by the Psychiatric Genomic 

Consortium Genome Wide Association Study (PGC2 GWAS) [1].  

We consider three tiers of gene sets relevant for association with SCZ biology, determined by the 

gradual convergence of biologically relevant function, clinical state and genetic risk. All the 

genes in the three tiers are PGC2 protein-coding genes within the 108 loci with GWAS 

significant genetic signal for risk of SCZ. Tier 1, i.e. the highest priority, comprises PGC2 loci 

gene sets that are enriched in modules significant for the association with both diagnosis and 

polygenic risk scores. Tier 2 includes genes enriched in modules associated with the diagnosis 

but not with PRS. Finally, tier 3 includes only the PGC2 genes over-represented in any module 

that was not associated with diagnosis or with the PRS.  

We calculated the enrichment of PGC2 protein-coding genes (obtained from supplementary table 

2 in [1]) in the entire co-expression network (figure 1-B). Two groups of genes were compared: 

one represented by all protein-coding genes used for the network construction annotated by gene 

symbol (N=15,359/ 22,945) and labeled by the color of their corresponding module and one 

represented by 309/349 PGC2 GWAS significant loci protein-coding genes according to the 

supplementary table 2 from [1]. We selected only 309 protein-coding genes because 40 had 

especially low abundance in our data set (RPKM<0.1) and therefore were not analyzed. For 

every pair of lists overlaps tested, the output was represented by uncorrected and FWE corrected 

p-values and by overlapping genes, respectively the PGC2 GWAS significant loci protein-coding 

genes represented in a module.  

Prioritizing the PGC2 loci genes distributed in the modules of co-expression 
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To prioritize the PGC2 protein-coding genes enriched in our co-expression modules, we used 

intramodular analysis routines from the WGCNA package [23, 24].  We first defined a measure 

of “Gene Significance” (GS) represented by the absolute value of Pearson correlation between 

each gene’s expression and diagnosis status. By averaging the GS for each module, we obtained 

a measure of “Module Significance” (MS). A module with high significance for diagnosis would 

be a module with many genes strongly correlated with the diagnosis. We then plotted the 

measure of module significance to visualize the most relevant modules for the association with 

the diagnosis (modules above a conventional cut-off=0.15 were considered significant [23, 24].  

We next identified modules whose eigengenes (MEs) were significantly correlated with the SCZ 

PRS calculated for various P value thresholds as previously specified.  We focused on modules 

correlated especially but not exclusively with PRS5-PRS6 because these scores presumably 

contain most of the true positive risk PGC2 genes and explain the maximum diagnostic liability 

in the PGC sample. After evaluating the relationship between MEs and PRS and diagnosis, we 

looked if the PGC2 protein-coding genes enrichment was significant in any of these modules, in 

order to select the overlapping PGC2 genes and prioritize them according to our criteria 

presented in figure 1-B.  

RESULTS:  

After expression data pre-processing, RNA-quality correction and network construction, 12 gene 

co-expression modules were identified in the overall sample with size between 40 and 1813 

genes (N=12,475, 54%, were “grey” genes, not assigned to a module). The module specific gene 

distribution is reported in supplementary table 1. 

The post-hoc WGCNA performed on the expression of selected genes after controlling also for 

hidden quality surrogate variables (qSVs) as described in supplementary material, yielded also 
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a pattern of 12 modules, seven of which were enriched for ontologies and cellular markers 

similar with the “core” modules identified in the primary co-expression network analysis 

(supplementary table 2). In general, we found a significant degree of overlap between the 

modules of interest defined from the entire gene set network and the post-hoc qSVA constructed 

modules based on the selected genes (supplementary table 2 and supplementary figure 1). We 

note, however, that qSV correction, a well validated method for differential expression and 

eQTL analysis [25], has not been critically examined in the context of network analysis, and this 

conservative approach results in a higher proportion of genes unassigned to modules (“grey” 

genes) (unpublished observations). 

Additional results of modules diagnostics for the primary co-expression network are also 

reported in the supplementary figures 2-5, which show for the majority of modules (except 

cyan) characteristic band structures suggestive for well-defined modules, consistent across 

samples as described previously [23, 26].   Preservation analysis performed for the primary 

network constructed from 22,945 genes indicated that all 12 modules were preserved in the CMC 

data (supplementary figure 6). The preservation statistics varied between Zsummary=10 

(“midnightblue” module) and Zsummary=60 (“yellow” module).  

 

General characterization of modules in DLFPC: enrichment in GO-BP and cellular markers  

Figure 2 and table 2 summarize the significant and biologically plausible modules of gene co-

expression identified in our networks based on CTRL and SCZ DLPFC RNA-Seq data. In 

general, these modules are not diagnostically specific and presumably reflect patterns of gene co-

expression in human adult dorsolateral prefrontal cortex grey matter. Modules reflecting similar 

biological processes have been observed in earlier work in human brain [7].  Notably, we found 
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seven “core” modules reproducing fundamental processes for nervous system development (i.e., 

neuronal differentiation and migration, synaptogenesis, gliogenesis and myelination) and 

functionality, metabolic processes critical for cellular survival and function, including nervous 

cells, specific neuronal processes linked to neuronal excitability and synaptic activity, immune 

system functions, mechanisms of transcription and translation, etc.  A complete list with GO-BP 

enrichment for the empB modules is presented in supplementary table 2.  Importantly, the 

organization of our co-expression modules significantly overlapped with the cell type specific 

modules reported in cortex by Oldham et al [7] (figure 2, table 2, supplementary table 3).  

From our empB modules not enriched for GO-BP, but significantly enriched for cellular 

markers, we note: turquoise (overlapping with ‘neuron-M16_CTX’, M18_CTX, M11_CTX, 

‘interneurons-M17_CTX’), yellow (overlapping with ‘glutamatergic synaptic function-M10, 

M18_CTX, M19_CTX), and greenyellow (‘olygodendrocytes-M9_CTX’, ‘glutamatergic 

synaptic function-M10, and ‘astrocytes-M15_CTX’). We also note that enrichment in cellular 

markers for these modules was more mixed than for the seven “core” modules (supplementary 

table 3).  

Identification of gene sets associated with genetic risk (PRS) for SCZ within the co-expression 

networks  

Overall, we found that almost half of GWAS significant PGC2 loci protein-coding genes 

(148/309) were distributed in modules across the co-expression networks; 36 of them (which we 

designate as tier 1 genes) were in modules related to both diagnosis and polygenic risk score, 53 

of them were in modules related only to diagnosis (tier 2) and 59 were in modules unrelated to 

diagnosis or PRS (figure 3C). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286559doi: bioRxiv preprint 

https://doi.org/10.1101/286559


We found that MEs of four modules were significantly correlated with both PRS sets and 

diagnosis:  the black module (enriched for astrocytes markers), the midnightblue module (mixed 

cellular markers), the brown (enriched for neuronal markers) and the cyan module (mixed 

cellular markers) (figure 3B).  

Modules correlated only with diagnosis were: the yellow module (enriched for markers of 

glutamatergic synaptic function) and marginally, the salmon module (enriched for microglial 

markers) and the red module (enriched for oligodendrocytes markers) (figure 3A).  Modules 

with a significant over-representation of PGC2 loci genes were blue, brown, green (p corrected 

values <0.05) and red, turquoise, yellow (p uncorrected values <0.05) (table 2).  A synthesis of 

the associations between modules and diagnosis and polygenic scores, combined with the 

information regarding the PGC2 loci genes distribution within modules is presented in table 2.    

Tier 1 genes: PGC2 loci genes over-represented in modules associated with both diagnosis and 

PRS 

We selected as tier 1 36 PGC2 loci protein-coding genes that were represented in the brown 

module (figure 3d) because this module’s eigengene is associated both with diagnosis and with 

PRS and brown is the only module with ME association with both of these features and also with 

PGC2 locus gene overrepresentation.  Notable tier 1 genes are AKT3, essential in brain 

development [31], ATP2A2 (encoding for a magnesium-dependent enzyme that catalyzes ATP’s 

hydrolysis [32], genes involved in neural circuits development via cell adhesion processes 

(protocadherins alpha cluster- PCDHA1,3,4,5,6, ZFYVE21, RRAS), transcription factors 

(TCF20, MEF2C), regulators of G-protein signaling (RGS6), RRAS- a small GTPase involved in 

cell adhesion and axon guidance, and TSR1 (Ribosome Maturation Factor), which is important 

for fundamental functions related to protein synthesis and gene expression in all cells [32]. We 
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also note among tier 1 genes two glutamatergic ionotropic receptors (GRIA1 and GRIN2A), and 

several potassium ion channels receptors (HCN1- Hyperpolarization Activated Cyclic 

Nucleotide Gated Potassium Channel 1, KCNB1- Potassium Voltage-Gated Channel Subfamily 

B Member 1 associated with epilepsy, and KCNV1- Potassium Voltage-Gated Channel Modifier 

Subfamily V Member 1, essentially expressed in the brain) [32]. 

Tier 2 genes: PGC2 loci genes over-represented in modules significant for the diagnosis of SCZ 

but not PRS 

We selected 53 PGC2 genes as tier 2 genes, with a trend of over-representation in turquoise and 

yellow modules (supplementary table 4). However, we specify that PGC2 enrichment did not 

reach the levels of significance after FWE correction for multiple comparisons (uncorrected 

values were p=0.023 for yellow, respectively p=0.01 for turquoise (supplementary table 4). As 

previously mentioned these modules represented mixtures of cellular markers (supplementary 

table 3) and were not significantly enriched for GO-BP. However, we considered them 

interesting modules based on the PGC2 genes present in these modules.  One of the notable tier 2 

genes in this module is ZNF804A [33]. Other interesting members of tier 2 genes are NDUFA13, 

NDUFA4L2, NOSIP, and NRGN. 

Tier 3 genes: PGC2 genes over-represented across networks 

59 PGC2 GWAS significant loci genes belonged to tier 3: they were over-represented in blue 

and green modules that were neither associated with PRS, nor with the diagnosis. Of note, blue is 

one of the neuronal modules and green is enriched for mitochondria markers (figure 2). 

Interesting tier 3 genes are CACNA1C, CHRM4, FURIN, TSNARE1 (possibly implicated in 

neurotransmitter release by regulating the SNARE- Synaptotagmin complex), FXR1 (FMR1 
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Autosomal homolog, associated with Fragile X syndrome) [32].  The complete list of the tier 1-3 

PGC2 loci genes is presented in supplementary table 5. 

Finally, 161/ 309 PGC2 locus genes were randomly distributed in modules that did not pass the 

threshold of significance for PGC2 enrichment or were “grey” genes (not assigned to a module 

in any network). A notable “grey” PGC2 locus gene was DRD2, the best established drug target 

for SCZ.  While not excluding the possible implication of any PGC2 gene in the etiopathogenesis 

of SCZ, based on our results, we believe that tier 1 and tier 2 genes, because of their association 

at least with illness diagnosis, are more attractive candidates for experimental studies to decipher 

pathophysiological mechanisms of SCZ or drug development.  

DISCUSSION: 

We have performed an extensive analysis of gene co-expression architecture in adult postmortem 

DLPFC from CAUC unaffected donors (CTRL) and from donors diagnosed with schizophrenia 

(SCZ).  The main purpose of the study was to identify and prioritize co-expressed gene sets in a 

hierarchical manner, based on the strength of the relationships with clinical diagnosis and with 

the polygenic risk for schizophrenia. For this purpose we focused on co-expression modules that 

included PGC2 protein-coding genes, i.e. the genes within the significant 108 loci reported in the 

latest published GWAS of SCZ [1]. The rationale of our approach was that finding a 

convergence between the co-expression architecture in a region with known abnormalities in 

SCZ (i.e. DLPFC) with both the illness state and with genomic risk for the illness is a more 

optimal strategy to isolate potentially co-functional gene sets that could be investigated as 

harboring novel drug targets in SCZ. Importantly, we found seven “core” modules enriched for 

meaningful ontologies and significantly overlapping with modules reported by other groups.  We 

further selected and hierarchized PGC2 loci genes over-represented in modules of co-expression 
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by the modules’ relationship with polygenic risk score and diagnosis of schizophrenia.   This 

additional step adds confidence that modules so identified are not likely to be based solely on 

illness state phenomena, many of which (e.g. treatment, chronicity effects) may be 

epiphenomena.   

Tier 1 genes 

We identified 36 PGC locus genes that were distributed in one module (brown), significant for 

both diagnosis and association with genomic risk, i.e. PRS (figure 3). In principle, these genes 

and this network should bear an especially close relationship to schizophrenia pathogenesis and 

pathobiology.   These genes are members of putatively relevant signaling pathways, such as 

PIK3/AKT signaling, which has numerous functions in neurodevelopment and adult brain and 

has been implicated in a variety of neurological and mental disorders, including SCZ [34]; a Ca
2+

 

signaling pathway with numerous functions, including energetic metabolism [32] that was 

underscored in our study mainly by ATP2A2; a RAS/ERK signaling pathway represented by 

RRAS (RAS related small GTPase) implicated in cell adhesion and axon guidance [32].    

Interestingly, when we interrogated STRING, a database of known and predicted protein-protein 

interaction [35] we noticed that several of the tier 1 genes are co-expressed in the same module 

with some of their interactors.  For example, the PGC2 locus gene AKT3 is co-expressed with at 

least eight of its predicted interactors (ADCY2, CREB3L4, EIF4EBP1, GNB5, GSK3B, PHF20, 

PHLPP2, PIK3R1) [32, 35], and with serotoninergic receptors modulated by GSK3B (i.e. 

HTR2A).  Another PGC2 locus gene, ATP2A2 (ATPase Sarcoplasmic/ Endoplasmic Reticulum 

Ca
2+

 Transporting), and its interactors (CALM1, RYR2, ITPR1) indicate potential dysfunctions 

on the Ca
2+

 Signaling Pathway in relation to energetic metabolism [32, 35]. NLGN4X 

(Neuroligin 4 X linked) previously implicated in autism and some of the interactors also 
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members of the brown module (NRXN3, DLGAP1, DLG2, GRM1, GRM5) are constituents of 

the post-synaptic density and regulators of glutamatergic signaling [32, 35]. We highlight also 

RIMS1, co-expressed in brown module with RIMBP2 (RIMS Binding Protein 2) and 

synaptotagmins (SYT10, SYT11, SYT13, SYT16) [32, 35].   Some of the tier 1 genes in the 

brown module are in the RAS/ERK signaling pathway: RRAS (RAS related small GTPase) 

implicated in cell adhesion and axon guidance together with its interactors [35] and co-

expression partners, i.e. PAK3 (role in dendritic development and synaptic plasticity), BRAF, 

RASGRP1, RASSF5, PRKCB (important for GABA-ergic synapse), RASAL2, RAPGEF2 

(involved in neuritogenesis, neuronal migration), and RASGRF2.  

The presence of intra-modular sub-clusters from different signaling pathways in our co-

expression networks may indicate higher-order inter-network interactions. This scenario is 

plausible given previous studies which showed cross-talk between PIK3/AKT and RAS/ERK 

signaling pathways that regulates neurodevelopmental processes and synaptic plasticity [34].  

This expected cross-talk between signaling pathways has been highlighted in a recent proposal 

about the underlying polygenic architecture of complex clinical syndromes [36].   

Tier 2 genes  

We identified 53 potentially tier 2 PGC2 loci genes that were distributed in modules significant 

for diagnosis only, turquoise and yellow.  A notable tier 2 gene in the turquoise module is 

ZNF804A, the first gene implicated using a GWAS approach to SCZ [33]. However, the 

mechanism by which ZNF804A is implicated in SCZ etiopathogenesis has yet to be determined, 

and earlier reports suggest association with a novel isoform only during fetal life [37]. Recent 

studies support the hypothesis that ZNF804A has multiple and important roles in neuronal 

physiology, including transcription regulation of interacting genes involved in cell adhesion, 
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neurite outgrowth, and synapse formation [33]. Interestingly, we found that several genes which 

demonstrated transcriptional variation in studies based on ZNF804A knockdown were ZNF804A 

partners of co-expression in the turquoise module: C2Orf80 (unknown function), EIF4A2 

(Eukariotic Translation Initiation Factor), and ATP1B1 (ATPase Na
+
/K

+
 responsible for 

maintaining the Na-K gradients across plasma membrane) [38, 39].   It is also interesting to note 

that in this large module, ZNF804A is just one of the 42 co-expressed transcription factors from 

the ZNF family. This implicates the formidable transcriptional regulation machinery that is 

putatively mobilized during various neuronal functions. 

It seems worthy of comment that several historic candidate genes for SCZ are members of the 

modules containing tier 1 and tier 2 genes. Most notable examples are dopaminergic receptors 

(DRD4), receptor tyrosine kinases (i.e. ERBB4, receptor for neuregulins), NRG3 (growth factor 

that mediates cell-cell signaling and has multiple roles in neurodevelopment, and has been 

previously associated with SCZ [40], GABA receptors and glutamate decarboxylases involved in 

GABA synthesis (GAD1, GAD2), glutamatergic receptors, ionotropic and metabotropic 

(GRIA2, 3, 4, GRM1, GRM5, GRM8), serotoninergic receptors (i.e. HTR2A), COMT, and 

RGS4. The inconsistent results of previous studies on some of these genes, coupled with the lack 

of confirmation by GWAS, prompted a rebuke of the role played by historic candidate genes in 

the genetic risk for SCZ [41]. However, our results based on DLPFC co-transcriptome 

architecture suggest a complex distribution of genetic risk possibly organized in a modular 

fashion and indicative of vast gene-gene interactions that entrain new and previous genes 

associated with SCZ.  

Tier 3 PGC2 genes 
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We found that 59/148 PGC2 genes were enriched in two modules (blue and green) not related to 

the diagnosis of SCZ or to PRS.  One of the stand-out tier 3 genes in the black module is 

CACNA1C, strongly associated with the risk for SCZ and bipolar disorder [42]. Other notable 

tier 3 PGC2 genes are CHRM4 (a drug target for SCZ [43], FURIN and TSNARE1. The latter 

two, FURIN and TSNARE1 were recently highlighted by Fromer et al [14] who showed in an 

experimental model of zebrafish neurodevelopment that overexpression of TSNARE1 and 

suppression of FURIN were associated with decrease of head size.  

Comparisons with previous work  

Notwithstanding methodological differences, we found that our cortical gene expression 

networks were roughly consistent with previous similar studies. Of note, modules in our CAUC 

(CTRL+SCZ) network were significantly overlapping with modules originally reported by 

Oldham et al [7] (figure 2).  Likewise, our results were in reasonable agreement with Fromer et 

al [14], considering the methodological differences related to mRNA processing, network 

construction and demographic characteristics of the samples. Interestingly, we found that 19 of 

the 31 PGC2 genes over-represented in their module of interest- M2C- were members of at least 

one of our tier genes. Moreover, nine of these 19 genes were actually tier 1 PGC2 genes in our 

study (figure 3D): SBNO1, TCF20, KCNB1, GRIA1, ATP2A2, HCN1, CSMD1, GRIN2A and 

NLGN4X.  We also found a significant overlap between the modules of co-expression recently 

reported by Gandal et al (2018) [13] and our modules of co-expression (supplementary table 6). 

Methodological Considerations 

Although these results are intriguing in many respects, we cannot rule out the possibility that 

they represent at least in part coincidental events, spurious associations, or effects of ongoing 
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epiphenomena.  Some of the limitations of our study are related to the network construction 

based on expression data at gene-level, which most probably obscures even more complex 

correlation patterns at the transcript and isoform level; likewise, we used RNA extracted from a 

tissue with a heterogeneous cell composition, which may not capture the cell-type specific co-

expression architectures. We also cannot rule out the role of treatment exposure of SCZ samples 

or other epiphenomena in module construction in contrast to primary illness mechanisms. For 

example, animal studies have indicated some overlap between haloperidol regulation and co-

expression networks enriched for SCZ genetic signals [12]. Further, while we have endeavored 

to pay special attention to the role of RNA quality as a confounder in co-expression, we cannot 

rule out this factor, and similarities to earlier work do not exclude a shared artifact.   We have 

stressed genes in Tier 1 because of the convergence of association with illness state and also 

genetic risk, the latter not likely related to potential epiphenomena and confounders. In principle, 

genetic risk association obviates state only factors, but this is still conjecture. While modules of 

gene co-expression represent potential insights toward understanding physiological and 

etiopathogenic mechanisms, firm evidence of functional relevance requires experimental studies.  

Of note, our approach to network construction, based on enhanced adjustment for RNA quality, 

yielded a greater percentage of genes in grey, i.e. not in an explicit module, then in earlier 

studies. We believe this reflects several factors, including our relatively small sample size and 

removal of more complete co-expression based on co-degradation.     

In conclusion, our study offers an extensive characterization of the co-transcriptome in the 

postmortem DLPFC of non-affected individuals and individuals with SCZ.  Our results indicate 

potentially broad interactions of PGC2 locus genes, which may represent the tip of an iceberg of 

multiple convergent signaling pathways associated with the genetic risk of SCZ revealed through 
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the co-transcriptome architecture in DLPFC. Interestingly, altered mechanisms suggested by 

these pathways span from prenatal neurodevelopmental events through brain functionality in 

adult life and hint not only to genetic factors, but also to an environmental contribution. Most 

importantly, our study highlights complex relationships between gene co-expression networks in 

the brain and the polygenic risk for SCZ and provides a strategy for using this information in 

selecting potentially targetable gene sets for therapeutic drug development. 
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FIGURES LEGENDS:  

Figure 1: Analysis pipeline and criteria for selection and prioritization of gene sets associated with 

the genetic risk of schizophrenia. A1: Prior to co-expression network analysis, expression data 

normalized by (log2+1) transformation was adjusted to control for unwanted variation related to 

sequencing, tissue artifacts and population sub-structure (i.e. RIN, postmortem interval (PMI), exonic 

mapping rate, alignment rate and 10 genomic principal components- snpPCs) by using empiricalBayesLM 

function (WGCNA, version 1.61 (23)). A2: Co-expression network was constructed with WGCNA 

embedded routines (blockwiseModules) by applying the following parameters and procedures: bi-weight 

mid-correlation with “signed” networks to allow for potentially non-linear correlations between genes 

(24); β power=12 selected with “Soft Thresholding” function and applied to the gene correlations prior to 

network construction; modules of co-expression detection with hierarchical clustering using a measure of 

dissimilarity (the topological overlap); A3: Modules of co-expression were inspected through heatmaps of 

module specific gene expression across samples. In these heatmaps, well-defined modules are considered 

those displaying characteristic band structures, whereas the corresponding genes are highly correlated 

across samples; A4: Post-hoc WGCNA limited to 9239 genes organized in nine modules of interest after 

the primary network construction was performed. A5: External validation by using the 

modulePreservation function in WGCNA (23, 24), which computes network-based, pair-wise module 

preservation statistics by taking as input adjacency matrices in a reference set (the LIBD networks) and a 

test set (CMC); relevant statistics output: measures of preservation for density and connectivity 

summarized as individual composite Z scores (Zsummary). By convention: Zsummary =0-2 means no 

preservation, Zsummary =2-10   means weak preservation and Zsummary >10 means strong preservation (27). 

A6: Enrichment in meaningful biological ontologies was tested with enrichGO function from the R 

package clusterProfiler (28): hypergeometric test was applied to test for over-representation of gene sets 

(i.e. module-specific genes) in relevant GO-BP; statistical threshold for significance was set at default 

values p=0.01 and q=0.05 with the Benjamini-Hochberg (BH) multiple comparisons correction method, 

using as background only the genes from the network construction, annotated by Entrez Gene IDs (which 

are largely protein-coding) (annotation performed with the Bioconductor package org.Hs.eg.db (29); A7: 

Enrichment in cellular markers was tested by using the hypergeometric test and gene lists embedded in 

the userListEnrichment function (24, 7, 30); B: Modules’ enrichment in PGC2 loci genes was also tested 

with the hypergeometric test (userListEnrichment function (24)); WGCNA intramodular analysis 

measures and functions were used to test associations between modules and polygenic scores and 

diagnosis (24).  

 

Figure 2: Top twenty most connected genes in seven “core” modules significantly enriched for 

biological processes relevant for cortex structure and functionality. Modules are represented by their 

colors assigned through co-expression network construction and module detection. Legend: * modules 

reported by Oldham et al (2008); modules’ representation created with VisAnt (http://visant.bu.edu/). 

 

Figure 3: Prioritization of PGC2 loci genes based on the distribution in modules associated with 
polygenic risk score and diagnosis of SCZ. a. Modules significantly correlated with the diagnosis of 

SCZ; b. Modules’ eigengenes (MEs) correlated with diagnosis and PRS; c. Partitioning of PGC2 loci 

genes in tiers 1-3; d. Tier 1 genes. Legend: * these genes were members of two modules that shortly 

failed the significance for PGC2 loci genes enrichment after FWE multiple comparisons correction. 
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TABLES: 

Table 1: Summary of “Gene Ontology Biological Processes” (GO-BP) and cell markers enriched in 

modules of co-expression 

 

Modules and top 10 GO-BP enrichments 

Black- Astrocytes 

sensory organ development astrocyte differentiation 

eye development carboxylic acid catabolic process 

small molecule catabolic process camera-type eye development 

gliogenesis organic acid catabolic process 

glial cell differentiation renal system development 

  
Blue- Neuron 1 

neurotransmitter secretion vesicle-mediated transport in synapse 

signal release from synapse regulation of neurotransmitter levels 

presynaptic process involved in chemical synaptic 

transmission 
regulation of neuron projection development 

modulation of synaptic transmission neurotransmitter transport 

neuron projection morphogenesis synaptic vesicle transport 

  
Brown- Neuron 2 

single-organism behavior learning 

learning or memory potassium ion transport 

cognition regulation of ion transmembrane transport 

behavior regulation of membrane potential 

homophilic cell adhesion via plasma membrane adhesion 

molecules 
modulation of synaptic transmission 

  
Green- Mitochondria 1 

protein targeting to ER ribonucleoprotein complex biogenesis 

translational initiation protein localization to endoplasmic reticulum 

establishment of protein localization to endoplasmic 

reticulum 
mitochondrial ATP synthesis coupled electron transport 

SRP-dependent cotranslational protein targeting to membrane ATP synthesis coupled electron transport 

cotranslational protein targeting to membrane oxidative phosphorylation 
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Table 1 (cont.): Summary of “Gene Ontology Biological Processes” (GO-BP) and cell markers enriched in 

modules of co-expression 

 

Modules and top 10 GO-BP enrichments 

Magenta- Mitochondria 2 

nuclear-transcribed mRNA catabolic process, nonsense-

mediated decay 
establishment of protein localization to endoplasmic reticulum

SRP-dependent cotranslational protein targeting to 

membrane 
mRNA catabolic process 

cotranslational protein targeting to membrane protein localization to endoplasmic reticulum 

nuclear-transcribed mRNA catabolic process viral transcription 

protein targeting to ER viral gene expression 

 
  

Red- Oligodendrocytes 

ensheathment of neurons negative regulation of neurogenesis 

axon ensheathment negative regulation of cell development 

myelination gliogenesis 

oligodendrocyte differentiation negative regulation of nervous system development 

glial cell differentiation negative regulation of cell differentiation 

 
  

Salmon- Microglia 

lymphocyte activation immune response-activating signal transduction 

positive regulation of immune response adaptive immune response 

activation of immune response regulation of leukocyte activation 

immune effector process regulation of cell activation 

immune response-regulating signaling pathway leukocyte cell-cell adhesion 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 23, 2018. ; https://doi.org/10.1101/286559doi: bioRxiv preprint 

https://doi.org/10.1101/286559


 

Table 2: Summary of the relationships between co-expression modules and diagnosis, PRS and intra-

modular PGC2 loci genes distribution 

Modules Association with 

dx 

Association with 

PRS 

Enrichment in PGC2 loci 

genes 

Black yes yes no 

Blue
3
 no no yes 

Brown
1
 yes yes yes 

Cyan** yes yes no 

Green
3
 no no yes 

Greenyellow no no no 

Magenta no no no 

Midnightblue* yes yes no 

Red ± no puncorr<0.05 

Salmon ± no no 

Turquoise
2
 yes ± puncorr<0.05 

Yellow
2
 yes no puncorr<0.05 

 

Legend: 1
Module used for tier 1 genes selection; 

2
Modules used for tier 2 genes selection; 

3
Modules used for tier 3 genes 

selection; *small-sized module with no GO-BP enrichment and weakly preserved in CMC data; **module with no GO-

BP enrichment. 
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