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Abstract 
 
 
Genetic variants of the SARS-CoV-2 virus are of substantial concern because they can 

detrimentally alter the pandemic course and disease features in individual patients. Here we 

report SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist 

healthcare system diagnosed from January 1, 2021 through May 31, 2021. The SARS-CoV-2 

variant designated U.K. B.1.1.7 increased rapidly and caused 63%-90% of all new cases in the 

Houston area in the latter half of May. Eleven of the 3,276 B.1.1.7 genomes had an E484K 

change in spike protein. Compared with non-B.1.1.7 patients, individuals with B.1.1.7 had a 

significantly lower cycle threshold value (a proxy for higher virus load) and significantly higher 

rate of hospitalization. Other variants (e.g., B.1.429, B.1.427, P.1, P.2, and R.1) also increased 

rapidly, although the magnitude was less than for B.1.1.7. We identified 22 patients infected with 

B.1.617 “India” variants; these patients had a high rate of hospitalization. Vaccine breakthrough 

cases (n=207) were caused by a heterogeneous array of virus genotypes, including many that are 

not variants of interest or concern. In the aggregate, our study delineates the trajectory of 

concerning SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as 

the major cause of new cases in Houston, and heralds the arrival and spread of B.1.617 variants 

in the metroplex. 
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[Introduction] 

 

The global pandemic caused by SARS-CoV-2 that began in early 2020 has been challenging for 

every academic health center and health system, hospital, and public health system in the United 

States and countries worldwide.1-7 The pandemic has also provided unprecedented opportunities 

for basic and translational research in all biomedical fields. We have systematically analyzed the 

molecular population genomics of SARS-CoV-2 in the ethnically and socioeconomically diverse 

metropolitan Houston area (population 7 million) since the first COVID-19 cases were reported 

in very early March 2020.8-11 Our studies are facilitated by a central molecular diagnostic 

laboratory that comprehensively identifies and retains all COVID-19 diagnostic specimens from 

our large healthcare system that includes eight hospitals, emergency care clinics, and outpatient 

centers distributed throughout the metropolitan region. In addition, we have leveraged our 

longstanding interest in pathogen genomics and sequencing infrastructure to investigate the 

spread of SARS-CoV-2 in metropolitan Houston.8-16 Among other discoveries, we have reported 

that the SARS-CoV-2 viruses causing infections in the earliest phase of the pandemic affecting 

Houston had substantial genomic diversity and are progeny of strains derived from several 

continents, including Europe and Asia.8, 9 These findings indicated that SARS-CoV-2 was 

introduced into our region many times independently by individuals who had traveled from 

different parts of the country and the world. Subsequently, sequence analysis of 5,085 genomes 

causing the first disease wave and massive second disease wave in Houston showed that all 

strains in the second wave had an Asp614Gly amino acid replacement in the spike protein.9 The 

Asp614Gly polymorphism increases human transmission and infectivity in vitro and in vivo in 
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animal infection models.17-22 Importantly, this was the first study to analyze the molecular 

architecture of SARS-CoV-2 in two infection waves in any major metropolitan region.  

One of our key goals since the start of the pandemic has been to sequence all positive 

SARS-CoV-2 specimens from patients in our hospital system and rapidly identify mutations that 

may be associated with detrimental patient outcome, including therapeutic or vaccine failure. 

Similarly, with the recognition of an increasing number of SARS-CoV-2 variants of interest 

(VOIs) and variants of concern (VOCs) by public health agencies such as the United States 

Centers for Disease Control and Prevention (CDC), World Health Organization (WHO), and 

Public Health England (PHE) (https://www.cdc.gov/coronavirus/2019-ncov/cases-

updates/variant-surveillance/variant-info.html, last accessed: June 8, 2021; 

https://www.who.int/csr/don/31-december-2020-sars-cov2-variants/en/, last accessed: June 8, 

2021; https://www.gov.uk/government/collections/new-sars-cov-2-variant, last accessed: June 8, 

2021), there is now substantial domestic and international need to identify these virus genotypes 

rapidly and understand their velocity and patterns of dissemination. In particular, VOC U.K. 

B.1.1.7 is of special interest because it has the ability to transmit very effectively, spread through 

populations rapidly, and has been reported to have a significantly higher mortality rate than non-

B.1.1.7 infections (https://virological.org/t/preliminary-genomic-characterisation- of-an-

emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563, last 

accessed: June 8, 2021, 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file

/947048/Technical_Briefing_VOC_SH_NJL2_SH2.pdf, last accessed: June 8, 2021, 

https://app.box.com/s/3lkcbxepqixkg4mv640dpvvg978ixjtf/file/756963730457, last accessed: 

June 8, 2021, https://cmmid.github.io/topics/covid19/uk-novel-variant.html, last accessed: June 
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8, 2021, https://virological.org/t/lineage-specific-growth-of-sars-cov-2-b-1-1-7-during-the-

english-national-lockdown/575, last accessed: June 8, 2021).23-37 VOCs B.1.351 and P.1, found 

to cause widespread disease in South Africa and Brazil, respectively, have sequence changes in 

spike protein that make them less susceptible to host, and some therapeutic, antibodies.38-41 

Recently, two additional VOCs (B.1.427 and B.1.429) were recognized by the CDC in part 

because of their rapid transmission in many California communities42 

(https://outbreak.info/situation-reports?pango=B.1.427, last accessed June 8, 2021, 

https://outbreak.info/situation-reports?pango=B.1.4279, last accessed June 8, 2021).  

Based on sequencing 20,453 SARS-CoV-2 genomes causing COVID-19 disease in 

Houston, we recently reported that all named VOIs and VOCs are circulating in the metropolitan 

region, making it the first community to document their presence.10 A follow-up study reported 

rapid increase of VOC U.K. B.1.1.7 in Houston11; we estimated the variant had a doubling time 

of approximately 7 d. This rapid B.1.1.7 growth trajectory raised the possibility that this variant 

would cause nearly all new COVID-19 cases in metropolitan Houston by the end of March or 

early April 2021, a time frame similar to an estimate made in late January by the CDC.34 

Here we report integrated virus genome and patient data for 12,476 unique COVID-19 

cases identified between January 1, 2021 and May 31, 2021, including 3,276 patients with the 

B.1.1.7 VOC. We find that in the latter half of May, depending on the day, 63%-90% of all new 

COVID-19 cases in metropolitan Houston were caused by B.1.1.7. Linked medical record 

information available for virtually all sequenced genomes permitted us to study the relationship 

between virus genotypes and patient phenotypes. Patients infected with B.1.1.7 had significantly 

lower cycle threshold values in nasopharyngeal specimens (considered to be a proxy for higher 

virus load) and a significantly higher hospitalization rate compared with non-B.1.1.7 patients. 
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There was no difference between these two groups in hospital length of stay or mortality. Eleven 

of the 3,276 B.1.1.7 genomes (0.3%) had an E484K change in spike protein that reduces binding 

by some neutralizing antibodies. Unexpectedly, we found five cases of B.1.1.7 from samples 

collected in early December, resulting in a revised time frame for the introduction of this variant 

to Houston. We also identified 22 patients with COVID-19 caused by B.1.617.1 or B.1.617.2, 

variants reported to be causing widespread disease and extensive public health problems in India, 

other Southeast Asian countries, and many regions of the UK 

(https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-

2021, last accessed June 9, 2021).43-50 These patients also had a high rate of hospitalization. 

Vaccine breakthrough cases (n = 207) were caused by diverse virus genotypes, many of which 

were not VOCs or VOIs. Our genome data show that VOCs and VOIs now account for the great 

majority of all new COVID-19 cases in our region, identify B.1.1.7 as the major cause of new 

cases in Houston, and document the arrival and spread of B.1.617 variants in the Houston 

metroplex. 

 

 

Materials and Methods 

 

Patient Specimens 

 

Specimens were obtained from registered patients at Houston Methodist hospitals, associated 

facilities (e.g., urgent care centers), and institutions in the Houston metropolitan region that use 
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our laboratory services. Virtually all individuals had signs or symptoms consistent with COVID-

19 disease. We analyzed a comprehensive sample of genomes obtained from January 1, 2021 

through May 31, 2021. This time frame was chosen for convenience because it represents the 

period during which, at the onset of the study, we identified an uptick in identification of VOIs 

and VOCs. The study included all 12,476 unique patients identified in this time frame. The work 

was approved by the Houston Methodist Research Institute Institutional Review Board 

(IRB1010-0199). 

 

SARS-CoV-2 Molecular Diagnostic Testing 

 

Specimens obtained from symptomatic patients with a suspicion for COVID-19 disease were 

tested in the Molecular Diagnostics Laboratory at Houston Methodist Hospital using assays 

granted Emergency Use Authorization (EUA) from the FDA (https://www.fda.gov/medical-

devices/emergency-situations-medical-devices/faqs-diagnostic-testing-sars-cov-2#offeringtests, 

last accessed June 7, 2021). As a hedge against supply chain strictures, multiple molecular 

testing platforms were used, including the COVID-19 test or RP2.1 test with BioFire Film Array 

instruments, the Xpert Xpress SARS-CoV-2 test using Cepheid GeneXpert Infinity or Cepheid 

GeneXpert Xpress IV instruments, the cobas SARS-CoV-2 & Influenza A/B Assay using the 

Roche Liat system, the SARS-CoV-2 Assay using the Hologic Panther instrument, the Aptima 

SARS-CoV-2 Assay using the Hologic Panther Fusion system, the Cobas SARS-CoV-2 test 

using the Roche 6800 system, and the SARS-CoV-2 assay using Abbott Alinity m instruments. 

The great majority of tests were performed on material obtained from nasopharyngeal swabs 

immersed in universal transport media (UTM); oropharyngeal or nasal swabs, bronchoalveolar 
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lavage fluid, or sputum treated with dithiothreitol (DTT) were sometimes used. Standardized 

specimen collection methods were used (https://vimeo.com/396996468/2228335d56, last 

accessed June 7, 2021).  

 

SARS-CoV-2 Genome Sequencing 

 

Libraries for whole virus genome sequencing were prepared according to version 3 of the 

ARTIC nCoV-2019 sequencing protocol (https://artic.network/ncov-2019, last accessed June 7, 

2021). We used a semi-automated workflow that employed BioMek i7 liquid handling 

workstations (Beckman Coulter Life Sciences) and MANTIS automated liquid handlers 

(FORMULATRIX). Short sequence reads were generated with a NovaSeq 6000 instrument 

(Illumina). For continuity of the epidemiologic analysis in the study period, we included some 

genome sequences reported in a recent publication.10 

 

SARS-CoV-2 Genome Sequence Analysis and Identification of Variants 

 

Viral genomes were assembled with the BV-BRC SARS-Cov2 assembly service 

(https://www.bv-brc.org/app/ComprehensiveSARS2Analysis, last accessed June 7, 2021). The 

One Codex SARS-CoV-2 variant calling and consensus assembly pipeline was used to assemble 

all sequences (https://github.com/onecodex/sars-cov-2.git, last accessed June 7, 2021) using 

default parameters and a minimum read depth of 3. Briefly, the pipeline uses seqtk version 1.3-

r116 for sequence trimming (https://github.com/lh3/seqtk.git, last accessed June 7, 2021); 

minimap version 2.1 for aligning reads against reference genome Wuhan-Hu-1 (NC_045512.2); 
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samtools version 1.11 for sequence and file manipulation; and iVar version 1.2.2 for primer 

trimming and variant calling. Genetic lineages, VOCs, and VOIs were identified based on 

genome sequence data and designated by Pangolin v. 3.0.5 with pangoLEARN module 2021-06-

05 (https://cov-lineages.org/pangolin.html, last accessed June 7, 2021).  

 

Patient Metadata and Geospatial Analysis 

 

Patient metadata (Table 1 and Table 2) were acquired from the electronic medical record by 

standard informatics methods. Patient home address zip codes were used to visualize the 

geospatial distribution of spread for each VOC and VOI. Figures were generated with Tableau 

version 2020.3.4 (https://www.tableau.com/, last accessed June 7, 2021). A vaccination 

breakthrough case was defined as a PCR-positive sample from a symptomatic patient obtained 

greater than 14 days after full vaccination (i.e., both doses of the Pfizer or Moderna mRNA 

vaccines) was completed. 

 

 

Results 

 

Epidemiologic Trajectory and Patient Overview  

 

Metropolitan Houston has experienced three distinct epidemiologic peaks of COVID-19 (Figure 

1). The timing and shape of the epidemiologic curve for Houston Methodist patients mirrors the 
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curve for the metropolitan region (https://covid-harriscounty.hub.arcgis.com/pages/cumulative-

data, last accessed June 7, 2021). The third wave of COVID-19 started in approximately early 

November, following a prolonged disease trough occurring after the second wave (Figure 1). 

We studied 12,476 patients from January 1, 2021 through May 31, 2021, a period during which 

most of the VOIs and VOCs were initially identified in Houston, and several of them increased 

substantially (Table 1, Figure 2).  

 The median age of the patients studied was 52.5 years, and 53% were female; 6,033 

(48.4%) patients required hospitalization. The ethnic distribution of the patients (Table 1) 

broadly reflects metropolitan Houston, which has a majority-minority population composition. 

Median length of stay was (5.2 days), and the 28-day mortality rate was 4.7%.  

 

Occurrence of VOIs and VOCs 

 

The CDC has identified eight VOIs (B.1.525, B.1.526, B.1.526.1, P.2, B.1.617, B.1.617.1, 

B.1.617.2, and B.1.617.3) and five VOCs (B.1.1.7, P.1, B.1.351, B.1.427, and B.1.429) based on 

heightened concern about potential or proven threat to public health and individual patients. The 

following VOI were identified in our comprehensive sample of 12,476 genome sequences: 

B.1.525 (n = 26), B.1.526 (n = 39), B.1.526.1 (n = 9), P.2 (n = 74), B.1.617.1 (n = 5), and 

B.1.617.2 (n = 17). All five VOCs were found, including B.1.1.7 (n = 3,276), P.1 (n = 87), 

B.1.351 (n = 4), B.1.427 (n = 58), and B.1.429 (n = 293) (Figure 2, Figure 3). B.1.1.7 rapidly 

increased in the population and now dominates the new-infection landscape in Houston (Figure 

2). In the last half of May, depending on the specific day, the B.1.1.7 variant caused 63%-90% of 

new COVID-19 cases. In addition, we found that cases caused by variants P.1, P.2, B.1.429, and 
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the B.1.617 family also increased during the study period, although not to the magnitude of 

B.1.1.7 infections (Figure 2). 

 

Variants Genetically Related to B.1.617 

 

Although comprehensive data are not available from India, the B.1.617, B.1.617.1, B.1.617.2, 

and B.1.617.3 variants were recently described as causing widespread COVID-19 disease in that 

country43-45 (https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-

19---11-may-2021, last accessed May 16, 2021) and have been designated as VOIs by the CDC. 

B.1.617-family variants also have been reported to be prominent causes of new COVID-19 cases 

in other countries in Southeast Asia and the United Kingdom 

(https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-

2021, last accessed June 9, 2021).43-50 Variant B.1.617 is resistant to the monoclonal antibody 

Bamlanivimab (LY-Cov555), as assessed by an in vitro host-cell entry assay,46 and B.1.617.1 has 

been reported to be highly virulent in hamsters following intranasal inoculation.45
 These two 

variants are characterized by a core group of amino acid replacements in spike protein: L452R, 

T478K or E484Q, D614G, and P681R (Figure 4). Importantly, genetic variation exists among 

sequences classified as B.1.617.1 and B.1.617.2. Among these five B.1.617.1 and 17 B.1.617.2 

variant samples, we identified four and 11 distinct subvariants, respectively (Figure 4). Two of 

the patients with B.1.617.1 and three of the patients with B.1.617.2 had a recent travel history to 

a high-prevalence country. One additional B.1.617.2 patient had a history of recent international 

travel to an unspecified country. Examination of the metadata available for patients with B.1.617 

variants found that relative to non-B.1.617 patients, a higher percentage of cases were of Asian 
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ethnicity, and a lower percentage of patients were Hispanic or Latino (Table 2). In addition, 

B.1.617 patients had a higher hospitalization rate than non-B.1.617 patients (Table 2).  

 

Cycle Threshold (Ct) Value Comparison of B.1.1.7 and Non-B.1.1.7 Samples 

 

Early in the pandemic, it was reported that nasopharyngeal samples from patients infected with 

strains having the spike protein 614Gly variant have, on average, significantly lower Ct values 

(considered to be a proxy for higher virus loads) on initial diagnosis9, 17. Most authorities think 

that higher virus load in the upper respiratory tract is related to enhanced ability to spread and 

infect others, although there are many factors that contribute to virus transmission and disease. 

We first tested the hypothesis that specimens from patients with B.1.1.7 infections had lower Ct 

values compared to non-B.1.1.7 patients based on data generated by the Abbott Alinity m or 

Hologic Panther molecular diagnostic assays. Consistent with the hypothesis, patient samples 

with the B.1.1.7 variant had significantly lower mean Ct value (Table 1 and Figure 5) on these 

instruments, and thus likely have higher nasopharyngeal virus loads. We next tested the 

hypothesis that other VOCs and VOIs have significantly lower Ct values. For this analysis, we 

removed B.1.1.7 samples because their inclusion would confound the data. The data show that 

B.1.427/9 samples also had significantly lower Ct values; further analysis found that this signal 

was attributable to the results for the B.1.429 samples (Figure 5). Ct data for the P.2 and R.1 

patient samples were also significantly lower (Figure 5). Taken together, these observations are 

consistent with the idea that, on average, several common SARS-CoV-2 variants have 

significantly lower Ct values, a feature that may make them better able to disseminate and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2021. ; https://doi.org/10.1101/2021.05.20.21257552doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.20.21257552
http://creativecommons.org/licenses/by-nc-nd/4.0/


become dominant variants in the population. The sample sizes for the other VOCs and VOIs are 

not adequate to analyze meaningfully.  

 

Variant Geospatial Distribution 

 

We next examined the geospatial distribution of all VOCs and VOIs in metropolitan Houston. 

With the exception of the B.1.351, B.1.526.1, B.1.617.1, and B.1.617.2 variants (due to small 

sample sizes), patients infected with all other variants were dispersed broadly throughout 

metropolitan Houston, a finding consistent with the propensity of SARS-CoV-2 to spread rapidly 

between individuals (Figure 2). 

 

E484 Spike Protein Amino Acid Changes and Convergent Evolution 

 

Amino acid replacements at position E484 in spike protein have been of considerable research 

and public health interest, in part because they can decrease the efficacy of SARS-CoV-2 

therapeutic antibodies and vaccine- or infection-induced adaptive immunity. We identified 363 

samples with changes at E484 (E484K, n = 353; E484Q, n = 9; and E484D, n = 1) that occurred 

in many genetically diverse SARS-CoV-2 lineages, some of which have not shared a recent 

common ancestor. For example, we found the E484K polymorphism in samples from 69 patients 

infected with VOI P.2 and 43 patients infected with the newly described variant R.1.51-53 R.1 has 

the following core spike protein amino acid changes: W152L, E484K, D614G, and G769V 

(https://outbreak.info/situation-reports?pango=R.1, last accessed May 17, 2021). Some R.1 

variants we identified also contain R21T, L54F, S254P, or P1162L changes. Of note, we 
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identified 11 patients infected with B.1.1.7 plus the E484K amino acid change, and one patient 

each infected with B.1.1.7 sample plus either an E484Q or an E484D amino acid change. E484K 

replacement alters the immunologic profile of SARS-CoV-2,39, 40, 54-56 and Greaney et al.57 

reported that E484Q reduced viral neutralization for some plasma samples. 

 

N440K Spike Protein Replacement 

 

The N440K amino acid change in spike protein has recently been of interest because samples 

with this polymorphism have been reported to cause widespread COVID-19 in some states in 

India, increase viral titer in vitro, and have been associated with resistance to some candidate 

monoclonal antibody therapies.58, 59 We identified 18 patients with this N440K replacement, and 

ten patients had the identical combination of spike amino acid replacements: L18R, T95I, 

R158S, N440K, D614G, P681H, A688V, S735A, and T1027I. Two additional patients had 

SARS-CoV-2 of this same spike protein genotype with an additional T376I amino acid 

replacement. Pangolin categorized these strains as B.1. These 18 individuals were from 14 

different zip codes dispersed throughout five counties in metropolitan Houston (data not shown). 

Ten of the 18 patients required hospitalization, and all were subsequently discharged. 

 

Unexpected Identification of Samples with the B.1.1.7 Variant in Early December 

2020 

 

In work conducted contemporaneously with the present study, we have routinely sequenced all 

genomes from earlier in the pandemic in Houston, including the uptick part of the third wave of 
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disease occurring in November and December 2020 (Figure 1). We identified five patients in the 

first ten days of December with infections caused by B.1.1.7, an unexpected result because the 

first Houston Methodist patient previously documented with this VOC was identified in early 

January 2021,10 and the first Texas patient with B.1.1.7 was announced by state public health 

authorities on January 7, 2021 (https://www.dshs.texas.gov/news/releases/2021/20210107a.aspx, 

last accessed May 17, 2021). Thus, our genome data revise these timelines. Based on genome 

sequences deposited in GISAID (www.gisaid.org, last accessed May 17, 2021), only five B.1.1.7 

sequences from the United States were deposited with collection dates before these five Houston 

B.1.1.7 patients tested positive. Thus, these Houston patients are some of the earliest documented 

infections caused by the B.1.1.7 VOC in the U.S., a finding that further highlights the importance 

of comprehensive genome sequencing of large populations from metropolitan areas with diverse 

patient populations.  

 

Variants and Vaccine Breakthrough COVID-19 Cases 

 

COVID-19 vaccines have remarkably high efficacy in preventing clinical infection caused by 

SARS-CoV-2, as shown by large randomized-controlled trials.60-62 Two mRNA-based vaccines 

given Emergency Use Authorization by the Food and Drug Administration have been used 

widely in the United States (https://www.fda.gov/emergency-preparedness-and-

response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine, last accessed 

May 28, 2021, https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-

2019-covid-19/moderna-covid-19-vaccine, last accessed May 28, 2021), and extensively in the 

Houston Methodist health system. Despite the very high efficacy of these two mRNA-based 
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vaccines, a relatively small percentage of individuals who have received all recommended doses 

have developed either asymptomatic or symptomatic SARS-CoV-2 infections.63-65 The 

contributors to vaccine breakthroughs are not fully understood, but there is concern that genetic 

variants of SARS-CoV-2 may play an outsized role, especially those with structural changes in 

spike protein that can alter immunologic characteristics. Consistent with this idea, McEwen et 

al.65 recently reported that all 20 vaccine breakthrough cases identified at the University of 

Washington were caused by VOCs. In contrast, a nationwide study found that 64% of 

breakthrough cases were caused by VOCs, although genome data were available from only 5% 

of reported cases included in the study64.  

To test the hypothesis that VOCs and VOIs were overrepresented among post-

vaccination breakthrough infections among our COVID-19 cases, we examined metadata 

available for the 12,476 patients reported here. We identified 224 patients who met the criteria of 

vaccine breakthrough (i.e., infection occurring greater than 14 days after full vaccination was 

completed). SARS-CoV-2 genome sequence data were obtained for 207 cases (Table 1). Of 

these 207 patients, 72 (34.8%) required hospitalization. The 207 patients were infected with a 

heterogeneous array of variants, only some of which were VOIs or VOCs (Figure 6). In the 

aggregate, there was a significant increase in VOIs or VOCs among the breakthrough cases (p < 

0.001) (Table 1). Importantly, the infecting viruses generally reflected the spectrum of SARS-

CoV-2 variants circulating in the Houston metropolitan region during the time of diagnosis of the 

vaccine breakthrough case. For example, in January and February 2021 many diverse variants 

were causing disease in the metroplex, and reflecting that fact, the viruses causing breakthrough 

cases were genetically heterogeneous (Figure 6). Similarly, as the B.1.1.7 VOC rose to 

prominence in Houston in March, April, and May, it caused the great majority of vaccine 
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breakthrough cases (Figure 6). Of note, five breakthrough cases in April and May were caused 

by VOC P.1; this variant was also increasing in disease frequency during this period (Figure 2).  

 

 

Discussion 

 

We analyzed the molecular population genomics of SARS-CoV-2 occurring in metropolitan 

Houston, Texas, with a focus on infections occurring early in 2021, from January 1 through May 

31. Our study was based on genome sequences from 12,476 ethnically, socioeconomically, and 

geographically diverse patients distributed throughout the metropolitan area. We discovered that 

infections caused by B.1.1.7 increased very rapidly, and in the latter half of May caused 63%-

90% of all new cases in the population. Compared with non-B.1.1.7 patients, individuals infected 

with B.1.1.7 had significantly lower virus Ct values and a higher rate of hospitalization, but no 

difference in length of stay or mortality. We also identified 22 patients infected with B.1.617-

family variants, genotypes that are now causing extensive disease in India, elsewhere in 

Southeast Asia, and several areas of the U.K.43-45 

 A key finding from our study was the very rapid growth trajectory of VOC B.1.1.7 in 

metropolitan Houston, an area with a population size of approximately 7 million. Several 

investigators have reported previously that patients infected with the B.1.1.7 VOC have 

significantly lower Ct values on initial diagnosis, but this has not been a universal finding.11, 66-71 

In the absence of quantitative virus cultures, the Ct value is viewed by many as a convenient 

proxy for virus load. We found a significantly decreased Ct value in nasopharyngeal swabs taken 

from B.1.1.7 patients compared to non-B.1.1.7 patients (Table 1, Figure 5), a result consistent 
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with previous reports.11, 67, 72-74 Thus, our data are consistent with the potential for enhanced 

transmissibility of B.1.1.7 due to higher nasopharyngeal virus loads. However, it is clear that 

there is no uniform relationship between Ct value and ability to disseminate. For example, we 

identified patients infected with B.1.1.7 who had high Ct values and non-B.1.1.7 patients with 

low Ct values. Many factors contribute to SARS-CoV-2 transmission dynamics, including but 

not limited to behavioral characteristics of human populations, percentage of susceptible 

individuals, vaccination status, network structure, and biologic variation in the capacity of virus 

genotypes to survive and be successfully transmitted. Collectively, our findings stress the need 

for more information about the relationship between Ct values, quantitative virus cultures, and 

specific genotypes of SARS-CoV-2. 

We identified a significantly increased hospitalization rate for patients with B.1.1.7 

compared to non-B.1.1.7 patients, but no significant difference in length of hospitalization or 28-

day mortality (Table 1). Several studies have examined the relationship between disease severity 

and B.1.1.7.23-37 Patone et al.36 estimated the risk of critical care admission and overall mortality 

associated with B.1.1.7 compared to the original variant circulating in the U.K. among a very 

large group of patients. They reported that patients infected with B.1.1.7 have significantly 

increased risk for critical care admission and mortality compared to patients not infected with 

B.1.1.7. However, the risk of mortality was linked to receiving critical care, not distinct virus 

genotype. They concluded that VOC B.1.1.7 causes more severe disease. 

In the U.K., at the end of February, the B.1.1.7 variant accounted for 98% of all COVID-

19 cases (https://en.wikipedia.org/wiki/Lineage_B.1.1.7, last accessed June 9, 2021).27 A similar 

rapid increase in B.1.1.7 its population dominance has been reported in many countries, 

including Israel, France, Denmark, Norway, Lebanon, and Norway 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2021. ; https://doi.org/10.1101/2021.05.20.21257552doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.20.21257552
http://creativecommons.org/licenses/by-nc-nd/4.0/


(https://en.wikipedia.org/wiki/Lineage_B.1.1.7, last accessed June 9, 2021). Our data show that 

this variant increased rapidly in metropolitan Houston since January 2021, and in the second half 

of May caused 63%-90% of new COVID-19 cases daily. However, the increase in B.1.1.7 as 

percent of new cases has occurred in the context of a substantial decrease in total COVID-19 

cases in our metropolitan region (Figure 1). Although the precise cause of these seemingly 

disparate trends is unknown, we hypothesize that a relatively successful early vaccination 

campaign in the region coupled with heightened public awareness and concern about variants 

contributed to the decreasing case rate, whereas the increase in percent of cases caused by 

B.1.1.7 is attributed to the capacity of this variant to transmit more rapidly than other variants. 

We cannot rule out a contribution of a small but significant ability of B.1.1.7 to evade immunity 

induced by either natural infection or vaccination, and our data are fully consistent with this idea 

(Table 1). In this regard, data have been published showing that B.1.1.7 differs in some 

immunologic characteristics compared to “wild-type” SARS-CoV-2.75-82 

SARS-CoV-2 variants with the E484K amino acid replacement are of particular concern 

in many areas, including Brazil, South Africa, and India (https://www.cidrap.umn.edu/news-

perspective/2021/02/pfizer-moderna-vaccines-may-be-less-effective-against-b1351-variant, last 

accessed: May 17, 2021). Consistent with other studies, we identified the E484K change in 

several genetically distinct lineages of the virus, a finding likely due to convergent evolution, as 

noted previously by others.39, 40, 54-56, 83 In the UK, genome sequencing efforts have identified the 

E484K change in some B.1.1.7 samples, although it remains a minor subpopulation 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil

e/959426/Variant_of_Concern_VOC_202012_01_Technical_Briefing_5.pdf, last accessed May 

17, 2021).84
 The B.1.1.7 plus E484K variant has been reported very infrequently elsewhere in the 
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U.S. (https://outbreak.info/situation-reports?pango=B.1.1.7&muts=S%3AE484K, last accessed 

May 17, 2021). Our data mirror the U.K. findings and other U.S. findings in that we identified 

this amino acid change in only 11 (0.3%) of the 3,276 B.1.1.7 patients. 

  The R.1 variant was first reported in Arizona in October 2020, and soon thereafter was 

identified in Canada and Japan (https://outbreak.info/situation-reports?pango=R.1, last accessed 

May 17, 2021).51-53 Cavanaugh et al.51 recently reported that an R.1 lineage variant was 

responsible for a COVID-19 outbreak in a skilled nursing facility in Kentucky in March 2021. 

The first Houston Methodist patient with the variant R.1 was identified in mid-December 2020, 

and its prevalence increased during the study period (Figure 2). Interestingly, for unknown 

reasons, its prevalence plateaued by early April (Figure 2).  

 We studied 207 symptomatic patients documented to be fully immunized and who had a 

specimen taken for diagnosis greater than 14 days after receiving their second dose of either the 

Pfizer (n = 181 patients, 87%) or Moderna (n = 26 patients, 13%) mRNA SARS-CoV-2 vaccine. 

Because we are sequencing the virus genomes causing the vast majority of Houston Methodist 

Hospital cases (93%), we discovered that these vaccine breakthrough cases were caused by many 

diverse SARS-CoV-2 genotypes, including VOIs, VOCs, and many variants not assigned to 

either of these categories (Figure 6). Our results contrast with those reported recently by 

McEwen et al.65 in which all 20 breakthrough cases were caused by VOCs, and are similar to the 

data reported by Birhane et al.64 Although we found the B.1.1.7 VOC caused most of the 

breakthrough cases from mid-April onward, this prominence reflected the rapid increase and 

abundance of this variant throughout the Houston area during that period. Clearly, more 

understanding is needed of the factors underlying vaccine breakthrough infections, and studies 

are underway to examine potential contributors. 
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Although extensive genomic data are not available, members of the B.1.617 variant 

family are contributing to the COVID-19 disease surge in India and other countries in Southeast 

Asia (https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-

june-2021, last accessed June 9, 2021).43-50 B.1.617 variants also have been documented to be 

increasing rapidly in many areas of the U.K., and have been estimated to be 60% more 

transmissible than B.1.1.7, the variant that rapidly rose to dominate new infections in the U.K.49, 

50, 85 In this regard, the identification of 22 patients in the Houston metropolitan area infected 

with variants B.1.617.1 and B.1.617.2 is concerning. One of the 22 Houston patients was 

diagnosed in mid-March 2021, which makes it one of the earliest documented cases of this 

variant in the U.S., with only 11 isolates identified prior to this, starting on February 25th 

(www.gisaid.org, last accessed: May 17, 2021). The relatively high number of B.1.617 

subvariants we identified (n = 14) was unexpected (Table 2, Figure 4), and likely reflects the 

very large population size of B.1.617-family variants worldwide. In this regard, we note that 

several of our patients recently traveled outside the U.S. The B.1.617-family variants have amino 

acid changes in spike protein (Figure 4) that have been linked to increased transmissibility and 

resistance to antibodies that are generated by natural infection or vaccination, and altered 

virulence in some studies.43-45, 47, 48 It will be important to continue to monitor SARS-CoV-2 

genomes from patients in the Houston area to determine the rate of spread of the variants, and 

assess if new variants that arise have biomedically relevant phenotypes, such as enhanced 

virulence and immunologic escape. 

 

Limitations 
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Our study has several limitations. During the January 1 through May 31, 2021 study period, 

269,341 cases of COVID-19 were reported in Harris County and its eight contiguous counties 

(https://usafactsstatic.blob.core.windows.net/public/data/covid-

19/covid_confirmed_usafacts.csv; last accessed June 8, 2021). Thus, although we have 

sequenced 93% of all Houston Methodist cases identified during this period, our genome sample 

represents only 4.6% of all reported cases in the metropolitan region. Our eight hospitals and 

outpatient clinics are geographic widely dispersed across the metropolitan region and serve 

patients who are demographically, socioeconomically, and geographically highly diverse. 

However, unless all SARS-CoV-2 genotypes are equally distributed throughout all populations 

in the Houston metropolitan region, our sample may underrepresent some SARS-CoV-2 

genotypes causing COVID-19 in some populations such as the homeless and other 

disenfranchised individuals. Our hospitals and clinics care mainly for adult patients, which 

means that SARS-CoV-2 variants causing pediatric cases are underrepresented in our study, 

although overall, the number of cases in this age group is relatively small. Finally, virtually all 

SARS-CoV-2 genomes that we sequenced were obtained from symptomatic patients. Thus, our 

sample may underrepresent genotypes causing only asymptomatic carriage.  

 

Summary 

 

To summarize, in the latter half of May 2021, 63%-90% of all new COVID-19 cases among 

ethnically, geographically, and socioeconomically diverse Houston Methodist health care system 

patients were caused by the B.1.1.7 variant. Vaccine breakthrough cases were caused by SARS-

CoV-2 that are genetically very diverse and largely reflect the genotypes that are circulating and 
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abundant in the community. Identification of 22 patients with the B.1.617 family of variants and 

11 patients with B.1.1.7 plus E484K in metropolitan Houston is cause for heightened concern. 

Although our sample represents only 4.6% of all reported COVID-19 cases in the Houston area, 

it is reasonable to extrapolate that B.1.617-family variants have caused approximately 400 cases 

in our region. The rate and extent of spread of these variants should be monitored very closely by 

rapid genome sequencing, coupled with analysis of patient metadata, including disease severity 

and mortality. This is an especially pressing issue for B.1.617-family variants because B.1.617.2 

has become abundant and is outcompeting B.1.1.7 in many areas of the U.K. 

(https://outbreak.info/location-reports?loc=GBR, last accessed June 8, 2021, 

https://www.telegraph.co.uk/global-health/science-and-disease/indian-variant-covid-coronavirus-

uk/, last accessed June 8, 2021). Moreover, our data show a high rate of hospitalization for 

patients infected with B.1.617 variants (Table 2), a finding consistent with data recently reported 

by Public Health England (https://www.gov.uk/government/news/confirmed-cases-of-covid-19-

variants-identified-in-uk, last accessed June 9, 2021). 
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Figure 1   Epidemiologic curve showing three waves of SARS-CoV-2 infections in Houston 

Methodist patients. Daily totals are shown as a +/- three-day moving average. The figure was 

generated with Tableau version 2020.3.4. 

 

Figure 2   Cumulative increase in SARS-CoV-2 variants and their distribution in metropolitan 

Houston. The time frame used is January 1, 2021 through May 31, 2021. The left column shows 

the cumulative increase in unique patients with each variant. The right column shows the 

geospatial distribution of these variants based on the home address zip code for each patient. 

Figures were generated with Tableau version 2020.3.4. 

 

Figure 3   Structural changes present in spike protein of the major SARS-CoV-2 variants 

identified in the study, including VOIs, VOCs, and variant R.1. S1-NTD, S1 domain-

aminoterminal domain; S1-RBD, S1 domain-receptor binding domain; S1, S1 domain; S2, S2 

domain. The figure is a modified version of one presented previously.10 

 

Figure 4   Structural changes present in spike protein of B.1.617-family variants. Four 

subvariants of B.1.617.1 and 10 subvariants of B.1.617.2 were identified. For the purpose of 

clarity, each subvariant was given an upper-case letter designation. The subvariants are listed 

(top to bottom) based on their decreasing abundance in GISAID as of June 2, 2021. For example, 

B.1.617.1-A is the most common subvariant of B.1.617.1, and B.1.617.2-A is the most common 

subvariant of B.1.617.2. The number in parentheses below the subvariant designation denotes the 

number of patients with each subvariant identified in this study. Note that some annotation 

methods treat the E156G and del157-158 differently; we have used the GISAID annotation 
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nomenclature. S1-NTD, S1 domain-aminoterminal domain; S1-RBD, S1 domain-receptor 

binding domain; S1, S1 domain; S2, S2 domain. The figure is a modified version of one 

presented previously.10 

 

Figure 5   Cycle threshold (Ct) for every SARS-CoV-2 patient sample tested using the Abbott 

Alinity m (panels A-F) or Hologic Panther (panel G-L) assays as described in Materials and 

Methods. Data are presented as median with 95% Confidence Interval. Mann-Whitney test, 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 

 

Figure 6   Number of COVID-19 vaccine breakthrough cases over time, by virus variant. The 

month of diagnosis and the infecting virus variant based on whole-genome sequencing are 

shown. A total of 207 vaccine breakthrough cases was identified in patient receiving either the 

Pfizer (n = 181; 87%) or Moderna (n = 26; 13%) vaccine.  
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Table 1. Summary of pertinent patient metadata for the 12,476 unique patients 

 B.1.1.7 Variant Other Variants  Total Statistical Analysis 

No. (%) with data 3276 (26.3%) 9200 (73.7%) 12476  

Patient Characteristics 

Median Age (Years) 49.9 53.7 52.5 
P<0.0001 

Mann-Whitney 
Female 1693 (51.7%) 4880 (53.0%) 6573 (52.7%) P=0.1854 

Fisher’s exact test Male 1583 (48.3%) 4320 (47.0%) 5903 (47.3%) 

Ethnicity 

Caucasian 1304 (40.1%) 3720 (40.6%) 5024 (40.5%) P<0.0001 

Chi-square Hispanic or Latino 945 (29.1%) 2720 (29.7%) 3665 (29.5%) 

Black 748 (23.0%) 1644 (18.0%) 2392 (19.3%) 

Asian 128 (3.9%) 549 (6.0%) 677 (5.5%) 

Native American 16 (0.5%) 28 (0.3%) 44 (0.4%) 

Hawaiian/Pacific Islander 3 (0.1%) 23 (0.3%) 26 (0.2%) 

Unavailable 107 (3.3%) 472 (5.2%) 579 (4.7%) 

BMI 

Median BMI 30.4 29.5 n=(11009) P<0.0001 

Mann-Whitney 
<18.5 48 (1.5%) 140 (1.5%) 188 (1.5%) P<0.0001 

Chi-square 18.5-25 506 (15.4%) 1608 (17.5%) 2114 (16.9%) 

25-30 857 (26.2%) 2520 (27.4%) 3377 (27.1%) 

30-35 740 (22.6%) 1833 (19.9%) 2573 (20.6%) 

>=35 811 (24.8%) 1946 (21.2%) 2757 (22.1%) 

Unknown 314 (9.6%) 1153 (12.5%) 1467 (11.8%) 

Admission Data 

Admitted 1768 (54.0%) 4265 (46.4%) 6033 (48.4%) P<0.0001 

Fisher’s exact test 

 
Odds Ratio: 

1.357 (95% CI 1.252 to 1.469) 

Not Admitted 1508 (46.0%) 4935 (53.6%) 6443 (51.6%) 

Median LOS (Days) 5.1 5.2 5.2 P=0.8917 

Mann-Whitney 

Max Respiratory Support 

ECMO 8 (0.5%) 17 (0.4%) 25 (0.4%) P=0.0135 

Chi-square 
 

Mechanical Ventilation 150 (8.5%) 365 (8.6%) 515 (8.5%) 

Non-Invasive Ventilation 169 (9.6%) 433 (10.2%) 602 (10.0%) 

High Flow Oxygen 358 (20.2%) 696 (16.3%) 1054 (17.5%) 

Low Flow Oxygen 734 (41.5%) 1830 (42.9%) 2564 (42.5%) 

Room Air 349 (19.7%) 924 (21.7%) 1273 (21.1%) 

Mortality 

Alive 3132 (95.6%) 8760 (95.2%) 11892 (95.3%) P=0.3862 

Fisher’s exact test 

 

Odds Ratio: 

0.915 (95% CI 0.755 to 1.111) 

Deceased 144 (4.4%) 440 (4.8%) 584 (4.7%) 

Median PCR Cycle Threshold 

Abbott Alinity 23.9 
n=(1133) 

26.8 
n=(3344) 

n=(4477) P<0.0001 

Mann-Whitney 

Hologic Panther 25.0 
n=(385) 

26.2 
n=(1574) 

n=(1959) P=0.0274 

Mann-Whitney 

Vaccine 

No vaccine 3023 (92.3%) 8715 (94.7%) 11738 (94.1%) P<0.0001 

Chi-square >7 days past 1st Vaccine 127 (3.9%) 404 (4.4%) 531 (4.3%) 

>14 days past 2nd Vaccine 126 (3.8%) 81 (0.9%) 207 (1.7%) 

Data include 12476 unique patients with high-quality sequence results between January 1, 2021, and May 31, 2021. CI: 

confidence interval; ECMO: extracorporeal membrane oxygenation; LOS: length of stay 
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Table 2. Summary of pertinent patient metadata for B.1.617.1/B.1.617.2 patients (excluding 

B.1.1.7 patients). 

 B.1.617 Variants Other Variants  Total Statistical Analysis 

No. (%) with data 22 (0.2%) 9178 (99.8%) 9200  

Ethnicity 

Asian 7 (33.3%) 542 (5.9%) 549 (6.0%) P<0.001 

Fisher’s exact test 

(Asian vs non-Asian) 

 

Odds Ratio: 

7.927 (95% CI 2.973 to 19.40) 

Caucasian 8 (38.1%) 3712 (40.6%) 3720 (40.6%) 

Hispanic or Latino 3 (14.3%) 2717 (29.7%) 2720 (29.7%) 

Black 0 (0%) 1644 (18.0%) 1644 (18.0%) 

Native American 1 (4.8%) 27 (0.3%) 28 (0.3%) 

Hawaiian/Pacific Islander 1 (4.8%) 22 (0.2%) 23 (0.3%) 

Unavailable 1 (4.8%) 471 (5.2%) 472 (5.2%) 

Admission Data 

Admitted 17 (77.3%) 4248 (46.3%) 4265 (46.4%) P=0.0045 

Fisher’s exact test 

 
Odds Ratio: 

3.946 (95% CI 1.529 to 9.788) 

Not Admitted 5 (22.7%) 4930 (53.7%) 4935 (53.6%) 

Median LOS (Days) 6.7 5.2  P=0.5388 

Mann-Whitney 

Highest level of care 

ICU 3 (17.6%) 639 (15.0%) 642 (15.1%) P=0.5474 

Mann-Whitney IMU 1 (5.9%) 93 (2.2%) 94 (2.2%) 

Other Inpatient 13 (76.5%) 3516 (82.8%) 3529 (82.7%) 

Max Respiratory Support 

ECMO 0 (0%) 17 (0.4%) 17 (0.4%) P>0.9999 

Fisher’s exact test 

(Room Air & Low Flow vs Other) 

 

 

Odds Ratio: 

1.006 (95% CI 0.3803 to 2.647) 

Mechanical Ventilation 3 (17.6%) 362 (8.5%) 365 (8.6%) 

Non-Invasive Ventilation 1 (5.9%) 432 (10.2%) 433 (10.2%) 

High Flow Oxygen 2 (11.8%) 694 (16.3%) 696 (16.3%) 

Low Flow Oxygen 8 (47.1%) 1822 (42.9%) 1830 (42.9%) 

Room Air 3 (17.6%) 921 (21.7%) 924 (21.7%) 

Mortality 

Alive 20 (90.9%) 8740 (95.2%) 8760 (95.2%) P=0.2838 

Fisher’s exact test 

 

Odds Ratio TODO: 

1.995 (95% CI 0.459 to 7.462) 

Deceased 2 (9.1%) 438 (4.8%) 440 (4.8%) 

Data include 9200 unique patients with high-quality sequence results between January 1, 2021, and May 31, 2021. CI: 

confidence interval; ICU: Intensive Care Unit; IMU: Intermediate Care Unit; ECMO: extracorporeal membrane 

oxygenation; LOS: length of stay 
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