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ABSTRACT
IDENTIFICATION AND USE OF INDICATOR DATA TO DEVELOP MODELS

FOR MARINE-SOURCED RISKS IN MASSACHUSETTS BAY

May 2016

Marin M. Kress, B.A., Smith College
M.S., University of Massachusetts Boston
Ph.D., University of Massachusetts Boston

Directed by Professor Robert Bowen

The coastal watersheds around Massachusetts Bay are home to millions of people,
many of whom recreate in coastal waters and consume locally harvested shellfish.
Epidemiological data on food-borne illness and illnesses associated with recreational
water exposure are known to be incomplete. Of major food categories, seafood has the
highest recorded rate of associated foodborne illness. In total, the health impacts from
these marine-sourced risks are estimated to cost millions of dollars each year in medical
expenses or lost productivity. When recorded epidemiological data is incomplete it may
be possible to estimate abundance or prevalence of specific pathogens or toxins in the
source environment, but such environmental health challenges require an

interdisciplinary approach.
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This dissertation is divided into four sections: (1) a presentation of two
frameworks for organizing research and responses to environmental health issues; (2) an
exploration of human population dynamics in Massachusetts Bay coastal watersheds
from 2000 to 2010 followed by a review of, and identification of potential indicators for,
five marine-sourced risks: Enterococcus bacteria, Vibrio parahaemolyticus bacteria,
Hepatitis A Virus, potentially toxigenic Pseudo-nitzschia genus diatoms, and
anthropogenic antibiotics; (3) an introduction to environmental health research in the
context of a changing data landscape, presentation of a generalized workflow for such
research with a description of data sources relevant to marine environmental health for
Massachusetts Bay; and (4) generation of models for the presence/absence of
Enterococcus bacteria and Pseudo-nitzschia delicatissima complex diatoms and model

selection using an information-theoretic approach.

This dissertation produced estimates of coastal watershed demographics and
usage levels for anthropogenic antibiotics, it also demonstrated that Pseudo-nitzschia
delicatissima complex diatoms may be present in any season of the year. Of the
modeling generation and selection, the Enterococcus model performed poorly overall, but
the Pseudo-nitzschia delicatissima complex model performed adequately, demonstrating
high sensitivity with a low rate of false negatives. This dissertation concludes that
monitoring data collected for other purposes can be used to estimate marine-sourced risks
in Massachusetts Bay, and such work would be improved by data from purpose-designed

studies.
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CHAPTER 1

INTRODUCTION

Background.

The concepts of ‘health’ and ‘well-being’ are intertwined but not identical. We
often think of ‘health’ as physical and physiologic health, as something which can be
diminished or damaged during a disease or after an injury.! The concept of well-being is
not as clearly defined as that of health, but can include multiple aspects of a person’s
quality of life, including economic vitality, social and cultural connectedness,
psychological stability and strength, and happiness.! Although health and well-being
may be defined separately, the two concepts are so connected that the World Health
Organization (WHO) defines health as a “state of complete physical, mental, and social
well-being, and not merely the absence of disease or infirmity.”? Reduced health may
lead to reduced well-being, and vice-versa, but this is not always the case. People may
have impaired health but a satisfactory level of well-being if there is enough social and
cultural support.® Identifying and improving well-being is an active area of research in
the medical and public health communities.>> Research linking health and well-being to
the environment, recognizing the value of natural systems in supporting health and well-

being, is also ongoing.': ¢



Like well-being, a person’s health can be improved or adversely affected by the
surrounding environment. For those living in coastal areas the marine environment is
part of their local environment and the potential influences are much more apparent.!
Those living far from the coast may still directly interact with ocean products such as
seafood, or be indirectly linked to the ocean through weather or climate impacts. Human
interaction with the ocean and its products can improve health and well-being through
scenic enjoyment®, recreation opportunities’, spiritual and cultural practices'’, and
healthy seafood consumption.!! Conversely, we recognize that ocean interactions may
contain risks such as consumption of contaminated seafood, physical trauma from large
waves or strong currents, interactions with poisonous animals such as jellyfish, and storm
or flood damage to coastal communities.! In addition to visible risks such as flooding,
microbiological risks have been recognized from multiple taxa, including bacteria,
viruses, toxigenic dinoflagellates or diatoms, helminthes, and yeasts.!> While this
dissertation will focus on marine-sourced risks and their potentially negative impacts on

human health the benefits of ocean interaction should not be forgotten.

Today we recognize a wide variety of risks to human health. Some of these risks
are man-made (e.g., anthropogenic pollutants, cultural norms), some are intrinsic parts of
the natural environment (e.g., hurricanes, tornadoes), and some are a combination of the
two; risks that exist independent of human activity, but which can be made more serious
by human behaviors. These risks, at the intersection of socio-economic factors and
environmental conditions, are challenging to study using a traditional single-discipline

approach. Interdisciplinary questions require interdisciplinary approaches. For

2



environmental health questions an interdisciplinary approach requires understanding
relevant aspects of the human population at the risk and the biology and ecology of the
risks themselves. As new risks are identified policy-makers must consider the level of
resources that can, or should, be devoted to minimizing exposure to these risks.
Exposure to certain risks may be embedded in cherished cultural practices or

economically significant industries, or both.

Although we recognize a wide variety of health risks, we are not equally informed
about each risk’s prevalence or impact. For certain types of illness traditional
epidemiological data are not accurate in capturing the true number of disease cases.
Infectious disease completeness reporting ranges from 9 to 99 percent, with greatest
completeness for high profile diseases like tuberculosis, AIDS, and certain sexually
transmitted diseases. > For environmentally-linked illnesses, such as seafood-borne
illness and illness associated with recreational waters, public health experts estimate that
as few as ten percent of cases are reported.'*!® For diseases with incomplete
epidemiological data we must find other ways to estimate the true burden of disease until
reporting rates improve. One alternate approach is to understand the abundance of the
underlying risk factor as it exists in the environment. Examples of this may include
identifying viral strains circulating among a population, measuring the abundance of
indigenous marine bacteria in areas where humans harvest shellfish, or identifying
seasonal variation in the presence of toxigenic phytoplankton in coastal waters.'®** For
marine-sourced risks understanding the underlying risk factor means estimating their

presence in the wild (e.g., natural abundance), or estimating the extent of human loading

3



of a risk into the marine environment (e.g., enteric bacteria and viruses released through
wastewater flows). Additional data on the extent of human exposure (e.g., the number of
swimmers exposed to polluted water) would further help to refine disease burden

estimates, but such data may not be available.

This dissertation is motivated by the following question:

How can investigation of multiple marine-sourced risks best be organized in
terms of the identification of useful indicators? When epidemiological data is lacking,
can we identify and use proxy data from other sources to understand potential risks, and
can we use that data to develop predictive models that could serve to protect public

health?

Using examples for specific marine-sourced risks known to exist in Massachusetts Bay,
and the proximate human population living in the surrounding coastal watersheds, this
dissertation is divided into four chapters that treat different aspects of the motivating

question.

Chapter 1 Frameworks.

The research question for Chapter 1 is: How can we organize our understanding of the

pathways that create risks to human health?

Identifying a problem is only the first step in solving it, long-term success
depends on addressing the root cause, which for environmental health risks may be an

intertwined combination of environmental and human factors. We focus on coastal



systems because they are home to large numbers of people and the coastal environment is
influenced by natural variability, episodic events, and anthropogenic forcing. Chapter 1
is built around two essential themes, 1) the recognition that coastal systems are complex,
but we can reveal the underlying structure and use that understanding to make informed
management choices, and 2) management choices that are both socially inclusionary and
data-supported are likely to be successfully implemented. Chapter 1 describes how using
a comprehensive, yet flexible, organizing framework is a useful was to address
environmental health problems. The two frameworks discussed are:

e Driver-Pressure-State-Impact-Response (DPSIR) framework

e Driver-Pressure-State-Exposure-Effect-Action (DPSEEA) framework

Both of these frameworks allow the user to place a specific problem within a larger
system context to identify where to target response actions. Chapter 1 examines the
elements of the DPSIR and DPSEEA frameworks, and applications of this approach in

research and policy settings.

To illustrate the wide applicability of this framework, chapter 1 summarizes 11 case
studies which utilize the DPSIR framework to evaluate different types of environmental,
health, and management challenges around the globe. Those 11 cases discuss the

following topics:

e Evaluating success under the European Water Framework Directive
e Common environmental challenges of coastal megacities

e Urban infrastructure development and groundwater use and quality



e Historical development drivers in South African municipalities
e Coastal management in three South American coastal sites
e Environmental challenges facing the ecosystem of the Ebrié Lagoon, Ivory Coast
e Recommending indicators to understand reef fishing in Kenya
e Evaluating sustainable aquaculture options in South Africa
e Linking upstream drivers and downstream impacts in Venetian bathing beaches
e Understanding declines in coastal wetlands in Xiamen, China
e Integrating indicators to assess Marine Protected Areas in Malta
In addition to the 11 DPSIR examples, Chapter 1 presents two human health focused

applications of the DPSEEA framework. The two examples are:

e The GEO Health Pilot study in Sdo Paulo, Brazil that brought together
stakeholders from the medical, waste management, environmental, and residential
communities to identify waste and water problems adversely affecting human
health.

e The Good Places, Better Health program in Scotland, initiated to make better

connections between the built environment and human health and well-being.

These examples show that the DPSIR and DPSEEA frameworks are flexible in their
application, allowing users to organize and share their thinking about complex social and
environmental issues. In addition, these frameworks allows for establishing measurement

criteria to evaluate response actions before those actions are taken. This facilitates



transparency for all stakeholders involved, an important aspect of problem solving where

environmental and health issues may be intimately linked to social norms.

Chapter 2 Human Population Demographics and Marine-sourced Risks in
Massachusetts Bay.

The topics addressed in Chapter 2 are: What are the demographics of people
living in the six watersheds that border Massachusetts Bay? For these watersheds, what
was composition of the population with the greatest opportunity for coastal water
interaction in 20102 For a set of 5 marine-sourced risks known to exist in Massachusetts
Bay what are the known or suspected environmental and socio-economic influences on
their abundances identified in the existing scientific literature? Which of these
influencing factors should be, or could be, monitored through direct or proxy indicators
to provide the most valuable public health value information about the changes in risk

potential in nearshore coastal waters frequented by residents and tourists?

This chapter examines data from multiple sources to make demographic estimates
about the population living in the coastal watersheds around Massachusetts Bay, the same
population expected to have to highest level of interaction with coastal recreational
waters and locally harvested seafood. Marine-sourced risks may take multiple forms,
five commonly identified categories include enteric bacteria, indigenous marine bacteria,
enteric viruses, natural marine toxigenic organisms, and anthropogenic pollutants. This
chapter reviews the available epidemiological and biological data for five marine-sourced

risks to human health that exist in the Massachusetts Bay area representative of a
7



different category, the specific risks are Enterococcus bacteria 2*, Vibrio
parahaemolyticus bacteria®*, Hepatitis A Virus 2, Pseudo-nitzschia genus diatoms?®, and
anthropogenic antibiotics?’). All of these risks may exist at varying scales and abundance
across the Bay, but water quality testing is driven primarily by enteric bacteria, primarily
Enterococcus. Through this review we create a matrix identifying high-value data types
for influencing factors on the five marine-sourced risks that could be useful in developing

predictive models.

Chapter 3 Interdisciplinary Data Science.
The topic addressed in Chapter 3 is: How inter-disciplinary questions in
environmental health and infectious disease research may be addressed through the use

of data beyond traditional medical and epidemiological sources.

This chapter discusses the changing landscape of data availability and the
emerging practice of data science. Increases in computing power have allowed for both
the rise of ‘big data’ and the generation of crowdsourced data. Crowdsourced data in
particular may offer unique insights on certain topics, but is not necessarily informative
for every research question. In addition, this chapter presents a general 3-phase
workflow for the type of interdisciplinary environmental health work that utilizes
multiple disparate data types. This chapter also presents a list of the data collected from

public sources to support marine-source risk modeling in Massachusetts Bay.

Chapter 4 Marine-sourced Risk Models.

The research question in this chapter is:



Is it possible to use existing public data to build a model that can predict the presence or
absence of Pseudo-nitzschia delicatissima complex diatoms and Enterococcus bacteria in
Massachusetts Bay with reasonable accuracy? Are there data gaps that limit the
predictive ability of these models? Does there appear to be any correlation between the

presence of these taxa in the northern part of Massachusetts Bay?

This chapter discusses the information-theoretic approach used to develop and
select predictive models for the presence/absence of two marine-sourced risks known to
exist in Massachusetts Bay. The first model is for Pseudo-nitzschia delicatissima
complex diatoms as measured at two stations in Massachusetts Bay between the years
1995 and 2014. The second model is for Enterococcus bacteria as measured at three
marine beaches along the north coast of the Bay during the summer bathing seasons of
2007 to 2014. After presenting the results of the model testing and the potential utility of
these models, this chapter closes with suggestions for ways to improve these and other

marine-sourced risk modeling efforts.
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CHAPTER 2

INTEGRATING FRAMEWORKS TO ASSESS HUMAN HEALTH AND WELL-

BEING IN MARINE ENVIRONMENTAL SYSTEMS

Note: This paper has been published as the following citation: R. E. Bowen, M. Kress, G.
Morris, and D. Rothman. 2014. Chapter 2: Integrating Frameworks to Assess Human

Health and Well-Being in Marine Environmental Systems. In Oceans and Human Health:

Implications for Society and Well-Being. R.E. Bowen, M.H. Depledge, C.P. Carlarne, and

L.E. Fleming, eds. Hoboken, NJ: John Wiley & Sons, Ltd. 304 pages. ISBN: 978-1-119-
94131-6.
Introduction.

The previous chapter characterized the differences and interconnections between
human health and well-being. One of the earliest conscious connections made by humans
was that their health and well-being were influenced by nature. We framed our lives in
the context of the environment in which we lived, and still do so today. When it did not
rain, food was scarce; seeking shelter from storms helped initiate social systems; rivers
and the coastal ocean provided swifter movement and opened the opportunity for
connections between distant communities of people. We discovered that eating certain
foods during certain times of the year might make us ill, while other plants held curative

properties. As the populations of humans grew larger, so did our understanding of the
13



diversity of ways in which we were connected to the natural systems around us. As our
social systems became more sophisticated so did our capacity to define and respond to

environmental change.

However, that knowledge did not always lead to sophisticated, beneficial social
action. Indeed, many would argue that our social actions were both too infrequent and
too ineffective. It is not within the purview of this chapter to assess the origin, reasoning
and consequences of historic social choices. Rather, the focus here is to examine the
value of integrating frameworks that afford a more mature, inclusive view of complex
relationships between environmental conditions, human health, and well-being.
Integration, Complexity and Need for New Frameworks.

The fact that a system is complex does not mean it lacks a structure that one can
reveal and act upon. Indeed, it has been nearly fifty years since Herbert Simon wrote his
famous paper describing the “architecture of complexity,”! and those insights are as
valuable today in considering coastal systems as they were then. Simon has said of
complex systems that “in the face of complexity, an in-principle reductionist may be at
the same time a pragmatic holist.”! It is simply pragmatic to embrace the idea that
information on all parts of this system need to be acquired if an understanding of the

whole is to be achieved.

Coastal environments are systems that interact in non-simple ways but
nonetheless, hold an underlying structure that can be better understood. And, this
structure can be used to direct and integrate efforts to acquire, assess, and communicate

information linking the environment, human health and well-being. To achieve these
14



outcomes, we need to broaden the field of investigation to ensure that information on
communities, on the structure of society, on coastal environmental change, on the social
gains and losses influenced by the environment, and the responsive activity driven by that
knowledge, are all included in our pragmatic approach to managing the whole of coastal
systems.

Background.

During the past several years, numerous broad-ranging national and international
reports have assessed the state of marine and coastal systems with the goal of
contributing to more integrative and sustainable views. The overall goals motivating
these reports were quite broad and included, inter alia: assessing climate change;>*
illustrating global ecological themes;> developing a strategy for the sustained monitoring
of global environmental change;*® conducting national assessments of coastal and ocean
management;’ and using indicators to assess change in coastal systems.!% ! The last
decadal assessment provided by the United Nations Joint Group of Experts on the

Scientific Aspects of Marine Environmental Protection (GESAMP)!? states:

Humanity’s future, just like its past, will continue to depend on the oceans,
on the intricate interchanges between land and water. Yet the relationship
has changed. Over most of human history it has been dominated by the
sea's influence on people. But from now on humanity’s effect on the state of
the sea is probably at least as important. And, by and large, this is getting

Worse.
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The state of the world’s seas and oceans is deteriorating. Most of the
problems identified decades ago have not been resolved, and many are
worsening. New threats keep emerging. The traditional uses of the seas and
coasts — and benefits that humanity gets from them — have been widely

undermined.

More hopefully, perhaps, there is a dawning realization that neither
individual problems, nor the crisis of the seas as a whole can be dealt with in
isolation. They are intricately interlinked both with themselves and with
social and economic development on land. Policy decisions, research, and

management programs are all shifting their focus accordingly.

The GESAMP report is quoted here not because of its unique conclusions, but rather
because it provides a notable example of the kinds of conclusions that reside in virtually
all the significant broad-view reports assessing environmental systems released since the
turn of the new millennium. Aware of the challenges of oversimplification, we argue that
two themes, in particular, emerge and provide essential organizing tools for the study of

the oceans, human health and well-being.
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First, it is clear that effective and efficient environmental management needs
to embrace an integrated, ecosystem perspective that includes humans. Traditional
sector management (including the public health sector) ignores the “reality of
interdependence” faced by current managers. These realities are clear and well reflect our
natural and social scientific understanding of environmental systems. However, to fully
embrace this system view brings with it a level of complexity and uncertainty for which
we are, too often, ill-prepared. Consequently, the second essential theme is that
management should move toward a more inclusive, information-driven system of
decision-making and assessment. With these themes clearly in mind, we can now begin
this chapter’s discussion of analytical frameworks.

Integrating Frameworks for Human Health and Well-Being.

A starting point to reduce the barriers of these complex challenges resides in the
acceptance and use of simple integrating frameworks designed to ensure that all the
forces that contribute to a functional understanding are accounted for and considered.

This chapter describes and illustrates two such frameworks. They are the:

DPSIR - Driver, Pressure, State, Impact, Response; and,

DPSEEA - Driver, Pressure, State, Exposure, Effect, Action.

These frameworks emerged and evolved concurrently, both during the early 1990’s.
Within the present context, the DPSIR is used to assess the broader issues of
environmentally influenced human well-being, while the DPSEEA is used most generally

by the public health community. These two frameworks focus the remainder of this
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discussion for several reasons. First, the measure of conceptual similarity between the
two is high. This reflects the substantial symmetry in the attributes and indicators where
human health and well-being converge (e.g., those commonalities influencing critical
areas of environmental change). The two frameworks diverge where the major
consequence of that environmental change is primarily in assessing only the more illness
related view of human health (DPSEEA) or is viewed more broadly within the context of
well-being (DPSIR).

Assessing the Influences on Environmental Change.

An essential step in understanding of the architecture of complexity is to identify
the sources of environmental change. Figure 2-1 (below) represents the general forcing
functions influencing the state of environmental conditions. Natural variability, episodic
events, and anthropogenic forcing all play a role in the dynamics of coastal
environmental systems. Therefore, one simple goal for a successful framework is for it to
be able to better discern the relative contribution of the various drivers and pressures
altering the state of environmental conditions. Environmental conditions can influence a
change in human health and in overall well-being — as well as the dynamics between
them. This view is used to convey the importance in understanding that both human and
natural factors can be the primary sources of environmental state changes. And, since
both human health and well-being can be influenced by those changes in environmental
state, our capacity to responsibly act or respond is dependent on an understanding the

associated drivers and pressures.
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Effective arguments can be made that both the DPSIR and the DPSEEA meet the
framework needs of the management community and have acquired broad and general
support.”: 8 111318 'We appear to have reached a point of general consensus on the
attributes necessary for successful management framework even if marginal details may

differ slightly from effort to effort.

Natural Anthropogenic

Variability '\‘ Episodic / Forcing

Events

State of Environmental
Conditions

Human Health Well-Being

\—_/

Figure 2-1. Forcing functions, global environmental systems, human health and well-
being. The forcing functions influencing change on the state of environmental system
(including coastal and marine systems) natural variability, episodic events, and
anthropogenic activity. Therefore, one simple goal for a successful framework is for it to be
able to better discern the relative contribution of the various drivers and pressures altering
the state of environmental conditions. Environmental conditions can influence a change in
human health and in overall well-being — as well as the dynamics between them. And, since
both human health and well-being can be influenced by those changes in environmental
state, our capacity to responsibly act or respond is dependent on an understanding the
associated drivers and pressures.
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The Driver-Pressure-State-Impact-Response Framework.
The current core of what is known as the DPSIR can most easily be traced to

work in the early 1990s carried out by the Organization for Economic Cooperation and
Development (OECD) when it focused on developing a more common, structured view
of how to assess the relationship between humans and the environment.'®?? This holistic
view was embraced and expanded by the United Nations and the European Commission
(among others) to include a broader view of the root causes of environmental change and
the impacts this change has on ecosystems and on humans.?*?> The DPSIR framework,

as described here, was first elaborated by the European Environmental Agency in 1995.%6

27

The integrative view conveyed by this framework is that:

“The way a country or community is broadly structured and organized is
defined by a suite of large-scale social drivers which can impose various
forms of pressure altering the state of environmental conditions. The
changing state of the environment can consequently impact social benefit
values (notably social well-being). Responsible social sustainability
requires that any responses to enhance sustainability and overall well-being

account for all attributes of this system.”% %’

Figure 2-2 (below) is a simple diagram of the DPSIR, wherein:

20



* Driver refers to large scale socio-economic conditions and sectoral trends such as
patterns in coastal land use and land cover, and population growth, economic growth and

energy use patterns;

* Pressure include patterns of development-driven habitat alteration, the introduction of
industrial POPs/metals and fertilizer use, wastewater management can affect

environmental quality;

* State indicators describe observable changes in environmental conditions. If assessed

over time state indicators afford a view of view of environmental system change;

 Impacts are the discrete measured changes in social benefit values and in ecosystem
service values. In short, within the present context the focus of impacts is on attributes of

human/social well-being; and,

* Response indicators are described as the institutional response to changes within the

whole of this system.
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Figure 2-2. The DPSIR framework: Driver— Pressure— State— Impact— Response. The
DPSIR represents a structured view of the relationship linking large-scale social
organization (drivers) and the con- sequential pressures society can impose on the state of
the environment. In the current context impacts are viewed as the associate changes to
human health and well-being. Response represents the nature of management action based
on this social-environmental system.

The primary value of the DPSIR framework resides in how it serves to ensure that
scientific assessment, policy development, and regulatory construction incorporate
environmental changes as well as the social benefits that are linked to that change. In the

context of coastal ecosystem functions, Kerry Turner and colleagues'® have argued that

the DPSIR is useful for:

the scoping of biodiversity management issues and problems. It can make
tractable the complexity of causes of habitat/species degradation or loss and
the links to socio-economic activities, across the relevant spatial and

temporal scales. It also provides the important conceptual connection
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between ecosystem change and the effects of that change (impacts) on
people’s economic and social well-being. Relevant indicators of
environmental change can be derived and the loss of ecosystem function
provision in terms of goods and services (direct and indirectly received) can
be translated into human welfare loss and quantified in monetary and/or

other more qualitative ways. !

The reader is reminded that the context of this volume is a focus on human health and
well-being. Accordingly, our assessments of impact are, by definition, associated with
human/social well-being within the constructs of the DPSIR. However, as we have
already noted, if human health served to singularly focus the development of integrated
policy formulation, we acknowledge that the DPSEEA framework is viewed as being the

more effective construct.

The Driver-Pressure-State-Exposure-Effect-Action Framework.

The Driver-Pressure-State-Exposure-Effect-Action (DPSEEA) framework was
developed by the World Health Organization, along with the United Nations
Environment Programme and the United States Environmental Protection Agency, as part
of the Health and Environmental Analysis for Decision-making Linkage Analysis and
Monitoring Project, or HEADLAMP.?*?® Despite huge advances in understanding how
health is created and destroyed (including the interdependence between human and
environmental health), governments still encounter difficulty in developing coherent,

evidence-informed, and effective policies on environment and human health.
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In general, both the DPSIR and DPSEEA can be viewed as concurrent
recognitions by different stakeholder communities of the need for tools to better integrate
views of multidimensional systems. The DPSEEA evolved to meet the more specific
need of the global public health community, while the DPSIR was viewed as meeting the
needs of broader communities with interests in changing environmental conditions. Both
frameworks hold in common an acceptance of the influential value of a changing state of
the environment. They diverge in terms of the areas of emphasis they associate with

environmental system change.? 2!

The convergent/divergent attributes of the DPSIR/DPSEEA relationship are
illustrated in both Figures 2-3 and 2-4. The basic structure of the DPSEEA is represented
in Figure 2-3. Here, the differences and similarities between the two frameworks are
emphasized by the use of visual cues. We chose to emphasize these synergies by
constructing views of them wherein their commonalities are clearly evident. Both
frameworks share a view that large-scale social drivers, and consequential pressures can
alter environmental conditions. If one compares Figures 2-2 (The DPSIR) and 2-3 (The
DPSEEA) the boxes depicting Driver, Pressure and State are located in the same place in
both figures and delineated in the same colors (Driver/Blue; Pressure/Yellow;
State/Green). This visual commonality should reinforce the idea that the motivating
forces behind, and stakeholder communities served by, the two frameworks are linked.

They hold not only important similarities, but essential differences as well.
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Figure 2-3. The DPSEEA framework: Driver — Pressure — State — Exposure — Effect —
Action. The DPSEEA was proposed to represent the same intellectual approach to
structuring complex systems as the DPSIR. The difference between the two frameworks
resides in the social goals they engage. The DPSEEA is structured to address human health
risks and thereby engages terms used by the medical and public health communities.

As already noted above, Figure 2-2 defines Impacts and Response as relating to a
broader sweep of human/social impact of environmental change and integrative and
contemplative response by various levels of governance to system change. In Figure 2-3
the three framework attributes defining Exposure, Effect, and Action serve as the
divergent attributes of the framework. Here, with a determinative focus on the medical

and public health communities:

» Exposure reflects the vectors of risk exposure (either risk elevation of diminution) that

emerge as a consequence of environmental change;
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* Efffect is a measure of changes in health resulting from changes in risk exposure; and,

* Action assesses the nature and scope of regulatory, clinical or personal response

changes in human health conditions.

DPSIR-DPSEEA: Common and Divergent Framework Attributes

Common Attributes DPSIR Attributes DPSEEA Attributes

Driver

Drivers describe
large scale socio-
aconomic conditions
and sectoral trends

Pressure

Pressures are
consequences of
social drivers which
hold the capacity to
alter environmental

conditions
Responses represent
St ool
response to changes in >
State describes the the overall system Actions represent
condition of the changes n public
environment and the het'_ilﬂl I-‘_'Ollc}f_ 3
depree and measure epidemiological
of change in those fccus_, ar_(:h_mcai
conditions practice influences
by changes in the
overall system

Figure 2-4. Similarities and differences between the DPSIR/DPSEEA frameworks. As
noted, the two frameworks are similar in their approach to organizing complex system — as
well as supportive information — however, they do contain important convergent/divergent
attributes. This figure is an attempt to illustrate the relationship between the two
frameworks
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Together these two frameworks present the capacity to reveal the structure of the
complex social/environmental themes that define the overall storyline and discrete
components of this book. However, they provide more than just conceptual tools to be
used in the abstract. They have been used often during particularly the last decade by
researchers and policy-makers to assess these kinds of problems and to evaluate the best
ways to respond. We have reviewed a large portion of this rich literature and selected the
following case studies as representative of the diverse questions that have drawn benefit
from the use of these frameworks.
The DPSIR in Case-study Literature.

The DPSIR has been, and continues to be, utilized in hundreds of studies around
the world. The geographic scale of use varies broadly as does, not surprisingly, the broad
range of the questions to which it has been applied. Here, we have selected and briefly

summarized eleven case studies which we view as representative.

The European Water Framework Directive. Borja et al. (2006) used the DPSIR
framework to forecast whether or not a waterbody would be likely to ‘fail’ in achieving
‘good ecological status’ under the European Water Framework Directive (WFD) by the
year 2015.32 A case in the Basque Country in northern Spain was selected to illustrate
pressures and impacts (but not responses to impacts) on water quality at the regional
level.’> The identified coastal waterbodies were assigned a risk status of: Significant,
Not Significant, Low (L), Moderate (M), High (H), or Without [Risk]. The relevant
pressures and state changes were defined in terms of nutrients, water pollution, sediment

pollution, water abstraction, dredged sediments, shoreline reinforcement, intertidal losses,
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berths, alien species, and “global pressure.” The waterbodies were then assigned an

overall risk assessment rating (Low, Medium or High).

The authors concluded “that the main *driving factors’ explaining the variability
of pressures upon Basque water bodies are...population density and industry
concentration. ... Use of the DPSIR analysis in the Basque Country, together with the
methodologies in identifying relevant pressures and impacts, has been demonstrated as a

useful approach in assessing the risk of failing the WFD objectives.”>?

Assessing Common Challenges of Coastal Megacities. The DPSIR was used to
illustrate general environmental challenges common to the “megacity” (or, by inference,
large urban areas).>* The study gives greater weight to coastal megacities through the
inclusion of a limited number of environmental considerations specific to coastal areas.
The overall goal of this work was to examine the opportunities and challenges of
sustainability in areas of highly clustered human habitat. “Sustainable development in
coastal megacities faces various obstacles . . . which makes their planning and regulation
actions extremely difficult.”*®> These obstacles include: the influence that maritime
transport emissions can have on air quality; loss of coastal and marine habitats; coastline

stability; coastal erosion; and, sea level rise.

One attribute considered by the authors as common to all “megacities” and to
most urban areas in the emerging economies is the informal expansion around them. A
notable contribution of this work is the articulated need for the “establishment of unique

set of indicators, in order to make monitoring of environmental state and impacts in
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megacities clearer, therefore finding a way to more appropriate management responses

easier.”?

While the call for standardized indicators is not new, it is possible that megacities
face unique challenges because of their sheer size and relatively recent appearance on the
urban scene. The authors also provided a table giving examples of urban management
responses to various sectoral challenges, captured in the response section of the study.
For example, under the response options for addressing “Water Quality and Quantity”
issues, potential governance actions included: changes in water pricing; enacting
‘polluters pay’ rules; improved wastewater treatment; better detection of leaking water
conduits; promoting new technologies for saving water; and reuse of storm water and
wastewater. These are challenging governance decisions that the authors argued benefit

from range of social and environmental indicators the DPSIR is designed to reveal.

Urban Infrastructure Development and Groundwater Access. This study
examined groundwater use and quality changes in relation to urban development in 7
major Asian cities (Bangkok, Jakarta, Manila, Osaka, Seoul, Taipei and Tokyo).34 The
DPSIR framework was used to link problems of groundwater quality and quantity to
extractive activities, loss of aquifer recharge, possible saltwater intrusion, and subsidence
deemed sufficient to be of risk to the surface built environment. Jago-on et al. (2009)
documented that in some cities, the creation of laws restricting or regulating groundwater
use (when enforced with effect) has helped reduce or stop subsidence rates.>*
Interestingly, in some places (Tokyo) implementation of such rules has revealed

unanticipated feedback responses. Implementation of groundwater recharge activities can
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affect infrastructure that was built during ‘drawdown’ times when the water table was

lower.

Although published in 2009, the authors presciently anticipated the probability
and scope of severe flooding that affected Bangkok during 2011. Bangkok is a city
located at current sea level and had been flooded before. The previous notable Bangkok
flood events were listed as occurring in 1983, 1995, and 1996, all caused substantial
economic loss. It was also noted that flooding causes waste and garbage to be disbursed,
creating conditions that can lead to an increase in human disease and an increase in
disease vectors such as mosquitoes.>* An effective use of the DPSIR in this study resides
in the linkage of both groundwater QUANTITY and QUALITY with the same social
drivers. The probability of tracking back both these often unrelated indicators can reveal

governance options with greater policy and economic efficiencies.

The Historical Context of Development Drivers in South African
Municipalities. This study argued that a temporal perspective is necessary when
examining the development trajectories of two neighboring and environmentally similar,
but socio-economically divergent South African municipalities, Ndlambe and
Ngqushwa.’> While describing the past and present situations of both municipalities, the
authors focused on the differences in drivers as being key to building a compatible

sustainable system for both communities.

This focus on historical differences in large-scale social system themes (drivers)

appears to be somewhat novel within the literature, but appropriate given similarities and
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differences between the jurisdictions. Palmer et al. (2011) used the DPSIR to examine
land use changes, the nature of economic investment, and land-tenure as critical drivers
in both the socio-economic and environmental factors that have clustered urban
development in sensitive estuary areas. Drivers were broken out into sub-categories of
‘Economic’, ‘Social,” and ‘Legislative.” All three of these interlink/overlap most clearly
in the issue of land tenure/ownership as a major driver of formal development (or lack
thereof) and subsequent human migration. The authors made recommendations for
government actions to support town planning and managerial capacities at the local level

in order to enhance local plans and implement existing national/provincial guidelines.

A special concern was raised regarding the potential for ‘ribbon development’
along the coastline in the two municipalities examined. This type of development, where
construction is concentrated in a narrow band immediately adjacent to the coast, has
occurred in other parts of South Africa to the detriment of coastal systems. The authors
concluded by cautioning that, “it is important to remember that development in the
coastal zone is inevitable and instead of attempting to conserve the entire coastal zone,
conservationists need to work together with town planners and developers to ensure that

development pressure is controlled.”

Using the DPSIR Framework and Numerical Modeling to Examine Coastal
Management in Three Contrasting South American Coastal Sites. The authors of this
study compared three very different coastal zones and the management challenges facing
each. First, the Santos estuary in Brazil, a sub-tropical area with the largest port and

industrial complex on the Brazilian coast and an estimated population of 1 million
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people, characterized as highly modified and polluted.*® Second, the Bahia Blanca
estuary in Argentina, located in a semi-arid climate and home to an important deep water
port and petrochemical industry. With a population of 350,000 people its marine
environment is characterized as modified and polluted.*® The third site was the Aysén
Fjord in southern Chile, a complex sub-polar estuarine system where the main economic
activities are salmon aquaculture and artisanal fishing. The Aysén Fjord area was

classified as near pristine and unpolluted.*®

Despite the variety of environmental and socio-economic characteristics, all three
sites face problems of habitat transformation, sewage and garbage disposal to varying
degrees. Campuzano et al. (2011) argued that the goal of engaging and empowering local
stakeholders in order to facilitate full implementation of existing environmental laws and
procedures is currently under-practiced. They also posit that if governance could be more
inclusive the effective responses to these common problems could acquire a higher level

of sustainability.

Using the DPSIR to Study the Largest Coastal Estuary Ecosystem in
Western Africa — the Ebrié Lagoon, Ivory Coast. The focus of this piece is the Ebrié
lagoon - the largest coastal estuarine ecosystem in Western Africa.’’ Using the DPSIR
framework to structure related factors allowed the authors to draw “generic but reliable
conclusions on the basis of limited data.”*” The paper divided the study area into 7
analytical units. The major environmental challenge in the lagoon is eutrophication

derived from a variety of primary sources. Identified impacts from eutrophication include
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fish kills, bad smells, floating debris, and an increase in waterborne diseases (typhoid,

salmonella, cholera) because of high temperatures and noxious conditions in the lagoon.

While all study areas had similar upstream inputs — they share a general
catchment zone - localized impacts and circulation differences may require different
governance responses. For example, the city of Abidjan (a major port and economic hub)
is the source of most industrial outputs and a large amount of domestic wastewater, but is
also near the Vridi canal leading to the ocean and so is more strongly influenced by
seawater and some tidal flushing than other parts of the lagoon. The authors noted that
even though much data are missing, they can still make recommendations that could
work to counter the effects of rapid unplanned urbanization and increased agricultural

development and fertilizer use.?’

Recommending Indicators to Understand Reef Fishing in Kenya Using the
DPSIR Framework. The authors examined reef fishing activities in Kenya, where “the
level of compliance to most...fisheries regulations by fishers has been low due to
increased poverty, poor enforcement, and in some cases the rules are unknown and
unclear.”*® They used the DPSIR framework to describe the selection of indicators
“based on their relevance and priority for fisheries assessment and management.”
While artisanal reef fishing supports 5000-6500 fishers (with each having an average 7
dependents), “marine fisheries comprise less than 5% of the national fisheries production,
dwarfed by catch from inland lakes (predominantly Lake Victoria) and rivers. As a

result, despite declaring some fishing gears illegal for many years, enforcement has been

irregular, as the government has played little part in active management.”*® The
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identification of a response option as simply enforcement of existing rules is an important
point, since “reasonable legislative framework for fisheries management clearly exists”

already in Kenya.?®

It appears that the functional value of the DPSIR in this case was to assess
impacts of environmental conditions on relatively marginal economic groups (marine
fishers), and to confirm that implementation and enforcement of existing regulatory tools
could be sufficient to mitigate existing challenges. The study also was able to emphasize
both the importance of international tourism in Kenya’s coastal zone and to identify
tourism as a potential indicator needing greater attention from the government if reef

fishing is to be sustainably retained as a viable economic contributor.*®

Using the DPSIR Framework to Evaluate Aquaculture Options in South
Africa. With an increasing amount of the world’s seafood being produced through
aquaculture®, there is a growing interest in sustainable production methods. In this case
study*, the authors used a modified DPSIR framework to compared land-based systems
focused on single-species aquaculture (abalone) to multi-species aquaculture (abalone +
seaweed). They identified pressures from this aquaculture operation as nutrient loads in
aquaculture effluents (released into the open ocean), harvesting of wild kelp, and
greenhouse gas (GHG) emissions. Indicators measured for different aspects of the
framework included: nitrogen, phosphorus, oxygen, pH, temperature and turbidity of
effluents, GHG emissions from electricity consumption under various scenarios, the
hectares of kelp harvested per year, the investment costs to implement multi-species

aquaculture, and changes in profit under different scenarios.
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The authors found that switching from single-species to multi-species aquaculture
would have clear economic, environmental, and societal benefits (in the form of
increased profits, reduced effluents, and increased employment respectively). They noted
that even without considering the environmental and societal benefits, multi-species
aquaculture would be more profitable than single-species. The integrated and broadly
inclusive orientation of the DPSIR helped to identify a more sustainable aquaculture
system that better guaranteed a higher level of social well-being (in this case, economic

valuation and job security).*

Linking Upstream Drivers and Downstream Impacts in Venetian Bathing
Beaches. Venice draws visitors to its historic centers and coastal beaches.*! Tourism is,
essentially, the only viable economic activity supporting the Venice region. While
cultural tourism dominates, the regional tourism of the Adriatic near to the City remains
an important part of the economic landscape. With this motivation, researchers at the
Veneto Regional Prevention and Protection Agency (ARPAYV) performed a historical
analysis of marine bathing waters for a 7-year timespan (2000-2006). Their analysis used
the DPSIR framework to structure the relationship “considering water quality status and

existing pressure sources.”*!

Recognizing that continuing development in the area has contributed to an
increasing wastewater burden, the authors examined levels of specific bacteria in
wastewater treatment plant (WWTP) effluents, rivers, offshore marine sites, and bathing
waters. Levels of microbial contamination were identified as being linked to WWTPs

that discharged into rivers or canals that then emptied into the Adriatic near bathing
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areas. The best bathing-water quality was in an area without a river mouth and where
WWTP effluent was released through an offshore submarine outfall pipe 4 km from land.
Absent moving recreational bathing beaches to areas more distant from riverine
influence, the researchers concluded that “submarine outfalls seem to be the best solution
to guarantee good bathing water quality on the coast” and that “the issue of
microbiological impacts must be studied following a river basin approach according to
the influences of river loads on coastal areas.”! Here, too, the system perspective of
DPSIR helped to ensure that a broad and inclusive attribute set were included in the

analysis.

Understanding Declines in Coastal Wetlands in Xiamen, China. Xiamen City
on the southeastern coast of China has roughly 230km of coastline and is one of many
areas around the world facing an apparent ‘conflict between economic development and
wetland conservation.’** Using the DPSIR framework to assess coastal wetland changes,
the authors identified 4 time periods for comparative analysis of individual indicators.
Because of specific concerns with coastal wetlands, they divided the State category into 3
sub-categories of Physical State, Chemical State, and Biological State. A total of 33
indicators were measured, examples included human population (driver), coastal
reclamation area and industrial water use (pressures), suspended solids, organic
pollutants, and species abundance (states), number of red tides and siltation in navigation
channels (impacts), followed by indicators such as wastewater emission control, the

establishment of conservation areas, and scientific support ability (responses).*?

36



The authors concluded that, “On the whole, the state of the Xiamen coastal
wetland is getting worse and the negative impacts are becoming more severe,”*? despite
the fact that “great human efforts have been expended to protect the coastal wetland.”*?
These efforts have not been strong enough to counter the “pressures from human

42 that have driven the observed declines

population growth and economic development
in wetland habitats. This study is particularly notable in the detail afforded the indicator

structure and the complex architecture of this system.

Integrating Indicators to Assess Marine Protected Areas: A Malta Case. This
study presented “a method for selecting and prioritizing socio-economic indicators, using
a bottom-up approach involving stakeholder input. This technique [was] developed
further to measure the effectiveness of integrated coastal management, using a Marine
Protected Area (MPA) as an example. Stakeholder input is essential at an early stage to
ensure MPA management success, providing the opportunity to include public

participation and ensure community support.”*?

In this work, the DPSIR framework was used “to integrate environmental and
socioeconomic indicators derived through stakeholder participation and contributing to
the evaluation of management effectiveness.”® The methodology employed by the
organizers of this process was described as being able to identify “the socio-economic
indicators that measure the success of MPA management in attaining goals that are

important to the maximum number of stakeholder groups.”*?
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One notable contribution of this study was the effort to reveal stakeholder
preferences for both management goals and assessment indictors through the stakeholder
influenced management plan developed to establish the MPA. Using a qualitative
content analysis the plan was deconstructed to identify management goals and assessment
indicators at the core of the plan recommendations. The emphasis on socio-economic
indicator ranking is also an unusual contribution to the literature.

The DPSEEA in the Case-study Literature.

While the DPSIR has acquired broad international acceptance the DPSEEA does
not hold the breadth of use in the literature; however, in cases where it has been engaged
it has been used to strong effect. The relative under-use of the DPSEEA relative to the
DPSIR is due in some significant part to the simple fact that the number of sectors to
which the DPSIR can be applied exceeds the more focused human health core of the
DPSEEA. Accordingly, we have selected two cases to represent the application of the

DPSEEA; one from Brazil and the other from Scotland.

GEOQO Health Pilot Study, Sao Paulo, Brazil. Sao Paulo, Brazil - a metropolitan
region of approximately 11 million people across 96 Administrative Districts — faces
considerable challenges in the areas of water supply, sewage collection, and waste
disposal.** Recognizing that these complex problems overlap to influence human health,
a pilot project was undertaken by a broad range of local, national and international
organizations, including: the Sdo Paulo Municipal Health Secretariat (SMS), the city’s
Green and Environment Secretariat (SVMA), United Nations Environment Programme

(UNEP), and the National School of Public Health (ENSP) from the Oswaldo Cruz
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Foundation (FIOCRUZ) of the Ministry of Health of Brazil. The program also partnered
with other stakeholders (including the academic community, medical doctors, and
representatives of the environmental community). The inclusion of such a broad cohort
of knowledgeable professionals clearly contributed to both the structural diversity at the

core of the effort but to an enhanced probability of implementation success as well.

The goal was to identify specific water and waste problems in the city of Sdao
Paulo adversely affecting human health, and to build the indicators and indices that best
depict the environment-health relationship of interest. This was accomplished by
applying the core themes of the DPSEEA framework. Examples of important indicators
identified for this situation included: Share of heads of households without schooling per
Administrative District (driver); Share of households without sewage system (state); Index
of rodent infestation in buildings per administrative district (exposure); Average rate of
hospitalization per waterborne disease among children less than 5 years of age per
100,000 inhabitants (effect); and Average rate of leptospirosis per 100,000 Inhabitants
(effect). The subsequent integrated indicators allowed officials to identify “in which
Administrative District actions that change the pattern of the Driver, Pressure, or State
components would have the most impact on population health, because of reduced
244

exposure and/or recomposition of the environmental quality of affected sites.

[emphasis added]
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The response to this pilot exercise was the “governments of the city of Sdo Paulo
and of the state of Sdo Paulo, through their competent bodies,... adopting a series of
measures to minimize or resolve environmental problems related to the degradation of
water streams and the presence of waste (domestic and debris) in public areas.”** These
actions involved divisions such as the Public Works and Services, the Basic Sanitation
Company of the State of Sdo Paulo, the Municipal Housing Secretariat, along with the

Green and Environment Secretariat.**

Scotland — Good Places, Better Health Program. The Good Places, Better
Health® policy initiative in Scotland was developed to make better connections between
health, well-being and the physical environments in which people live, work, are
educated, and spend their leisure time (see Table 2-1). This initiative relied on an
approach to framing issues in environment and health with explicit reference to the many
factors which bear upon human health and well-being. As noted in guidance documents
for this project, “the expansion of public health interest beyond the usual areas of
immediate and discrete harms, such as toxics exposure, into physical and operational
designs that shape the way people live, work, and interact with their communities is a

recognition that when it comes to health- everything matters.”

The DPSEEA framework is cited as an organizing principle behind Good Health,
Better Places.*® The DPSEEA-based approach adopted in this initiative forms the basis
for intelligence and data*’ gathering, for analysing relationships, and for developing clear,
evidence-informed advice to the policy constituency (e.g. on the efficacy of existing

policies and actions and those which are under consideration).
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One key goal of the Good Health, Better Places initiative was to present coherent
and unified messages to policy-makers across multiple disciplines, based on a deep
understanding of the larger social context. This strategy was implemented after elements
of the model framework were filled in. This process results in a ‘populated model,’
based on the concerns raised by stakeholders during workshops facilitated by topic
experts and practitioners. After they have been validated with reference to scientific,
epidemiological etc. literature; and appraised for practicality and coherence in workshops
of field practitioners, the populated models are sometimes said to represent “maps of the

environmental health territory.”>°

In keeping with the cross-cutting aspirations of the Good Places, Better Health®
initiative, recommendations that emerge from the expert group are directed to a spectrum
of policy interests across the government. These policy interests range from education,
justice, planning, transport, and under-served communities, to economists, and of course
the health and environmental policy-makers. The messages to these policy-makers relate
to, for example, a damaging absence of data about a key variable bearing upon the
problem; a knowledge gap (indicating a need for further research or evaluation); a
discernible policy void; or perhaps an existing policy which has been found to be poorly

targeted, lacking in impact or impeded in its implementation.

This Scottish case is the most wide-ranging and inclusive illustration of how a
structured framework such as DPSEEA can serve as both a design and self-auditing tool.
In this example, it helped provide a way for attributes of both traditional human health

concern and other considerations of well-being to be effectively integrated with, and
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communicated to, the medical community (traditionally holding a more singular focus on
illness and harm) along with other policy constituencies and stakeholder groups (whose

purview may not traditionally include human health and well-being).

Table 2-1. Good Places, Better Health: A New Approach to Environment and Health
in Scotland. Implementation Plan

http://www.scotland.gov.uk/Publications/2008/12/11090318/0

“The Scottish Government is committed to creating a wealthier and fairer, smarter,
healthier, safer and stronger, and greener Scotland. Through these strategic objectives we
aim to deliver on the central purpose of creating a more successful country, with
opportunities for all of Scotland to flourish, through increasing sustainable economic
growth. Good Places, Better Health recognizes that to deliver on the Government’s
purpose, themes, and national outcomes there is a need for greater connections around
how physical environment influences health.

In Equally Well,*" the Health Inequalities Task Force highlighted the need to
work to reduce further people’s exposure to factors in their physical and social
environments that cause stress, damage health and wellbeing and lead to inequalities.
We know that the physical environment that surrounds us is key to our health and well-
being.

Historically, we have focused (very successfully) on creating environments free
from significant hazards. Whilst this continues to be important we now recognize an
additional need to create positive physical environments which nurture better health and
well-being. The relationship between environment and health is complicated and
creating safe and positive environments for health requires us to think, plan and deliver
in new and more effective ways.

The Scottish government has established National Outcomes that it sees as part
of good governance for “creating safe and positive environments which nurture better
and more equal health and wellbeing.” These core National Outcomes are supported by
an understanding that seeks to integrate sectors as diverse as health, transportation,
public safety, and economic development. To measure progress towards the National
Outcomes the Scottish government has selected 45 indicators which most clearly show
progress towards the achievement of a more successful and prosperous Scotland.”*
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Flexibility in Applying Frameworks.
The DPSIR/DPSEEA frameworks are meant to be flexible in their applications.
Their purpose is to organize thinking about complex social and environmental issues, not

to limit them. Niemeijer and de Groot*

recently argued for a move from causal chains to
causal networks in framing environmental indicators. They posit that the DPSIR and
related frameworks rely on simple uni-directional chains of causality, ignoring feedbacks
and emphasizing one-to-one relationships at the expense of one-to-many, many-to-one,
and many-to-many relationships. While there is a danger that this might occur in practice,
it is by no means inherent in the frameworks themselves. Rothman and Robinson>® had
already pointed to the importance of feedbacks and complex dynamics in early
discussions of conceptual frameworks for integrated assessments and studies such as the
North American Environmental Outlook to 2030°" have been explicit about the role of
common set of drivers causing multiple environmental pressures and impacts. In the
latter, an additional set of “meta-forces”, representing important socio-economic

developments and global environmental changes were also added to better clarify global

forces in what was essentially a regional report.

Many countries have built active and detailed information acquisition and
management systems to better understand conditions and trends. Those data, if used in a
more systemic and integrated fashion, can provide the backbone of a regulatory
environment that is both more transparent to the stakeholder community and based on a
clearer understanding of the nature and pace of change in social and environmental

systems.
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An earlier quote from Turner, et al. (2000)"? introduced the concept and
challenges of the use of the DPSIR to organize relevant socio-economic, environmental,
and governance indicators. Given the complexity of understanding the relationship
between the environment and human health and well-being (as well as the embedded
nuances of that relationship), embracing the idea that the DPSIR or DPSEEA can be used

as an organizing framework for indicator identification and use is critical.

Where the starting point is an environmental state, the procedure for applying the
DPSEEA framework is essentially the same. Using the example of coastal water
contaminated with fecal pathogens, the DPSEEA model demands consideration of the
manmade pressures and drivers which create that environmental state. It is then
necessary to consider the nature of any potential human exposure (e.g. ingestion of
contaminated seawater or seafood), and any plausible health effect(s) (i.e. in this case,
gastrointestinal illness). The contextual factors which influence exposure in this instance
might include engagement by the individual in water sports or shellfish harvesting; and
different contextual factors, such as immune status, might also influence likelihood of

disease in the exposed individual.

Irrespective of the sequence in which a framework is populated, the final step is to
incorporate within the model any existing policies or actions; and, if required, any
additional policies or actions which might be considered likely to provide benefit value.
This example reflects a common situation, the identification of an environmental health

(state) concern, and the subsequent population of the model elements. While the
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identification of a problem is usually the first step, the entire framework cycle, including
indicator monitoring, follow-up of any action/response, and evaluation of success, should

be a part of a comprehensive management plan.

This flexibility to modify the DPSIR/DPSEEA frameworks, while still
maintaining their essential character, is also important when considering the focus of any
particular application and the placement of any particular indicator within the framework.
In viewing the real system as a complex causal network encompassing many causal
chains, the same indicators may fit into different points along the chain. For example,
while coastal population in China may be a significant driver indicator from the
perspective of coastal pollution, it can also be seen as a state variable driven by economic
imbalances leading to migration from the interior of the country. Which is the case will

depend on the issue context and the questions of concern.

In short, the DPSIR and DPSEEA can be used as effective tools in both ensuring:
(1) the full range of applicable attributes are considered in addressing the complex
interdependencies linking the coastal environment and human well-being; and, (i) that
critical indicators are assessed to better understand the sources and consequences of this

nuanced system.

Conclusion.
The value of any framework as a research tool is primarily through its ability to
allow for organization of data and information at the start of the analysis process, and at

the end of the process, for an auditing of outcomes (whether theoretical or actual). In
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addition, using a defined framework can allow for the comparison of analysis outcomes

when the subject matter is altered.

Ocean and Human Health questions are by their nature interdisciplinary, variously
combining aspects of fields such as ecology, biology, chemistry, economics, psychology,
toxicology, statistics, and oceanography. Since data from these disciplines can be
structured in a wide variety of formats, the product of specialized research methods with
their own assumptions, the results can sometimes be inaccessible to the non-specialist.
Decision-makers (e.g., politicians, natural resource managers, planning committees)
however, must be able to interpret or use specialized data in order to meet policy goals
within their sphere of influence. A framework then, is a tool that allows people use
information within their decision-making process. Not all frameworks are created equal.
Internalized judgment frameworks may suffer from a wide variety of biases (e.g.
imaginability, illusory correlation, anchoring bias, or examples of prior outcomes?).
Frameworks used in public decision-making should therefore strive to be transparent
about assumptions and any value judgments embedded in the framework itself. The
frameworks detailed in this chapter, the Driver-Pressure-State-Impact-Response
framework (DPSIR) and the Driver-Pressure-State-Exposure-Effect-Action Framework
(DPSEEA), are two organizing and auditing frameworks that emerged from the

intergovernmental community and are in broad use around the world.

The DPSIR has been described as “a useful tool to support decision making by

means of showing solid evidence with alternatives and decision options, rather than by

46



presenting predetermined solutions.”* The DPSEEA framework is structurally and
philosophically similar to the DPSIR, but has been modified through its use by the public

health community in light of their disciplinary focus and language.°

While it can take longer to identify indicators that are appropriate to address the
problems identified within a DPSIR/DPSEEA framework, and require more input from a
wider variety of stakeholders, in theory the indicators chosen should be better
representatives of the problem at hand, as they will be the result of a more comprehensive

understanding of the inputs to those very problems.

While the DPSIR and DPSEEA frameworks may seem simplistic and uni-
directional to critics,’* they can provide flexibility and transparency in decision-making
processes if all parts of the framework are described. By examining the full spectrum of
causal relationships that lead to a specific problem of interest decision-makers should be
prompted to fully understand the tradeoffs between different responses/actions. This
should lead to a more efficient use of resources than choices made without a framework,
because they will be directed at the solutions that have the greatest possible impact given
the resources at hand. By having a built-in auditing function, in the form of a feedback-
loop structure, the DPSIR/DPSEEA framework can then be used to assess the subsequent
success or failure of any policy/program. Without such assessment, interested parties
would have no way of measuring the results of policy choices that can impact their health

and well-being.
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CHAPTER 3

WATERSHED DEMOGRAPHIC ESTIMATES AND IDENTIFICATION OF KEY
INDICATORS FOR MULTIPLE MARINE-SOURCED RISKS IN MASSACHUSETTS

BAY

Abstract. This chapter starts with a discussion about the current gaps in
epidemiological data and the need for better ways of understanding and forecasting
multiple types of marine-sourced risks to support public health efforts regarding
recreation and shellfishing in coastal waters. Because a population’s overall risk depends
in part on its demographic characteristics, this chapter describes demographic trends in
six coastal watersheds around Massachusetts Bay from 2000 to 2010 and discusses how
these may be changing the population vulnerability to marine-sourced risks. This chapter
then presents five marine-sourced risks known to exist in the coastal waters of
Massachusetts Bay through sections describing their biology, known epidemiology, and
known environmental or socio-economic influences reported in scientific literature. All
of the marine-sourced risks described are known to exist in Massachusetts. This chapter
then presents the results of this exercise in the form of a matrix showing high-value data

types for the five specific risks addressed in this chapter which are: 1) Enterococcus
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species bacteria; 2) Vibrio parahaemolyticus bacteria, 3) Hepatitis A Virus; 4) Pseudo-
nitzschia species diatoms; and 5) Anthropogenic antibiotics. Based on the compilation of
influencing factors we present a matrix of key indicators and a diagram illustrating the
conceptual relationships between indicators and risks. These indicators can guide the
development of an environmental model to forecast changes in these risks. Given the
biological variety of these known marine-sourced risks, it is likely that current
recreational- and seafood harvesting- water quality monitoring protocols do not fully

account for changes in the true potential for exposure.

Chapter 2 Research Topics.

Onshore activities in coastal watersheds and offshore ocean processes can both
influence the nearshore marine environment. The nearshore marine environment in turn
can influence the health of humans who interact with it, either directly through physical
contact or indirectly through consumption of local seafood. Therefore, it is important to
understand the size and demographics of a human population in a coastal watershed, its
estimated impact on the nearshore environment, and the marine risks which that
population may encounter. The two research topics in this chapter deal with human
populations and marine risks in the study area of Massachusetts Bay and its six

neighboring coastal watersheds.

1) This chapter presents an original estimate of the number of people living in six
watersheds bordering Massachusetts Bay along with key demographic characteristics that
are known to influence population level vulnerability, especially to infectious diseases.

This chapter argues that current water quality standards for recreational and shellfish
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harvesting waters are not reflective of the full suite of known microbial risks and could

be strengthened to better protect human health.

2) This chapter then presents the known epidemiology and natural history for a
suite of 5 marine-sourced risk agents as examples of the diversity of marine-sourced risk
categories that exist in any nearshore coastal environment where humans might recreate
or harvest shellfish. For 5 specific marine-sourced risks known to exist in Massachusetts
Bay we have assembled known or suspected environmental and socio-economic
influences on their abundances as identified in scientific literature. Some of these
influencing factors could be monitored through direct or proxy indicators to provide
information for a model that estimates changes in risk potential in nearshore coastal
waters. At present no such model exists. Work to develop a model for two of these risks

is described in Chapters 3 and 4.

Introduction.

Environment-human health linkages are slowly being revealed in greater detail
and complexity. Foundational ecological information that can help reveal these linkages
likely already exists within individual scientific disciplines but is not being fully utilized
to inform public health. Biological and ecological knowledge is traditionally found in the
natural sciences, where it develops largely in isolation from the medical and social
sciences. These disciplines have different cultures, terminology, and standards which
present challenges to knowledge transfer. However, by using a synthesis approach that

looks across disciplines to identify influences on the presence or abundance of a pathogen
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or toxin where it might impact human health we can move beyond a singular reliance on

historical epidemiological data to understand current health risks.

For many illnesses existing epidemiological data are not an accurate reflection of
the true number of disease cases. Though highly variable, disease reporting completeness
appears to be most strongly related to the disease or condition being reported.! In a
review of disease reporting completeness from 1970 to 1999, researchers found that
reporting completeness ranged from 9 to 99 percent with greatest completeness for
tuberculosis, AIDS, and sexually transmitted diseases.! Surprisingly, increased
completeness of reporting does not correspond to the number of people affected by a
disease or category of illness, but instead seems to be influenced by the perceived
seriousness of a disease or to the level of financial and human resources devoted to
treatment and prevention.! There are whole disease categories that public health experts
believe to be persistently under-reported. One such category is foodborne illness,
estimated to affect 1 in 6 Americans annually.'*?> The highest rate of reported foodborne
illness is associated with seafood consumption.> Another category of disease believed to
be under-reported is that of marine-sourced diseases, which includes illnesses resulting
from direct contact with harmful marine organisms and ingestion of contaminated
seafood.* To clarify, some foodborne illness may have a marine-sourced origin but
marine-sourced illness is not restricted to seafood-borne illnesses. Also, some pathogens
may be transmitted through both marine-sourced and land-based pathways. A 2003 study
estimated that globally, each year, there are over 120 million cases of marine-sourced

gastrointestinal disease and more than 50 million cases of more severe respiratory
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diseases caused by recreational exposure to polluted coastal waters.> Within the U.S. one
study estimates that 5 million cases of gastrointestinal illness from beach exposure and
over 3 million cases of seafood-borne illness occur in the U.S. annually.® The system for

recording such diseases is described in the following section.

Marine-Sourced Diseases — Human Epidemiological Knowledge. In the U.S.
many diseases of potential marine-sourced origin are considered ‘reportable diseases’,
meaning if a healthcare provider or clinical laboratory suspects or confirms such an
illness it must be reported to local or state public health authorities within a certain time
frame (sometimes immediately). Some diseases are ‘nationally notifiable,” meaning the
U.S. Centers for Disease Control and Prevention (CDC) collects information on these
diseases across the entire U.S. as they are reported by state and territorial public health
agencies.” Many foodborne illness are nationally notifiable, data about these cases are
assembled through a variety of CDC programs, some the programs relevant to this work

are listed below.

e National Notifiable Diseases Surveillance System (NNDSS)?, a nationwide
collaboration between the CDC and all public health departments to share health
information.

e  Foodborne Disease Outbreak Surveillance System (FDOSS)’ which collects data
on foodborne disease outbreak reported by State and territorial public health

departments.
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e Cholera and Other Vibrio Illness Surveillance System (COVIS)!'? an online tool
where health officials can report clinical data about Vibrio infections or cases of
Cholera.

e National Electronic Norovirus Outbreak Network (CaliciNet)’, a national
surveillance network of 33 specially certified laboratories with the capacity to
submit outbreak specimens for norovirus classification.

All disease outbreaks associated with recreational waters are notifiable to the CDC.

Through voluntary reporting by states and territories to the Waterborne Disease
and Outbreak Surveillance System (WBDOSS)!! the CDC collects outbreak data for
treated waters (e.g., pools and spas) and untreated waters (e.g. lakes, rivers, ocean).!?
From 2007 to 2012 the WBDOSS received reports of 63 outbreaks associated with
untreated waters, resulting in 1,261 reported cases of illness and at least 44
hospitalizations.'?'* Of the 63 outbreaks associated with untreated waters 17 had
unidentified etiology, in some cases these was a suspected, but never proven, causative
agent.'>!*  Although the reported outbreak and case numbers are small relative to the
millions of people that use recreational waters, these data demonstrate that both
freshwater and ocean recreational waters continue to be a vector for human pathogens or
other harmful compounds. Experts believe that the reported number of outbreaks and
cases are much smaller than the true incidence due to multiple barriers to recording and

reporting. !>

Many factors may present barriers to outbreak reporting for recreational

waterborne diseases including 1) mild illness; 2) small outbreak size; 3) long incubation
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periods between exposure and onset of symptoms and subsequent attribution of illness to
other sources; 4) the often transient nature of water contamination hindering traceability;
5) potential lack of communication between those who respond to outbreaks of chemical
origin (e.g., hazardous materials personnel) and those who usually report outbreaks (e.g.,
infectious disease epidemiologists); and 6) many waterborne illnesses are self-limiting
(not spread to another person) so medical advice is not sought.*!* In other words, even
though a disease is reportable or notifiable there is no guarantee that all cases are reported
to public health authorities. This gap in reporting results in a gap in our knowledge
between the known (reported) burden of disease and the true burden of disease on a
population. This situation may be self-reinforcing. A complicating factor in the
understanding and management of recreational coastal waters is the difference in
perceived seriousness and prevalence of different human health risks. Slovic (1987)
noted that when it comes to evaluating hazards the majority of citizens rely on intuitive
risk judgments, typically called “risk perceptions,” which are largely based on the news
media.!> Risk perception and attitudes can be influenced by factors such as
‘voluntariness of exposure’, familiarity, control, catastrophic potential, and level of
knowledge."> Risk perception contributes to the varying rates of disease completeness
reporting, illnesses with a greater social stigma tend to have better reporting
completeness.! Recreational pursuits and daily food choices are arguably perceived as
voluntary, familiar, and under close control for most adults, so there is a low risk
perception around these activities. If people do not think an illness is serious or

significant enough to seek medical attention then cases are not recorded by public health
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authorities, official records then underestimate the number of cases and true costs are
difficult or impossible to quantify. If there is no true understanding of the problem’s
scope the public chooses to devote resources to other issues. As a consequence,
knowledge about the DPSIR framework elements of drivers, pressures, and states that
may influence marine-sourced risk exposure, and the true impacts of resulting illness
does not improve and the ongoing costs to society go unrecorded. Thus, we are limited in
our ability to quantitatively evaluate marine-sourced risks within the DPSIR framework
(as described in Chapter 1) and must examine other evidence which can improve our
understanding of these risks. This is true for any underreported illness, including those
with obscured etiologies due to their environmental origins — the case many marine-

sourced illnesses.

Despite these knowledge gaps, for some environmentally-linked illnesses there
are estimates of their burden on society. One example of this is otitis externa (swimmer’s
ear), commonly caused by bacterial infection in the outer ear and associated with
recreational activities that introduce water and bacteria into the ear canal.'® In the U.S.
in 2007 there were 2.4 million outpatient medical visits for otitis externa, and over 4,000
additional cases that required hospitalization. One study estimates annual costs to treat
outpatient cases of otitis externa in the U.S. at $500 million, with hospitalization costs for
severe cases totaling over $27 million. '® Although otitis externa is not strictly marine-
sourced it is strongly associated with recreational water exposure. Few estimates exist
for the cost to society of illnesses attributed strictly to marine-sourced sources including

marine pathogens and toxins. Ralston, Kite-Powell, and Beet (2011) conservatively
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estimate that in the U.S. gastrointestinal illness from exposure to pathogens via beach
recreation costs US$300 million annually, that food-borne disease from identified marine
pathogens and toxins costs US$350 million annually, and that unidentified seafood-borne
vectors cost US$300 million annually.® The recognition that illnesses which are not
reflected in official epidemiological data still have a cost to society is an important one as
these illnesses may warrant more attention than they currently receive. We suggest that
marine-sourced illnesses fall into this group and that they warrant more attention from
public health authorities. When multiple illnesses are linked to specific recreational
activities or patterns of food consumption and it is not feasible to initiative extensive
direct monitoring for all types of risk precursors, we suggest that improving the
understanding of underlying drivers of disease risk potential can be used to help protect
public health. The first step towards improved public health protection is to identify the
risk(s) of interest, the routes of exposure, and the population(s) most at risk for exposure.
To place this idea within a DPSIR framework, the local human population is part of the
pressure and state. A pressure because of the impacts of humans on the environment and
their potential for pathogen release into the environment, and a state because population
characteristics influence the potential severity of effects of an exposure to marine-sourced
risks (the impact of interest). We know that impacts from marine-sourced risks are
under-reported. Therefore the goal of this work is to investigate the feasibility of using
environmental modeling to assess the potential for changes in the state of environmental
conditions and thereby imply changes to impacts on risk potential from certain risks. We

propose to use environmental modeling because it has been used to successfully predict
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risks from other environmentally influenced disease (examples are discussed in Chapter
3). Such modeling could serve public health interests in instances where multiple risks
co-exist, can increase or decrease quickly, and epidemiological data is known to be
insufficient to use as a predictor of future illness patterns. At present we are not aware of
any such model or tool for the specific marine-sourced risks in Massachusetts Bay

discussed in this chapter.

Organizing Marine-Sourced Risks by Category. In the marine environment
there may be multiple microbiological health risks co-existing in space in time.* These
marine-sourced risks may take different forms and have shared, or unique, factors
influencing their risk potential at any given time (in DPSIR framework terms these
correspond to pressures and states). One way to organize an assessment of these
multiple co-existing risks is to group them based on similarities, either in their underlying
biology or in the type of risk they present to humans. Based on the knowledge that there
are multiple types of microbiological marine-sourced risks co-existing in the same marine
space we build upon the work of Bienfang et al. (2011) and identify five major categories
of microbiological risk*: human viruses, indigenous bacteria, introduced bacteria, natural
marine toxins, and anthropogenic compounds. There are multiple examples of specific

risks in each category:
1) Human viruses: Hepatitis A Virus, Norwalk/Noroviruses, Adenoviruses
2) Indigenous bacteria: Vibrio parahaemolyticus, Vibrio vulnificus, Listeria species

3) Introduced bacteria: Enterococcus species; Escherichia coli, Streptococcus species

63



4) Natural marine toxins: Domoic Acid, Ciguatoxins, Saxitoxins

5) Anthropogenic compounds: antibiotics, heavy metals, chlorinated chemicals

The specific risks used in this type of exercise would vary according to local conditions
and the health concerns of interest. This paper will use the following risks as examples

representative of their category, all are known to exist in Massachusetts:

1) Enterococcus bacteria, the current water quality monitoring standard;

2) Vibrio parahaemolyticus bacteria, all Vibrio infections are reportable in

Massachusetts;

3) Hepatitis A Virus, a reportable disease in Massachusetts;

4) Pseudo-nitzschia genus diatoms, because they may produce a toxin that can

accumulate in shellfish and cause a reportable foodborne illness; and

5) Anthropogenic antibiotics, because they are known to be released in the effluent of
wastewater treatment plants and influence the development of antibiotic resistance in

bacteria.

People may be exposed to specific marine-sourced risks through multiple pathways. The
next section describes two important routes of exposure, coastal recreation and
consumption of raw shellfish harvested in nearshore environments. We argue that
current water quality standards for these activities are insufficient and would benefit from

the outputs of a model able to forecast potential changes in marine-sourced risks.
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Potential Exposure Routes for Marine-Source Risks: Coastal Recreation and Raw
Shellfish Consumption.

Beach attendance, waterborne recreation, and consumption of raw shellfish
present opportunities for contact with marine-sourced risks. Beach visits and sea bathing
are popular recreational activities, with millions of visitors to U.S. beaches every year.'®
In Massachusetts, areas such as Cape Cod see large influxes of summer tourist visitors
drawn largely by ocean-based recreational activities.!” A study based on a survey of
Massachusetts residents estimated that there are 111 million person-trips to
Massachusetts coastal beaches and shorelines every year.!” Coastal beaches are popular
recreation sites for residents and tourists alike, Massachusetts residents reported a median
of 12 visits per year and people residing in close proximity to beaches reported more
visits in general.!” In addition, Massachusetts fisheries land shellfish worth millions of
dollars every year, some of which is consumed locally.!® If people who live in coastal
areas visit shoreline beaches, and potentially consume locally produced shellfish, more
often than others this suggests that residents of coastal areas have a higher likelihood of

encountering marine-sourced risks than the general population and so might benefit from

more targeted information.

Coastal Recreation: Activities and Risk Exposure. The spatial extent of public
marine beaches and semi-public marine beaches (i.e., where a landowner may charge a
fee for public access) around Massachusetts Bay is shown in Figure 1 below. There are
numerous marine beaches bordering Massachusetts Bay, providing ample opportunity for

coastal recreation. People can be exposed to marine-sourced hazards through multiple
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routes, including accidental ingestion during sea bathing or sand-contact activities.

Therefore, it is valuable to understand conditions within the source environment (state in

DPSIR terms) for these risks.
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Figure 3-1. Massachusetts Bay marine beaches. Source: MassGIS, map by author.
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Studies have estimated the amount of water accidentally ingested during water-based
recreational activities. Swimming is associated with the highest amount of water ingested
when compared to other surface water-based recreation activities such as boating and
wading, estimates range from 16mL to 35mL water ingestion per hour of swimming

19-21

activity. Studies have also found that children ingest more water than adults,

sometimes twice as much, and that males ingest more than females. 19-21

In addition to ingestion while swimming, beach-goers may come into contact with
pathogenic organisms present in beach sand. One epidemiological study showed that
‘sand contact activities’, including digging in sand or being buried in sand, were
positively associated with enteric illness.?? Enterococcus bacteria have been isolated from
both wet and dry sands at beaches with high and low numbers of human visitors?, and
Enterococcus bacteria have been shown to replicate in laboratory experiments using
beach sand microcosms that mimic natural conditions.>* In addition to isolating
Enterococcus bacteria from beach sand, Methicillin-resistant Staphylococcus aureus
bacteria (MRSA, a public health threat because of its resistance to antibiotics) has been
isolated from beach sand and seawater in southern California and Washington state,
fueling speculation that public beaches may be a previously overlooked environmental
reservoir for MRSA transmission.”> To our knowledge beach sands in Massachusetts are
not monitored for these types of risks. Current water quality standards for Massachusetts

marine beaches are discussed in the next section.
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Coastal Recreation: Massachusetts Water Quality Standards. Existing public
health protection measures for marine recreational waters are largely based on monitoring
for high numbers of Enterococcus genus bacteria. The current water quality standard is
104 colony forming units (CFU) of Enterococcus per 100 mL of water sampled. 2° There
is evidence that traditional fecal coliform indicator bacteria such as Enterococcus do not
always closely track or accurately predict the absence of other risk factors relevant to
public health. 27*2 Research supports the assertion that commonly monitored
Enterococcus species are not indicative of the presence of human pathogenic viruses.
Specifically this has been shown for the adenovirus, enterovirus, and astrovirus groups in
Massachusetts Bay in a study spanning the years 1998 — 2002.>° Although human
enteric viruses were significantly correlated with certain types of coliphages (viruses that
infect E. coli bacteria), the Enterococcus indicator bacteria were not significantly
correlated to any of the virus or phage groups studied.?” Virus levels in seawater have
not been ignored by public health authorities, but detection methods have historically
been limited and costly. Older viral isolation and culture methods are less sensitive than
newer methods; one study showed 23% vs 46% positives respectively for paired
samples.” If recreational water can be a vector for both harmful bacteria and viruses,
and the two categories of organisms do not co-vary in abundance, then sampling
programs should be updated to test for viruses using modern techniques. Despite the
knowledge that multiple types of biological risks exist, state water quality regulations
continue to largely depend on Enterococcus sampling and chemical hazard monitoring

(e.g., for oil spills).
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Raw Shellfish: Consumption Activities and Exposure. Raw shellfish
consumption is another potential vector for marine-sourced risks. In 2014 Massachusetts
towns had over 1,000 acres under cultivation for aquaculture of multiple shellfish species,
including quahogs, oysters, softshell clams, blue mussels, and razor clams.'® The value
of combined aquaculture landings (from all waters of Massachusetts not just
Massachusetts Bay) in 2014 was over US$19 million.'® In addition to aquacultured
shellfish there are also wild caught shellfish. Massachusetts inshore and intertidal
shellfish landings (both wild caught and aquacultured) were valued at approximately
US$30 million in 2014.'"® There were over 30 million American oyster pieces (the unit of
measure) landed by Massachusetts aquaculturists in 2014.'3 Tt is likely that some of these
aquacultured and wild caught inshore/intertidal shellfish were consumed locally. Locally
harvested shellfish can be sold at any month of the year®’, therefore the potential for

consumption of marine-sourced risks exists year-round.

Raw shellfish: Massachusetts Nearshore Harvest Water Quality Standards. In
Massachusetts, cities and towns are responsible for managing most shellfisheries within
their boundaries that are not closed by the state for public health reasons.®! Areas
officially open to shellfish harvesting are known as “approved” or “open”, areas closed to
harvesting are referred to as “restricted”, “prohibited”, or “closed.” For a map of these
areas in Massachusetts see Figure 3-7. Existing public health protection measures for
marine shellfish harvesting waters are based on “1) an evaluation of pollution sources
that may affect an area, 2) evaluation of hydrographic and meteorological characteristics

that may affect distribution of pollutants, and 3) an assessment of water quality.”?
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However, given the dynamic nature of the coastal environment, the lag time between
current sampling and reporting practices, and the variety of risks, it is unlikely that
existing monitoring regimes adequately reflect the full suite of risks. An additional
consideration is that new risks may be emerging as environmental conditions change.
For example, the year 2011 saw the first confirmed case of Vibrio parahaemolyticus
bacteria food poisoning from shellfish harvested from Massachusetts Bay (specifically

).33-35
b

Eastern Cape Cod Bay in 2012 there were 9 confirmed cases, in 2013 there were 33

cases, and in 2014 there were 11 cases.'® V. parahaemolyticus has been known to exist

36; 37

in New England coastal waters for over 40 years and Vibriosis is a reportable disease

in Massachusetts®® 3°

so the cases starting in 2011 might simply be a result of better
detection, not the emergence of a new pathogen. As a result of the confirmed V.
parahaemolyticus cases the Massachusetts Division of Marine Fisheries (MA-DMF)
issued new regulations for commercial oyster harvesting and handling during warmer
times of the year.'® These regulations do not require sampling for V. parahaemolyticus in
the water by harvesters or town public health boards. 3!:3% 4 However, MA-DMF does
collect oyster tissue from major harvesting areas and analyze it to determine the level of

V. parahaemolyticus present; in 2014 MA-DMF collected 36 samples for this purpose but

the test results are not included in their 2014 annual report.!8

Section Summary. As explained above, there is under-reporting of illnesses
associated with marine sources. This reality of limited epidemiological information for
multiple causative disease agents is unlikely to change because the cost of definitive

diagnostic testing is too high for use in every case of illness and many cases do not come
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to the attention of medical providers in the first place. We suggest that a new approach to
multiple marine-sourced risk prediction is needed because existing public health
measures do not account for the full suite of risks that exist in recreational or shellfish-
harvesting waters of Massachusetts Bay. Recreational sea bathing and raw shellfish
consumptions are popular pastimes for millions of Massachusetts residents and visitors,

yet each carries a set of risks which should be recognized and minimized.

Multiple factors interact to influence environmental conditions in Massachusetts
Bay. The Massachusetts Bay environment is part of a larger system that includes both
the larger ocean and on-shore areas, especially coastal watersheds which have a close
hydrological and human connection. Revealing the factors that influence changes in risk
potential requires an understanding of each risk agent and the influences on its
abundance. The rest of this chapter is divided into three sections: 1) a physical
description of Massachusetts Bay and land use of the adjacent coastal watersheds; 2)
estimates of human demographics in Massachusetts Bay coastal watersheds and their
potential relation to marine-sourced risk vulnerability, and 3) results of the work that
assembled epidemiological background for, and biological information on the factors that

influence abundance of, five specific marine-sourced risks in Massachusetts Bay.

Massachusetts Bay and Coastal Watersheds—Characteristics.

Massachusetts Bay is a relatively open temperate bay area along the heavily
urbanized Massachusetts coast near Boston, MA at a latitude of 42 degrees North.*!
Massachusetts Bay is connected to the more enclosed Cape Cod Bay to the south, and

both bays are part of the larger Gulf of Maine system.* Overall circulation and water
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properties in Massachusetts and Cape Cod Bay are driven by the Gulf of Maine water
flow, but modified by local and regional winds.*! Seasonal changes in temperature, light,
water column mixing, nutrient availability, and large scale ocean processes (e.g., El Nifio
South Oscillation, North Atlantic Oscillation) contribute to natural variability that can
affect marine community composition and phenomenon such as phytoplankton blooms.*!
Ocean-driven environmental influences on Massachusetts Bay interact with land-based
environmental influences to create situations that may favor the growth or persistence of
multiple marine sourced risks. In the nearshore coastal zone extensive human interaction

with the ocean leads to the possibility of exposure to multiple marine-sourced risks.

Massachusetts Bay Coastal Watersheds — Boundaries. Coastal watersheds are
the environmentally-relevant unit of analysis for this work. The boundaries for
watersheds in eastern Massachusetts are shown below in Figure 2. The six coastal
watersheds bordering Massachusetts Bay are labeled as (from North to South) North
Coastal, Mystic River, Charles River, Neponset & Weir River, South Coastal, and Cape

Cod. These six watersheds and the Bay itself constitute our study area.
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Figure 3-2. Map of Eastern Massachusetts watersheds, the six watersheds bordering
Massachusetts Bay are labeled with the names used in this paper. Source: MassGIS; map
created by author.

Massachusetts Bay Coastal Watersheds - Land Cover. As a measure of the
state of coastal environments we can use land-use classification, produced by the

Commonwealth of Massachusetts for the year 2005, to estimate the amount of
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impervious surface in each watershed. Impervious surface is a proxy for development
and levels of surface water runoff. Rain that falls in a watershed with high impervious
surface coverage is more likely to run-off quickly into a receiving body of water and

carry with it whatever pollutants are on the surface.

The Commonwealth of Massachusetts Office of Geographic Information
(MassGIS) has published a statewide land use / land cover database and map file for the
year 2005 that identifies 40 different land uses ranging from ‘Forest’ to ‘Junkyard’.*?
Fourteen of these land use categories are associated with low levels of impervious
(paved) surfaces: cropland; pasture; forest; non-forested wetland; open land; water;
saltwater sandy beach; golf course; cemetery; orchard; nursery; forested wetland; very
low density residential; brushland/successional. The area and proportion of each
watershed covered in low impervious surface land use types in 2005 is shown below in
Table 3-1. The Mystic River watershed has the lowest percent (27%) of land use with
low-impervious characteristics. Cape Cod has the highest percent (75%) of land use with
low-impervious characteristics. Based on these results we would expect nearshore waters
around the Mystic River watershed to receive more pollutants immediately after a rain

events than the waters around Cape Cod.
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Table 3-1. Area of low-impervious surface land uses by watershed.

Percent
Total watershed | Area .in low- watershed in
Watershed Name ) impervious uses low-
area (meters-) 5 . .
(meters?) impervious
uses
North Coastal 520,056,865 264,974,823 51
Mystic River 261,243,078 70,186,097 27
Charles River 1,095,069,395 660,615,535 60
Neponset & Weir 737930784 | 418,094,872 57
Rivers
South Coastal 748,189,075 528,571,804 71
Cape Cod 1,502,298,729 1,131,517,666 75
TOTAL | 4,864,787,927 3,073,960,798 63
Low-impervious land use categories: cropland; pasture; forest; non-forested
wetland; open land; water; saltwater sandy beach; golf course; cemetery;
orchard; nursery; forested wetland; very low density residential;
brushland/successional
Calculations based on "Land Use 2005" and "Major Basins" shapefiles,
MassGIS

Land cover is an important descriptive element because not all human settlements are
structured in the same way. Are that include heavy industry might have low resident
population but be at higher risk of chemical spills, as opposed to agricultural areas that
might have problems with non-point source nutrient loading. The combination of land-

use type and human population data is more informative than either element on its own.

Massachusetts Bay — Human Demographics.

Human population is a pressure that influences the state of the local
environment, but not always to the same degree. Human activity can lead to land use
changes that affect hydrologic flows and run-off patterns, increased nutrient releases from
agriculture or human wastewater, and the direct introduction of microbes from humans as
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they physically interact with coastal waters. Understanding these ‘upstream’ influences
on coastal waters is important even though some regional scale changes may happen
slowly. We can measure human population in multiple points in time from national

census data.

Human demographics and socio-economic factors are relevant to environmental
health for four main reasons, 1) human population density is an indicator of multiple
types of environmental impacts; 2) human population density can affect disease
transmission or pathogen release into the environment; 3) the age structure of a
population can influence the population vulnerability to infectious diseases; 4) the wealth
of a community influences its access to health resources and overall vulnerability.
Therefore, in order to understand marine-sourced risk potential in Massachusetts Bay we
must first identify the population most likely to be exposed to these risks. For this paper
the residents of coastal watersheds around Massachusetts Bay are the population of
interest. The demographics of coastal populations matter because vulnerability to
infectious diseases and environmental toxins changes with age. For example, children
under 5 years of age (with less developed immune systems) and adults over 65 years of
age (with age-related weakening of the immune system) are considered more vulnerable
to developing complications from infectious diseases.** The presence of pre-existing
health problems which may increase vulnerability to environmental pathogens (e.g.,
immunosuppression to due cancer therapy) is generally higher in older populations.
When considering public health monitoring and notification programs for recreational

waters it is important to consider frequent beach-goers (likely local residents) as well as
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the most vulnerable visitor populations. If the demographics of the resident population in
a coastal watershed are changing, so too is the risk profile of the population in that
watershed. The next section provides an estimate of the population in the six coastal

watersheds around Massachusetts Bay.

Massachusetts Bay Coastal Watersheds — Demographic Estimates. Coastal
watersheds are the environmentally-relevant unit of analysis for this work. The
boundaries for watersheds in eastern Massachusetts are shown above in Figure 3-2.
Towns that do not border the ocean can still be part of a coastal watershed and exert an
influence on coastal ocean conditions. Town boundaries may also cross watershed
boundaries making them an imperfect unit of analysis for watershed population estimates.
However, the U.S. Census Bureau measures population at spatial scales smaller than the
town level (e.g., census tract), allowing for a more nuanced spatial analysis. Census tracts
cover the entire U.S., providing the potential to apply this method in other places and at
varying scales of analysis. The following sections describes available data products from
the U.S. Census Bureau, their relevance to this research, and our method for arriving at

population estimates for each of the six coastal watersheds bordering Massachusetts Bay.

U.S. Census Data Sources for Demographic Estimates. Demographic trends
across the nation are documented by the U.S. Census Bureau through products such as
the decadal census and the American Community Survey (an annual survey). **® There
are multiple units of spatial analysis used by the Census Bureau for population counting
purposes, including census blocks, block groups, and tracts. 4/ Blocks are the smallest

counting unit used by the Census. A census block is an area “bounded by visible features
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such as streets, roads, streams, and railroad tracks, and by nonvisible boundaries, such as
selected property lines and city, township, school district, and county limits.” *® Census
block groups are clusters of census blocks within the same census tract, and each tract
contains at least one block group. * Census blocks are a smaller spatial unit than tracts,
but in the publicly released datasets the block-level files only contain population and
housing unit counts. Census tracts are small subdivisions of a county, usually covering a
contiguous area, with a general population size between 1,200 and 8,000 people.*’
Census tract boundaries are lined up with stable government boundaries (such as town or
county boundaries) to allow for tract-to-governmental-unit analysis. Census tracts have a
larger populations and spatial area than blocks, but each tract record contains a richer set
of demographic details. >° These details include population counts in various categories
such as racial groups, males and females, age groups in 5-year blocks from ‘age 5 and
under’ to ‘age 85 and over’, median age of males and females, household size,
information on housing units (total number, number of vacancies, owner-occupied, and
renter-occupied units), and median income. °° These and other demographic
characteristics can be used to estimate social vulnerability to various hazards.’’ The
value of the greater information available at the tract level outweighs the slight increase
in spatial accuracy of population estimates at the block level for the purposes of this
research. Notable difference between the tabulation units used by the U.S. Census are

summarized below in Table 3-2.
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Table 3-2. Characteristics of U.S. Census tabulation units

Characteristics of U.S. Census tabulation units

visible features
(property lines,
city limits)

cross state, county,
or census tract
boundaries.

Block Block Group Tract
Population 1,200 — 8,000
Size 0600 600 —3,000 (optimum = 4,000)
Visible features Visible and non- Visible and
(streets, roads, visible features. identifiable
. streams); non- Block groups never | features, nonvisible
Boundaries

legal boundaries.
Never cross state or
county lines.

Relation to
other census
units

Smallest census
unit, nests within
all other census
units.

Usually covers area
of contiguous census
blocks.

Contains at least
one block group.

Frequency of
change

Most responsive
to development.

Can be split in
response to growth.

Relatively
permanent,
designed to be
stable.

Types of data

Population count,
housing count

Population count,
housing count

Population count,
housing count,
income, age, sex,
and others

Massachusetts Bay Coastal Watersheds - Demographic Estimate. The

irregular shape of census blocks and tracts makes a visual assignment to a watershed

subject to human error. Some census units cross watershed boundaries and fall in two

coastal watersheds, and some census units contain areas within both coastal and non-

coastal watersheds. Generating a reasonable estimate of the human population within a
watershed required assigning the population within a census tabulation area to a specific

watershed using spatial analysis software. The software used for all spatial analysis in
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the project was ArcMap 10.1 (ESRI, Redlands, CA).>> Within the spatial analysis
software is it possible to locate the centroid point of a polygon feature such as a census
tract. It is then possible to ‘assign’ a polygon to another polygon feature, such as a larger
watershed polygon, based on the centroid of the smaller polygon. This centroid
assignment method has been used in at least one other study in the northeastern U.S.>3 A
map showing the total area of census tracts assigned to each watershed is shown below in

Figure 3-3.

In some places the census tract extends outside of the watershed boundary, in
other places there are areas within a watershed where the population is not counted
because the tract’s centroid was outside the watershed. This is most notable for the
census tracts in the South Coastal watershed, depicted in pink in Figure 3-3. This paper
combined census block and census tract spatial extract data products from the U.S.
Census combined with Massachusetts Bay coastal watershed boundaries from MassGIS
to estimate the human population in six coastal watersheds.””>* The population estimate
results from this spatial analysis method are shown in Table 3-3 below. For the year
2010 there is a 0.28% difference between the two estimates for total population in all
watersheds, with the estimate based on census tracts slightly lower (2,924,701 people)
than the estimate based on census blocks (2,932,958 people). The largest difference in
estimates is for the South Coastal watershed, where the tract-based estimate is 2.6%
lower than the block-based estimate. Given the similarity of the results from these two
methods, and the greater information associated with tract-level datasets, this paper uses

tracts as the population unit of analysis.
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Combined Census Tract Areas with Centroids Inside
Massachusetts Bay Coastal Watersheds (Year 2000 Census)

" Legend
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Source: U.S. Census Bureau, Commonwealth of Massachusetts (MassGIS)

Figure 3-3. Total area of census tracts with centroids inside of each Massachusetts Bay
coastal watershed. Note: Boundaries between census tracts removed for clarity. Source:
U.S. Census Bureau, MassGIS, map by author.
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Table 3-3. Results of centroid assignment method for census blocks and tracts within
Massachusetts Bay coastal watersheds. Calculations by author.

2010 2010 [Percent
: : difference*
Population | Population (rounded) Number of | Number of
estimate estimate between census census
Watershed based on based on . tracts with | blocks with
population . o
Name census census estimates centroid centroid in
tract block inside watershed
. i ((tract-
centroid centroid blocks)/ watershed
assignment | assignment tract)*100.
North Coastal 467,244 461,040 1.3 99 5,890
Mystic River 498,657 507,428 -1.8 116 5,614
Charles River 940,948 934,470 0.7 228 9,910
Nepons.et & 627.971 635,638 12 143 7.639
Weir Rivers
South Coastal 183,744 188,415 2.6 34 2,922
Cape Cod 206,137 205,967 0.1 54 11,789%*
TOTAL 2,924,701 2,932,958 -0.28 680 43,764

*Percent difference is rounded to nearest tenth.
**Note: Over 4,900 census blocks in Cape Cod have a 2010 population of ‘0’ because
most, or all, of the spatial area within the block is water.

As shown in Table 3-3, there is little difference in the population estimate for each of the

six coastal watersheds when using either census blocks or tracts as the unit of analysis.

Because of the close agreement in population estimates we use census tract data as it

contains both socioeconomic factors and population estimates. Table 3-3 shows that the

Charles River watershed contains the highest total population (940,948 people) and Cape

Cod the lowest (206,137 people). As described at the start of this section, people ages 5

and under (<5), or 65 and over (65+) are considered the two most immunologically

vulnerable age groups, year 2010 population estimates for these groups are shown in

Table 3-4. There is little difference in the percentage of residents age 65+ between most

of the Massachusetts Bay watersheds, but Cape Cod stands out for having the largest
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percentage (25%) of residents age 65+. As of the 2010 census, the Cape Cod watershed
had the highest percentage of residents aged 65+, and the lowest percentage and lowest
total number of residents aged <5. Table 3-5 shows the average median household
income of the six coastal watersheds, for which Cape Cod had the lowest (US$60,307)
and South Coastal the highest (US$85,832). Median household income is a general
indicator of social vulnerability,’! a higher income implies greater access to resources,
including medical care. The combination of these factors, a high percentage of elderly
residents and the lowest averaged median income, suggests that of all six watersheds
residents of the Cape Cod watershed are the most socially vulnerable. Cape Cod is also
notable because despite a resident population that shrank between 2000 and 2010 it is a
highly popular tourist destination with over 5 million tourist visits every year> and Cape
Cod towns have large tracts of active shellfish harvesting areas (see Figure 3-7). Many
tourists visit beaches and consume local seafood during the course of their visit.>
Seafood consumption and sea bathing are not limited to tourists visiting Cape Cod, but

are popular activities for residents and visitors all around the Massachusetts Bay area.
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Table 3-4. Select demographic characteristics for Massachusetts Bay coastal watersheds
in 2010. Data source: U.S. Census; calculations by author.

Average | Number | Percent Number | Percent
Watershed Name Median | Residents | Residents | Residents | Residents

Age* Age 65+ Age 65+ Age<5 Age<S5
North Coastal 40.7 72,146 15 26,881 6
Mystic River 37.3 65,021 13 30,864 6
Charles River 354 110,815 12 47,030 5
Neponset & Weir Rivers 39.0 87,393 14 35,973 6
South Coastal 42.7 27,059 15 10,232 6
Cape Cod 51.1 52,371 25 8,441 4

watershed

*Average median age = average of ‘median age’ for all census tracts assigned to a

Table 3-5. Massachusetts Bay coastal watersheds, average of median
household incomes for all 2010 census tracts assigned to watershed.
Data source: U.S. Census; calculations by author.

Average Median Household Income
Watershed Name (averagg of all tracts in watershed, US$)
North Coastal 63,497
Mystic River 67,917
Charles River 75,643
Neponset & Weir Rivers 63,470
South Coastal 85,832
Cape Cod 60,307

Massachusetts Bay Coastal Watersheds — Demographic changes from 2000 to

2010. The 2010 Census reports the total population of Massachusetts as 6,547,629

people; Massachusetts contained approximately 2% of the national population in 2010.¢

The six coastal watersheds around Massachusetts Bay contained approximately 44% of

the state population in 2010. According to the U.S. Census Bureau between the years

2000 and 2010 the population of Massachusetts increased by 3.13% from 6,349,097 to

6,547,629 people. Table 3-6, below, shows that although growth from 2000 to 2010 was
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not evenly distributed among the six coastal watersheds there was a slight population
increase (approximately 2.5%) in the six study watersheds, this parallels the population

change of the state as a whole.

Table 3-6. Estimated total population change in Massachusetts Bay coastal watersheds
from 2000 to 2010 based on census tracts. Data source: U.S. Census, and Commonwealth
of Massachusetts, calculations by author

) . Percent change
Watershed Name 2000 Population 2010 Population from 2000 to 2%10

North Coastal 458,843 467,244 1.8
Mystic River 489,480 498,657 1.9
Charles River 910,286 940,948 34
Neponset & Weir Rivers 606,107 627,971 3.6
South Coastal 174,392 183,744 54
Cape Cod 213,414 206,137 3.4

Total 2,852,522 2,924,701 2.5

As shown in Table 3-7, the percent of the population age 65+ changed the most in the
South Coastal (3% increase) and Cape Cod watersheds (4% increase) between the 2000
and 2010 censuses. Cape Cod had the highest percentage of residents age 65+ in both
2000 and 2010. This suggests that the overall burden of diseases associated with aging,

including susceptibility to infectious disease, is highest in Cape Cod.
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Table 3-7. Change in number and percentage of residents age 65+ between 2000 and 2010
in Massachusetts Bay coastal watersheds.

2000 2000 2010 2010 | Changein
Percent
Census Census Census Census Residents
Watershed Name Number Pe¥cent Number Pellrcent Age 65+
Residents | Residents | Residents | Residents from 2000
Age 65+ Age 65+ Age 65+ Age 65+ 02010
North Coastal 72,619 16 72,146 15 1%
Mystic River 69,699 14 65,021 13 -1%
Charles River 113,160 12 110,815 12 no change
Neponset & Weir Rivers 77,666 13 87,393 14 1%
South Coastal 20,744 12 27,059 15 3%
Cape Cod 44,648 21 52,371 25 4%

Total population change between the years 2000 and 2010 at the census tract level for all

census tracts in the six coastal watersheds is shown on the map in Figure 3-5, below.

Figure 3-5 shows that there are pockets of population increase in each watershed.

Noticeable growth (shown in orange-red tones) occurred in a few tracts scattered across

all watersheds except Cape Cod.
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Figure 3-4. Population change for census tract within Massachusetts Bay

coastal watersheds, 2000 to 2010. Data source: U.S. Census Bureau,
Commonwealth of Massachusetts (MassGIS). Map by author.
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Although there were differences in growth between watersheds, overall there was
low population growth (in absolute numbers) from 2000 to 2010 around Massachusetts
Bay. This suggests that overall human pressure on the marine environment was fairly
stable during that decade. However, one notable aspect of the human pressure on the
nearshore marine environment that changed during this decade was the opening of the
Deer Island Wastewater Treatment Plant in September 2000, a wastewater treatment
facility operated by the Massachusetts Water Resources Authority (MWRA). This
changed the flow output of millions of gallons of wastewater effluent (sourced from
many towns in the Boston metropolitan area) from being released with minimal treatment
into outer Boston Harbor to receiving a higher level of treatment, and then later being

discharged 9 miles offshore into Massachusetts Bay after the construction of the outfall
pipe.

The areas served by the MWRA sewerage system are shown below in Figure 3-5.
The MWRA has conducted extensive biological and chemical monitoring of Boston
Harbor and Massachusetts Bay since 1992,57%! relevant details of that work will be
discussed later. At this stage the important point to note is that since the opening of the
Deer Island Wastewater Treatment Plant the levels of nutrients released in Boston Harbor
have decreased significantly.®’ So in this area there has been a reduction in one form of
human-associated pressure on the marine environment state despite an overall increase in

human population during the same time period.

88



MWRA Wastewater Service Area in Eastern Massachusetts
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Figure 3-5. Massachusetts Water Resources Authority wastewater services areas in
eastern Massachusetts. Source: Commonwealth of Massachusetts (MassGIS)

Figure 3-5, above, shows that there are many areas within these coastal
watersheds that rely on non-MWRA wastewater treatment providers, including private
septic systems. Non-MWRA, and non-private-residential, groundwater discharge permits
are shown as maroon circles in Figure 3-6 below. These discharge permits include
facilities such as laundries, car washes, sanitary sewers, and wastewater treatment
plants.®> As shown in Figure 6 there are numerous discharge points within the coastal
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watersheds around Massachusetts Bay. Many of these discharge points are within close
proximity to bathing beaches (represented as blue lines on Figure 3-6). Figure 3-6 also
shows designated shellfish growing areas (open areas in green, closed areas in red), some
of which are in close proximity to groundwater discharge permit locations. Pathogens
passing through these discharge points that were not inactivated by either publicly-owned
or private wastewater treatment facilities are released into the Bay or its freshwater
tributaries, carried by various effluent flows or rainwater runoff travelling through
sanitary sewers. To clarify, these groundwater discharge points represent some, but not
all, conduits through which human pathogens may be introduced in the nearshore coastal
environment. The abundance of these points, along with unmapped private septic tank
leech fields, suggests that human pathogens can potentially be re-introduced into the
nearshore marine environment through wastewater flows, presenting an un-quantified

risk for people who use these waters for recreation and shellfish harvesting.
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Massachusetts Bay: Groundwater Discharge Permits,
Shellfish Growing Areas, and Marine Beaches
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Groundwater Discharge Permits  Designated Shellfish Growing Areas  Marine Beaches
Flow rate (gallons per day) Classification Type s Public Beaches
e 0-113,000 [ Approved Semi - Public Beaches
® 113,001 - 575,000 [ Conditionally Approved [ Coastal Watersheds
@ 575.001 - 1,640,000 [ IRestricted Commonwealth of Massachusetts
@ 1.640.001 - 4200000 Conditionally Restricted

. 4.200.001 - 21,000,000 [ Prohibited Source: MassGIS

Figure 3-6. Marine beaches, groundwater discharge permit locations, and designated
shellfish growing areas (as of June 2014). Source: MassGIS®*%*, map by author.
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Nearshore Wastewater Releases in Massachusetts. Some municipalities have
antiquated wastewater infrastructure that includes combined sewer overflows (CSOs),
which combine storm sewers that collect surface runoff and sanitary sewers that collect
residential and commercial wastewater. High rainfall events can cause CSOs (or their
destination WWTP) to overflow and discharge raw sewage. The majority of cities with
CSOs are found in northeastern and industrial Midwestern states, including
Massachusetts.®> Despite the progress made in reducing untreated wastewater releases
into Boston Harbor through the creation and operation of the Deer Island Wastewater
Treatment Plant, other sources of raw sewage discharge into Massachusetts Bay exist.
These include direct discharges into the Bay, or discharges into rivers that empty in to
Massachusetts Bay.%% %7 The city of Lynn, M.A. is one municipality where raw sewage
discharges are permitted during high rainfall events. Residents of nearby Revere, M.A.
claim that the raw sewage discharges from Lynn move downstream and end up in the
coastal waters off of Revere.®® Upstream inputs and associated downstream impacts are
one reason why cross-boundary water pollution issues can persist for so long-- those who

pay for cleanup might not see the benefits retained in their community.

Raw sewage releases associated with high rainfall events are not the only source
of untreated wastewater. Septic tanks can contribute to poor water quality and increased
viral concentrations when they are located near coastal waters.® Some parts of eastern
Massachusetts have exceptionally high rates of households with septic systems.”’

Depending on their age and efficacy septic systems can slowly leach nutrients into
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groundwater, in addition they can serve as point sources for the introduction of enteric

pathogens into groundwater.

The potential for less frequent, but more severe, rain storm events associated with
a changing climate could overwhelm what have historically been considered adequate
water handling systems. “Enhanced loading of fecal indicators and pathogens is
influenced by wet weather events which overwhelm wastewater treatment plants, saturate
soils (decreasing the efficiency of septic system drainfields), and result in direct runoff or
groundwater base flow from urban and rural areas. Lastly, resuspension associated with
storms or bioturbation may consequently reintroduce sediment-associated pathogens into
surface waters.”’! The severity of pathogen loading from a wet weather event will be
influenced by existing infrastructure, impervious surfaces (which allow for pollutants and
animal waste to be flushed into local waterbodies), and absorptive capacity of the soil,
leading to local differences within the same watershed. In urban Boston for example, the
amount of impervious surface is unlikely to significantly increase because the city is
already heavily developed. In fact, there are plans to reduce the amount of impervious
surfaces in certain areas to improve soil absorption and flood control capacity.”> Other
coastal watersheds around Massachusetts Bay have lower levels of impervious surfaces,
and thus a greater potential for an increase in the area covered by impervious surfaces.
Rainfall runoff and nutrient releases through wastewater represent two important
pathways for nutrients and pollutants to reach coastal waters. Underlying geology varies
across the six coastal watersheds, with Cape Cod being notable for a high amount of

permeable sediments that allow for groundwater flow across the peninsula.”
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Development is not evenly distributed across Cape Cod. For example, residential parcels
around Waquoit Bay increased by approximately 15-fold in the years 1940-1989, and
local development practices led to the area being both heavily populated and largely
unsewered with most homes relying upon septic systems of varying age and efficacy.”®
These septic system outflows could mix with marine waters at numerous locations

because of Cape Cod’s permeable sediments.

The combination of WWTP releases, nutrient loading from surface runoff or
septic system releases, direct bather shedding, and natural organismal population
variability paints a complex picture of the possible marine-sourced risk environment in
nearshore coastal waters. At present there is little in sifu direct real-time monitoring in
place to give an accurate picture of the full suite of risks faced by those recreating or
harvesting shellfish in the coastal zone. There is a clear need to employ other approaches
to assist public health authorities in evaluating and responding to changing environmental

risks.

Section Summary. Through shellfish harvesting and nearshore water-based
recreation activities people may be exposed to multiple types of marine-sourced risks.
These risks can be indigenous or introduced agents that comingle in the nearshore
environment, however this is not fully reflected in existing water quality monitoring
practices. Currently, Enterococcus bacteria are the most widely collected and utilized
indicator of marine recreational water quality because they are abundantly, but not
exclusively, associated with human waste.”> Not all pathogens or toxins will behave in

the same way as a single group of bacteria. Other potentially marine-sourced risks are
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recognized as important by public health authorities in Massachusetts, and they are

included on the list of reportable diseases.>® % That list includes the following:

e Any case of an unusual illness thought to have public health implications
[requires immediate reporting]

e Any cluster/outbreak of illness, including but not limited to foodborne illness
[requires immediate reporting]

e Foodborne illness due to toxins (including mushroom toxins, ciguatera toxins,
scombrotoxin, tetrodotoxin, paralytic shellfish toxin and amnesic shellfish toxin,
and others) [requires immediate reporting]

e Hepatitis A / Hepatitis A virus [requires immediate reporting]

e Vibriosis / Vibrio species [requires reporting within 1-2 business days, isolates
must be sent to the State laboratory ]

These risks however, are not routinely considered during water quality monitoring. Only
recently has Vibrio parahaemolyticus been officially recognized as a risk requiring a
specific control plan for shellfish harvesting activities, that plan does not include direct
sampling for V. parahaemolyticus by local authorities but limited sampling has been
initiated by MA-DPH.* If we are to more fully understand the human health risks in the
nearshore coastal environment we must consider multiple risks at the same time.
Monitoring or separately sampling for each risk individually is likely to remain too costly
to implement, we propose a method to organize these multiple risks by type, and then

estimate multiple risk potentials together through modeling.
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The next phase of this exercise is to identify the risks of interest, their known or
suspected epidemiology, and which factors may influence their presence and abundance.
This exercise will allow us to identify which factors have the greatest informational
value, and which should therefore be the highest priority for data acquisition when
attempting to build a predictive model. As a reminder, for this paper we have chosen the
following risks: Enterococcus bacteria (because they are the current water quality
monitoring standard), Vibrio parahaemolyticus bacteria (because illnesses causes by
Vibrio species are reportable in Massachusetts and V. parahaemolyticus is native to New
England waters), Hepatitis A Virus (because may be transmitted via contaminated food
or water and is a reportable disease in Massachusetts), Pseudo-nitzschia genus diatoms
(because they may produce Domoic Acid, a type of toxin which may cause foodborne
illness), and anthropogenic antibiotics (because they are known to be released in the
effluent of wastewater treatment plants and influence the development of antibiotic

resistance in bacteria).

Description of Five Marine-Sourced Risks Known to Exist in Massachusetts Bay.
In this section we review the background and known epidemiology for five
marine-sourced risks in Massachusetts Bay. Those risks are the enteric bacteria genus
Enterococcus, the indigenous marine bacteria Vibrio parahaemolyticus, the enteric virus
Hepatitis A Virus, the potentially toxigenic diatom genus Pseudo-nitzschia, and

anthropogenic antibiotics which may be released through wastewater discharges.
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Enterococcus species — Bacteria Associated with Mammalian Feces.

Enterococcus — Background. The genus Enterococcus contains 28 species of
bacteria, collectively known as Enterococci.” Closely related to the Streptococcus
genus, Enterococci are essential residents of human and animal digestive tracts.
Although Enterococci are beneficial residents of the intestinal tract they can cause illness
when introduced to other parts of the body such as the urinary tract or surface wounds.
Enterococci resistant to the antibiotic vancomycin, known as vancomycin-resistant
enterococci (VRE), have been found in clinical settings as well as in the food system
where their presence is linked to the use of antibiotics in animal feed and resulting
selective pressure for antibiotic resistance.”* Environmental exposure to Enterococcus is

possible through multiple pathways, including recreational beach-going activities.

Enterococcus - Human Epidemiological Considerations. Every year, bathing in
coastal waters polluted with fecal contamination is estimated to cause more than 120
million cases of gastrointestinal illness and 50 million cases of respiratory disease around
the world.> As the mix of pollution sources and environmental characteristics of
receiving water varies around the globe, finding a single universally-applicable indicator
of recreational water quality has proved challenging. In 1986 the U.S. Environmental
Protection Agency recommended that Enterococci be used as the sole indicator for ocean
water bacterial monitoring.?’ Indicator bacteria are not necessarily pathogenic, but the
Enterococcus genus of bacteria is associated with human waste which could contain other

pathogens.”® Due to the complexities of multiple sources of pollution interacting in the
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environment, there is a continued interest in developing improved indicators or forecasts

of water quality.

Water column bacterial counts are one of the most widely collected biological
indicators of water quality. These data sets are not without utility. In fact, a “meta-
analysis of twenty-two epidemiological studies conducted from 1953 - 1996 at beaches
around the world suggests a causal dose-related relationship between gastrointestinal
symptoms and recreational water quality as measured by bacterial indicator counts.
Among these studies, Enterococcus spp. emerged as the indicator bacteria best correlated
with health outcomes in marine systems.”?: 7> However, for over fifteen years experts
have been questioning the widespread use of fecal indicator organisms (including
Enterococcus) as the main recreational water quality standard. The weakness of using
fecal indicators was summarized in a World Health Organization publication of experts in
recreational water quality in 1998 (known as the Annapolis Protocol), illustrated by the

following excerpt:

“Present regulatory schemes for the microbiological quality of
recreational water are primarily or exclusively based on percentage
compliance with fecal indicator counts ... A number of constraints are
evident in the current standards and guidelines:

management actions are retrospective and can only be deployed after
human exposure to the hazard;

the risk to health is primarily from human excreta, the traditional

indicators of which may also derive from other sources;
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there is poor inter-laboratory and international comparability of
microbiological analytical data; and

while beaches are classified as safe or unsafe, there is a gradient of
increasing severity, variety, and frequency of health effects with
increasing sewage pollution and it is desirable to promote incremental
improvements prioritizing ‘worst failures.””®

Despite concern expressed by researchers, the status quo persists.

It is worth nothing that the choice of indicator used for water quality monitoring
can have economic ramifications. Closed beaches are not good for business, this may
result in social pressure to select the least restrictive standard or to schedule sampling at
the time most likely to provide favorable results. A Southern California study compared
the use of total coliform (TC), fecal coliforms (FC), and Enterococci (EC) standards
when determining water quality failures.?” They predicted that replacing the pre-1999
TC-only standard with an EC-alone standard would lead to a five-fold increase in failures
during dry weather, and a doubling of failures during wet weather. The switch to a
standard based on all three indicators was predicted to lead to an eight-fold increase in
failures and have significant implications for beach closures and restrictions.?’ Increased
beach closures, due to more accurate monitoring, could reduce the risk potential for
exposure and provide improved public health benefits if the closure notices are heeded.
Here, we argue and support with best available data that significant underreporting of
bathing beach risk exposure exists and is important both because of the public health

costs and concerns but also because of the substantial economic and social benefit costs
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associated with lost recreational opportunities. This is a significant point because the

healthcare and lost wage costs associated with ‘contaminated beach water’ have been

estimated at US$286 million annually for the U.S.6

Enterococcus - In the Environment. Enterococci can be released into the

environment from the feces of livestock, domestic birds, wild birds, and they have been

found to exist naturally in soil and in association with plants, zooplankton, algae, and

marine detritus.””  Enterococcus faecalis and Enterococcus faecium are the most

common Enterococcus species found in human feces but they have also been isolated

from livestock.”* Enterococcus species can grow in a wide range of temperatures (5 to

50°C), pH (4.6-9.9), and salt (6.5% NaCl) concentrations. Factors associated with the

presence or persistence of Enterococcus in coastal recreational waters are shown in Table

3-8. A graphical depiction of the same information is shown in Figure 3-7.

Table 3-8. Known Influences of Enterococcus bacteria in coastal bathing areas

Riverine discharge to area (positively associated)

Influences of Enterococcus bacteria in coastal recreational Evidence Reference
waters strength
: 76, 78
Salinity (weakly negatively associated) Medium
Sea water temperature at surface (SST) (optimum 42.7°C; range | Strong | 7476
6.5 to 47.8°C) (weakly associated)
Water pH (optimum 7.5: range 4.6 to 9.9 pH) (weakly Strong |7
associated)
6
Wind speed, to distribute existing plume (weakly associated) Low |
76
Wind direction (weakly associated) Low
Rainfall (may wash bacteria from land to sea) (positively Strong | 76737479
associated)
Combined Sewer Overflows (presence, volume) (positively Strong | 76:80
associated)
Medium |7
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Table 3-8. Known Influences of Enterococcus bacteria in coastal bathing areas

Influences of Enterococcus bacteria in coastal recreational Evidence

Reference

waters strength

: s : Strong |’¢
Storm drains (presence, abundance) (positively associated)
Turbidity (matter in suspension) (strongly positively associated Strong | 77780
with survival)

. .. . Strong 76,78
Plankton in water (positively associated)

: : ' 76
Air temperature (as it relates to sea water temperature) Medium

Wave height (may release Enterococcus from sediments into Low |76:80
water column)

Total light or radiation (higher radiation increases mortality) Strong | 7680
(strongly negatively associated)

Tidal state and magnitude (wetted beach sands may release Medium |76 8!
Enterococcus into water column) (positively associated)

Bather population at beach (direct shedding) (positively Strong | 21:76:82:83
associated)

Animal population, presence of horses, donkeys, dogs, shore

‘ ' : b Strong | 7678
birds (recommend hourly observation) (associated with higher g
levels)

76

Boats anchored or moored within 1 km of beach Weak
Beach debris and sanitation: sanitary plastics, visible grease Medium |76:78
balls, algae (recommend daily observation)
Location of bather facilities (showers, lavatories) and relevance Weak |76

of input from these sources to beach

Release of bacteria from beach sand 'reservoir’, including

. . Medium | 788285
seaweed wrack on beaches (positively associated)
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Figure 3-7. Graphical representation of known influences on Enterococcus population
levels. Lines between influences (left side of figure) indicate interactions between
influences.

Enterococcus — In the Massachusetts Bay Area. In Massachusetts Enterococcus
infections are not a reportable disease unless associated with an usual outbreak or unusual
illness. 3% In Massachusetts, the Department of Public Health (MA-DPH) publishes
annual reports documenting the results of recreational water quality testing. The standard
for marine recreational waters is 104 colony forming units (CFU)/100 mL seawater,
samples with counts above 104 CFU/100mL are classified as exceedances. Despite
decades of attention, exceedances of Enterococcus counts continue to occur at marine

beaches in the state. Table 3-9, below, shows total annual water quality exceedances at
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marine beaches from 2001 to 2014.2° Number of exceedances vs. number of samples
analyzed per year is plotted in Figure 3-8, below. The lowest percentage of exceedances
was recorded in 2002 (2.8% of samples tested), that year also had the lowest number of
total samples analyzed (6686). The highest percentage of exceedances (7%) occurred in

2009, the year with the third highest number of samples analyzed (8119).

Table 3-9. Number of samples for which Enterococcus concentrations exceeded
water quality criterion at public and semi-public marine bathing beaches, 2001-
2014.

Adapted from Table 6 in Marine and Freshwater Beach Testing in Massachusetts
Annual Report: 2014 Season®

Year Number of Total Number of Percent Sample

Exceedances! Samples Analyzed Exceedances (%)

2001 444 7200 6.2

2002 185 6686 2.8

2003 320 7439 4.3

2004 337 7873 4.3

2005 358 8064 4.6

2006 405 8367 4.8

2007 253 7693 3.3

2008 433 7639 5.7

2009 571 8119 7.0

2010 490 7919 6.2

2011 481 8140 59

2012 343 8006 4.3

2013 475 8132 5.8

2014 329 7516 4.4

Average 388 7771 5.0

1. For marine beaches Enterococcus is the indicator species. A sample is in
exceedance if the number of colony forming units (CFU) / 100 mL is greater than
104.

103



Total number of water quality samples analyzed in year vs. Number of exceedences for
public and semi-public marine bathing beaches in Massachusetts, 2001-2014*
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Data Source: Massachusetts Department of Public Health. 2015. Marine and Freshwater
Beach Testing in Massachusetts Annual Report: 2014 Season, Table 6.

Figure 3-8. Number of water quality samples analyzed vs. Number of exceedances for

public and semi-public marine bathing beaches in Massachusetts, 2001-2014. Data
Source: Commonwealth of Massachusetts.

In the 2014 Annual Report on beach water quality testing, the MA-DPH noted
that bacterial exceedances at marine beaches are closely tied to rainfall events as shown
in Table 3-10, below.?® However, the strength of this relationship appears to vary by
location, time of year, and probably other factors. For example, in the Boston area the
month of August 2014 had the lowest total rainfall of the three summer months (June
2.62 inches; July 4.57 inches; August 1.75 inches), but the highest percentages of
samples that exceeded water quality standards for beaches.?® The reason for this outcome

is unclear, but it suggests that other factors besides rainfall influence Enterococcus
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sampling results. Research has shown that Enterococcus may persist in the environment
in association with soil, plants, suspended particulates, and in beach sands.?* 7785 These
environmental reservoirs, along with Enterococcus releases from local animals, may

contribute to sample exceedances in the absence of rainfall events.

Table 3-10. Water quality exceedances reported based on the number of days since last
rainfall at public and semi-public marine bathing beaches in Massachusetts, 2014
bathing season.

Adapted from Table 15 in Marine and Freshwater Beach Testing in Massachusetts
Annual Report: 2014 Season®®
Nunl;l;;e;f(;il’ll%?;snfsmce Number of Exceedances Percentage (%)
0 167 60.3%
1 17 6.1%
2 20 7.2%
3 18 6.5%
4 34 12.3%
5 18 6.5%
6 0 0.0%
7 1 0.4%
8 0 0.0%
9 2 0.7%
10 0 0.0%
10+ 0 0.0%
Total 277* 100.0%
*Out of 329 bacterial exceedances. Fifty two exceedances had no corresponding
rainfall information.

Massachusetts marine beaches are divided into three tiers according to the historical
pollution severity, these tiers determine the current monitoring schedule.?® Tier One
includes heavily used beaches which have pollution problems, they are generally sampled
sub-weekly, the five Tier One beaches in Massachusetts are tested daily during the

recreational bathing season. ?® Tier Two beaches are higher-use beaches with some
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pollution and must be tested one per week, 425 of the 530 marine beaches in
Massachusetts are in this category. 26 Tier Three beaches have no known pollution
problems and only require testing every two weeks or less (if a variance is granted by the
local board of health or MA-DPH), there are 100 marine beaches in this category.?® The
infrequent sampling at Tier Two and Tier Three beaches reduces the likelihood of

identifying an exceedance if one were to occur.

As described above, it is not always apparent which source(s) contributes the
greatest amount of Enterococcus bacteria to coastal waters and if the presence of high
levels of Enterococcus in water samples indicate contamination by human fecal wastes.
Fluctuations of human and animal populations may change non-point-source loading
within a watershed. Bathers themselves may re-suspend bottom sediments and
subsequently cause elevated levels of Enterococci and other microbes in bathing waters,
however this is not likely to be a significant factor for Massachusetts marine beaches. As
shown in Table 3-11 below, for 2014 the vast majority of water quality samples were
taken when there were between 0 and 10 bathers present at a beach, yet this category
included the greatest total number of exceedances (260 out of 329 total for the season).
However, when samples were taken at beaches with 50 or more people present, they were
more likely to result in an exceedance, almost 13% of these samples were associated with
an exceedance. This suggests that sub-daily water sampling and bather counts might

reveal bather-induced changes in Enterococcus levels at bathing beaches.

106



Table 3-11. Exceedances grouped by bather density at time of water sample
collection for Massachusetts marine beaches in 2014.

Adapted from Table 16 in Marine and Freshwater Beach Testing in Massachusetts
Annual Report: 2014 Season®
Bather Density Number Percent of samples
Number of .
(Number of people present at of that resulted in an
. . exceedances
time of sample collection) samples exceedance
0-10 6,211 260 4.2%
10-20 261 2 0.8%
20-50 95 0 0.0%
>50 62 8 12.9%
Not indicated 887 59 6.7%
Total 7,516 329 4.4%

Section Summary. Traditional water quality testing methods using
microbiological indicator organisms can reveal the presence of fecal contamination in
coastal waters, but the most widely-used indicator does not distinguish the source of
pollution (human or animal).3® Current testing methods for Enterococcus take 24 hours
to provide results, making it difficult for investigators to track any contamination back to
the source. If efforts to improve bathing water quality (a DPSIR response level change)
are to be properly targeted at human or animal sources (DPSIR pressures that influence
the state) it is essential to know where the greatest cause for concern lies and which
responses have the potential to be successful. For this work we include Enterococcus as
one of the 5 marine-sourced risks because it is the current standard and can serve as an
indicator of degraded water quality. However, because of the limitations described in

this section we do not believe it should be the sole biological criterion for water quality.
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Vibrio parahaemolyticus — An Indigenous Bacteria Species.

Vibrio parahaemolyticus — Background. Vibrio species bacteria exist naturally
in the marine environment, they are considered indigenous in many parts of the world.
Humans can be exposed to, and potentially infected by, Vibrio parahaemolyticus through
consumption of contaminated seafood or through direct skin contact. V.
parahaemolyticus bacteria exposure can cause gastroenteritis and diarrhea, but is rarely

fatal.

By 1982 V. parahaemolyticus had been found in waters from Madagascar to
Alaska (including Australia, Vietnam, China, India, Iran, Russia, Western Europe, Togo,
Panama, and Canada).®’ Identifying and enumerating V. parahaemolyticus requires
microbiological techniques including biochemical profiling or genetic analysis®® and is
more technical challenging and costly than the Enterococcus bacterial counts commonly
used for recreational- and shellfish harvesting-water quality testing. A 2012 study noted
that standard microbial approaches for determining the opening or closing of shellfish
harvest areas are still not useful for control of exposure to pathogenic Vibrio species and
that despite over 30 years of accumulated evidence® these approaches continue to be

used and are generally accepted in the U.S.?®

Vibrio parahaemolyticus — Human Clinical and Epidemiological Information.
V. parahaemolyticus bacteria are a major cause of seafood-associated foodborne illness
globally.”* V. parahaemolyticus is one of the three most important Vibrio species
associated with human illness in the United States’!, and has been recognized as a major

cause of seafood-associated food poisoning for well over 30 years.®” The incubation
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period for V. parahaemolyticus infection is usually 12-72 hours, but can be as long as 1

week”?, limiting the ability to investigate and definitively identify the bacterial vector.

The twin realities of illness underreporting' and unidentified causative agents
make it difficult to present an accurate picture of the true burden of illness due to V.
parahaemolyticus infections; however between 1973 and 2006 there were 45 recorded
seafood-associated outbreaks of V. parahaemolyticus infection in the U.S. resulting in
1,393 documented cases, of which 24 required hospitalization.90 For all seafood-
associated outbreaks in the United States between 1973 and 2006, V. parahaemolyticus
was responsible for 35% of illnesses with an identified causative agent, the highest
percentage attributed to any single species when considering known bacteria, virus, and
parasitic species”; it should be noted that 80% of all foodborne illness cases in the U.S.
are attributed to unknown or unidentified agents.> The CDC estimates that in the U.S. for
every reported case of V. parahaemolyticus foodborne illness there are 142 cases not
diagnosed.” The CDC also estimates that in the U.S. on average there are 215 culture-
confirmed cases, 30 hospitalizations, and 1-2 reported deaths from V. parahaemolyticus
infections annually.®* For the entire U.S. a separate study estimated the annual cost of V.
parahaemolyticus illnesses (based on lost wages, physician and hospital services, and
statistical cost of a premature death) to be US$20.63 million, not including any cost of

pain and suffering.®

V. parahaemolyticus has been established as widely present in products harvested
from coastal waters around the U.S., but the majority of V. parahaemolyticus cases in the

U.S. are reported from the Pacific Northwest despite reports of lower overall levels of
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pathogenic V. parahaemolyticus in that region.”! This may be due to increased virulence
of V. parahaemolyticus infections in that region, increased awareness of the disease
among the public, increased awareness of the disease among medical personnel and thus
more complete reporting, or a historically higher percentage of the population with health
insurance and greater access to medical care.”’*> Anecdotal evidence suggests that
greater physician awareness plays a role. A 3-year prospective study in British Columbia,
Canada recruited 13 people after they arrived for outpatient visits to physicians’ offices
with gastrointestinal illness and tested them for V. parahaemolyticus infection.”®
Investigators found that although some of the V. parahaemolyticus infections
demonstrated substantial morbidity, none of the patients required hospitalization, and the
specific infectious agent would not have been detected if only hospital laboratory-
identified specimens had been included in the study.”® The reason that these moderate
illness would not have been identified is because the standard of care for moderate
gastrointestinal upset is typically a course of broad spectrum antibiotics. The results from
that 1988 British Columbia study”® support the argument that V. parahaemolyticus

infection cases are underreported even when illness is severe enough to seek outpatient

medical treatment.

Vibrio parahaemolyticus — In The Environment. In addition to its environmental
persistence across a wide variety of temperatures, V. parahaemolyticus has one of the
shortest generation (reproduction) times of any bacterium (less than 10 minutes), and an
optimum growth temperature around 37°C.”7 All of these factors contribute to the

persistence of V. parahaemolyticus in the environment. Microbiological studies have

110



been exploring the influence of local environmental factors on V. parahaemolyticus

abundance since at least the 1970s, with mixed results.’: 8% 98:99

Thompson and
Vanderzant (1976) took water, sediment, and oyster samples from Galveston Bay, TX
and found no significant relationship between V. parahaemolyticus culture counts and
multiple abiotic environmental factors.®® However, in the 1970’s Kaneko and Colwell'*"
101 observed a seasonal pattern of V. parahaemolyticus presence in the water column of a

tributary river of the Chesapeake Bay where surface water temperature ranged from -2°C

to 31.2°C.3":%

Early environmental models of V. parahaemolyticus abundance were based
almost entirely on water temperature and were insufficient to explain the inter-annual
variation in pathogen populations.”” Recent work by Johnson et al. (2012) examined the
relationship between V. parahaemolyticus abundance and parameters that can be
monitored via satellite such as salinity, turbidity, and chlorophyll at three study sites in
the Pacific Northwest, Gulf Coast, and mid-Atlantic.!” The finding that sea surface
temperature and suspended particulate matter are good predictors of V. parahaemolyticus
total abundance at ecologically distinct sites may help inform future seafood safety
efforts.'%> Such efforts are still needed, a 2007 survey of market oysters from around the
United States isolated V. parahaemolyticus from oysters harvested in North Atlantic
waters (Connecticut, Maine, Massachusetts, New York, Rhode Island), Mid-Atlantic
waters (Delaware, Maryland, New Jersey, South Carolina, Virginia), Gulf Coast waters

(Alabama, Florida, Louisiana, Texas), and Pacific Coast waters (Washington).”"
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As aresponse to the expected gap between traditional indicator bacteria

population levels (as reflected in water quality samples) and concurrent V.

parahaemolyticus population levels, environmental forecasting models for V.

parahaemolyticus need to be developed further. Table 3-12 presents the results of a

literature review for known influences on V. parahaemolyticus population levels in the

environment.

Table 3-12. Environmental influences on Vibrio parahaemolyticus abundance

Environmental influences of Vibrio parahaemolyticus
in the environment

Evidence
strength

Reference

Water temperature (optimum growth temp ~37°C)
Warmer water positively associated with growth, V.
parahaemolyticus can survive winter water temperatures
below 0°C at the surface by associating with sediments
and larger animals such as plankton and shellfish.®’

Very strong

87;97; 99; 103;102

Salinity (optimum ~23ppt, 10-34 ppt reported to support
populations) Higher concentrations of V.

associated)

parahaemolyticus are found in estuarine environments.*’ | \r.. 4 87,97, 99; 102
mixed reports about Vibrio relationship with salinity,
might depend on effect of other factors.
. . . 87
Nutrient concentrations Medium
Calcium (Ca) availability (high Ca can increase 104
. Weak
cytotoxicity to host cells)
104
Iron (Fe) availability (low Fe can increase virulence) Weak
4; 87,97
Presence/abundance of host zooplankton Weak
Turbidity (suspended particulate matter) (strongly Stron 4;87;102; 103
positively associated) &
Chlorophyll a (weakly positively associated) Medium 102
103
Dissolved oxygen (positively associated) Strong
Dissolved organic Carbon (DOC) (weakly positively Medium 102
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A graphical representation of environmental and socio-economically linked influences on
the growth and persistence of V. parahaemolyticus in the environment is shown below in
Figure 3-9. As shown in Figure 3-9, most of the known influences on V.
parahaemolyticus abundance are environmental factors, with nutrient input being the

only clear socio-economically-linked factor.

| Water temperature (range)

| Air temperature

| Wind direction and upwelling

| Salinity

Vibrio parahaemolyticus
(bacteria)

| Rainfall

| Sunlight (irradiance)

‘ Turbidity (suspended material)

Ps hia species
(diatom, source of
| River flow output or Groundwater seepage Domoic Acid)
Human population in watershed
l Beach attendance Hepatitis A Virus
A 4 (enteric virus)
Wastewater inputs & treatment type
‘:'— Dog population
- - Anthropogenic
v I Animal agriculture Antibiotics
A 4
Fe,N.P )
I Nutrient runofl’ /composition Note: green boxes — envivonmental factors;
grey boxes = socio-economic factors

Figure 3-9. Graphical representation of known influences on Vibrio parahaemolyticus
population levels in coastal waters. Lines between influences (left side of figure) indicate
interactions between influences.
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Vibrio parahaemolyticus — In the Massachusetts Bay Area. In coastal New
England waters V. parahaemolyticus is considered an indigenous bacteria, naturally
present in the environment.*® 3’ In the United States, risk of Vibrio species consumption
has traditionally been associated with consumption of raw shellfish harvested from warm
water areas such as the Gulf of Mexico and Florida.”% 1919 Qver 40 years ago scientists
showed that V. parahaemolyticus inhabits New England waters®’ and can be isolated
from seafood such as Cape Cod soft-shell clams.?® However, it was not until 2011 that
cases of V. parahaemolyticus infection were officially attributed to raw shellfish
commercially harvested in Massachusetts waters.** The cases in 2011 were not the first
cases of Vibriosis (illness due to Vibrio species bacteria) recorded in Massachusetts. As
shown in Figure 11, below, Vibriosis have been reported in Massachusetts since at least
1999, but the MA-DPH data do not indicate the source of exposure or the Vibrio species.
While Massachusetts Bay waters may not reach temperatures of 81°F (27.2°C),
considered the threshold for stronger shellfish harvest control actions, the tidal cycle can
leave harvest areas exposed to warm air for hours at a time, potentially leading to unsafe
bacterial counts in seafood.*® There is now an official Vibrio Control Plan in
Massachusetts with a focus on harvesting and transport practices, not on environmental

sampling 3> 40+ 109
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Confirmed cases of Vibriosis (Vibrio bacteria species infections) in Massachusetts, 1999 - 2013
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Figure 3-10. Confirmed cases of Vibriosis in Massachusetts, 1999-2013. Vibriosis refers to
any illness causes by bacteria in the genus Vibrio, including V. parahaemolyticus, V.
cholera, and V. vulnificus. Infection by V. parahaemolyticus is a more commonly identified
than infections with other Vibrio species. Source: Commonwealth of Massachusetts, graph
by author.

Section Summary. The limitations to using traditional indicator bacteria as the
main measure of water quality exist nationally and are clearly applicable to the
recreational and shellfish harvesting waters of Massachusetts Bay. Although V.
parahaemolyticus environmental influences are an active area of study, much of the
historical research focus has been on Gulf Coast and mid-Atlantic waters.'"% 1'% The
reality of V. parahaemolyticus presence in the water column and confirmed illness traced

33; 34

to shellfish harvested in Massachusetts Bay supports the argument that current

115



shellfish harvest area water quality monitoring practices should be revised to reflect the

risk of V. parahaemolyticus in Massachusetts waters.

Pseudo-nitzschia Diatoms —Species That Can Produce the Toxin Domoic Acid.
Pseudo-nitzschia and Domoic Acid — Background. Domoic acid (DA) is a
neurotoxin produced by Pseudo-nitzschia genus diatoms, these diatoms are found in
estuarine and ocean habitats from tropical to polar waters along every continent.!!!
Human exposure to DA via seafood can cause gastrointestinal distress, cardiovascular
problems, and memory loss or other neurological effects.!'? DA intoxication is known as
Amnesic Shellfish Poisoning because memory loss is one of the most prominent
symptoms in human victims. !'> DA has a high binding affinity for nerve cell surface
receptors — up to 100 times more powerful than endogenous neurotransmitters.!'* !'4 By
binding powerfully and not being released from the cell surface DA stimulates nerve cell
activation so that, in general terms, DA will stimulate a nerve cell to death.!'* Multiple
animal species exhibit negative effects after DA intoxication including anchovies, krill,
cephalopods, wild seabirds, sea lions, northern fur seals, and sea otters.''> 1% There is
evidence suggesting that repeated low-level DA consumption, below existing regulatory
limits, can have long-lasting negative effects in vertebrates.!'>!'® The following sections
discuss human health risks from DA and reported environmental influences on Pseudo-

nitzschia spp. population levels.

Domoic Acid - Human Clinical and Epidemiological Considerations. DA was
first identified after a 1987 Canadian food poisoning event associated with consumption

of contaminated blue mussels (Mytilus edulis).''?> This event resulted in 107 confirmed
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cases and 38 probable cases, including 19 hospitalizations and 3 deaths within 18 days.!!?
After the 1987 outbreak research led to an internationally accepted regulatory limit for
DA in food of 20pug DA/g wet weight of tissue.!'* "7 While there have been no known
human deaths from DA intoxication since the 1987 Canadian outbreak!!* the true extent
of human health impacts from DA consumption is open to question given the limitations
on epidemiological data and the possibility of sub-clinical cumulative effects. Since
1987 DA contamination has been regularly documented in multiple marine animal
species in at least 62 unique events around the world,'* indicating potentially widespread

presence.

DA is water soluble and exposure occurs by consuming an organism with DA in
its system, a process known as biotransfer.''® DA concentrations are highest in
planktivorous species that feed directly on DA-producing diatoms.!!® Human exposure to
DA usually occurs through biotransfer via consumption of raw molluscan shellfish that
have ingested DA-producing Pseudo-nitzschia while filter feeding.!1% 118123 Being
water-soluble, DA is normally cleared from general circulation by the kidneys then
excreted in urine within 24 hours.!'* Data from clinical cases indicates that the elderly
(age 65+ years), those with impaired renal function, a compromised blood-brain barrier,
pregnant women, infants and young children are more sensitive to DA intoxication,!!% 114
DA transfer via maternal milk has been demonstrated in rats, with longer DA retention in
milk than in the maternal blood plasma after DA ingestion.!!% 124126 At present no

antidote to DA exists.!'* Exposure to low concentrations of DA can result in significant

and permanent effects to the central nervous system, particularly when repeated over long
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period of time, raising questions about the safety afforded by current regulatory levels for
DA in food.!'® The issue of regulatory safety levels for DA in seafood is discussed at
length in Angus (2015)!'6 and is not the focus of this work. However, it is worth noting
that Washington State has grouped Pseudo-nitzschia species into three categories, each
with its own threshold abundance level for triggering DA testing in seafood (the lowest of
which is 30 cells per milliliter for P. australis/heimii/fraudulenta).''% 12’ Similarly, Great
Britain has a threshold abundance level of 50 cells per milliliter for total Pseudo-nitzschia
(not distinguishing between any sub categories) above which shellfish samples are tested

for DA.!16:128-130 T4 our knowledge Massachusetts has no equivalent official limits.

Direct healthcare costs and ancillary costs from DA exposure or Amnesic
Shellfish Poisoning have not been published. However, Ralston, Kite-Powell, and Beet
(2011) generated a cost estimate for Paralytic Shellfish Poisoning (PSP) which has a
similar route of exposure but a different causative organism (usually the dinoflagellate
Alexandrium fundyense). The authors estimated the costs of PSP to be US$12.58 million
per year.® Healthcare costs are just one estimate of the significance of a disease, another
measure might be the amount spent on government monitoring programs, however these

estimates are beyond the scope of this work.

Pseudo-nitzschia species— In the Environment. Nomenclature and taxonomy
have shifted over the years as electron microscopy and molecular approaches have
allowed for finer distinctions among Pseudo-nitzschia species.!'> At least 38 species of
Pseudo-nitzschia have been identified!'* ', but not all have been tested for their ability

to produce DA. DA production has been documented for at least 13 species of Pseudo-
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nitzschia as well as the related diatom species Nitzschia navis-varingica.''> '

Laboratory testing has shown that for multiple Pseudo-nitzschia species DA production
increases with increasing environmental stressors.!'* Some researchers believe that all
Pseudo-nitzschia species can be toxigenic under the right growth conditions.!'* Field
observations suggest that large-scale environmental drivers are important influences on
Pseudo-nitzschia blooms as there are seasonal patterns to blooms around the globe.!'!*
Pseudo-nitzschia blooms, like those of other diatoms, tend to occur in upwelling zones,
coastal bays, or in response to controlled nutrient pulses (such as Fe-enrichment),!!1: 114
European waters historically experience blooms of Pseudo-nitzschia from January-May,
eastern North American in the autumn, Washington State in early autumn, and the Pacific
Mexican coast in late spring.!' Off the coast of central California the concentration of
DA-producing diatoms is usually highest between late summer and fall, a time associated
with the end of seasonal coastal upwelling and nutrient depletion in the water column.''®
There is no set abundance that defines a bloom event, different thresholds have been used
by researchers in different locations.''% 13! Pseudo-nitzschia blooms vary in their toxicity
and the relationship between environmental factors, Pseudo-nitzschia abundance, DA
production, and DA bioaccumulation in filter feeders is poorly understood.'! It appears
that the relative proportion of nutrients in the water column may be the limiting factor for
Pseudo-nitzschia diatom growth.!'® Upwelling zones and coastal bays are areas naturally

high in nutrients and trace metals, factors which have been linked to DA production in

multiple Pseudo-nitzschia species.
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The state of one environmental factor can influence the response of Pseudo-
nitzschia to another environmental factor. Species in the Pseudo-nitzschia genus tolerate
water temperatures ranging from -1.5°C to 30°C, and laboratory studies have
demonstrated that multiple species can have ~10°C overlap in their temperature tolerance
— making this environmental variable minimally suited for predicting species succession
or niche occupation.!'* For example, in laboratory studies P. cuspidata can tolerate a
wider range of temperatures when grown at its optimum salinity (30 psu), and P.
pseudodelicatissima achieved its highest growth rate at 25°C when also grown in its
optimum salinity (other temperatures not tested).!'* Field sampling has documented the
presence of Pseudo-nitzschia species in Massachusetts Bay at water temperatures ranging
from approximately 2 to 22°C."3% 133 Division rates for P. multiseries asexual
reproduction in culture have been shown to vary between 0.21 and 1.2 divisions per day
depending on temperature and light intensity conditions.!>* All species of Pseudo-
nitzschia display phenotypic variety in their size (width), possibly due to local
environmental conditions, complicating species-level identification efforts. Waters
around continental margins and near-coastal regions commonly contain larger species
such as P. australis and P. multiseries, larger species are reported to be able to produce
more DA per cell.!'*!!!  Previous research has attempted to quantify the relationship
between either Pseudo-nitzschia growth or DA production, and environmental factors. A
list of commonly investigated variables is shown in Table 3-13, below. Major nutrients
(e.g., Nitrogen, Carbon, and Phosphorous in different forms) and physical parameters

(e.g., temperature, sunlight, turbidity, and salinity) have been investigated in field studies
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and laboratory experiments, but the variety of species and environmental conditions

limits our ability to generalize across the entire Pseudo-nitzschia genus.

Table 3-13. Environmental influences of Pseudo-nitzschia species growth

Potential environmental influences of Pseudo-nitzschia Evidence

. Reference
species growth strength
Total inorganic carbon (bicarbonate and carbonate) Weak 114
(positively associated)
Nitrogen in the form on ammonium, nitrate, nitrogen
dioxide, urea, ammonia, or glutamine (positively Strong 110; 114
associated)
Salinity (positively associated) Strong 10
Freshwater discharge (negatively associated) Strong 110; 131
Temperature (higher temperature is negatively associated) Strong 110; 131
Inorganic Phosphate (POs) (slightly negatively associated) Medium 1o
Ln of Silicic Acid (Si(OH)4) (negatively associated) Strong 110; 131
Ratio of Silicon to Phosphorous or Orthophosphate (Si:P) Weak 110
(slightly positive)
Turbidity or Secchi depth (slightly positive) Strong 110; 114
Dissolved Organic Carbon (DOC) (positively associated) Weak 10
Chlorophyll a (not associated in Chesapeake Bay, but Mixed 110: 131
positively associated in Monterey Bay, CA)
Trace metal: Iron (strongly positively associated) Strong ;114
Trace metal: Copper (negatively associated with cell growth; Weak 114
positively associated with DA production)
Trace metal: Lithium Weak 14
Upwelling (positively associated) Medium 131

A graphical representation of environmental factors that seem to generally

influence Pseudo-nitzschia abundance is presented in Figure 3-11, below. Nitrogen,

salinity, water temperature, iron, carbon and silicic acid appear to influence positively

Pseudo-nitzschia species abundance under multiple conditions. However, as noted by
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Downes-Tettmar et al. (2013), Pseudo-nitzschia species vary in their response to the
environment and thus may form corresponding groups that are not based on
morphology.'*° Studies that group multiple species of Pseudo-nitzschia together based on
size (a commonly used morphology distinction) may lose important ecological
information in their analysis, concurrent species-level and group-level analysis is likely to

be more revealing.'*°
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Figure 3-11. Graphical representation of influences of Pseudo-nitzschia species abundance.
Although there is variety between species. Lines between influences (left side of figure)
indicate interactions between influences.

Pseudo-nitzschia species. — In the Massachusetts Bay Area. Pseudo-nitzschia
spp. were originally identified as part of Gulf of Maine phytoplankton assemblages in the
1920s.!1%: 135 Although not every species of Pseudo-nitzschia has been documented in
Massachusetts Bay, multiple species that have been confirmed in the western North

Atlantic Ocean.”’*

Multiple Pseudo-nitzschia species could be present year-round, or be
introduced seasonally, in Massachusetts Bay. DA was detected in shellfish off
Nantucket, MA as early as 1991 and the presence of at least one DA-producing diatom

species in Massachusetts Bay was confirmed in 1992.'%¢ Public, but unpublished, data

from the Massachusetts Water Resources Agency (MWRA) demonstrates that ongoing
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sampling for Pseudo-nitzschia species shows they have been regularly present in
Massachusetts Bay since sampling started in 1992.!*2 We have acquired the Pseudo-
nitzschia sampling dataset from the MWRA for the years 1992-2014, the details of which
will be discussed in Chapters 3 and 4. A list of Pseudo-nitzschia species whose presence
has been confirmed in western North Atlantic waters, including the Gulf of Maine and

Massachusetts Bay, is presented in Table 3-14, below.

Table 3-14. Presence of Pseudo-nitzschia species in western North Atlantic waters.

Cell
Species Group Width | Toxicity | Documented distribution
(um)
. . Pre- }
Nitzschia {aXONOMmic Not Not Vineyard Sound,
closterium* o reported | tested Massachusetts 13
reorganization
Nitzschia g}?(-)nomic Not Not Vineyard Sound,
longissima* . . | reported | tested Massachusetts '3
reorganization
Pre- .
Nitzschia seriata™ taxonomic Not Not Vineyard Sound,
.. | reported | tested Massachusetts '3
reorganization
Nitzschia pungens f. Pre- Not Massachusetts Bay,
.y taxonomic Yes 136
multiseries o reported USA
reorganization
Pre-
N. taXOnOMmic Not Yes Massachusetts Bay,
pseudodelicatissima . .| reported USA!%
reorganization
. . 25— Bay of Fundy
P. americana neither 45 No Narragansett Bay
P. americana Americana <2.0 Not Gulf of Maine”
tested
P. calliantha delicatissima | 1.1-2.6 | Some Gulf of St. Lawrence
Some Gulf of St. Lawrence,
P. delicatissima delicatissima | 1.0-2.4 § US northeast coast
Yes® e
Gulf of Maine
Bay of Fundy
. Some Gulf of St. Lawrence
P. fraudulenta seriata 4.0-8.0 Yes! US northeast coast
Gulf of Maine”
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Table 3-14. Presence of Pseudo-nitzschia species in western North Atlantic waters.

Cell
Species Group Width | Toxicity | Documented distribution
(um)
P. linea delicatissima | 1.8-2.2 Not Narragansett Ba
) R tested g y
Bay of Fundy
.. ; Gulf of Maine
P. multiseries seriata 3.5-4.8 | Yes Gulf of St. Lawrence
US Northeast
Gulf of St. Lawrence
P. obtuse seriata 2.9-5.0 | No Hudson strait
Newfoundland
P. S Some Bay of Fundy
pseudodelicatissima delicatissima | 1.1-2.1 Yes® Gulf of Maine”
Bay of Fundy
seriata / Some Gulf of St. Lawrence
P. pungens pungens 2254 |yt US east coast
Gulf of Maine”
Bay of Fundy
. . Some Gulf of St. Lawrence
P. seriata seriata 4.6-8.0 Yes? US northeast coast
Gulf of Maine”
o . No Bay of Fundy
P. subpacifica seriata 5.0-7.0 Yes! Gulf of Maine”
) - Bay of Fundy
_ N
P. turgidula pungens 2.5-5.0 | Yes Gulf of Maine”
P. heimii Seriata >4.0 Not Gulf of Maine”
tested
. pseudo-
P. spectes Gulf of delicatissima/ Yes? Gulf of Maine”
Maine (novel form) ..
delicatissima

Adapted and expanded from Lelong et al. (2012). ''* Toxicity refers to toxin analyses:
Yes = species produces DA; No = values below the limit of detection; Some = not all
strains show toxicity.’’# Yes® = DA production confirmed in Gulf of Maine

* Reports published before adoption of the currently used nomenclature and species
identification criterion for Pseudo-nitzschia species. DA-producing diatoms were
originally reported as Nitzschia pungens f. multiseries, more recent attribution is to
Pseudo-nitzschia multiseries.

“Identified in Fernandes et al. (2014)!"°
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Due to ocean circulation patterns in the Gulf of Maine there is the possibility for
movement and mixing of multiple Pseudo-nitzschia species. Lack of published
documentation about the presence of a single species in a single place should not be taken
as an indication that a species is not sometimes present in a water body, especially given

the large spatial scale of these environments and limited sampling coverage.

Section Summary. Pseudo-nitzschia species diatoms have been found in
Massachusetts Bay, the Gulf of Maine, and along the Eastern coast of North America.
These diatoms are a public health concern because of their capacity to produce the
neurotoxin Domoic Acid, which may be transmitted to humans via shellfish
consumption. The presence of Pseudo-nitzschia in the water column is considered
necessary, but not sufficient, for DA production. In Washington State and Great Britain
public authorities have set threshold abundance levels for Pseudo-nitzschia which can
automatically trigger testing for DA in shellfish. Chapter 4 of this dissertation will
attempt to identify environmental variables associated with Pseudo-nitzschia bloom
levels in Massachusetts Bay — where shellfish harvesting is culturally and commercially

important.

Hepatitis A Virus (HAV) — A Virus That Damages the Human Liver.

HAYV — Background. Hepatitis A Virus (HAV) is a picornavirus transmitted
through contaminated food and water and direct person-to-person contact; it is estimated
to infect tens of millions of individuals worldwide every year.'*” 13 Humans are the only

known reservoir of HAV, there is no other animal host, but the virus can survive outside
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of humans for varying amounts of time depending on environmental conditions and be
conveyed on food, including seafood.!**!4! There is no treatment for acute HAV
infection, only supportive care in response to symptoms which commonly include fever,
malaise, anorexia, nausea, abdominal discomfort, jaundice, necrosis and inflammation of
the liver.® 137 HAV is extremely infectious, the minimal infectious dose is extremely
low, possibly just a single virus.'** A complicating factor in epidemiological
investigations of HAV is the lag time between exposure and the development of

symptoms, typically 21 to 35 days.!4?

HAY - Human Epidemiological Considerations. Since 1995 a vaccine for HAV
has been available in the U.S. and many other countries; in 2005 the allowable age for the
first dose was lowered to 12 months for children in the U.S."*” In unvaccinated
populations the age of first exposure to HAV is important, because symptoms typically

worsen with increasing age of first exposure.'*?

Endemicity of HAV infection is low in
the U.S. because of the wide access to treated drinking water, however HAV remains a
public health concern because of its highly infectious nature and the ability for patients

with active infections (including asymptomatic children) to release large numbers of

HAV into the environment through feces'*® and infect HAV-naive individuals.

Globally, the incidence rates (number of cases per population) of HAV are
strongly correlated with socioeconomic status and access to clean drinking water. '
Improved sanitation and hygiene means that fewer countries are considered highly HAV-
endemic, but instead are considered to have intermediate or low endemicity. 3% 43 The

CDC notes that countries with decreasing prevalence of HAV infection have increasing
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numbers of susceptible people, and subsequently there is a risk of large outbreaks of
HAV among these susceptible populations.'*” European countries with low endemicity
and susceptible populations have seen an increased number of HAV outbreaks among
adults, including a 2008 outbreak in the Czech Republic that resulted in over 1600 cases,
and a 2007-2009 outbreak in Latvia resulting in over 3200 reported cases.'* In
Argentina, before the HAV vaccine was introduced into the national immunization
program for young children most HAV cases were in children age 5-9 years, but by 2010
that had shifted to adults age 15-44 years (there are no reports of outbreaks like those in

) 144

Latvia or the Czech Republic The most prevalent reported risk factors for HAV in

the U.S. is international travel.'* U.S. residents who travel outside of the country may be
exposed to HAV through contaminated food, drinking water, or recreational water. !4+ 146

This is due to higher levels of HAV endemicity in most other parts of the world except

Northern Europe and Japan.'*

HAY — Outbreaks Associated With Seafood. Seafood is a known potential
vector for HAV. As early as in 1961 raw clams and raw oysters were implicated in
outbreaks of ‘infectious hepatitis’ in the U.S.'47- 1% This was before infectious agents for
the different strains of viral hepatitis, including HAV, had been isolated and identified. A
more recent outbreak of seafood associated HAV happened in 2005. The 2005 outbreak
involved twelve restaurants in four states (Alabama, Florida, South Carolina, Tennessee)
that received oysters harvested from approved harvest areas in the waters of eastern
Louisiana.!**> Based on an epidemiological investigation and successful traceback of the

suspected oysters, researchers were able to identify HAV in shellstock oysters from the
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same harvest batch. Investigators concluded that the contamination of oysters with HAV
most likely happened in the harvest area, rather than during the processing stages
(shucking, packing) and that the most probable sources of contamination were either 1)
illegal wastewater discharges from harvest vessels or recreational boats in the harvest
areas, or 2) illegal harvesting in closed areas.!'** No confirmed cases of HAV originating
in Massachusetts-harvested shellfish have been reported, but the link between “viral
hepatitis’ and shellfish consumption in New England was observed by medical
professionals over 40 years ago.'*” 148 A 1967 study carried out at 10 Boston hospitals
found that ingestion of raw shellfish (oysters and clams) and steamed clams was
significantly more common in viral hepatitis patients than in matched controls during a
prospective epidemiological study of 270 patients (258 of whom were New England
residents).'*”: 148 This same study noted that “ingestion of raw shellfish and steamed
clams seems to be as common a source of infection as contact with jaundiced
persons.”!#7: 14 This is perhaps not surprising since we know that HAV is transmitted via
the fecal-oral route and contact with infected individuals (such as ‘jaundiced persons’) is
arisk factor for HAV transmission. The 1967 Boston study attempted to trace the source
of implicated shellfish during the study period, but results were inconclusive.'#”: 148 A
slightly later publication from 1968 noted that “present shellfish cleansing technics
(depuration) may not effectively remove the virus.”'*’ There is currently no monitoring

or sampling program for HAV in Massachusetts coastal waters.

HAYV —In the Environment. Humans are the only known carriers for HAV, but

the virus can survive outside of the human body for extended periods of time depending
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on environmental conditions.!* HAV survival has been documented in seawater '3 and
groundwater'!, including groundwater serving as drinking water via private wells.
Viruses that infect the gastrointestinal tract (known as enteric viruses) tend to have
prolonged survival in the environment; HAV falls into this category.!®* HAV is
described as being ‘thermally resistant’ due to its ability to survive at low temperatures
(0-10°C) for long periods of time.'>% 133 Other characteristics of enteric viruses that favor
their survival outside of the human body include an adaptation to waterborne route of
transmission'>? and small size (25-100 nm). ! The successful spread of HAV via water
can depend on physical parameters such as soil structure, organic carbon contact, soil
pore water pH, environmental factors such as rainfall and temperature, and virus-specific
characteristics such as size and electrical charge (which affects solubility in water).!3!: 134
Since humans are the only known carriers for HAV any waterborne transmission must be
preceded by human fecal contamination.!® Fecal contamination may be spatially and
temporally distant from the site of eventual exposure since HAV can survive in water or
on contaminated food at length, studies have demonstrated HAV survival on fresh
produce for 90 days when stored at 20°C, and in oysters for >21 days in a depuration tank
at 20-25°C.14% 141 potential sources of fecal contamination into the environment include
leaking or ineffective septic tanks, leaking sewer lines, unlined landfills, irrigation with

wastewater, or subsurface injection of wastewater.!>

This research does not attempt to quantify the amount of HAV released into the
Massachusetts coastal environment. Rather, we assert that introduction of HAV into the

coastal environment may occur and that HAV may be present in recreational and
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shellfish harvesting waters in Massachusetts Bay. These waters are not currently

monitored for the presence of HAV. If water samples were tested for HAV, and it were

found to be present, environmental modeling efforts would consider the known potential

influences on the survival of any human virus once released into the environment.

Environmental influences on the release and survival of any human enteric virus are

shown in Table 15 below (adapted from Gerba 2007 and expanded).!>?> The same

information is presented graphically in Figure 3-12, both Figure 3-12 and Table 3-15

indicate that unintentional release of enteric viruses through fecal contamination can

happen through multiple pathways.

Table 3-15. Influences on Virus Presence and Survival in Groundwater and Surface Water.

Adapted from Gerba (2007)1?

time. (Infectious HAV survived >21 days in oysters 4°C seawater)

. . . . Evidence
Influences on viral persistence in the environment Strength Reference
Sewage discharge (positively associated) Strong 139,152
Sewage Treatment (Disinfection of wastewater reduced the number Medium | 152
of viruses found in surface waters.) (negatively associated)
Ultraviolet light (Viruses vary in sensitivity) (negatively Medium | 152155
associated)
Time of year (Longer survival of viruses in colder winter waters.
Higher concentrations of enteroviruses in the summer than in Strong 152
winter in temperate climates.)
Rainfall (During high rainfall events sewage treatment plants may
bypass certain treatment steps or reduce treatment times, Medium | !2
introducing nutrients )
Direct shedding from infected individuals (may re-introduce virus Strong 139: 152
into waters)
Temperature, cooler temperatures associated with longer survival Strong 140: 141
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‘ Water temperature (range)

‘ Air temperature
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Figure 3-12. Graphical representation of influences for HAV presence in coastal waters.
Lines between influences (left side of figure) indicate interactions between influences.

Areas with sewage contamination of seawater are at risk of containing HAV, as
are areas with large congregations of recreational bathers who might be shedding enteric
viruses into the water.'>> Although Table 3-15 above treats groundwater and surface
water separately, nearshore coastal ocean waters may receive freshwater groundwater
inputs. Depending on local hydrology viruses may travel via groundwater into nearshore
coastal waters. The large human population in the coastal watersheds around

Massachusetts Bay, combined with a variety of sewage treatment methods releasing

132



wastewater into the environment, suggest that if HAV is present in the local population is

may be released into coastal waters through multiple routes.

HAYV — In Massachusetts. Vaccination for HAV is recommended by the CDC as
part of the regular schedule of vaccinations for children,® but the HAV vaccine is not
required for public school attendance in Massachusetts.'>” HAV vaccination rates have
changed over time in Massachusetts, they appear to be increasing for young children, but
immunity rates remain low for adults. In 2003 the estimated HAV vaccination rate for
children aged 24-35 months was less than 1% for Massachusetts, and just under 4% for
the Boston area.'”® However, in 2014 the estimated vaccination coverage of >2 doses
among children aged 19-35 months had risen to 64% in Massachusetts, with a national
average of 57%.'> Encouragingly, reported cases of acute HAV infection in
Massachusetts decreased by 61% between 1999 and 2008 and remained low through

2013, shown below in Figure 3-13.'60: 16!
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Confirmed cases of Hepatitis A Virus infections in Massachusetts, 1999 - 2013
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Figure 3-13. Confirmed cases of Hepatitis A Virus infection in Massachusetts, 1999-
2013.!% Data Source: Commonwealth of Massachusetts, graph by author.

A 2010 national survey of U.S. children ages 6-19 years old reported 37.6%
prevalence of immunity to HAV, with the lowest prevalence among white, non-Hispanic
children."® Immunity can be acquired through vaccination or environmental exposure,
so immunity prevalence is not wholly indicative of vaccination coverage. A 2009 study
of HAV vaccine completion among children aged 13-17 estimated that in Massachusetts
the coverage from completing 1 dose of the vaccine was 9% and coverage for having
completed 2 doses was almost 7%, much lower than the national 1-dose coverage
estimate of 42% for the same age group'®? (note that this age cohort would be 19-23 years

old in 2015). In 2013 a national survey for adults aged 19 or older estimated that the
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proportion who had ever received 2 or more doses of HAV vaccine was 9%, but among
those who had traveled outside of the U.S. (to countries other than Europe, Japan,
Australia, Canada, or New Zealand since 1995) the estimated vaccine coverage was
almost 16%.'% National and state level trends suggest that HAV vaccination coverage
for young children is improving, but that for many age groups coverage is still well below
the CDC target of 85%.'%° Despite CDC recommendations and vaccine accessibility,
immunity to HAV is not universal among children or adults in the U.S. This creates the
possibility of increasing age of first exposure to HAV and resulting increased severity of

individual illness or larger outbreaks.

Section Summary. Seafood, including raw shellfish, can be a vector for HAV.
HAV can survive for extended period of time outside of a human host. HAV can be
introduced into the marine environment through human fecal contamination. Although
HAV vaccination rates are increasing in the U.S., there is a large population without
immunity who are at risk of a more severe acute illness if exposure to HAV first occurs

in adulthood.
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Anthropogenic Antibiotics- Manufactured and Released by Humans.

Anthropogenic Antibiotics — Background. Anthropogenic antibiotics are
antibiotic compounds manufactured by humans, as opposed to the antibiotics produced
by bacteria species in the wild. The presence of antibiotics exerts selection pressure upon
bacteria and favors the survival of antibiotic resistant bacteria (ARB). ARB are globally
recognized as a serious public health problem.!%*1%6 Three major factors contribute to the
development and spread of ARB: 1) the overuse, or incorrect use, of antibiotics in human
medicine, 2) the medically unnecessary use of antibiotics for livestock growth promotion
and the subsequent entry of antibiotic resistant bacteria into the food supply, and 3) the
spread of ARB between people or from environmental exposure to non-human sources of

such bacteria.'®’

Anthropogenic Antibiotics — Human Epidemiological Considerations. The
CDC conducts surveillance for antimicrobial resistance among enteric bacteria isolated
from humans through the National Antimicrobial Resistance Monitoring System
(NARMS).'®® In 2009 NARMS started testing isolates of Vibrio species other than V.
cholera for antibiotic resistance, and public health laboratories were asked to forward
every isolate of Vibrio species that they receive to the CDC, note that the number of
isolates is not the same as the number of culture-confirmed Vibrio infection cases.'®® In
2013 the CDC received 607 (non-V. cholera) Vibrio isolates to test for antibiotic
resistance in the NARMS program, 47 of these were from Massachusetts.!®® Only two
states sent more non-V. cholera Vibrio isolates to the CDC for testing in 2013, Florida

(124) and Washington State (62).'®  Of the 607 Vibrio isolates received 317 were V.
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parahaemolyticus, and 40% of those samples demonstrated resistance to the penicillin-
class antibiotic Ampicillin, but not to the other antimicrobial agents tested. Vibrio is only
one genus of enteric bacteria included in the NARMS program, discussed here because
they are a marine-sourced risk known to be present in Massachusetts Bay (unlike some of
the other enteric bacteria tested by NARMS). There are many other species of bacteria
which may display antibiotic resistance and infect other parts of the body besides the

gastrointestinal tract.

The CDC estimates that at least 2 million people in the U.S. experience ARB
infections every year, that over 20,000 people die as a direct result of these infections,
and that many more die from co-morbidities and associated complications.'®” There are
numerous possible routes of exposure, include sea-bathing in waters where these bacteria
are present or recreation in areas where beach sands harbor ARB.% One possible route of
introduction for antibiotics or ABR into the marine environment is through contaminated
wastewater effluent released from municipal wastewater treatment plants (WWTPs) that

discharge into coastal waters.

Anthropogenic antibiotics — In the Environment. After antibiotics are
consumed by patients the antibiotics and their metabolites are introduced into wastewater
systems across the country. Wastewater treatment plants (WWTPs) receive wastewater
laced with antibiotics and other pharmaceuticals, but treatment processes are generally
designed to remove nutrients and kill or reduce microbial pathogens, not to inactivate a
wide variety of chemical compounds; multiple studies have documented the presence of

antibiotics!®-!"3 or ARB!'"#!” in municipal wastewater effluent. The detection of ARB
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in municipal WWTPs has led to the comparison of WWTPs as de facto reservoirs of such
pathogens.!7# 175 180: 181 A qyooested mechanism for how WWTPs serve as reservoirs is
that biological treatment processes facilitate the spread of resistance by continuously

mixing bacteria with antibiotics at sub-inhibitory concentrations, '’

and that this process
itself favors either the transfer of resistance genes via horizontal gene transfer or the
survival of bacteria with resistance genes.!”* A generalized version of this process, and
the findings by Su et al. (2014)!7* from sampling for antibiotic resistant E. coli at two
Chinese WWTPs along different phases of treatment (from influent to effluent) are
diagrammed in Figure 3-14 below. Su et al. (2014) found that wastewater treatment and
disinfection decreased the total number of culturable bacteria from influence to effluent,
but led to an increase in the percentage of antibiotic-resistant E. coli in the final

effluent.'”*
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Su et al. (2014) collected water samples at two WWTPs in Guangdog Province, South China during

ml = colony forming units per milliliter

Figure 3-14. How Wastewater Treatment Plants May Act As a Source of Antibiotic
Resistant Bacteria. Data source: Su et al. (2014)!7*, figure by author

The persistence and ultimate fate of these ARB when they are released into the
environment through effluent discharge is uncertain. However, sea-bathers downstream
of wastewater releases may be at risk of high levels of exposure to ARB because of the
potential for direct contact across multiple body surfaces and unintentional water
ingestion associated with aquatic recreation. Given the variable virulence of bacterial
species (including emerging threats such as Methicillin-resistant Staphylococcus aureus
(MRSA)) traditional water quality monitoring methods based on numerical surveillance
of Enterococcus may be insufficient to adequately protect vulnerable populations when

they recreate in coastal waters.
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Animal Husbandry as a Potential Source of Anthropogenic Antibiotics. In
addition to antibiotic resistant bacteria released from WWTPs, the use of antibiotics in
animal feed can contribute to the increase of ARB in the environment. The human
population in Massachusetts is concentrated in the eastern half of the state, but such
development has not driven out all agricultural activities in the same area. While there
are animal husbandry operations in counties which overlap with Massachusetts Bay
watersheds, the total livestock population is much smaller than the human population, for
example, in 2007 there were an estimated 1,000 hogs in all of Middlesex County.'8?
Compared to other U.S. states Massachusetts has a small number of livestock, in the year
2011 there were approximately 40,000 head of cattle in all of Massachusetts, but
6,300,000 in Kansas.'®® Livestock use of antibiotics in Massachusetts may impact water
quality, but this source as an overall pressure for anthropogenic antibiotic inputs likely
pales in comparison to those contributed to coastal ocean areas from direct human

consumption.

It is difficult to separate out the potential impacts on human health risk of ARB in
the marine environment from the presence of anthropogenic antibiotics unintentionally
released into the environment. Freely mobile antibiotics can exert their selective pressure
on bacteria until the compound is degraded by physical or chemical means. Any
influence of seasonal variations in antibiotic use, and possible resulting fluctuations in
populations of antibiotic—resistant bacteria in the environment, has yet to be determined.

Table 3-16, below, lists known influences on the release and persistence of anthropogenic
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antibiotics into the coastal environment. Figure 3-15 depicts the same information in

graphical form.

Table 3-16. Influences on anthropogenic antibiotic releases and presence of antibiotic

resistant bacteria in coastal waters

Influences on anthropogenic antibiotics in coastal

Evidence

sewage

Reference
waters strength
. ] . 174; 176; 180; 181;
Amount of antibiotics used/prescribed within coastal )
Strong 184; 185

watershed
Environmental conditions favorable to antibiotic 186
stability/persistence, which may include the following: Limited
Temperature, salinity, sunlight (irradiance), pH
High rainfall nts resulting in dischar fr .. 71

gh rainfall events resulting in discharge of raw Limited

Water temperature (range)

Air temperature

Wind direction and upwelling

Rainfall

Sunlight (irradiance)

|
|
|
| Salinity
|
|
|

Turbidity (suspended material)

| River flow output or Groundwater seepage

Human population in watershed

I Beach attendance
\ 4

I Wastewater inputs & treatment type

¢ bacteria)

:'— Dog population |
v | 1 Animal agriculture I
Fe NP | Y _ ‘ —
use —> Nutrient runoff' /composition |

Anthropogenic
Antibiotics

Nore: green boxes = environmental factors,
grey boxes = socio-economic factors

Figure 3-15. Graphical representation of known influences for anthropogenic antibiotics,
presence and persistence, in coastal waters. Lines between influences (left side of figure)

indicate interactions between influences.
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Anthropogenic antibiotics — Estimated Usage in Massachusetts Bay Area.
Antibiotic sales are divided into two categories, human medical use and veterinary use.
The amount of antibiotics used to treat food-producing animals are publicly reported by
the Food and Drug Administration (FDA).'®” Drug Use Review: Systemic Antibacterial
Drug Products, is the most recent FDA report on antibiotics sold for use in humans, this
brief report covers the years 2010-2011 and was published in 2012.'3* Drug Use Review
assembled data on sales of select systemic antibacterial drug products; in 2010
approximately 3.28 million kilograms (kg) were sold, and in 2011 the amount sold was
3.29 million kg."® In both years the most common active ingredient of all selected
systemic antibacterial drug products sold was amoxicillin. Although the FDA does not
report sales at the state level, we have estimated the amount of antibiotics sold in
Massachusetts and specifically in our coastal watershed study area, the method is

described below.

In 2010 U.S. healthcare providers prescribed 258 million courses of antibiotics, '
with 3.28 million kg antibiotics sold in 2010'%4, averaging out to 0.013 kg antibiotics per
prescription. Antibiotic prescription rates vary by region, in the Northeast, the rate of
antibiotic prescriptions is 830 prescriptions per 1,000 persons with the most commonly
prescribed antibiotics coming from the penicillins category (23%), followed by
macrolides (22%).!% Based on its proportion of the U.S. population Massachusetts
would be expected to account for approximately 65,600 kg of antibiotics sold in the U.S.
in 2010. To narrow the estimate of antibiotic use to the six coastal watersheds that serve

as our study area we multiplied the average prescription rate in the Northeast by the
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population in the six coastal watersheds, resulting in an estimated 2,423,600 antibiotic
prescriptions per year in the 6 coastal watersheds around Massachusetts Bay.

Multiplying the average weight of antibiotics per prescription (0.013 kg) by the estimated
number of prescriptions in the coastal watersheds study area (2,423,600) yields an
estimate of 30,800 kg of antibiotics consumed in the study area in 2010. These numbers

and calculations are summarized below in Table 3-17.

Table 3-17. Information to Estimate Massachusetts Antibiotic Usage, 2010

Informational Element Symbol Number Source

56
U.S. total population a 308,745,538 U.S. Census, 2010

56
Massachusetts (MA) population B 6,547,629 U.S. Census, 2010

MA percent of U.S. population

(B /o) x 100 =y Y 2 calculated

Estimated population in six MA
Bay coastal watersheds study area 3 2,920,000 calculated
(see Table 3-6)

Percent of MA population residing
in six coastal watersheds € 45 calculated
0/B)x100=¢

U.S. total human antibiotic usage FDA, cited in Pham

184

in year 2010 (kg) S 3,280,000'| 2012

IMS Health

P Xponent database

U.S. total number of antibiotics \POIN . ’
prescriptions in 2010 A 258,000,000 | cited 11;; Hicks et al.

2013
U.S. Nor.theast antibiotic 0 830 per 1,000 | Hicks et al. 201385
prescription rate (6 = 0.83) people (0.83)
Estimated number of total
antibiotic prescriptions in MA 1) 5,434,532 calculated
Bxb=p)
Estimated number of antibiotic
prescriptions in study area, ) 2,423,600 calculated
(Lxe=y)
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Table 3-17. Information to Estimate Massachusetts Antibiotic Usage, 2010

Informational Element Symbol Number Source
Estimated total antibiotic usage

(kg) in study area, 30,800 kg calculated
(€ /M) x y=30,8000 kg

We estimate that 30,800 kg of antibiotics were consumed, excreted (after being
metabolized to varying degrees), and released into wastewater treatment systems in the
study area in 2010. The wastewater treatment systems in the six coastal watersheds range
in size and complexity from septic systems serving individual homes to the Deer Island
Wastewater Treatment Plant serving 43 Boston-area communities and processing 350
million gallons of wastewater per day.'®® No matter what size treatment plant, the goal of
municipal wastewater treatment is primarily to reduce nutrient outputs into surface water,
and secondarily to minimize public health threats that might spread through untreated
wastewater.'®® However, as discussed above, WWTPs are not designed to eliminate the
vast variety of anthropogenic pollutants that enter wastewater stream, including

anthropogenic antibiotics.

Section Summary. The presence of anthropogenic antibiotics in marine
environments may encourage the development of antibiotic-resistance, or favor the
survival and distribution of any ARB released in wastewater effluent. The magnitude of
the release of anthropogenic antibiotics and antibiotic-resistant bacteria into
Massachusetts Bay through public and private wastewater treatment systems is unknown.
We have presented a first order estimate of annual antibiotic use in the six coastal

watersheds that serve as our study area. Direct sampling of wastewater effluent and
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environmental samples would provide valuable information to refine this estimate. Due
to the limited presence of livestock in the watersheds around Massachusetts Bay, and in
Massachusetts overall, we expect that human use and release through wastewater is the
most significant contributor to the presence of anthropogenic antibiotics in Massachusetts
Bay. The next section introduced the topic of environmental modeling and describes how
the information presented in this chapter on anthropogenic antibiotics and other marine-
sourced risks could contribute to environmental modeling of these risks in Massachusetts

Bay.

Environmental Modeling.

Modeling reduces complex systems to simplified versions of reality.!%
Environmental models often attempt to draw boundaries and describe the orderly
dynamics of a system that may in reality have no boundaries and be full of chaotic
interactions. In other words “our models fall far short of representing the real world

99189

fully. Models may be imperfect but they still prove useful for describing

relationships and forecasting changes of interest (with some expected degree of over- or
under-prediction). In this work we are truly interested in the number of illnesses caused
by various marine-sourced agents, but we know such epidemiological data to be limited
and largely insufficient for building a predictive model for future risks in Massachusetts.
Therefore, we have taken one step backwards in the chain of events and are interested in

modeling the abundance of marine-sourced risks themselves, as they exist in the

environment, before humans are exposed to the risk. The section below provides further
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rationale for using this approach (model development methodology is described in

Chapter 4).

Environmental Modeling Limitations. Research on the relationship between
environmental variables and population levels of pathogenic organisms has been
happening for decades. Traditionally this involved extensive sampling from field sites.
In some cases there are clear relationships among a few variables and the outcome of
interest. For example, temperature and rainfall were able to accurately hindcast the
presence/absence of human enteroviruses in Charlotte Harbor, Florida with 97.3%
accuracy.”! However, when moving towards a scenario where multiple marine-sourced
risks are of interest, as is the case with this research, it is likely that the relationships
between variables and outcomes, and among the variables themselves, will be more
complex. Itis clear that all of the risk categories identified in this chapter (enteric
bacteria, enteric viruses, indigenous marine bacteria, marine toxins, and anthropogenic
compounds) exist in Massachusetts, and are extremely likely to be present in
Massachusetts Bay at varying times and places. However there is unlikely to be data for

all of the known or suspected influences and appropriate temporal or spatial scales.

The availability of spatially-relevant environmental data is often a limiting factor
when investigating the relationship between environmental factors and human health
risks. For example, precipitation and the associated amount of run-off into recreational
water bodies can be highly localized and dependent upon local topography and existing
infrastructure, but counties or cities containing multiple recreational bathing areas might

be served by a single rainfall monitoring station.'” Investigators working at the
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intersection of water quality, public health, and environmental factors have suggested that
“future work should investigate whether beach closures due to microbial contamination
are more likely at beaches in close proximity to CSOs, downstream of heavily urbanized
areas, or nearby agricultural land.”'® In other words, water quality research should

consider upstream and on-land influences, a guiding principle of this work.

Examples of Environmental Modeling in the Gulf of Maine. At least one
predictive environmental model exists for a marine-sourced microbiological risk to
humans in Massachusetts Bay. This example comes from a causative organism of
Paralytic Shellfish Poisoning -- the dinoflagellate Alexandrium fundyense.* A. fundyense
has a long history in the maritime provinces of Canada and New England region of the
United States, but a sophisticated understanding of the organism’s lifecycle and its
connection to environmental drivers is relatively recent.'”!"1%* Models to predict A.
fundyense blooms in the Gulf of Maine have been generated that include factors such as
existing field measurements of A. fundyense cysts in ocean sediments, circulation models
of the waters in the Gulf of Maine, freshwater runoff and associated nutrient
concentrations, and water temperature.*'®> These kinds of models that consider the
‘whole ecosystem’ (where long-term seasonal factors interact with short term
environmental conditions) require the ability to incorporate multiple types of data into

one model.

Through the extensive literature review that formed the bulk of the chapter we
identified known or suspected environmental and socio-economically related influences

on the abundance or presence of five specific marine-sourced risks -- which are
147



representative of larger categories of risk. Table 3-18, below, presents a simplified

version of this information in a single matrix. Figure 3-16, below, displays the same

information in graphical form, including arrows to represent conceptual interactions

among the different influences. For example, among the socio-economic influences

listed on the left side of Figure 3-16 both ‘Beach attendance’ and ‘Dog population’ are

likely influenced by ‘Human population in watershed’, and these three influences may

then influence Enterococcus levels (represented as a box in the upper right side).

Environmental modeling with the capacity to integrate both ocean and land-based

influences on marine-sourced risk would be useful to generating forecasts of

environmental conditions relevant to public health.

Table 3-18. Environmental and socioeconomic influences on specific marine-sourced

risks
Environmental influences Socio-economic influences
Known or
72}
suspected o g | _|g |£ 3
=
environmental | £ °: Z 2 € €8 | <2188 =
and g S 8 |2 |8 |2 |2 |2 |84d3F |k
. . £ 5 g oo = ° 2 &l 8 | = | 2§ 2 2 =
soclroeconomic g | = EE| . | = =y 3 ol & | 2L 2 | 28
infl 5y 2 < 8| E I = = s £ 5 = z g = g 2
influences g 2= E 3| E E 38| 2 8 €8 ¢ w | &g g g g
=E & |25]& |28 & |8 |£5 4 |8 |$9E |28
Enterococcus
. X X X | X X X | X[ X | X | X | X
bacteria
Vibrio
. X X X ? X
parahaemolyticus
Pseudo-nitzschia
do-nirz X | X | X | X X | 2 X | X
species diatoms
Hepatitis A Virus X | X ? ? X | X X
Anthropogenic
L OPO8 ? | X 2 X | ? X | X
antibiotics
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Figure 3-16. Conceptual model of influencing factors on multiple marine-
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Summary Conclusion.

The current medical reporting system is widely acknowledged to be insufficient
for the purpose of capturing the true incidence of many environmentally-driven
illnesses.>*° A greater understanding of the risk potential from marine-sources will not
come from reliance on traditional epidemiological data. Rather it must come from a
greater understanding of the conditions influencing the presence of these risks in their
natural environment,! and then understanding how these factors intersect with human

behavior to influence public health.

The purpose of this chapter was to 1) describe major human demographic
characteristics for the six coastal watersheds around Massachusetts Bay, and 2) describe
five marine-sourced risks known to exist in Massachusetts Bay, with each example
representing a different category of risk. We used spatial analysis software to analyze
data from the U.S. Census Bureau and MassGIS. The results of this analysis included
original estimates of coastal watershed populations, changes in coastal watershed
populations from the year 2000 to 2010, and selected demographic characteristics such as
median age, percent of residents under age 5 or over age 65, and average median income.
Population growth in the coastal watersheds is similar to the trend for Massachusetts as a
whole. However, the Cape Cod watershed had distinctive features compared to the other
coastal watersheds including net population loss, the largest percent of population age 65

or over (25%), the lowest percent of population age 5 or under, and the lowest average of
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census tract median incomes. Together this suggests that the Cape Cod population would

be the most vulnerable to any marine-source risk it encounters.

The marine-sourced risk examples discussed in this chapter represent risk
categories including indigenous pathogenic bacteria, introduced enteric bacteria,
introduced enteric viruses, natural marine toxins, and anthropogenic pollutants. Each
marine-sourced risk example included a list of reported environmental or socioeconomic
influences on the presence or persistence of that particular risk in coastal marine waters.
The section on anthropogenic antibiotics also includes an original estimate of human
antibiotic use in the study area. From this review it is clear that individual variables (e.g.,
temperature, salinity, and nutrient levels) influence multiple types of marine-sourced
risks, this exercise was designed to identify such ‘high value’ data that could be used in

attempts to model multiple risks concurrently.

An increasing human population in Massachusetts Bay coastal watersheds
indicates that more people will have close access to ocean-based recreational activities,
including sea-bathing. These ocean-based recreational activities, along with the
consumption of seafood harvested from nearshore waters, may bring people into contact
with a variety of marine-sourced risks. Given that 1) an estimated 5 million cases of
gastrointestinal illness due to beach exposure occur in the U.S. every year,® 2) the
widespread belief among the public health community that marine-sourced illnesses as a
whole are currently not well quantified,” % ** 3) seafood has the highest rate of foodborne

illness in the U.S.,* and 4) large numbers of residents and tourists consume seafood from
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or directly interact with the nearshore coastal waters of Massachusetts Bay and Cape Cod
Bay, it is likely that there are unreported marine-sourced illnesses among residents and
visitors to the Massachusetts Bay area. Thus, this is an area of public health research
worthy of greater attention. There is a need for better epidemiological data in conjunction
with a timely understanding of changing marine-sourced risk potentials to support public
health forecasting. Chapter 3 discusses the current data landscape as it relates to

environmental-human health research, modeling, and forecasting.

152



Literature Cited.

1. Doyle, T. J., Glynn, M. K., Groseclose, S. L. 2002. Completeness of notifiable
infectious disease reporting in the United States: an analytical literature review. Am.
J. Epidemiol. 155: 866-874.

2. Centers for Disease Control and Prevention. CDC Estimates of Foodborne Illness in
the United States: CDC 2011 Estimates: Findings. Centers for Disease Control and
Prevention. Atlanta, GA, USA. http://www.cdc.gov/foodborneburden/2011-
foodborne-estimates.html (Accessed April 22, 2015).

3. Centers for Disease Control and Prevention. 2013. Surveillance for foodborne disease
outbreaks--United States, 2009-2010. MMWR. 62: 41-47.

4. Bienfang, P. K., DeFelice, S. V., Laws, E. A., Brand, L. E., Bidigare, R. R.,
Christensen, S., Trapido-Rosenthal, H., Hemscheidt, T. K., McGillicuddy Jr, D. J.,
Anderson, D. M. 2011. Prominent Human Health Impacts from Several Marine
Microbes: History, Ecology, and Public Health Implications. Int. J. Microbiol. 2011.

5. Shuval, H. 2003. Estimating the global burden of thalassogenic diseases: human
infectious diseases caused by wastewater pollution of the marine environment. J.
Water & Health. 1: 53-64.

6. Ralston, E. P., Kite-Powell, H., Beet, A. 2011. An estimate of the cost of acute health
effects from food- and water-borne marine pathogens and toxins in the USA. J.
Water & Health. 9: 680-694.

7. Centers for Disease Control and Prevention. 2015. CDC Estimates of Foodborne
Illness in the United States: Foodborne Illness Surveillance, Response, and Data
Systems. Centers for Disease Control and Prevention. Atlanta, G.A.
http://www.cdc.gov/foodborneburden/surveillance-systems.html (Accessed
December 13, 2015).

8. United States Department of Health and Human Services, Centers for Disease Control
and Prevention. 2011. National Notifiable Diseases Surveillance System: History.
http://www.cdc.gov/osels/ph_surveillance/nndss/nndsshis.htm (Accessed 5/17/2011,
2011).

9. Centers for Disease Control and Prevention. 2013. Foodborne Outbreak Tracking and
Reporting: Overview. Centers for Disease Control and Prevention. Atlanta, GA.
http://www.cdc.gov/foodsafety/fdoss/overview/index.html (Accessed June 22,
2015).

153


http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html
http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html
http://www.cdc.gov/foodborneburden/surveillance-systems.html
http://www.cdc.gov/osels/ph_surveillance/nndss/nndsshis.htm
http://www.cdc.gov/foodsafety/fdoss/overview/index.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Centers for Disease Control and Prevention. 2013. National Enteric Disease
Surveillance: COVIS Annual Summary, 2011. Centers for Disease Control and
Prevention. Atlanta, GA. 1-10.

Centers for Disease Control and Prevention. 2015. Waterborne Disease & Outbreak
Surveillance & Reporting. Centers for DIsease Control and Prevention. Atlanta,
G.A. http://www.cdc.gov/healthywater/surveillance/ (Accessed December 13, 2015).

Hlavsa, M. C., Roberts, V. A., Kahler, A. M., Hilborn, E. D., Wade, T. J., Backer, L.
C., Yoder, J. S. 2014. Recreational water—associated disease outbreaks—United
States, 2009-2010. MMWR. 63: 6-10.

Hlavsa, M. C., Roberts, V. A., Anderson, A. R., Hill, V. R., Kahler, A. M., Orr, M.,
Garrison, L. E., Hicks, L. A., Newton, A., Hilborn, E. D., Wade, T. J., Beach, M. J.,
Yoder, J. S. 2011. Surveillance for Waterborne Disease Outbreaks and Other Health
Events Associated with Recreational Water--United States, 2007-2008. MMWR. 60:
1-37.

Hlavsa, M. C., Roberts, V. A., Kahler, A. M., Hilborn, E. D., Mecher, T. R., Beach,
M. J., Wade, T. J., Yoder, J. S. 2015. Outbreaks of illness associated with
recreational water—United States, 2011-2012. MMWR. 64: 668-672.

Slovic, P. 1987. Perception of risk. Science. 236: 280-285.

Collier, S., Stockman, L., Hicks, L., Garrison, L., Zhou, F., Beach, M. 2012. Direct
healthcare costs of selected diseases primarily or partially transmitted by water.
Epidemiol. Infect. 140: 2003-2013.

Commonwealth of Massachusetts, Executive Office of Energy and Environmental
Affairs. 2006. Massachusetts Outdoors 2006: Statewide Comprehensive Outdoor
Recreation Plan. Commonwealth of Massachusetts. Boston, M.A. 1-166.

Commonwealth of Massachusetts, Division of Marine Fisheries. 2015. Massachusetts
Marine Fisheries: 2014 Annual Report. Commonwealth of Massachusetts. Boston,
M.A. 1-123.

Dufour, A. P., Evans, O., Behymer, T. D., Cantu, R. 2006. Water ingestion during
swimming activities in a pool: a pilot study. J. Water Health. 4: 425-430.

Evans, O. M., Wymer, L. J., Behymer, T. D., Dufour, A. P. 2006. An observational
study determination of the volume of water ingested during recreational swimming
activities. National Beaches Conference, Niagara Falls, NY. Vol. 12Niagara Falls,
NY.

154


http://www.cdc.gov/healthywater/surveillance/

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. Dorevitch, S., Panthi, S., Huang, Y., Li, H., Michalek, A. M., Pratap, P., Wroblewski,

M., Liu, L., Scheff, P. A., Li, A. 2011. Water ingestion during water recreation.
Water Res. 45: 2020-2028.

Heaney, C. D., Sams, E., Wing, S., Marshall, S., Brenner, K., Dufour, A. P., Wade, T.
J. 2009. Contact with beach sand among beachgoers and risk of illness. Am. J.
Epidemiol. 170: 164-172.

Yamahara, K. M., Sassoubre, L. M., Goodwin, K. D., Boehm, A. B. 2012.
Occurrence and persistence of bacterial pathogens and indicator organisms in beach
sand along the California coast. Appl. Environ. Microbiol. 78: 1733-1745.

Yamahara, K. M., Walters, S. P., Boehm, A. B. 2009. Growth of enterococci in
unaltered, unseeded beach sands subjected to tidal wetting. Appl. Environ.
Microbiol. 75: 1517-1524.

Halliday, E., Gast, R. J. 2011. Bacteria in Beach Sands: An Emerging Challenge in
Protecting Coastal Water Quality and Bather Health. Environ. Sci. Technol. 45: 370-
379.

Commonwealth of Massachusetts, Department of Public Health. 2015. Marine and
Freshwater Beach Testing in Massachusetts, Annual Report: 2014 Season.
Commonwealth of Massachusetts. Boston, M.A. 1-151.

Noble, R. T., Moore, D. F., Leecaster, M. K., McGee, C. D., Weisberg, S. B. 2003.
Comparison of total coliform, fecal coliform, and enterococcus bacterial indicator
response for ocean recreational water quality testing. Water Res. 37: 1637-1643.

National Research Council. 2004. Indicators for Waterborne Pathogens. The National
Academies Press. Washington, DC. 1-332.

Ballester, N., Fontaine, J., Margolin, A. 2005. Occurrence and correlations between
coliphages and anthropogenic viruses in the Massachusetts Bay using enrichment
and ICC-nPCR. J Water Health. 3: 59-68.

Kress, M. M. 2015. Red's Best Seafood Booth at Boston Public Market: Signs of
Shellfish For Sale by Month (unpublished photographs). unpublished.

Commonwealth of Massachusetts, Division of Marine Fisheries. 2015. Shellfish
Management. Commonwealth of Massachusetts. Boston, M.A.
http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/shellfisheries-
management.html#csr (Accessed October 19, 2015).

155


http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/shellfisheries-management.html#csr
http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/shellfisheries-management.html#csr

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Commonwealth of Massachusetts, Division of Marine Fisheries. 2015. Public Health
Protection: Shellfish Sanitation. Commonwealth of Massachusetts. Boston, M. A.
http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/public-health-
protection.html (Accessed October 19, 2015).

Fraser, D. 2012. Local oysters blamed for illnesses. Cape Cod Times, Local Media
Group, Inc. Hyannis, MA.
http://www.capecodtimes.com/article/20121110/NEWS/211100335 (Accessed
December 15, 2015).

Serreze, M. 2014. Cape Cod oyster '"Vibrio' poisoning case to be heard in Hampshire
Superior Court. MassLive LLC. Springfield, MA.
http://www.masslive.com/news/index.ssf/2014/12/toxic_cape_cod_oyster_case_to.ht
ml (Accessed January 1, 2015).

Commonwealth of Massachusetts, Division of Marine Fisheries. 2015. Vibrio Control
Plan. Commonwealth of Massachusetts. Boston, M. A.
http://www.mass.gov/eea/agencies/dfg/dmt/programs-and-projects/vibrio.html
(Accessed October 19, 2015).

Earle, P. M., Crisley, F. D. 1975. Isolation and characterization of Vibrio
parahaemolyticus from Cape Cod soft-shell clams (Mya arenaria). Appl. Microbiol.
29: 635-640.

Bartley, C. H., Slanetz, L. 1971. Occurrence of Vibrio parahaemolyticus in Estuarine
Waters and Oysters of New Hampshire. Appl. Environ. Microbiol. 21: 965-966.

Commonwealth of Massachusetts, Department of Public Health. 2013.
Communicable and Other Infectious Diseases Reportable in Massachusetts by
Healthcare Providers (PDF File). : 1-2.

Commonwealth of Massachusetts, Department of Public Health. 2013.
Communicable and Other Infectious Diseases Reportable in Massachusetts by
Clinical Laboratories (PDF File). : 1.

Commonwealth of Massachusetts, Division of Marine Fisheries. 2012. New Cooling
Requirements for Oysters Harvested this Summer from Eastern Cape. DMF News.
Massachusetts Division of Marine Fisheries: 1-2.

Hunt, C. D., Borkman, D. G., Libby, P. S., Lacouture, R., Turner, J. T., Mickelson,

M. J. 2010. Phytoplankton patterns in Massachusetts Bay—1992-2007. Estuaries
and Coasts. 33: 448-470.

156


http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/public-health-protection.html
http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/public-health-protection.html
http://www.capecodtimes.com/article/20121110/NEWS/211100335
http://www.masslive.com/news/index.ssf/2014/12/toxic_cape_cod_oyster_case_to.html
http://www.masslive.com/news/index.ssf/2014/12/toxic_cape_cod_oyster_case_to.html
http://www.mass.gov/eea/agencies/dfg/dmf/programs-and-projects/vibrio.html

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Commonwealth of Massachusetts. 2009. MassGIS Data: Datalayers: Land Use
(2005). Commonwealth of Massachusetts. Boston, M. A.
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-

serv/office-of-geographic-information-massgis/datalayers/lus2005.html (Accessed
October 30, 2015).

Centers for Disease Control and Prevention. 2015. People at High Risk of Developing
Flu—Related Complications. Centers for Disease Control and Prevention. Atlanta,
Ga. http://www.cdc.gov/flu/about/disease/high risk.htm (Accessed June 22, 2015).

U.S. Census Bureau. What is the Census? U.S. Department of Commerce.
Washington, D.C. http://www.census.gov/2010census/about/ (Accessed July 2,
2015).

U.S. Census Bureau. 2014. American Community Survey: About. U.S. Census
Bureau. Washington, DC.
http://www.census.gov/acs/www/about_the survey/american_community_survey/
(Accessed May 24, 2015).

U.S. Census Bureau, Economic Planning and Coordination Division. 2014. Economic
Census: About. U.S. Census Bureau. Washington, D.C., USA.
http://www.census.gov/econ/census/about/ (Accessed December 1, 2015).

U.S. Census Bureau. 2012. Geographic Terms and Concepts - Census Tract. U.S.
Department of Commerce. Washington, D.C.
https://www.census.gov/geo/reference/gtc/gtc _ct.html (Accessed July 2, 2015).

U.S. Census Bureau. 2012. Geographic Terms and Concepts - Block. U.S.
Department of Commerce. Washington, D.C.
https://www.census.gov/geo/reference/gtc/gtc_block.html (Accessed July 2, 2015).

U.S. Census Bureau. 2012. Geographic Terms and Concepts - Block Groups. U.S.
Department of Commerce. Washington, D.C.
http://www.census.gov/geo/reference/gtc/gtc _bg.html (Accessed July 2, 2015).

U.S. Census Bureau. 2015. Maps & Data: TIGER Products. U.S. Department of
Commerce. Washington, D.C. http://www.census.gov/geo/maps-data/data/tiger.html
(Accessed July 2, 2015).

Cutter, S. L., Boruff, B. J., Shirley, W. L. 2003. Social Vulnerability to
Environmental Hazards. Social Sci. Quart. 84: 242-261.

ESRI. 2012. ArcGIS for Desktop. ArcMap 10.1.
157


http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/lus2005.html
http://www.cdc.gov/flu/about/disease/high_risk.htm
http://www.census.gov/2010census/about/
http://www.census.gov/acs/www/about_the_survey/american_community_survey/
http://www.census.gov/econ/census/about/
https://www.census.gov/geo/reference/gtc/gtc_ct.html
https://www.census.gov/geo/reference/gtc/gtc_block.html
http://www.census.gov/geo/reference/gtc/gtc_bg.html
http://www.census.gov/geo/maps-data/data/tiger.html

53.

54.

55.

56.

57.

38.

59.

60.

61.

62.

White, E. M. 2006. Forests on the Edge: A Case Study of South-Central and
Southwest Maine Watersheds. U.S. Department of Agriculture, Pacific Northwest
Research Station. Corvallis, OR, USA. 1-21.

Commonwealth of Massachusetts. 2009. Office of Geographic and Environmental
Information (MassGIS) . Commonwealth of Massachusetts. Massachusetts, USA.
http://www.mass.gov/mgis/massgis.htm (Accessed December 10, 2009).

Center for Policy Analysis, University of Massachusetts Dartmouth. 2000. Help!
Wanted: Cape Cod's Seasonal Workforce. Economic Research Series No. 26.
University of Massachusetts Dartmouth. 1-90.

U.S. Census Bureau. 2014. 2010 Census Interactive Population Search:
Massachusetts. U.S. Department of Commerce. Washington, D.C.
http://www.census.gov/2010census/popmap/ipmtext.php?fl=24 .

Massachusetts Water Resources Authority. 2012. Water Column Monitoring in
Massachusetts Bay: 1992 - 2006.

Libby, P. S., Fitzpatrick, M. R., Buhl, R. L., Lescarbeau, G. R., Leo, W. S., Borkman,
D. G., Turner, J. T. 2014. Quality assurance project plan (QAPP) for water column
monitoring 2014-2016: Tasks 4-7 and 10. Report 2014-01. Massachusetts Water
Resources Authority. Boston, M.A. 1-67.

Costa, A., Larson, E., Stamieszkin, K. 2014. Quality Assurance Project Plan (QAPP)
for Water Quality Monitoring in Cape Cod Bay 2014-2016. Report 2014-07.
Massachusetts Water Resources Authority. Boston, M.A. 1-94.

Libby, P. S., Borkman, D. G., Geyer, W. R., Turner, J. T., Costa, A. S. 2014. 2013
Water Column Monitoring Results. Report 2014-17. Massachusetts Water Resources
Authority. Boston, MA. 1-43.

Massachusetts Water Resources Authority. 2015. Boston Harbor and Massachusetts
Bay: Water Quality Data
. Massachusetts Water Resources Authority. Boston, MA.
http://www.mwra.state.ma.us/harbor/html/wq_data.htm (Accessed May 17, 2015).

Commonwealth of Massachusetts. 2011. MassGIS Data: Datalayers: MassDEP
Ground Water Discharge Permits. Commonwealth of Massachusetts. Boston, M.A.
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-
serv/office-of-geographic-information-massgis/datalayers/gwp.html (Accessed
October 30, 2015).

158


http://www.mass.gov/mgis/massgis.htm
http://www.census.gov/2010census/popmap/ipmtext.php?fl=24
http://www.mwra.state.ma.us/harbor/html/wq_data.htm
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/gwp.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/gwp.html

63.

64.

65.

66.

67.

68.

69.

70.

71.

Commonwealth of Massachusetts. 2015. MassGIS Data: Datalayers:Designated
Shellfish Growing Areas. Commonwealth of Massachusetts. Boston, M.A.
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-
serv/office-of-geographic-information-massgis/datalayers/dsga.html (Accessed
November 7, 2015).

Commonwealth of Massachusetts. 2013. MassGIS Data: Datalayers: Marine Beaches.
Commonwealth of Massachusetts. Boston, M. A. http://www.mass.gov/anf/research-
and-tech/it-serv-and-support/application-serv/office-of-geographic-information-
massgis/datalayers/marinebeaches.html (Accessed October 30, 2015).

United States Environmental Protection Agency (U.S.EPA). 2012. Combined Sewer
Overflows. USEPA. Washington, D.C. http://cfpub.epa.gov/npdes/home.cfm
(Accessed 03/24, 2014).

Rattigan, D. 2013. Sewer overflow triggers closure of Gloucester beach Boston Globe
Media Partners, LLC. Boston, M.A.
http://www.boston.com/yourtown/news/gloucester/2013/06/sewer_overflow_triggers

closure_of gloucester beach.html (Accessed March 24, 2014).

United States Environmental Protection Agency (U.S.EPA), Region 1. 2013.
Reducing Combined Sewer Overflows to Charles River. USEPA.
http://cfpub.epa.gov/npdes/home.cfm?program_id=5 (Accessed 03/24, 2014).

Revere Journal Staff. 2012. Sewerage Dispute. Revere JournalThe Independent
Newspaper Group. 385 Broadway, Suite 105 in the Citizens Bank Building, Revere,
MA 02151.

Griffin, D. W., Donaldson, K. A., Paul, J. H., Rose, J. B. 2003. Pathogenic Human
Viruses in Coastal Waters. Clin. Microbiol. Rev. 16: 129-143.

Sham, C. H., Brawley, J. W., Moritz, M. A. 1995. Quantifying septic nitrogen
loadings to receiving waters: Waquoit Bay, Massachusetts. International Journal of
Geographical Information Systems. 9: 463-473.

Lipp, E. K., Kurz, R., Vincent, R., Rodriguez-Palacios, C., Farrah, S. R., Rose, J. B.

2001. The Effects of Seasonal Variability and Weather on Microbial Fecal Pollution
and Enteric Pathogens in a Subtropical Estuary. Estuaries. 24: 266-276.

159


http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/dsga.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/dsga.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/marinebeaches.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/marinebeaches.html
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/marinebeaches.html
http://cfpub.epa.gov/npdes/home.cfm
http://www.boston.com/yourtown/news/gloucester/2013/06/sewer_overflow_triggers_closure_of_gloucester_beach.html
http://www.boston.com/yourtown/news/gloucester/2013/06/sewer_overflow_triggers_closure_of_gloucester_beach.html
http://cfpub.epa.gov/npdes/home.cfm?program_id=5

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

Muddy River Restoration Project Maintenance and Management Oversight
Committee. 2015. Muddy River Restoration Project: Flood Control Improvement.
Muddy River Restoration Project Maintenance and Management Oversight
Committee. Boston, M. A. http://www.muddyrivermmoc.org/flood-control/
(Accessed 11/29, 2015).

Lleo, M. M., Bonato, B., Benedetti, D., Canepari, P. 2005. Survival of enterococcal
species in aquatic environments. FEMS Microbiol. Ecol. 54: 189-196.

Fisher, K., Phillips, C. 2009. The ecology, epidemiology and virulence of
Enterococcus. Microbiology. 155: 1749-1757.

Priiss, A. 1998. Review of epidemiological studies on health effects from exposure to
recreational water. Int. J. Epidemiol. 27: 1-9.

World Health Organization. 1999. Health-based Monitoring of Recreational Waters:
The Feasibility of a New Approach (The 'Annapolis Protocol’). Outcome of an
Expert Consultation, Annapolis, USA Co-sponsored by USEPA.
WHO/SDE/WSH/99.1. World Health Organization. Geneva, Switzerland. 1-50.

Mote, B. L., Turner, J. W., Lipp, E. K. 2012. Persistence and growth of the fecal
indicator bacteria enterococci in detritus and natural estuarine plankton communities.
Appl. Environ. Microbiol. 78: 2569-2577.

Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R., Harwood, V. J.
2012. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76: 685-706.

Anderson, K. L., Whitlock, J. E., Harwood, V. J. 2005. Persistence and Differential
Survival of Fecal Indicator Bacteria in Subtropical Waters and Sediments. Appl.
Environ. Microbiol. 71: 3041-3048.

Alkan, U., Elliott, D. J., Evison, L. M. 1995. Survival of enteric bacteria in relation to
simulated solar radiation and other environmental factors in marine waters. Water
Res. 29: 2071-2080.

Shibata, T., Solo-Gabriele, H. M., Sinigalliano, C. D., Gidley, M. L., Plano, L. R. W,
Fleisher, J. M., Wang, J. D., Elmir, S. M., He, G., Wright, M. E. 2010. Evaluation of
conventional and alternative monitoring methods for a recreational marine beach
with nonpoint source of fecal contamination. Environ. Sci. Technol. 44: 8175-8181.

160


http://www.muddyrivermmoc.org/flood-control/

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Bonilla, T. D., Nowosielski, K., Cuvelier, M., Hartz, A., Green, M., Esiobu, N.,
McCorquodale, D. S., Fleisher, J. M., Rogerson, A. 2007. Prevalence and
distribution of fecal indicator organisms in South Florida beach sand and preliminary
assessment of health effects associated with beach sand exposure. Mar. Pollut. Bull.

54: 1472-1482.

Goodwin, K. D., McNay, M., Cao, Y., Ebentier, D., Madison, M., Griffith, J. F. 2012.
A multi-beach study of Staphylococcus aureus, MRSA, and enterococci in seawater
and beach sand. Water Res. 46: 4195-4207.

Shah, A. H., Abdelzaher, A. M., Phillips, M., Hernandez, R., Solo-Gabriele, H. M.,
Kish, J., Scorzetti, G., Fell, J. W., Diaz, M. R., Scott, T. M. 2011. Indicator microbes
correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical
recreational beach site. J. Appl. Microbiol. 110: 1571-1583.

Bonilla, T. D., Nowosielski, K., Esiobu, N., McCorquodale, D. S., Rogerson, A.
2006. Species assemblages of Enterococcus indicate potential sources of fecal
bacteria at a south Florida recreational beach. Mar. Pollut. Bull. 52: 807-810.

Tyagi, P., Edwards, D., Coyne, M. 2009. Distinguishing between human and animal
sources of fecal pollution in waters: a review. Int. J. Water. 5: 15-34.

Joseph, S. W., Colwell, R. R., Kaper, J. B. 1982. Vibrio parahaemolyticus and related
halophilic Vibrios. Crit. Rev. Microbiol. 10: 77-124.

Kaysner, C. A., DePaola, J., Angelo. 2004. Chapter 9: Vibrio (web version)
. In Bacteriological Analytical Manual. Hammack T., Davidson, M., Feng, P. et al,
Eds.U.S. Food and Drug Administration. Washington, D.C.

Thompson, C. A., Vanderzant, C. 1976. Relationship of Vibrio parahaemolyticus in
Oysters, Waters and Sediment, and Bacteriological and Environmental Indices. J.
Food Sci. 41: 117-122.

Iwamoto, M., Ayers, T., Mahon, B. E., Swerdlow, D. L. 2010. Epidemiology of
seafood-associated infections in the United States. Clin. Microbiol. Rev. 23: 399.

DePaola, A., Jones, J. L., Woods, J., Burkhardt, W.,3rd, Calci, K. R., Krantz, J. A.,
Bowers, J. C., Kasturi, K., Byars, R. H., Jacobs, E., Williams-Hill, D., Nabe, K.
2010. Bacterial and viral pathogens in live oysters: 2007 United States market
survey. Appl. Environ. Microbiol. 76: 2754-2768.

Centers for Disease Control and Prevention (CDC). 2005. Vibrio Illnesses After
Hurricane Katrina --- Multiple States, August--September 2005. MMWR. 54: 1-4.

161



93. Centers for Disease Control and Prevention. 2014. Food Safety Progress Report for
2013. Centers for Disease Control and Prevention. Atlanta, GA. 1.

94. Centers for Disease Control and Prevention. 2013. Vibrio lllness (Vibriosis): Vibrio
parahaemolyticus
. Centers for Disease Control and Prevention. Atlanta, G.A.
http://www.cdc.gov/vibrio/vibriop.html (Accessed April 2, 2015).

95. U.S. Census Bureau. 2013. Income, Poverty, and Health Insurance Coverage: 2012 -
Tables & Figures. Number and Percentage of People Without Health Insurance
Coverage by State Using 2- and 3-Year Averages: 2009-2010 and 2011-2012
[Spreadsheet File]. U.S. Census Bureau. Washington, D.C. 1.

96. Kelly, M. T., Stroh, E. M. 1988. Temporal relationship of Vibrio parahaemolyticus in
patients and the environment. J. Clin. Microbiol. 26: 1754-1756.

97. Martinez-Urtaza, J., Bowers, J. C., Trinanes, J., DePaola, A. 2010. Climate anomalies

and the increasing risk of Vibrio parahaemolyticus and Vibrio vulnificus illnesses.
Food Res. Int. 43: 1780-1790.

98. Krantz, G. E., Colwell, R. R., Lovelace, E. 1969. Vibrio parahaemolyticus from the
blue crab Cailinectes sapidus in Chesapeake Bay. Science. 164: 1286-1287.

99. Colwell, R., Kaper, J., Joseph, S. 1977. Vibrio cholerae, Vibrio parahaemolyticus,
and Other Vibrios: Occurrence and Distribution in Chesapeake Bay. Science. 198:
394-396.

100. Kaneko, T., Colwell, R. R. 1978. Annual Cycle of Vibrio Parahaemolyticus in
Chesapeake Bay. Microb. Ecol. 4: 135-155.

101. Kaneko, T., Colwell, R. R. 1973. Ecology of Vibrio parahaemolyticus in
Chesapeake Bay. J. Bacteriol. 113: 24-32.

102. Johnson, C. N., Bowers, J. C., Griffitt, K. J., Molina, V., Clostio, R. W., Pei, S.,
Laws, E., Paranjpye, R. N., Strom, M. S., Chen, A., Hasan, N. A., Huq, A., Noriea,
N. F.,3rd, Grimes, D. J., Colwell, R. R. 2012. Ecology of Vibrio parahaemolyticus
and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland,
Mississippi, and Washington (United States). Appl. Environ. Microbiol. 78: 7249-
7257.

162


http://www.cdc.gov/vibrio/vibriop.html

103. Parveen, S., Hettiarachchi, K. A., Bowers, J. C., Jones, J. L., Tamplin, M. L.,
McKay, R., Beatty, W., Brohawn, K., DaSilva, L. V., DePaola, A. 2008. Seasonal
distribution of total and pathogenic Vibrio parahaemolyticus in Chesapeake Bay
oysters and waters. Int. J. Food Microbiol. 128: 354-361.

104. Gode-Potratz, C. J., Chodur, D. M., McCarter, L. L. 2010. Calcium and Iron
Regulate Swarming and Type III Secretion in Vibrio parahaemolyticus . J. Bacteriol.
192: 6025-6038.

105. Daniels, N. A., MacKinnon, L., Bishop, R., Altekruse, S., Ray, B., Hammond, R.
M., Thompson, S., Wilson, S., Bean, N. H., Griffin, P. M. 2000. Vibrio
parahaemolyticus infections in the United States, 1973—1998. J. Infect. Dis. 181:
1661.

106. Su, Y., Liu, C. 2007. Vibrio parahaemolyticus: A concern of seafood safety. Food
Microbiol. 24: 549-558.

107. Cabrera-Garcia, M. E., Vazquez-Salinas, C., Quinones-Ramirez, E. 1. 2004.
Serologic and molecular characterization of Vibrio parahaemolyticus strains isolated

from seawater and fish products of the Gulf of Mexico. Appl. Environ. Microbiol.
70: 6401-6406.

108. Hlady, W. G., Klontz, K. C. 1996. The epidemiology of Vibrio infections in Florida,
1981-1993. J. Infect. Dis. 173: 1176-1183.

109. Commonwealth of Massachusetts, Department of Public Health. 2012. Vibrio
Control and Management in Eastern Cape Cod Bay: Information for Professional
Oyster Harvesters. Commonwealth of Massachusetts. Boston, M.A.
http://www.mass.gov/eohhs/docs/dph/environmental/foodsafety/seafood/vibrio-
control-brochure.pdf (Accessed December 27, 2012).

110. Anderson, C. R., Sapiano, M. R. P., Prasad, M., Long, W., Tango, P. J., Brown, C.
W., Murtugudde, R. 2010. Predicting potentially toxigenic Pseudo-nitzschia blooms
in the Chesapeake Bay. J. Mar. Syst. 83: 127-140.

111. Silver, M. W., Bargu, S., Coale, S. L., Benitez-Nelson, C. R., Garcia, A. C., Roberts,
K. J., Sekula-Wood, E., Bruland, K. W., Coale, K. H. 2010. Toxic diatoms and

domoic acid in natural and iron enriched waters of the oceanic Pacific. Proc. Natl.
Acad. Sci. U. S. A. 107: 20762-20767.

112. Pulido, O. M. 2008. Domoic acid toxicologic pathology: a review. Marine drugs. 6:
180-219.

163


http://www.mass.gov/eohhs/docs/dph/environmental/foodsafety/seafood/vibrio-control-brochure.pdf
http://www.mass.gov/eohhs/docs/dph/environmental/foodsafety/seafood/vibrio-control-brochure.pdf

113. Teitelbaum, J. S., Zatorre, R. J., Carpenter, S., Gendron, D., Evans, A. C., Gjedde,
A., Cashman, N. R. 1990. Neurologic sequelae of domoic acid intoxication due to
the ingestion of contaminated mussels. N. Engl. J. Med. 322: 1781-1787.

114. Lelong, A., Hégaret, H., Soudant, P., Bates, S. 2012. Pseudo-nitzschia species,

domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. 51:
168-216.

115. Fernandes, L. F., Hubbard, K. A., Richlen, M. L., Smith, J., Bates, S. S., Ehrman, J.,
Léger, C., Mafra, L. L., Kulis, D., Quilliam, M. 2014. Diversity and toxicity of the
diatom Pseudo-nitzschia Peragallo in the Gulf of Maine, Northwestern Atlantic
Ocean. Deep Sea Research Part II: Topical Studies in Oceanography. 103: 139-162.

116. Angus, T. H. 2015. Examining the Toxicity, Exposure, and Regulatory Approach to
Potential Human Health Risks of the Algal Toxin Domoic Acid. Doctor of
Philosophy thesis, University of Massachusetts Boston, Boston, MA.

117. Food and Agriculture Organization of the United Nations (FAO). 2004. Chapter 4
Amnesic Shellfish Poisoning. /n Marine Biotoxins: FAO Food and Nutrition Paper

80. Anonymous : 97-133. Food and Agriculture Organization of the United Nations
(FAO). Rome, Italy.

118. Ajani, P., Murray, S., Hallegraeff, G., Lundholm, N., Gillings, M., Brett, S.,
Armand, L. 2013. The diatom genus Pseudo -nitzschia (Bacillariophyceae) in New
South Wales, Australia: morphotaxonomy, molecular phylogeny, toxicity and
distribution. J. Phycol. 49: 765-785.

119. Aktan, Y. 2005. Toxic and harmful algal species in the Izmit Bay, Marmara Sea.
Harmful algae news. 28: 6.

120. Amzil, Z., Fresnel, J., Le Gal, D., Billard, C. 2001. Domoic acid accumulation in
French shellfish in relation to toxic species of Pseudo-nitzschia multiseries and P.
pseudodelicatissima. Toxicon. 39: 1245-1251.

121. Anderson, D. M., Reguera, B., Pitcher, G. C., Enevoldsen, H. O. 2010. The I0C
International Harmful Bloom Program: History and Science Impacts. Oceanography.

23:72-85.

122. Backer, L., McGillicuddy, D. 2006. Harmful algal blooms. Oceanography. 19: 94.

164



123. Costa, P. R., Rosa, R., Duarte-Silva, A., Brotas, V., Sampayo, M. A. M. 2005.
Accumulation, transformation and tissue distribution of domoic acid, the amnesic
shellfish poisoning toxin, in the common cuttlefish,Sepia officinalis. Aquatic
toxicology. 74: 82-91.

124. Maucher, J. M., Ramsdell, J. S. 2005. Domoic acid transfer to milk: evaluation of a
potential route of neonatal exposure. Environ. Health Perspect. 113: 461.

125. Maucher, J. M., Ramsdell, J. S. 2007. Maternal—fetal transfer of domoic acid in rats
at two gestational time points. Environ. Health Perspect. 115: 1743.

126. Maucher Fuquay, J., Muha, N., Wang, Z., Ramsdell, J. S. 2012. Toxicokinetics of
domoic acid in the fetal rat. Toxicology. 294: 36-41.

127. Trainer, V. L., Suddleson, M. 2005. Monitoring Approaches for Early Warning of
Domoic Acid Events in Washington State. Oceanography. 18: 228-237.

128. Center for Environment, Fisheries, and Aquaculture Science. 2007. Marine
Microbial Communities in UK Waters from Phylogenic Studies to Remote Studies.

129. Kelly, M., Fraser, S. 1999. Toxic algal monitoring in Scotland 1998. FRS Report. 8:
99.

130. Downes-Tettmar, N., Rowland, S., Miller, P., Llewellyn, C. 2013. Seasonal
variation in Pseudo-nitzschia spp. and domoic acid production in the Western
English Channel. Continental Shelf Research. 53: 40-49.

131. Lane, J. Q., Raimondi, P. T., Kudela, R. M. 2009. Development of a logistic
regression model for the prediction of toxigenic Pseudo-nitzschia blooms in
Monterey Bay, California. Mar. Ecol. Prog. Ser. 383: 37-51.

132. Massachusetts Water Resources Authority. . 2015. pseudonitz_1992-2014.x1sx [MS
Excel file]. M. Kress.

133. Northeastern Regional Association of Coastal and Ocean Observing Systems. 2014.
NERACOOS: Data & Tools. The Gulf of Maine Research Institute. Portland, ME.
http://neracoos.org/datatools (Accessed May 25, 2015).

134. Bates, S. S., Garrison, D. L., Horner, R. A. 1998. Bloom dynamics and physiology
of domoic-acid-producing Pseudo-nitzschia species. In Physiological Ecology of
Harmful Algal Blooms. Anderson D. M., Cembella, A. D., Hallegraeff, G. M., Eds.:
267-292. Springer Verlag. Berlin, Germany.

165


http://neracoos.org/datatools

135. Lillick, L. C. 1937. Seasonal studies of the phytoplankton off Woods Hole,
Massachusetts. Biol. Bull. 73: 488-503.

136. Villareal, T. A., Roelke, D. L., Fryxell, G. A. 1994. Occurrence of the toxic diatom
Nitzschia pungens f. multiseries in Massachusetts Bay, Massachusetts, USA. Mar.
Environ. Res. 37: 417-423.

137. Sharapov, U. M., Teshale, E. H., Centers for Disease Control and Prevention. 2013.
Chapter 3: Infectious Diseases Related To Travel: Hepatitis A
. In CDC Health Information for International Travel 2014 (the Yellow Book).
Brunette G. W., Centers for Disease Control and Prevention, Eds.: 1-688. Centers for
Disease Control and Prevention. Atlanta, GA, USA.

138. Jacobsen, K. H., Wiersma, S. T. 2010. Hepatitis A virus seroprevalence by age and
world region, 1990 and 2005. Vaccine. 28: 6653-6657.

139. Pond, K. 2005. Water Recreation and Disease: Plausibility of Associated Infections:
Acute Effects, Sequelae, and Mortality. World Health Organization. London, UK.

140. Kotwal, G., Cannon, J. L.,. 2014. Environmental persistence and transfer of enteric
viruses. Curr. Opin. Virology. 4: 37-43.

141. Provost, K., Dancho, B. A., Ozbay, G., Anderson, R. S., Richards, G. P., Kingsley,
D. H. 2011. Hemocytes are sites of enteric virus persistence within oysters. Appl.
Environ. Microbiol. 77: 8360-8369.

142. Shieh, Y., Khudyakov, Y., Xia, G., Ganova-Raeva, L., Khambaty, F., Woods, J.,
Veazey, J., Motes, M., Glatzer, M., Bialek, S. 2007. Molecular confirmation of
oysters as the vector for hepatitis A in a 2005 multistate outbreak. J. Food
Protection. 70: 145-150.

143. FitzSimons, D., Hendrickx, G., Vorsters, A., Van Damme, P. 2010. Hepatitis A and
E: Update on Prevention and Epidemiology. Vaccine. 28: 583-588.

144. Yanez, L. A., Lucero, N. S., Barril, P. A., Diaz, M. d. P., Tenaglia, M. M., Spinsanti,
L. I, Nates, S. V., Isa, M. B., Re, V. E. 2014. Evidence of Hepatitis A virus
circulation in central Argentina: Seroprevalence and environmental surveillance.
Journal of Clinical Virology. 59: 38-43.

145. Nelson, N. P., Murphy, T. V. 2013. Hepatitis A: The Changing Epidemiology of
Hepatitis A. Clin. Liver Dis. 2: 227-230.

166



146. Taylor, M. B., Cox, N., Vrey, M. A., Grabow, W. O. K. 2001. The occurrence of
hepatitis A and astroviruses in selected river and dam waters in South Africa. Water
Res. 35: 2653-2660.

147. Grady, G. F., Chalmers, T. G., Boston Inter-Hospital Liver Group. 1965. Viral
Hepatitis in a Group of Boston Hospitals: A Prospective Controlled Epidemiologic
Study. N. Engl. J. Med. 272: 662-666.

148. Koff, R. S., Grady, G. F., Chalmers, T. C., Mosley, J. W., Swartz, B. L., Boston
Inter-Hospital Liver Group. 1967. Viral Hepatitis in a Group of Boston Hospitals:
III. Importance of Exposure to Shellfish in a Nonepidemic Period. N. Engl. J. Med.
276: 703-710.

149. Koff, R. S., Isselbacher, K. J. 1968. Changing concepts in the epidemiology of viral
hepatitis. N. Engl. J. Med. 278: 1371-1380.

150. Callahan, K. M., Taylor, D. J., Sobsey, M. D. 1995. Comparative survival of
hepatitis A virus, poliovirus and indicator viruses in geographically diverse
seawaters. Water Science and Technology. 31: 189-193.

151. Borchardt, M. A., Bertz, P. D., Spencer, S. K., Battigelli, D. A. 2003. Incidence of
enteric viruses in groundwater from household wells in Wisconsin. Appl. Environ.
Microbiol. 69: 1172-1180.

152. Gerba, C. P. 2007. Chapter 5: Virus Occurrence and Survival in the Environmental
Waters. In Human Viruses in Water. Bosch A., Ed.: 91-108. Elsevier. Philadelphia,
P.A.

153. John, D. E., Rose, J. B. 2005. A review of factors affecting microbial survival in
ground water. Environ Sci Technol. 39: 7345-7356.

154. On-line Medical Dictionary. Isoelectric Point. The Joint Center for Structural
Genomics. http://www.jcsg.org/help/robohelp/Definitions/Isoelectric_Point.htm
(Accessed March 31, 2014).

155. Crance, J., Gantzer, C., Schwartzbrod, L., Deloince, R. 1998. Effect of temperature
on the survival of hepatitis A virus and its capsidal antigen in synthetic seawater.
Environ. Toxicol. Water Qual. 13: 89-92.

156. Centers for Disease Control and Prevention (CDC). 2014. Recommended
immunization schedule for persons aged O through 18 years — United States, 2014. :

1-4.

167


http://www.jcsg.org/help/robohelp/Definitions/Isoelectric_Point.htm

157. Massachusetts Department of Public Health. 2015. Massachusetts School
Immunization Requirements for School Year 2015-2016. : 1.

158. Fiore, A., Bell, B., Barker, L., Darling, N., Amon, J., Centers for Disease Control
and Prevention. 2005. Hepatitis A Vaccination Coverage Among Children Aged 24-
35 Months--United States, 2003. MMWR. 54: 141-144.

159. Hill, H. A., Elam-Evans, L. D., Yankey, D., Singleton, J. A., Kolasa, M. 2014.
National, state, and selected local area vaccination coverage among children aged
19-35 months-United States, 2013. MMWR. 63: 741-748.

160. Centers for Disease Control and Prevention, National Center for HIV/AIDS, Viral
Hepatitis, STD, and TB Prevention. 2011. Massachusetts--2010 Profile. CS212259-
A. Centers for Disease Control and Prevention. 1600 Clifton Rd. Atlanta, GA 30333,
USA. 1-2.

161. Massachusetts Department of Public Health. 2013. Enteric Disease in
Massachusetts: 1999-2013. Commonwealth of Massachusetts. Boston, M. A.
http://www.mass.gov/eohhs/docs/dph/cdc/foodsafety-enterics-state-totals.pdf
(Accessed March 17, 2015).

162. Dorell, C. G., Yankey, D., Byrd, K. K., Murphy, T. V. 2012. Hepatitis A
Vaccination Coverage Among Adolescents in the United States. Pediatrics. 129:
213-221.

163. Williams, W. W., Lu, P. J., O'Halloran, A., Bridges, C. B., Kim, D. K., Pilishvili, T.,
Hales, C. M., Markowitz, L. E., Centers for Disease Control and Prevention (CDC).
2015. Vaccination coverage among adults, excluding influenza vaccination - United
States, 2013. MMWR. 64: 95-102.

164. Centers for Disease Control and Prevention. 2015. Antibiotic/Antimicrobial
Resistance: About Antimicrobial Resistance. U.S. Department of Health and Human
Services. Atlanta, G.A. http://www.cdc.gov/drugresistance/about.html (Accessed
October 16, 2015).

165. Shapiro, D. J., Hicks, L. A., Pavia, A. T., Hersh, A. L. 2014. Antibiotic prescribing
for adults in ambulatory care in the USA, 2007-09. J. Antimicrob. Chemother. 69:
234-240.

166. Smith DeWaal, C., Roberts, C., Catella, C. 2012. Antibiotics Resistance in

Foodborne Pathogens: Evidence of the Need for a Risk Management Strategy. : 1-
18.

168


http://www.mass.gov/eohhs/docs/dph/cdc/foodsafety-enterics-state-totals.pdf
http://www.cdc.gov/drugresistance/about.html

167. Centers for Disease Control and Prevention. 2014. Antibiotic/Antimicrobial
Resistance: Antibiotic Resistance Threats in the United States, 2013. U.S.
Department of Health and Human Services. Atlanta, G.A.
http://www.cdc.gov/drugresistance/threat-report-2013/ (Accessed October 16, 2015).

168. Centers for Disease Control and Prevention. 2015. National Antimicrobial
Resistance Monitoring System for Enteric Bacteria (NARMS): Human Isolates Final
Report, 2013. U.S. Department of Health and Human Services, CDC. Atlanta, G.A.
1-81.

169. Karthikeyan, K., Meyer, M. T. 2006. Occurrence of antibiotics in wastewater
treatment facilities in Wisconsin, USA. Sci. Total Environ. 361: 196-207.

170. Batt, A. L., Kim, S., Aga, D. S. 2007. Comparison of the occurrence of antibiotics in
four full-scale wastewater treatment plants with varying designs and operations.
Chemosphere. 68: 428-435.

171. Watkinson, A., Murby, E., Costanzo, S. 2007. Removal of antibiotics in
conventional and advanced wastewater treatment: implications for environmental
discharge and wastewater recycling. Water Res. 41: 4164-4176.

172. Brown, K. D., Kulis, J., Thomson, B., Chapman, T. H., Mawhinney, D. B. 2006.
Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal
wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 366: 772-783.

173. Gulkowska, A., Leung, H. W., So, M. K., Taniyasu, S., Yamashita, N., Yeung, L.
W., Richardson, B. J., Lei, A., Giesy, J. P., Lam, P. K. 2008. Removal of antibiotics

from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China.
Water Res. 42: 395-403.

174. Su, H., Ying, G., He, L., Liu, Y., Zhang, R., Tao, R. 2014. Antibiotic resistance,
plasmid-mediated quinolone resistance (PMQR) genes and ampC gene in two typical

municipal wastewater treatment plants. Environ. Sci. Processes Impacts. 16: 324-
332.

175. Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, 1.,
Fatta-Kassinos, D. 2013. Urban wastewater treatment plants as hotspots for

antibiotic resistant bacteria and genes spread into the environment: A review. Sci.
Total Environ. 447: 345-360.

176. Varela, A. R., Ferro, G., Vredenburg, J., Yanik, M., Vieira, L., Rizzo, L., Lameiras,
C., Manaia, C. M. 2013. Vancomycin resistant enterococci: From the hospital
effluent to the urban wastewater treatment plant. Sci. Total Environ. 450: 155-161.

169


http://www.cdc.gov/drugresistance/threat-report-2013/

177. Fuentefria, D. B., Ferreira, A. E., Cor¢do, G. 2011. Antibiotic-resistant
Pseudomonas aeruginosa from hospital wastewater and superficial water: Are they
genetically related? J. Environ. Manage. 92: 250-255.

178. Akiyama, T., Savin, M. C. 2010. Populations of antibiotic-resistant coliform bacteria

change rapidly in a wastewater effluent dominated stream. Sci. Total Environ. 408:
6192-6201.

179. Faria, C., Vaz-Moreira, 1., Serapicos, E., Nunes, O. C., Manaia, C. M. 2009.
Antibiotic resistance in coagulase negative staphylococci isolated from wastewater
and drinking water. Sci. Total Environ. 407: 3876-3882.

180. LaPara, T. M., Burch, T. R., McNamara, P. J., Tan, D. T., Yan, M., Eichmiller, J. J.
2011. Tertiary-treated municipal wastewater is a significant point source of

antibiotic resistance genes into Duluth-Superior Harbor. Environ. Sci. Technol. 45:
9543-9549.

181. Munir, M., Wong, K., Xagoraraki, I. 2011. Release of antibiotic resistant bacteria
and genes in the effluent and biosolids of five wastewater utilities in Michigan.
Water Res. 45: 681-693.

182. Food & Water Watch. 2014. Factory Farm Map. Food & Water Watch. Washington,
D.C., USA. http://www.factoryfarmmap.org/#animal:all;location:MA ;year:2007
(Accessed 30 August, 2014).

183. U.S. Census Bureau, U.S. Department of Commerce. 2014. The 2012 Statistical
Abstract. U.S. Department of Commerce. Washington, D.C., USA.

http://www.census.gov/compendia/statab/cats/agriculture.html (Accessed August 31,
2014).

184. Pham, T., U.S. Food and Drug Administration. 2012. Drug Use Review: Systemic
Antibacterial Drug Products. OSE RCM # 2012-544. U.S. Food and Drug
Administration. Washington, D.C., USA. 1-9.

185. Hicks, L. A., Taylor Jr, T. H., Hunkler, R. J. 2013. U.S. outpatient antibiotic
prescribing, 2010. N. Engl. J. Med. 368: 1461-1462.

186. Kiimmerer, K. 2009. Antibiotics in the aquatic environment — A review — Part L.
Chemosphere. 75: 417-434.

187. U.S. Food and Drug Administration. 2011. Summary Report On Antimicrobials
Sold or Distributed for Use in Food-Producing Animals. U.S. Food and Drug
Administration. Washington, D.C., USA. 1-4.

170


http://www.factoryfarmmap.org/#animal:all;location:MA;year:2007
http://www.census.gov/compendia/statab/cats/agriculture.html

188. Massachusetts Water Resources Authority. 2009. The Deer Island Sewage
Treatment Plant. Massachusetts Water Resources Authority. Boston, M.A.
http://www.mwra.com/03sewer/html/sewditp.htm (Accessed October 18, 2015).

189. Meadows, D. H. 2008. Thinking in Systems: A Primer. Chelsea Green Publishing.
White River Junction, V.T.

190. Bush, K. F., Fossani, C. L., Li, S., Mukherjee, B., Gronlund, C. J., O'Neill, M. S.
2014. Extreme Precipitation and Beach Closures in the Great Lakes Region:
Evaluating Risk among the Elderly. Int. J. Environ. Res. Public Health. 11: 2014-
2032.

191. Anderson, D. M., Keafer, B. A., McGillicuddy, D. J., Mickelson, M. J., Keay, K. E.,
Libby, P. S., Manning, J. P., Mayo, C. A., Whittaker, D. K., Hickey, J. M. 2005.
Initial observations of the 2005 Alexandrium fundyense bloom in southern New
England: General patterns and mechanisms. Deep Sea Research Part II: Topical
Studies in Oceanography. 52: 2856-2876.

192. Anderson, D. M., Stock, C. A., Keafer, B. A., Nelson, A. B., Thompson, B.,
McGillicuddy, D. J., Keller, M., Matrai, P. A., Martin, J. 2005. Alexandrium
fundyense cyst dynamics in the Gulf of Maine. Deep Sea Research Part II: Topical
Studies in Oceanography. 52: 2522-2542.

193. McGillicuddy, D. J., Anderson, D. M., Lynch, D. R., Townsend, D. W. 2005.
Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense
populations in the Gulf of Maine: results from a physical-biological model. Deep
Sea Research Part II: Topical Studies in Oceanography. 52: 2698-2714.

171


http://www.mwra.com/03sewer/html/sewditp.htm

CHAPTER 4

INTERDISCIPLINARY DATA SCIENCE

Abstract. This chapter discusses how inter-disciplinary questions in
environmental health and infectious disease research may be addressed through the use of
data beyond traditional medical and epidemiological sources. The first section of this
chapter discusses technologically-driven changes in data availability and data-sourcing as
well as the emerging discipline of ‘data science,” both important topics for synthesis-type
research that seeks to gain extra utility from existing data. This section also discusses
potential risks from large datasets-of-opportunity (rather than those designed to answer a
specific question) and provides an illustrative example. The second section of this
chapter presents a generalized workflow for interdisciplinary environmental health
research. This proposed generalized workflow is supported three examples of research
that successfully combined traditional epidemiological data with non-traditional remote
sensing data to address environmental health questions in different parts of the world.
The third and final section of this chapter poses four environmental health questions
relevant to two marine-sourced risks in Massachusetts Bay (Pseudo-nitzschia genus
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diatoms and Enterococcus genus bacteria). The chapter closes with a description of data
collected from authoritative public sources to support the development of predictive

models for those two marine-sourced human health risks.
Introduction.

The world is awash in data. Raw data from in situ, in vitro or in silico
experiments, field data, aggregated data, anonymized data, crowdsourced data, synthetic
data and big data are all options that researchers today can utilize. Multiple agencies,
institutions, and individual researchers collect data, be it environmental, medical, social,
or other, to answer a specific question within their focus area. A constellation of data
sources may exist for any single topic- the challenge lies in combining and interpreting
these data in order to chart the best research course. In some cases these data are made
available to the public, either in raw, aggregated, and/or interpreted form for others to
use. Combining data from multiple disparate sources in order to performance new
research is the essence of a synthesis, understood as “the combining of often diverse
conceptions into a coherent whole.”! For interdisciplinary research, such as

environmental health research, a synthesis approach is almost required by definition.

This dissertation uses an interdisciplinary synthesis approach to explore the topic
of ocean and human health. This chapter on data science is divided into three sections.
Section one of this chapter discussed the limitations that come with using data originally
collected for other purposes. The expanding opportunities to using this type of data

require careful consideration. Section one also provides examples of data available to
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environmental health researchers from established and emerging sources. Although not
exhaustive, this list is representative of the variety of data available to interdisciplinary
environmental researchers and may represent a useful starting point for those interested in

cross-disciplinary work.

The second section of this chapter opens with a 3-phase diagram of a generalized
workflow process for researchers interested in pursuing similar interdisciplinary
environmental health research. Briefly, the three phases is this diagram are 1) explore
concepts and generate hypothesis, 2) develop outputs, and 3) evaluate outputs. This
approach aligns well with the traditional scientific method, but is not necessarily bound
by the confines of null hypothesis testing. We suggest that researchers who may not
consider themselves ‘interdisciplinary data scientists’ could use such a framework to
guide collaborative efforts with specialists in other fields. To this end we provide
examples of research on three distinct environmental health topics that followed a similar
generalized workflow process to engage in environmental health research. Those
examples are predicting Rift Valley Fever risk area in the Horn of Africa, modeling
cholera outbreaks in Bangladesh, and investigating the causative agent of Kawasaki

Disease in Japan.

Section three of this chapter describes environmental and socio-economic data
sets related to interdisciplinary research on marine-sourced risks in Massachusetts Bay.
In this section we pose four questions related to understanding the presence of Pseudo-

nitzschia genus diatoms and Enterococcus bacteria in Massachusetts Bay and the

174



possibility of predicting their presence. We then describe a suite of assembled data sets
relevant to the Massachusetts Bay area which can be used to investigate those, and other,
questions. Taken as a whole, this chapter on interdisciplinary data science provides
background on the expanding possibilities for environmental health research. This
chapter lays the groundwork for Chapter 4 of this dissertation, where we describe the
development and testing of predictive models for two marine-sourced human health risks

in Massachusetts Bay using a variety of public data sources.

The Emergence of Big Data and Data Science.

The rapid increase in the number of electronic records, along with the changing
nature of available digital content, has ushered in an era of ‘big data.” In this work we
use the term big data to refer to any single dataset containing over 10 million records.
Big data can refer to millions of computerized health records, aggregated news articles
about the same topic from multiple sources over time, or financial records for large
international companies. In addition, big data refers not just to datasets that can contain
billions of records, but also requirements for handling data in ways that go beyond the
capabilities of traditional statistical software packages.? For example, at present a single
file in the latest version of the Microsoft Excel® software program can contain slightly
over 1 million records.> New computer programs have been developed in response to the
computational demands of big data analysis (e.g., Apache™ Hadoop®*) and we expect

that these tools will continue to develop in response to rapidly changing technology and
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user needs. The generation of big data and other new sources of data (including
digitization of historical paper records) does more than simply provide more data points,
this availability can spur new questions about the world and the development of research

sub-disciplines.

What Makes Big Data Different. Although big data is a term with multiple
popular definitions, IBM defines big data as having four elements: volume, variety,
velocity, and Vera(:ity.5 Volume refers to the scale of data, which could come from
internal or external sources, on a global scale some estimate that 2.5 quintillion bytes of
data are created each day.> This volume of data is generated from the next ‘v’ on the list,
variety. Variety of big data refers to the different forms and sources, such as transaction
data, social media, sensors, and mobile devices — including new product classes such as
wearable wireless health monitors aimed at the general public.’This expanded volume
and variety of data may also be generated and transmitted throughout an organization at a
faster velocity (the third ‘v’) than previously seen because of computing and connectivity
advances. For example, the New York Stock Exchange captures 1 terabyte of trade
information during each trading session, a data stream of interest to both regulators and
market analysts. The fourth ‘v’ refers to veracity, or uncertainty, of data.” With any data
generation there is the potential for errors to enter a data stream. For datasets that grow
rapidly and are continuously analyzed there is the potential for undetected data distortion
to become magnified and for errors to propagate through dependent systems (an example

of this is discussed in the section below on Google Flu Trends). IBM asserts that veracity
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of data is a significant issue and that poor data quality costs the U.S. economy around $3
trillion per year while 1 in 3 business leaders don’t trust the information they use to make

decisions.’

Data veracity is a concern in every field including the life sciences where an
important component of university-level coursework is proper data collection and
storage. For example, in undergraduate biological laboratory courses students are often
graded on the quality and clarity of record keeping in formal laboratory notebooks.
Similarly, at pharmaceutical companies laboratory notebooks are considered legal
documents that must be stored in locked safes when not in use. In all cases quality record
keeping is the foundation of quality data. As datasets get larger there is still a need for
quality control and quality assurance, and this is one element of the job of ‘data scientist’,

a specialty title of someone who engages in ‘data science.’

Data Science. The terms data science and data scientist have come into popular
use in the last decade and while specific definitions differ there are broadly agreed upon
common elements.> IBM defines the role of a data scientist as ‘somebody who is
inquisitive, who can stare at data and spot trends’ and someone ‘who does not simply
collect and report on data, but also looks at it from many angles.® A 2012 article from the
Harvard Business review described a data scientist as ‘a hybrid of data hacker, analyst,
communicator, and trusted advisor’ and that what a data scientist does is ‘make
discoveries while swimming in data,” most notably they are people who ‘bring structure

to large quantities of formless data and make analysis possible.’® For IBM, the
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educational background of a data scientist is expected to be similar to that of a traditional
business or data analyst with a “solid foundation in computer science and applications,
modeling, statistics, analytics and math.”® Regardless of the specific technical
background or work environment, the profession of data scientist is co-emerging with the
expansion of big data. The cross-disciplinary approach and combination of multiple
disparate data sources used in this dissertation could be seen as an example of data
science applied to a specific question. Knowing how to find, access, and organize data
across multiple disciplines is one element of synthesis research, different data sources

relevant to environmental health are described in the next section.

Examples of Major Environmental Health Data Sources.

The results from purpose-designed experiments generating direct observations
still constitute the highest tier of scientific data, complementing such experimental data
are environmental monitoring data which may reveal changes over long time periods.
Magnifying the value of the cumulative efforts of individual scientists, laboratories, and
institutions are numerous national and international repositories for specific types of data
or scientific publications. These data repositories may be managed or funded by non-
profit organizations, academic institutions, government agencies, or some combination
thereof. Major examples of such databases are described below. This list should not be
considered all-inclusive, sources continually evolve based on demand and funding.

These examples were chosen because of their stability, public accessibility, or relevance
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to environmental health research. In addition, some of these databases have accumulated

enough records to qualify as big data databases.

Multi-topic Databases. These multi-topic databases may be useful to researchers

in a wide variety of fields, from biology to computer science to history.

1) U.S. Census Bureau: This website provides historical demographic, economic, health,
housing, and other official statistical data for the United States. Products may combine
categorical data with spatial detail at the level of census block groups (ranging from 600
to 3,000 people).” ' The level of detail published by the U.S. Census allows for nuanced

spatial analysis over time.

2) Google Trends: This website from Google displays stories that are ‘trending’ based on
user-entered search terms in the free Google search engine. Topics can be filtered by
categories such as ‘Business’ or ‘Sci/Tech’ and by country. Within the US, Google

Trends displays a map of interest by region (state level) for an individual story.'!

3) Amazon Web Services List of Public Data Sets: Amazon maintains a list of public data

sets (including big data datasets) that customers can use.'?

4) Dryad Digital Repository: Dryad is a non-profit long-term repository for data used in
international scientific and medical literature, including data in the form of text,
spreadsheets, video, photographs, and software code.!® Datasets deposited in Dryad are

free to use and citable in new publications.'* Each Dryad data package received a unique
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Digital Object Identifier that can be used when citing or locating data. Datasets are free

to use but there is a small charge for depositing data packages with Dryad.!?

Health Databases. These databases are relevant to health and medicine
researchers, topics range from basic biology to clinical specialties. The websites and

databases that serve specific molecular biology topics are too numerous to list here.

1) HealthData.Gov: This website is run by the U.S. Department of Health & Human
Services (HHS) and aims to make data from the HHS agencies (including the CDC, FDA,
and NIH) easily available and accessible to the public. This evolving website aims to
make all the data it serves up to be machine-readable, downloadable, and accessible via

application programming interfaces.'

2) PubMed: PubMed is a database of over 24 million citations from biomedical literature

managed by the U.S. National Institutes of Health (NIH, a government entity).'¢

3) GenBank®: An annotated genetic sequence database of all publicly available DNA
sequences maintained by the NIH since 1982. GenBank releases a public update every
two months and, as part of the International Nucleotide Sequence Database
Collaboration, exchanges data with the DNA DataBank of Japan and the European
Molecular Biology Laboratory. Each nucleotide sequence uploaded to GenBank receives
a unique Accession Number, as of mid-2015 GenBank has archived over 100 million

sequence records representing over 100 billion nucleotide bases.!’
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4) Foodborne Outbreak Surveillance System (FOSS) Online Database: This database is
run by the U.S. Centers for Disease Control and Prevention (CDC). FOSS receives
reports from state, local, and territorial public health agencies about recorded foodborne

illnesses.'®

5) United Network for Organ Sharing (UNOS): The UNOS is a private non-profit
organization that manages the U.S. organ transplant system under contract with the
Federal government.!” The UNOS database is a resource used across transplant
disciplines because it contains outcomes and treatments used in transplant recipients. As
described by one physician, “specialists in one field (e.g., cardiac transplants, a relatively
new field) can pull information from UNOS on long-term consequences of
immunosuppressive medicines that been used in one transplant type (e.g., kidney) to aid

in the care of transplant patients in another type (e.g., cardiac).”?

Ecology and Environment Databases. These databases examples spanning

multiple environment types and may include both biotic and abiotic environmental data.

1) Integrated Ocean Observing System (IOOS®): A regional-national partnership for
sharing ocean, coastal, and Great Lakes data on topics including wave heights, sea level,
wind, temperature, salinity, and dissolved oxygen levels. IOOS is a member of the

Global Ocean Observing System (GOOS) coordinated through the United Nations.?!

2) Ecological Society of America Data Registry: This registry describes data sets on
ecology and environmental topics from articles published in the journals of the

Ecological Society of America.?
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3) TRY Plant Trait Database: The Max Planck Institute for Biogeochemistry in Germany
hosts this international database developed by scientists of morphological, anatomical,
biochemical, physiological, or phenological features of plants, with many geo-referenced

records.?

Environmental Health Databases. These two databases contain information

relevant to environmental topics with a close relationship to human health.

1) ENHanCed Infectious Diseases (EID2) database: This database, funded by the
European Union and hosted at the University of Liverpool, contains data on pathogenic
organisms and the country in which they may occur, lists of carrier organisms, genetic

sequences, and publication links.?*

2) Center for Coastal Monitoring and Assessment National Status & Trends Database
(NS&T): Run by the U.S. National Oceanic and Atmospheric Administration (NOAA),
the NS&T is comprised of three nationwide programs, Benthic Surveillance
(discontinued in 1993), Mussel Watch and Bioeffects that are designed to describe the
current status of, and detect changes in, the environmental quality of U.S. estuarine and
coastal waters through environmental monitoring, assessment and related research.
Starting in 1986, the Mussel Watch program is the longest running continuous

contaminant monitoring program in U.S. coastal and Great Lakes waters.?

Remote Sensing Data Sources. These two examples are the major public sources
of satellite remote sensing data and model output products derived from that data. Other

remote-sensing data may available from private entities.
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1) U.S. National Aeronautics and Space Administration (NASA): NASA provides
satellite remote sensing data from multiple spacecraft and instruments sources with
varying temporal scales, spatial scales, and image resolution. Topic areas include global
precipitation, thermal anomalies, ocean color, land cover and vegetation, and snow and
sea ice cover.2®2) European Space Agency: The European Space Agency provides public
data related to radar imagery, radar altimetry, optical/multi-spectral radiometry,

atmospheric data, and gravimetric data from multiple missions.?’

The example databases listed above are public repositories of data that could be
relevant to OHH researchers depending on the question of interest. However, the data in
each repository requires specialized knowledge to interpret. For example, foodborne
illness outbreaks are a different type of data than land cover type images, but when
combined they might provide new insights. The need for individuals or specialized data
science teams that can combine and utilize diverse data types may grow as society poses
research questions related to multiple disciplines. In addition, researchers should be
aware of the potential to glean data from non-traditional sources, examples of which are

provided in the next section.

Non-traditional Data Sources: Social Media and Crowdsourcing.

Social media postings can range from news photos to personal thought updates
and are generated and shared publicly by numerous individuals around the world. Social

media platforms use a variety of software applications on technological platforms ranging
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from desktop computers to mobile devices. Companies that own and operate social
media platforms have the ability to aggregate and analyze user postings, with the
potential to generate what is essentially crowdsourced big data from voluntary content
created by users. One dictionary defines ‘crowdsourcing’ as the “practice of obtaining
needed services, ideas, or content by soliciting contributions from a large group of people
and especially from the online community rather than from traditional employees or
suppliers.“*With the spread of the Internet, and Internet-connected smartphones, the
ability for spatially distant groups to communicate, give feedback, and share information
in near-real time is enormous. In addition to Internet connectivity, mobile
communication devices now often include the ability to share place-based, geo-
referenced, information (including latitude and longitude) along with an observation
record (e.g., photo or social media posting) directly from the device itself. In some cases
mobile phones are able to act as sensors without conscious action by their owner, a
functionality already utilized by some companies to generate location-specific

crowdsourced observations.

Crowdsourcing is not strictly associated with mobile devices or social media but
also result from aggregated information collected over time. Crowdsourcing can refer to
the practice of allowing multiple users to contribute to a single task, such as in the online
game FoldlIt that “attempts to predict the structure of a protein by taking advantage of
humans' puzzle-solving intuitions and having people play competitively to fold the best

proteins.”” In the case of Foldlt, crowdsourcing does not generate big data, but rather

184



provides an organizing mechanism to harness the unique contributions of many
volunteers. Another crowdsourced product is the Encyclopedia of Life which began with
the idea to provide a webpage for every species on earth, and seeks to bring together
information from trusted resources such as museum, professional societies, and expert
scientists into a massive database.*°Crowdsourced data take multiple forms, with
different levels of accessibility and reliability, examples of potential public sources for
crowdsourced data are listed below, social media postings and Google search terms can

become crowdsourced data if aggregated properly.

1) Twitter: Twitter is described on its homepage as “probably the largest publicly
accessible alternative trove of social-media data.”*! Services exist to take advantage of
the large amounts of user-generated real-time postings, many of which use hashtags

(identifying words or phrases) to refer to specific events or topics.

2) Instagram: A social photo-sharing service that allows users to associate location data
and hashtags to posted photos, visible to either private groups or the public. Photos are
searchable based on multiple attributes>? and third-party services are available to

aggregate information about Instagram posts.

3) Facebook: Facebook is social network site with more than 1 billion active users that
allows people to share photos, text, and other information across their social network.*’
The list of Facebook users and their basic characteristics alone is considered big data.’*4)
Google Correlate: A service from Google which helps users “finds search patterns which

correspond with real-world trends.”**While not strictly a social media source, Google
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Correlate results are derived from anonymized searches made by users of the free Google

search engine tool and could be considered as the results of crowdsourcing.

The sources that generate these social media data can be stationary or mobile. A
user of Facebook might have an account tied to a specific city, but be able to post to their
account from a mobile device anywhere in the world with an Internet connection. Due to
the potentially enormous numbers of individually-generated records from social media
postings or geo-referenced Internet search queries, there is interest in using these sources
to monitor near real-time events, including predicting or tracking disease outbreaks or
other influences on human health. The example of using location-referenced Internet
search queries to predict the level of influenza activity across the United States, an

important public health issue, is described in the next section.

The Example of Google Flu Trends. An example of the promise, and perils, of
crowdsourced data can be found in the story of the Google Flu Trends project.3!: 36-38
Google Flu Trends (GFT) was developed in 2008 in conjunction with the Centers for
Disease Control and Prevention (CDC), and involved data mining records from Google
search engine queries using influenza-related search terms, in conjunction with the
CDC’s historical data, to develop a model that could estimate cases of influenza faster
than traditional epidemiological surveillance methods.>! A separate paper on the

predictive model development was also published by Ginsberg et al. (2009).* Notably,

GFT was released after human infection with a novel influenza A virus became a
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nationally notifiable condition in 2007%°, but before the HIN1 influenza pandemic of

2009-2010.4!

Model development involved finding the best matches among approximately 50
million Google search terms used between 2003 and 2008 to the CDC’s 1152 historical
data points*® of influenza-like illness (ILI) related physician visits.>* The assumption
underlying this project was that Google search terms are proportional to the incidence of
ILI physician visits. As Lazer et al. (2014) point out, with so many search term records
available “the odds of finding search terms that match the propensity of the flu but are
structurally unrelated, and so do not predict the future, were quite high.”*® Indeed, the
model authors noted that their top 100 queries included topics like 'high school
basketball', which tend to coincide with the U.S. influenza season.** In contrast, CDC
data is derived from influenza surveillance methods based on voluntary weekly reporting

from state level surveillance programs or health-care providers.*’

Currently, the U.S. Outpatient Influenza-like Illness Surveillance Network
(ILINet) consists of more than 2,900 outpatient healthcare providers across the U.S.*’ As
with other disease surveillance, there is a degree of underreporting because any patient
with ILI must first visit a physician. Hence, the CDC cautions that while ILI surveillance
answers the questions of where, when, what influenza viruses are circulating and if
influenza activity is increasing or decreasing, it cannot be used to ascertain how many
people have become ill with influenza during the influenza season.”*® Although passive

surveillance systems do not report all disease cases, if surveillance methods and system
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performance remain relatively unchanged over time it should be possible to compare the

relative severity of different influenza seasons.*?

In 2009 the GFT algorithm was updated after the first version badly
underestimated the number of influenza-like illness (ILI) cases at the start of the HIN1
(swine flu) pandemic.’! However, the 2009 model then ran essentially unchanged until
updates were announced in October 2013.36 During the 2010-2013 flu seasons, GFT was
often overestimating flu prevalence (for 100 out of 108 weeks) with non-random errors
because temporal autocorrelation meant one week’s errors influenced the follow week’s
errors.’® At one point during the 2012-2013 flu season GFT estimates of flu prevalence
across the USA were more than double the CDC estimates of ILI,% a significant
overprediction.** Despite limitations of traditional ILI surveillance, the CDC is
considered the authoritative source for national ILI estimates and produces them using a
historically consistent methodology.*’ It is not entirely clear what was driving GFT’s
persistent overestimation of ILI compared to CDC values because Google has not
publicly released documentation on the specific 45 search terms it used in its GFT model
training, but one possibility is that heavy media coverage of the flu during the 2012-2013
season influenced user searches and thus skewed the GFT prediction results.*® The

model developers noted this very possibility, in their 2009 paper Ginsberg et al. wrote:

“The search queries in our model are not, of course, exclusively submitted by
users who are experiencing influenza-like symptoms, and the correlations we

observe are only meaningful across large populations. Despite strong historical
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correlations, our system remains susceptible to false alerts caused by a sudden

increase in ILI-related queries.”*

In late 2014 Google announced that GFT would stop relying solely on search terms to
make flu predictions, but would instead combine search terms with publicly available
data from the CDC to make predictions for the 2014-2015 season.>”** This
announcement came after a high profile news article critical of GFT was published in the

scientific journal Nature in February 2013.%!

What lessons can be learned from the example of Google Flu Trends? Itis a
program that showed initial promise, received favorable public attention, then produced
large errors and failed to perform accurately for over two years — producing estimates
quite different from those produced by the CDC. As a result GFT then received negative
attention (from academic and media sources), and is currently being updated by the
creators with the promise (made in October 2014) of a technical paper to be published.*’
Perhaps one lesson from GFT is that crowdsourced data collected from unwitting
participants should be viewed with caution, sheer volume does not assure veracity.
Another caution is that episodic events (e.g., the appearance of a new disease) have the
possibility to severely skew any model predictions based solely on human psychology
instead of microbiological reality, and any such models should be monitored for potential
skew. It remains to be seen if the refined GFT will perform as desired over multiple
influenza seasons. Lazer et al. (2014) specify two problematic elements in the history of

GFT that should be considered when working with large crowdsourced or social-media-
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derived datasets, 1) big data hubris, and 2) algorithm dynamics. These terms are defined

and discussed in the next section.

Crowdsourced Data, Big Data Hubris and Algorithm Dynamics. ‘Big data
hubris’ is described as the ‘assumption that big data are a substitute for, rather than a
supplement to, traditional data collection and analysis’ because ‘quantity of data does not
mean that one can ignore foundational issues of measurement and construct validity and
reliability and dependencies among data.”*® As illustrated by the example of Google Flu
Trends, quantity of search terms does not replace the existing system of physician-
diagnosed reporting data through established public health channels. The caution has
even greater relevance when large data sets are generated through opaque processes that a
researcher may not be able to account for within their analysis. For data from private
sources, such as online search engines, it is also possible that algorithm dynamics may
play a role in influencing any records generated. ‘Algorithm dynamics’ refers to the
changes made by software engineers to improve the commercial service being used (for
GFT the commercial service is the free Google search engine, but other commercial
services include Facebook and Twitter) and changes in behavior of consumers using the
service.**The act of suggesting additional search terms, or using an ‘auto-complete’
function in a text field, can influence user behavior. Lazer et al. (2014) note that ‘search
behavior is not just exogenously determined, it is also endogenously cultivated by the

service provider’.>® Such actions by a service provider are known as ‘blue team’
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dynamics. ‘Blue team’ and ‘red team’ dynamics refer to algorithm dynamics influenced

by specific groups of people.

Blue team actions come from inside a company, and include modifications to the
algorithm producing the data, whereas red team actions result from research subjects (or
an outside entity) attempting to manipulate the data-generating process to skew results in
a particular direction.>® In the case of the social media service Twitter, the company (the
blue team) provides a list of topics that it considers to be the most timely ‘Trends,”** An
example of how this list appears to viewers of the Twitter website search page is shown

below in Figure 4-1.

Have an account? Log in -

See what's happening right now

Tip: use operators for advanced search. CJ

Trends

Jimmy Graham  #LOTPOfficialVideo  #47Traitors  Jake Locker Dwayne Harris ~ Keenan Lewis ~ #Zoolander2 ~ Unger  #DKNFLFakeTrades  #NFLFreeAgency

Figure 4-1. Screenshot of Twitter Search homepage, March 10, 2015 5:24 pm, displaying
Trends as identified by Twitter.

The trending items listed in blue text on the screenshot shown in Figure 1 are: Jimmy
Graham, #L.OTPOfficial Video, #47Traitors, Jake Locker, Dwayne Harris, Keenan Lewis,

#Zoolander2, Unger, #DKNFLFakeTrades, and #NFLFreeAgency. It is not immediately
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clear if these topics or hashtags could be thematically linked; but they are presented to
website visitors because of the underlying Twitter algorithm that identified them for

display (i.e., a blue team action).

The act of presenting these topics on the Twitter homepage means that they have
the potential to be seen by more people and receive more exposure, creating a positive
feedback loop. Lazer et al. (2014) note that ‘campaigns and companies, aware that news
media are monitoring Twitter, have used numerous tactics to make sure their candidate or
product is trending.”*® Such tactics would be considered red team dynamics because they
are the work of an external group. Red team dynamics can be used to take advantage of
this potential feedback loop between grassroots social media and traditional news media
(e.g. television stations) to increase media exposure for a certain topic. This is one
caution that researchers using crowdsourced data should be aware of, the possibility of
intentional skew by persons taking advantage of algorithm dynamics and data generating
processes to amplify, or echo, signals that would not rise to prominence if the system

were truly operating independently, organically, and transparently.

While crowdsourced data from social media might be an accurate reflection of
posted content within a single social media site, such data should not be confused with a
being an accurate representative sample of anything beyond a narrowly defined universe
of subjects. For example, Twitter reports that it has 288 million monthly active users,
that 77% of Twitter accounts are outside of the U.S., that 80% of active users are on

mobile devices, and that 500 million individual posts (known as ‘tweets’) are sent every
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day.* What is less clear is the distribution of Twitter users across spatial areas or
demographic groups. Persons viewing English-language Twitter posts as representative
of the entire United States, or English-speaking world, would be wise to use caution
when interpreting such crowdsourced products as they could differ significantly from a
statistically representative sample. Active participation rates for various online social
media platforms may vary between demographic groups. However, other types of
crowdsourced data do not require active participation or content generation, but instead
only the use of a certain level of technology (i.e., smartphones) and so may draw from a

larger population.

Some crowdsourced products do not depend on conscious input from users, but
instead allow personal mobile phones to act like individual sensors within a much large
network, this is the case with Google Traffic. Any mobile phone with the Google Maps
application and GPS-location services enabled will report movement speeds back to
Google, which continuously combines data from millions of users and projects it through
the Google Maps application in the form of color-coded street overlays.*® Such recorded
crowdsourced data are potentially less subject to red team dynamics than social-media
sourced data because the outputs (e.g., the color-coded street overlays shown by Google
Traffic) are calculated using large sample sizes and the data are contributed
unconsciously and anonymously by users, any signal manipulation would require mass

participation or deliberate mis-reporting of travel speeds.
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To conclude this section, crowdsourced and social media data, including big data,
can be seen as both rich and dangerous. Data culled from social media offers the
potential of highly detailed temporal and spatial topical records that could provide
fascinating social insights at low cost, but also of meaningless correlation on a grand
scale. The difference between reported data (subject to human discretion) and recorded
data (generated neutrally by sensors) will continue to be an important distinction.
Another area of changing technology is on-animal sensors, which could allow for
expanded ambient environmental condition reporting*’ as a potential compliment to
human-crowdsourced data. Although this dissertation research will not rely on social
media or crowdsourced data, it remains of interest for the future work given the
expanding possibilities of potential environmental sensors. In contrast to the young
world of social media, a more mature but still non-traditional data source being used for
health research is remotely-sensed data from satellites — successful examples of this type

of work are described in the next section.
Interdisciplinary Workflow and Supporting Examples.

While the use of crowdsourced or social media-sourced data for health monitoring
and prediction is still maturing, other types of data that were not specifically designed for
health-related research are regularly being used to investigate environmental health
questions. This section will provide examples of cross-discipline data sharing being
applied to predict environmental health problems, and in some cases to provide solutions

in places where on-the-ground research or monitoring capacity may be limited and a
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longer lead-time is needed to preposition supplies and people in anticipation of medical

needs.

In 2007 the World Meteorological Organization (WMO) organized a conference
titled The International Conference on Secure and Sustainable Living: Social and
Economic Benefits of Weather, Climate and Water Services.*® The conference called for
“multi-disciplinary understanding between providers and user of weather, climate and
water services as they are essential for improve decision-making and delivery of social
and economic benefits.”*® Increasing the use of large-scale remote sensing data in the
fields of environmental and public health requires that researchers be aware of available
relevant data and able to apply it in the context of a health problem (possibly as a proxy
when on-the-ground measurements are not available). A general workflow is shown in

Figure 4-2, below.

Generalized Interdisciplinary Workflow. The workflow presented in Figure 4-2
divides the synthesis research work into three phases: 1) conceptual/exploratory and
hypothesis generation; 2) development; and 3) evaluation. Phase 1 is similar to any
initial stage of research, involving a review of existing literature on the disease,
identifying any known environmental associations or suggesting new associations, and
gathering potentially useful existing data sets. Phase 2 is the development phase where
researchers might employ multiple techniques such as spatial-temporal mapping,
statistical modeling, or model term development while utilizing datasets collected across

multiple disciplines. In traditional life sciences research this would correspond to the
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phase where a researcher conducts an experiment and records the results. However, in
this synthesis process the type of work has shifted from direct manipulation of an
environmental condition to work exploring data through modeling, mapping, or other
associative methods. Phase 3 is the evaluation of the product(s) from Phase 2. Phase 3
may involve comparing the accuracy of a hindcast estimate from a model or method
against recorded data, using a product from Phase 2 to guide field-based sampling to
generate new data, or the further development of a theory based on revealed associations

between multiple datasets.
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Figure 4-2. Workflow process for synthesis research. This workflow shows a generalized path
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Interdisciplinary Environmental Health Examples. Three examples of
synthesis research are the prediction of Rift Valley fever outbreak in the Horn of Africa
(see Anyamba et al. 2009), investigations into cholera outbreaks in south Asia (see
Pascual et al. 2000, Koelle et al. 2005, and Hugq et al. 2005), and the link between
regional wind patterns and Kawasaki disease in Japan (see Rod¢ et al. 2014). Examples

are described below.

Rift Valley Fever predictions in the Horn of Africa based on climate anomalies.

Anyamba et al. (2009) investigated the historical relationship between El Nifio/Southern
Oscillation (ENSO) related climate anomalies and Rift Valley fever (RVF) outbreaks in
the Horn of Africa to develop a model that allowed them to make a prospective spatial
estimate of the 2006-2007 RVF outbreak. They combined historical satellite
measurements of environmental parameters for sea surface temperature (SST), outgoing
longwave radiation (OLR) as a proxy for rainfall, and vegetation measurements of
photosynthetic activity transformed into a normalized difference vegetation index
(NDVI), with epidemiological information on previous RVF outbreaks in the regional to
develop early warning risk maps.*” The virus that causes RVF in animals and humans is
spread by mosquitoes, so NDVI was used as a proxy for persistent above-average rainfall

and associated vegetation growth that provide mosquito habitat in the Horn of Africa.*

In late November 2006 when environmental conditions predicted an upcoming
elevated risk of RVF outbreaks, government stakeholders were able to begin

entomological surveillance and place public health authorities on alert weeks before any
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reported human cases of RVF. After RVF transmission was confirmed in mid-December
2006 additional surveillance activities and disease mitigation activities were
implemented; mitigation activities included restrictions on animal movements,
distribution of mosquito nets, and information campaigns, along with domestic animal
vaccination and mosquito control in specific areas.*® Post-outbreak mapping of reported
human cases found that 64% of cases were within predicted risk areas, and that most of
the remaining 36% of human cases were within 50km of the outer edges of predicted risk
areas.*’ These results demonstrate the feasibility of combining remote-sensing data and
historical epidemiology data to make near-term predictions about disease risk for a virus

whose spread is closely coupled with regional environmental conditions.

The generalized workflow employed by Anyamba et al. (2014) is diagrammed
below in Figure 4-2. First, the authors brought together historical data on RVF
distribution and environmental parameters associated with an increase in population of
the mosquito vector. Second, the authors developed maps of historical disease range and
combined them with monthly updates of vegetation growth as indicative of conditions
favorable to the mosquito vector to predict areas where public health interventions should
be focused. Finally, the authors evaluated the location and occurrence of recorded cases

against the areas predicted by their method.
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Figure 4-3. Generalized workflow employed by Aynamba et al. (2014).
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Linking Cholera Dynamics in Bangladesh to Environmental Forcings. To

examine the links between cholera risk and environmental forcing in Bangladesh,
researchers have tied together rainfall, river discharge, flood extent, cholera cases, and
temporal changes in population immunity to tease out the influence of El Nifio/Southern
Oscillation (ENSO) on cholera dynamics.® Cholera is caused by Vibrio cholera bacteria
of which there are multiple strains, in Bangladesh the most notable strains are the El Tor
and the Classical.®® Recovery from an infection by one strain leads to acquired cross-
immunity for both strains but this immunity wanes over time, this drives temporal

changes in population-level immunity.>

Vibrio cholera bacteria are spread via fecal-oral transmission or exposure via
contaminated water. At the population level susceptibility to cholera varies in a non-
linear way over time; individual immunity acquired from previous exposures wanes over
time, and new susceptible individuals regularly enter a population through births or
aging.”® Koelle et al. (2005) developed a model that considered immunity, disease
transmission, and environmental forcings, with results that show a strong correlation
between cholera transmission and climate variability. Cholera cases were found to
decrease during summer monsoons, possibly due to the dilution of V. cholera in the
environment or a change in salinity; the rise in cases after monsoons is thought to be tied
to the breakdown of sanitary conditions that accompany crowding into non-flooded areas.
30 Unlike RVF, a virus transmitted by mosquitoes, cholera is a bacterial disease whose
spread is heavily influences by human activity. In the case of Bangladesh researchers

found that historical epidemiological data is a critical type of information that must be
201



considered when assessing population-level risk because acquired immunity influences
the number of currently susceptible hosts.’>>? The question of El Nifio and cholera is an
example of untangling the interaction between aquatic environmental conditions,
seasonal factors that affect large scale human behavior, movement, and sanitation, and
population level immunity that resulted from previous outbreaks of a bacterial disease
using both traditional medical data and non-traditional environmental monitoring data.
The generalized research process utilized by Koelle et. al. (2005) is diagrammed below in
Figure 4-3. First the authors assembled data on cholera cases and the known influence of
seasonality on disease transmission. Second, the authors generated equations for the
model term they were interested in quantifying, solved them, then they explored
environmental associations with that newly estimated model term. Lastly, the authors
compared their model to the observed data and explained how their results supported

their hypothesis.
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Figure 4-4. Generalized workflow employed by Koelle et al. (2005).
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Predicting Kawasaki disease in Japan from regional air parcel movements. Sub-

global weather patterns besides ENSO have been linked to increase risk for other
diseases. In the case of Kawasaki disease (KD) in Japan, specific tropospheric wind
patterns have been linked to days with high incidence of KD by Rod6 et al. (2014).
Kawasaki disease is an acute, coronary artery vasculitis (inflammation of blood vessels)
that affects children, and despite 40 years of study no single causative agent has been
identified.>® To investigate the possibility that the trigger for KD is a form of inhaled
antigen (foreign body triggering an immune response) or toxin, Rod¢ et al. (2014)
combined KD epidemiological data from Japan, regional wind patterns over Japan,
regional land cover data, and microbial profiling of tropospheric and ground aerosol
samples collected at times when air was coming from region identified as the possible
source of the KD trigger.>*Characterization of the aerosols indicated that tropospheric and
ground samples were significantly different, providing support for the feasibility of a
windborne pathogen.” The researchers also found that air parcels associated with higher
incidence of KD in Japan had previously moved over intensively cultivated croplands for
corn, rice, and wheat in northeastern China during a time when the ground was frozen.
This finding led them to speculate that the causative agent might be an aerosolized fungus
or pre-formed fungal toxin associated with decaying vegetation.>®> By combining remote
sensing records, field measurements, and spatially-based epidemiological data, this
research has suggested new avenues of investigation to understand and predict changes in

KD risk.
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A generalized workflow depicting the research process used by Rodé et al. (2014)
is presented below in Figure 4-4. The first phase was conceptual and exploratory and
focused on gathering existing data on the topic and in the spatial area of interest. The
second phase was the development of a model and generation of model outputs in the
form of a map that was used in phase 3. Phase 3 included field investigation of
atmospheric microbial sampling at a time and place suggested by the model developed in

phase 2 and identification of atmospheric microbes.
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Figure 4-5. Generalize workflow employed by Rodo et al. (2014).
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Section Summary. The three examples presented above all dealt with different
health questions and provided different research outcomes, but the authors employed
strategies with clear similarities. The research outputs for understanding Rift Valley
fever in the Horn of Africa, cholera in Bangladesh, and Kawasaki disease in Japan
described in this section resulted from efforts that combined traditional epidemiological
data and nontraditional sources of data to provide insight into changes in disease risk
probability in response to external factors. Revealing linkages between large-scale
physical environmental phenomenon (such as sea-surface temperature anomalies, wind
patterns, or rainfall levels) and local conditions is increasingly important in solving
complex problems involving multiple states or countries. However, satellite observations
are often limited to observing near the surface of an object and so cannot provide data for
every environmental process of interest.**The examples cited above illustrate the value of
applying a synthesis approach to understand how large-scale interactions between land,
water, and air can determine the transport and survivability of factors ranging from
raindrops to fungal spores which in turn influence local-scale human health. This inter-
disciplinary mindset informs the next section, which describes data sets collected from

multiple sources in support of an environmental and ocean health question.

Environmental and Socio-economic Data for Massachusetts Bay and Adjacent

Coastal Watersheds.

Field studies are the foundation of scientific progress, and monitoring programs

by public health authorities are crucial to environmental health science. The audience for
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understanding environmental processes is wide, spanning basic science, commercial
operators with business interests, and the public health and governance community.
There continues to be the need for, and financial support of, carefully constructed field
experiments of sufficient statistical power to reveal the symphony of biological,
chemical, and physical processes that interact at multiple scales to form our world.
However, after a first order understanding of relevant biological processes has been
developed it is reasonable to explore methodologies that allow scientists to use the
existing knowledge base to generate hypothesis and predict impacts on situations of
interest. For this project, the situations of interest are the variation in the levels of
Enterococcus bacterial populations near select bathing beaches in Massachusetts Bay and
the populations of Pseudo-nitzschia genus diatom species in surface waters of

Massachusetts Bay.

This section will describe the datasets collected to support the development of a
model for linking measured changes in local indicators (identified in Chapter 2) to the
measured population levels of two marine-sourced risks in Massachusetts Bay. The two
marine-sourced risks are total Pseudo-nitzschia species as measured in Massachusetts
Bay surface waters and levels of Enterococcus bacteria species measured in Boston
Harbor at select bathing beaches. Building upon the existing body of research in the
fields of Enterococcus and Pseudo-nitzschia spp. drivers of population levels in the
environment we have assembled data sets of relevant parameters in order to develop a

model that will attempt to estimate their influence on these populations.

The specific questions that will be asked of these data are:
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1) Is it possible to hindcast levels of Enterococcus populations in specific areas of
Massachusetts Bay with reasonable accuracy using the datasets collected for factors with

known biological relevance to Enterococcus growth?

2) Is it possible to hindcast levels of total Pseudo-nitzschia populations measured in
Massachusetts Bay with reasonable accuracy using the datasets collected for factors with

known biological relevance to Pseudo-nitzschia growth?

3) Does there appear to be any clear relationship between Enterococcus levels and

Pseudo-nitzschia levels in Massachusetts Bay?

4) Are there any field measurements for which public data do not readily exist which

scientific literature suggests would likely increase the predictive ability of these models?

Such data driven exploration serves to refine theory, and identify data gaps that must be
resolved to fully elucidate processes of interest, and potentially provide support for
expanded field observations if necessary. This approach can be applied to other marine-
sourced risks where enough evidence from experimental or field observations exists to

allow for the development of predictive models based on environmental parameters.

Massachusetts Water Resources Authority Data. Massachusetts Bay, Cape Cod
Bay, and Boston Harbor have long term (20+ years) coastal monitoring data for plankton,
nutrients, water quality, meteorological, and hydrodynamic parameters. Much of this
monitoring has been driven by the court-mandated construction of improved sewage
treatment facilities overseen by the Massachusetts Water Resources Authority

(MWRA).>> The MWRA provides secondary treatment for wastewater for some two
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million people in the greater Boston area; prior to September 2000 wastewater effluent
was discharged into Boston Harbor with minimal treatment.>*After September 2000,
wastewater received full secondary treatment and was diverted to a discharge outfall pipe
15km offshore in Massachusetts Bay.>> Monitoring programs collected baseline data in
Boston Harbor and Massachusetts Bay started as early as 1992 and continued after the
outfall went live in September 2000 in order to understand the ecological impacts of
relocating the outfall site offshore.>> The MWRA plankton sampling program identified
some organisms to the species level, but others to the genus level, including Pseudo-
nitzschia diatoms.>> While the extent and frequency of Pseudo-nitzschia sampling has
varied from year to year, there are some sampling station locations with 10+ year time
series that will be utilized for this research project. Further details on data sources

relevant to Massachusetts Bay are described in the next section.

Massachusetts Bay and Coastal Watershed Data. It is important to note that the
data assembled from the MWRA and other sources listed in Table 4-1 were not collected
for the purpose of developing a predictive model of Enterococcus bacteria or Pseudo-
nitzschia diatom species. Rather, the MWRA monitoring program was the result of legal
action, and sources such as stationary buoy sources are largely in support of weather
observation and marine navigation safety. These data should be considered ‘data of
opportunity’ and their explanatory power might be limited. The MWRA disclaimer
accompanying the data states:

"These data are from the Environmental Monitoring and Mapping System (EM&MS) and
the Department of Laboratory Services LIMS system (LIMS), Oracle databases utilized

by the Massachusetts Water Resources Authority (MWRA) Environmental Quality
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Department (ENQUAD). These data are collected from a variety of sources which
measure the data for a variety of different uses and with different standards for accuracy
and precision, and are distributed as is. MWRA cannot ensure that they are appropriate
for any particular use. Neither the MWRA, the Commonwealth of Massachusetts, nor any
agency to whom MWRA has given data, or from whom MWRA has obtained data, shall

be held liable for any reason related to the accuracy or fitness of the provided data."°

The Massachusetts Water Resources Authority (MWRA) has made water quality
monitoring data from Boston Harbor available for select observations starting in 1989.%
Users can download spreadsheet files of environmental data that contain the following
data elements: project ID, region, subregion [a specific beach area], Department of
Environmental Protection (DEP) segment, station ID, surface or bottom [sample location
within a water column], date/time, depth of measurements, temperature, salinity, specific
conductance, dissolved oxygen (DO), DO Percent Saturation, pH, and turbidity. Not
every observation record contains all of the data elements listed above. For example, in
the spreadsheet file for Physical Data the earliest turbidity measurements occurs in 1994,
but there are many records in years 1997, 1998, 2000, with no turbidity measurements.

Gaps exist for other years and different observation stations as well.

The file named "bh_nutrients.xIsx" contains MWRA data on nutrient and
chlorophyll measurements from 1994 to 2014.5° Not every sample contains a record for
every data element in the file. The list of data elements includes: project ID, region,
subregion, DEP segment, station ID, date/time, surface or bottom, sample depth,

Ammonium, Nitrate+nitrite, Total dissolved Nitrogen, particulate nitrogen, Total
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Kjeldahl Nitrogen (TKN), Phosphate, Total dissolved P, Particulate P, Total
Phosphorous, Particulate Carbon, Chlorophyll a, and Phaeophytin. However, of the
records in this file, data is largely only available for the following categories:
Nitrate+nitrite, Total Kjeldahl Nitrogen, Phosphate, Total phosphorus, Chlorophyll a, and
Phaeophytin.’®An examination of the spreadsheet containing these records shows that
there are numerous gaps in the record. Not all samples were collected at the same time,
on the same time scale, or consistently over the past 20+ years by the MWRA. In addition
to the public data on the MWRA website, further data from sampling in Massachusetts
Bay is available upon request. We have acquired data from station F22 and F23 for that
includes most of the nutrients listed above as well as salinity, silicate, and zooplankton
counts.’” Data processing and cleaning methods used are described in Chapter 4. We
acquired additional Enterococcus count data from marine beaches via the Massachusetts

Depart of Public Health, Bureau of Environmental Health.

In addition to the MWRA, other organizations collect data about Massachusetts
Bay to fulfill their own mission requirements. For example, NOAA collects and archives
weather observations from various observation stations, including land-based
observations at Boston Logan International Airport, and sea-based observations from
buoys in Boston Harbor and Massachusetts Bay.>® Multiple regional ocean and weather
monitoring data streams are collected by the Northeastern Regional Association of
Coastal and Ocean Observing Systems (NERACOOS) to support marine operations, safe
navigation, and research. NERACOQOS partners include multiple Universities, research

institutions, and government offices at the state and federal level.”
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The completeness of records and extent of spatial coverage for the collected

datasets varies. Sources consulted for the project include federal government agencies, a

non-profit organization that works with multiple government entities, state agencies, and

local town offices. State agency datasets were acquired through multiple methods,

including downloads from public websites and email requests to agency employees

inquiring about public, but unpublished, data. Dog populations for coastal cities

bordering Massachusetts Bay were assembled by the author in 2012 by emailing or

calling town clerk offices or the relevant authority in charge of dog licensing. Data

sources compiled are listed in Table 4-1, below. The compilation of data from such a

diverse array of sources illustrates the interdisciplinary nature of environmental health

work, especially ocean and human health work. Acquiring and exploring the data is part

of Phase 1 (conceptual exploratory) of the synthesis research workflow process as

depicted in Figure 4-2.

Table 4-1. Data Sources for Massachusetts Bay and Coastal Watersheds

Source Name Source Data Types Sampling Unit of Spa tial Source
Type Frequency analysis
Population, Polygon (blocks
age, sex, are the smallest
U.S. Census, housing units, | Every 10 unit of analysis, 0
Decennial Federal household years, entire multiple blocks
Census government income, other | USA in a tract).
demographic Covers entire
data USA
Polygon,
Housing stock, | Every year, smallest unit of
U.S. Census, wastewater approximately | analysis is tract.
American Federal treatment, 11in 38 U.S. Data can be 60
Community government | other households grouped by
Survey demographic receive the other
data survey. administrative
boundary types
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Table 4-1. Data Sources for Massachusetts Bay and Coastal Watersheds

Source Name Source Data Types Sampling Unit of spa tial Source
Type Frequency analysis
Dog . Number of
population in guot?(f)rﬂ\?ii by dogs registered
coastal cities hone and to town, some | One time Polveon. cit I{gﬁgg
bordering phor estimates of survey yeon. city dat
email survey . ata
Massachusetts | . unregistered
in 2012
Bay dogs
. Point
ﬁ‘i:s;z%eedf;g recordings, flow
U.S. Al 8 s taﬁons Continuous, rates. Stations
Geological Federal alon June-Aug 0110- 0000, 61.62
Survey, River | government wate%wa .. 10 records 2007- | 55566, -5876, -
discharge data S, 2014 5870, -5730, -
data on Cape 5608, -5583. -
Cod 5585, 2345
Ocean and
organization from buoys in
partner of the northeast. .
Northeastern federal, Air Minute by
Regional state, local temperature minute, but Point records at
Asfociation of government, watgr ’ reports of daily buoy locations
academia, averages are Y oL 59
Coastal and temperature at . Buoy AO1 is in
and . available.
Ocean . multiple Massachusetts
Observing industry. depths Annual data Bay
Systems Part of U.S. salini t§’/ acquired for of ’
géii;ated chlorophyll, 2000-2014.
. turbidity, wind
Observing L
direction,
System
current
direction.
NOAA Buoy | Federal Air
]S;?I%?\I% Cglo;/errllment, temperature, 6-minute El?(l)rrl;’li(r)lr; glfe 58
’ ata a’so water intervals
Boston served via temperature Boston.
Harbor NERACOOS P
Precipitation,
NOAA air temperature Point, Sampling
National Federal to tenth of Daily average station at 63
Climatic Data | government | degree, y & Boston Logan
Center average daily Airport
wind speed
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Table 4-1. Data Sources for Massachusetts Bay and Coastal Watersheds

Source Name Source Data Types Sampling Unit of spa tial Source
Type Frequency analysis
Weekly,
Massachusetts monthly, or
Depe.lrtment of daily during Point data,
Public State Enterococcus | summer representin
Health, overnment sampling bathing season (ﬁ on be§ch o4
Beach Water | © results depending on pOIyE
. . area
Quality location and
Testing previous test
results
Massachusetts Point data from
Water State Boston Harbor | Varies, weekly | defined 56
Resources government | bacteria counts | or monthly. sampling
Authority locations
Boston Harbor
nutrient data:
Ammonium,
Nitrate + Varies, weekly | Point data from
Massachusetts nitrite, Total or mor;thl y defined
Water State Kjeldahl LY, . 56
. Acquired data | sampling
Resources government | Nitrogen, . .2
Authorit Phosphate spanning 1992 | locations in
y P ’ -2014 Boston Harbor
Total
phosphorus,
Chlorophyll 4,
Phaeophytin.
Ammonium,
Nitrate +
nitrite, .
Phosphate, Varies, weekly Pmp t data from
Massachusetts defined
Total P/N, or monthly, .
Water State . . sampling 57
Particulate Acquired data . .
Resources government . locations in
Authorit P/N/C, spanning 1995 Massachusetts
Y Chlorophyll a, | -2014 Ba
Silicate, y
Salinity,
zooplankton.
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Table 4-1. Data Sources for Massachusetts Bay and Coastal Watersheds

Source Name Source Data Types Sampling Unit of spa tial Source
Type Frequency analysis
Beach water
quality, . Point,
Massachusetts . Spring-fall. .
bacteria counts . . representative of
Water State Daily during 56
and polygon for
Resources government . .. .. . |summer X
. precipitation in . beach bathing
Authority bathing season
the form of area
rainfall
Approximately
Massachusetts Pseudo- monthly from | Point, from
Water State nitzschia 1992 -2014 defined 65
Resources government | species count (date range sampling
Authority data varies by locations
station)
Location and
information for
facilities
Us. yihin Point, facilities
Environmental | Federal have associated 66
. Pollutant Monthly .
Protection government . latitude and
Agency Discharge longitude data
Elimination
System
(NPDES)
permit.
Enteric
diseases
Massachusetts diagnosed in Annually, with U.S. State,
State Commonwealth 67
Department of overnment the 1+ year lag for of
Public Health | £ Commonwealth | public release
of Massachusetts
Massachusetts

Summary Conclusion.

This chapter discussed the changes in the type and amount of data available to

environmental health researchers. These changes include increasing numbers of

observations from multiple sources, including non-traditional sources such as satellites,
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the digitization and publication of previously paper-based records, and the increasing
speed of data generation from traditional sources as well as new sources such as social
media or mobile phone-based applications. In addition, this chapter provided three
examples of public health research benefitting from the acquisition and assimilation of
data from sources not traditionally utilized by medical researchers. These three examples
highlighted the use of satellite-derived remote sensing data related to regional climate
conditions and how that data was combined with other data sources to develop models
used to predict changes in risk probability for seasonal Rift Valley Fever in the Horn of
Africa, the severity of cholera outbreaks in Bangladesh, and high-incidence days of
Kawasaki disease in Japan. Diagrams describing the workflow employed in these
examples of synthesis research were included, along with a generalized workflow
diagram that other researchers might follow for their own project. Finally, this chapter
presented a list of relevant data sets that have been assembled from authoritative sources
in order to develop a basic model for hindcasting the presence of Pseudo-nitzschia
species of diatoms in Massachusetts Bay and Enterococcus bacteria within the Boston
Harbor embayment of Massachusetts Bay. Model specifics and results are described in

Chapter 4.
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CHAPTER 5

MODEL DEVELOPMENT AND TESTING

Abstract. This chapter discusses the development of a quantitative hypothesis-
driven approach to explain potential predictive influences for two marine-sourced risks
known to exist in Massachusetts Bay. Those two risks are the diatom Pseudo-nitzschia
delicatissima complex which can produce the neurotoxin Domoic Acid, and
Enterococcus bacteria which are the standard indicator bacteria used to assess
recreational water quality and are associated with mammalian fecal pollution. The P.
delicatissima complex model is based on data from two stations approximately 20 miles
apart. The Enterococcus model is based on data from three ocean-facing beach locations
along the north coast of Massachusetts Bay because of their proximity to the offshore
sampling site for P. delicatissima complex and their location as the ‘upstream’ end of the
general circulation pattern for the Bay. We identified potential explanatory variables
through the literature review (described in Chapter 2) and then identified available data,
sourced primarily from state and federal monitoring programs (described in Chapter 3).
Testing of the probabilistic models derived from these data sources revealed that, for P.
delicatissima complex the presence/absence can be poorly-to-adequately predicted, and

for Enterococcus presence/absence at the level of >10 bacteria per 100mL seawater
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cannot be predicted with any confidence. Analysis of the data did not reveal any
discernable relationship between the presence of Enterococcus in recreational waters at
the sampled locations and the presence of P. delicatissima complex at Station F22 when
sampled in the same month. At present, the use of Enterococcus and other fecal indicator
bacteria as an indicator of biological water quality is not informative of the presence of P.
delicatissima complex. The same lack of relationship is expected for other fecal indicator
bacteria and other species of Pseudo-nitzschia. These results suggest that direct sampling
for marine-sourced risks in recreational- and shellfish-harvesting wasters is the most

appropriate monitoring action for protecting public health at present.

Introduction.

The preceding chapters have described how to think about an environmental health topic
in terms of an overarching framework that places the topic within a larger system
(Chapter 1), the biology and state of knowledge of five marine-sourced risks that can
exist in Massachusetts Bay (Chapter 2), and the way that the changing availability of
information sources beyond traditional epidemiological data allows us to explore new
questions the environment and human health (Chapter 3). This chapter synthesizes the
information from the previous chapters into an information theoretic framework to
determine the probability of the presence/absences for two marine-sourced risks in
Massachusetts Bay. The four specific questions we are addressing with these models
are:

1) Is it possible to hindcast levels of Enterococcus populations in specific areas of

Massachusetts Bay with reasonable accuracy using the datasets collected for factors with
known biological relevance to Enterococcus growth?
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2) Is it possible to hindcast levels of total Pseudo-nitzschia populations measured in
Massachusetts Bay with reasonable accuracy using the datasets collected for factors with
known biological relevance to Pseudo-nitzschia growth?

3) Does there appear to be any clear relationship between Enterococcus levels and
Pseudo-nitzschia levels in Massachusetts Bay?

4) Are there any field measurements for which public data do not readily exist which
scientific literature suggests would likely increase the predictive ability of these models?
In the previous chapter we presented a figure describing the three phases of this type of
interdisciplinary environmental health/data science work. Those phases are:

e Phase 1: Explore concepts and generate hypothesis

e Phase 2: Develop outputs

e Phase 3: Evaluate outputs

Our process up until this point is depicted in Figure 5-1, below, in the section titled
‘Phase 1’. In Phase 1 we identified our topic of interest, carried out a literature review
and data gathering process to understand the current state of those risks and how they
play out in Massachusetts and the Massachusetts Bay area (our spatial area of interest).
We did not pre-select a temporal scale in Phase 1, but waited until Phase 2 after we had
examined the assembled data. The section of Figure 5-1 depicting Phase 2 shows the
variety of products that have been produced as part of this research (graphics, maps, and
candidate model sets), some of these outputs have been included in previous chapters

(examples include the series of maps in Chapter 2).
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Figure 5-1. Depiction of three phases of interdisciplinary data science with status of our

work to this point.
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The remainder of this chapter will discuss the Phase 2 development work, then the Phase

3 evaluation work, and will end with a summary conclusion section.

Phase 2: Develop Outputs

The first task in Phase 2 was to examine the available Massachusetts Bay data and
compare it to other studies that have investigated the relationship between Pseudo-
nitzschia and environmental variables. Four examples of such work from the past decade
are summarized below, notably these four examples all used different analytical
approaches. This reflects both the diversity of statistical methods available to researchers
and the lack of a widely accepted standard approach for describing environmental
influences on Pseudo-nitzschia abundance. As diatoms Pseudo-nitzschia are
taxonomically distant from more well-known causative agents of harmful algal blooms,
namely the dinoflagellates Alexandrium fundyense and Karenia brevis which belong to a
different phylum.!

Canonical correspondence analysis and Pseudo-nitzschia species in the
Quoddy Region, Bay of Fundy, Canada. Kaczmarska et al. (2007) examined the
relationship between P. delicatissima and environmental factors is the Quoddy Region,
Bay of Fundy, Canada. The authors identified seven species of Pseudo-nitzschia in
samples at 5 stations collected weekly for 11 weeks (from 29 July to 14 October, 2003)

and then related species abundance to environmental factors.? The environmental
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variables investigated were transparency, fluorescence, silicate, phosphate, nitrite plus
nitrate, ammonia, nitrite, oxygen, sigma-t, tidal level, tidal state and total depth of water
column at sampling site.> The seven Pseudo-nitzschia species were clustered into three
groups based on morphology, the P. seriata-group, P. delicatissima-group and P.
americana (a group containing a single species). The authors note that species from the
P. delicatissima-group dominated most of their samples, with P. delicatissima being the
most temporally persistent.? The authors used canonical correspondence analysis (CCA)
to identify environmental factors that explained the greatest amount of variance in
temporal and spatial distribution patterns at both the species and group levels. A total of
52.4% of the variance in species data was explained by the first four CCA extracted
ordination axes (27.3, 18.4, 4.0, and 2.7% respectively).> To determine statistical
significance between species abundance and an environmental gradient Kaczmarska et al.
constructed a biplot of #-values using the Van Dobben method and found that of eleven
environmental variables tested, only ‘nitrite plus nitrate’ was significantly (positively)
correlated with P. delicatissima and P. pseudodelicatissima.> The same variable was
significantly negatively correlated with P. pungens, and not significantly correlated with
any other species. Overall, the authors found that different environmental variables
correlated with different Pseudo-nitzschia species, suggesting that each may exploit
distinct environmental conditions.?

Logistic regression model for the prediction of toxigenic Pseudo-nitzschia

blooms in Monterey Bay, California. Lane et al. (2009) used logistic regression to
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model relationships between Pseudo-nitzschia blooms and environmental factors in
Monterey Bay, California, which the authors note was first time logistic regression had
been applied to Pseudo-nitzschia bloom prediction.® The authors transformed continuous
Pseudo-nitzschia count data into a dichotomous response variable (bloom / no bloom)
using a threshold of 10,000 Pseudo-nitzschia cells per liter seawater.> Their analysis
considered 31 environmental variables, but only 6 variables were identified as
statistically significant across the three models developed (annual, spring-summer, and
fall-winter models). The six significant variables were water temperature, the upwelling
index level, the natural log of chlorophyll a, natural log of silicic acid, natural log of the
Pajaro River freshwater discharge, and nitrate concentration. Only two variables, natural
log of chlorophyll a and natural log of silicic acid, were significant in all three models.?
The annual model was built using 422 total cases (of which 64 bloom cases),
performance at the optimized prediction point of 0.145 resulted in 5% false negatives and
62% false positives.®> Massachusetts Bay does not experience the same intensity of
upwelling as Monterey Bay, an important distinction between the two areas that must be

considered when attempting to relate findings from one region to another.

Generalized Linear Model for predicting Pseudo-nitzschia blooms in the
Chesapeake Bay. Anderson et al. (2010) used logistic regression to predict a
dichotomous response variable (bloom / no bloom) at three threshold levels for Pseudo-

nitzschia species in the Chesapeake Bay on the eastern coast of the United States.* The
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bloom threshold levels explored were small (>10cells/mL), medium (100 cells/mL), and
large (1,000 cells/mL) at any time of entire year (they did not build separate seasonal
models like Lane et al. (2009)).>* The authors utilized surface phytoplankton abundance
and water quality data to build their model, noting that the data were originally collected
for monitoring purposes and thus subject to sampling biases due to the frequency of
“event-response’ type of data collection.* Environmental variables identified by
Anderson et al. (2010) for small blooms were month of year, water temperature, latitude,
longitude, freshwater discharge, phosphate concentration, and nitrate plus nitrite
concentration.* Medium-bloom model variables were month of year, water temperature,
salinity, freshwater discharge, phosphate, dissolved organic carbon concentration, nitrate.
Large-bloom model variables were water temperature, salinity, latitude within
Chesapeake Bay, silicic acid, nitrate plus nitrate, and turbidity as measured by a Secchi
disk.* The small bloom model performed best of all three and was the main focus of their
analysis. At the optimized prediction point of 0.19 the small bloom model had a Heidke
Skill Score of 0.53, probability of detection score of 0.75, false alarm ratio of 0.52, and
probability of false detection score of 0.09.*

Although the Chesapeake Bay and Massachusetts Bay are both the eastern coast
of the U.S., the study sites in Anderson et al. (2010) have environmental characteristics
that differ from Massachusetts Bay, notably a salinity range of 0.5 to >18psu,* and
recorded sea surface temperatures in Chesapeake Bay ranging from approximately O to

30°C.> Massachusetts Bay sea surface temperature records from NOAA Buoy 44013
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from 2010 to 2014 do not indicate any temperature above 25°C.®* Massachusetts Bay also
has a different salinity profile than the Chesapeake Bay. Salinity records from Station
142 at the mouth of Boston Harbor indicate salinity ranging from 25 to 35 psu,’ and
offshore surface salinity records from Buoy A0l range from approximately 24 to 32 psu.®
Again, these regional differences may limit the transferability of findings between

regions.

BEST analysis examination of variation in Pseudo-nitzschia species in the
Western English Channel. Downes-Tettmar et al. (2013) collected weekly samples of
phytoplankton and environmental parameters at Station L4 (50°15°N, 4°13°W) in the
Western English Channel from January to December 2009 and divided Pseudo-nitzschia
into three groups based on size and morphology.® The three groups were the P.
delicatissima-group, P. pungens/multiseries-group, and P. seriata-group. The authors
used a technique known as BEST analysis, which examines the similarities between pairs
of samples (in this case the abundance of Pseudo-nitzschia group species) and pairs of
variables (environmental data).? Although this may sound similar to the ordination plots
produced by methods such as canonical correspondence analysis, the authors note that
their data did not meet the assumptions required for the use of that technique. Unlike the
logistic approaches used by Lane et al. (2009) and Anderson et al. (2010) to develop
predictive models, the BEST analysis used by Downes-Tettmar et al. (2013) does not
result in an equation to predict presence or absence of a bloom. However, the BEST
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analysis and Spearman’s rank correlation (between Pseudo-nitzschia group abundances
and environmental variables) used by the authors did result in a list of environmental
variables correlated to group abundance, along with the results of a significance test at p
<0.02. For the P. delicatissima-group the significant environmental variables (with
Spearman’s rank correlations) were water temperature (0.54), hours of light (0.67),
salinity (0.56), phosphate concentration (-0.69), and rainfall (-0.22).° The abundance of
each Pseudo-nitzschia group was associated with different environmental variables, and
no single variable was shown to be significant for all three groups.® This supports the
argument for group-level, or preferably species-level, identification for use in model
development as discussed by Downes-Tettmar et al. (2013) and others, rather than total

Pseudo-nitzschia spp. abundance.”

Section Summary. As illustrated in the four examples summarized above, there
are multiple ways to assess the relationship between Pseudo-nitzschia abundance and
environmental factors.”*° These research projects have been carried out in different
regions with different environmental regimes, and Table 5-1, below, shows that they have
yielded different results in terms of environmental variables identified as important for
Pseudo-nitzschia abundance. As yet there is no single best way to examine the
relationship between environmental factors, Pseudo-nitzschia presence or bloom size,

and Domoic Acid production.
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Table 5-1. Variables identified in recent modeling and correlation work

If reported, variables are identified as positively significant (++), negatively significant (--),
positively associated but not significant (+), negatively associated by not significant (-).

Kaczmarska et Lane et al. Anderson et al. Downes-
Paper al. (2007)? (2009), annual (2010), small Tettmar et al.
' model3 bloom model* (2013)°
Canonical Logistic Generalized BEST analysis,
Method correspondence . .
. regression linear model Spearman rank
analysis
Pseudo-nitzschia N Total Pseudo- Total Pseudo- . P :
type measured P. delicatissima nitzschia nitzschia delicatissimas
group
Variables
Water __ __ r
Temperature
Maximum light +
Hours of light ++
Salinity ++
Nitrate -
Nitrite -
Nitrate + nitrite ++ --
Phosphate - -
Ammonia -
Silicate -
Silicic Acid --
Chlorophyll a ++ +
Rainfall --
Upwelling ++
Month --
Latitude --
Longitude ++
Freshwater
discharge -

Given the variety of environmental conditions, some researchers have focused on

untangling the relationship between individual environmental variables and abundance at
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the Pseudo-nitzschia group or species level, using techniques such as canonical
correspondence analysis or BEST analysis.?® Other researchers interested in predictive
capacity have used regression methods to develop models which may be specific to
bloom size, times of year, morphological groups, or individual species.** The goal of our
work is to develop a predictive model which could be used to support public health
protection efforts in Massachusetts Bay. We are not attempting to delineate the
mechanisms of action by which individual environmental factors influence Pseudo-
nitzschia abundance, although we recognize that model predictions might serve to
generate hypothesis which may be tested by others. With that goal in mind, we decided
to use a model selection process that differs from those presented above. The model
selection process (Phase 2 work), and then our model testing results (Phase 3 evaluation

work), are described below.

Phase 2: Model Development Using Information Theory

We have chosen to use an information-theoretic approach for model selection that
seeks to identify the ‘best approximating model” from a suite of candidate models.’® The
candidate set of models is developed by choosing models based on our current
understanding of the phenomenological processes that affect Pseudo-nitzschia or
Enterococcus abundance. The models in that candidate set are then ranked relative to
one another using information criteria (there are multiple kinds) to identify the best

approximating model and calculate the difference between the models in the candidate
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set.’? We will use Akaike’s Information Criterion (AIC)!* as our information criteria.
This section will give a brief overview of information theory and AIC to provide context
for the remainder of the chapter. For an extensive treatment on these and other topics
including information and likelihood theory, weight of evidence approaches, and the
difference between these and other multivariate modeling approaches the reader is

referred to the book Model Selection and Multi-Model Inference: A Practical Theoretic

Approach (2™ Edition) by K.P. Burnham and D.R. Anderson.°

Information theory is a concept that arose in the 1940s, but model selection based
on information theory has only been introduced into biology and ecology relatively
recently.’® It is philosophically different than null hypothesis testing and has no
equivalent dichotomy of ‘significant’ or ‘non-significant’ variables.'® Together, the
concept of information theory and the use of AIC provides a general, yet powerful,
method for selecting a model for the data of interest. This approach differs from other
model development methods that sequentially add variables to a model based on
significance tests because it requires the researcher to develop an a priori set of candidate
models (model specification) based on their existing understanding of the system.*® That
is, variable inclusion is based on an understanding of biological relevance rather than
statistical significance. These candidate models may include different variables and
interaction terms, so variable selection is a key part of the model development, and

ultimately model selection.®
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After the candidate model set is specified all of the models in that set are ranked
relative to one another using AIC to identify the ‘most supported model.” When multiple
models receive similar levels of support because their AIC scores are close together the
process of ‘model averaging’ allows this uncertainty among models to be considered
when obtaining parameter estimates.’? By using model averaging (also called multi-
model inference) it is possible to make inferences from several models in the candidate

set.10

AIC scoring is a mathematical process that calculates a distance from a candidate
model to an (unknown) constant representing the ‘true’ model with parameters that
reflect reality.’® The model with the lowest distance among all the models within a
candidate set is ranked highest. AIC does not give an absolute measure of how good a

particular model is, only whether one model is better than another model in the candidate

set. Since AIC is provides a relative comparison among models in the set, the variables
and models included in that set must be carefully selected. A fundamental part of AIC is
based upon understanding the concept of the ‘relative distance’ (a mathematical construct
based on the entire distribution of the model) between a model and full reality. The
equation for this relative directed distance (also known as the Kullback-Leibler distance)

between full reality (f) and a model (g) estimating that reality is°,

I(f,9) — C = Ef[log(g(x[6))]

Where: I (f, g) denotes the information lost when approximating f using g
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C denotes the unknown true distribution, or Er [log (f (x))]

Er denotes a statistical expectation

x denotes a set of data

0 denotes parameters of the candidate models, the model space
log denotes the natural logarithm

The left side of the equation (the relative distance) remain unknown, but the right side
can be quantified given the model and the data. There is no parameter estimation at this
point.’® The equation for an AIC score goes beyond the equation above for relative
directed distance to provide an estimate of the expected relative distance between the
fitted model and the (unknown) truth that underlies the observed data.® The equation for

the AIC score is shown below.
AIC = —210g (£(8]y)) + 2K

Where: £ denotes likelihood
log (L(@ | y)) is the value of the log-likelihood at its maximum point

6 denotes estimated parameters
y denotes an independent random sample from the distribution
K denotes the number of estimable parameters

The application of AIC to model selection is straightforward, AIC values are computed
for each model, then models are ranked based on AIC scores. The model with the lowest
AIC is estimated to be the closest to that unknown reality among the models in the set.*
In addition to the AIC, the AIC differences (written as AAIC) are an important part of
model selection consideration. AAIC is the difference in AIC scores between the ‘most
supported model’ and each of the other models in that set. AAIC values among one

candidate set are not comparable to the AAIC of another candidate set. As AAIC
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increases there is diminishing support that a fitted model is the best model, given the
data. For nested models (which may contain some of the same parameters) the guideline
for evaluating AAIC is that values from O to 2 indicate that a model is substantially
similar to the best model in the set (the model with the lowest AIC) and is considered
indistinguishable from the best model, values of 4 to 7 indicate considerably less support
for that model (but there is still a likelihood that is it a supported model), and AAIC
values greater than 10 indicate essentially no support for a model over the best model in
the set. We will apply this model selection method after generating a set of candidate
models for the presence/absence of P. delicatissima complex and the presence/absence of
Enterococcus, our response variables of interest (the next section describes the response
variable data in further detail). After identifying the most supported model from each
candidate set we will use it to generate probabilities of P. delicatissima complex or
Enterococcus presence with values from the test data set, i.e., we will hindcast the
presence of these taxa. As part of Phase 3 evaluation we will compare the predictive
(hindcast) accuracy of each model against the observed presence/absence outcomes. This
comparison of predicted vs. observed outcomes will have four parts (model sensitivity,
model specificity, false positive rate, and false negative rate) and will be discussed in the

section on Phase 3 work.
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Phase 2: Response Data Description

After assembling data from multiple sources our examination of the combined
data revealed typical problems such as missing observations within a larger data set and
temporal discontinuity between different data sets. For example, land-based weather
observations and buoy-based oceanographic observations are collected sub-daily, with
daily summaries available for different points for many years. Similarly, turbidity
measurements from Buoy AO1 are not available before 2007, so they were applicable to
the Enterococcus model but not the P. delicatissima complex model. In addition, model-
derived historical estimates of oceanographic variables (including chlorophyll, nitrates,
diatoms) based on satellite data are available at a geographical scale that dwarfs our study
area, and a monthly temporal scale lacking coverage for many years. Due to these
limitations we did not use historical satellite-derived information for our model
development.

The data on Pseudo-nitzschia counts from the MWRA were collected
approximately monthly, across all seasons, but not in every month of every year.
Macronutrient and phytoplankton samples were collected concurrently with Pseudo-
nitzschia observations, but not in the days prior. Water quality samples for most
recreational beaches are collected weekly, but only in the summer (roughly late May
through September). These and other conditions required us to pare down the available
data so that for the P. delicatissima complex model we had a total of 229 observations

combined from Stations F22 and F23 spanning the years 1995 to 2014. 75% of these
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observations were used for the training data set, and 25% were set aside for the testing
data set. For the Enterococcus model we had 349 observations combined from three
sampling points (Devereux Beach, Marblehead; Singing Beach Station 1, Manchester-
By-The-Sea; and Good Harbor Beach, Gloucester) across summer months in the years
2007 — 2014, with 25% of those observations set aside for the test data set. Further

details about the response variable data sets are provided below.

Pseudo-nitzschia Abundance Data. The Massachusetts Water Resources
Authority has multiple monitoring stations throughout Boston Harbor and Massachusetts
Bay.” However, this work utilized sampling results collected between 1995 and 2014 at
Station F23 (latitude: 42.339, longitude: -70.942) and Station F22 (latitude: 42.4798,
longitude: -70.617).%* These two stations are shown on Figure 5-2, below. Also shown
on Figure 5-2 are Buoy AO1 (latitude: 42.521, longitude: -70.565) and NOAA Buoy
44013 (latitude: 42.346, longitude: - 70.651) which provide oceanographic data and
Boston Logan International Airport which houses an observing station that provides

weather data.% 141>
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Figure 5-2. Map of Station F22 and F23, Buoy A0O1, Buoy 44013, and Boston Logan
Airport locations.

The Massachusetts Water Resources Authority (MWRA) database lists eight
Pseudo-nitzschia species or group category descriptions used in the monitoring program
(see Table 5-2). By examining the observations of Pseudo-nitzschia categories we see
that only two have been commonly detected in sampling efforts at Stations F22 and F23,
the P. delicatissima complex and P. pungens. Pseudo-nitzschia genus taxonomy has
changed during the period of MWRA monitoring in Massachusetts Bay, so some shifts in
the abundance of different categories might be the result of changes in organism

classification (referred to as ‘binning’) practices or from changes in project staff.’® Also,
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MWRA sampling at Station F23 began in 1992, but we selected August 1995 as our
dataset start date because historical records for Pseudo-nitzschia, macronutrients, and
other variables appeared more consistent after that date. Throughout the rest of this work
any references to a start date of 1995 should be interpreted as starting in August 1995.
Table 5-2. Massachusetts Water Resources Authority categories for Pseudo-nitzschia

species classification. Results of shallowest surface sample per day at Stations F22 and
F23, August 1995 — December 2014.

129 Samples at F23 100 Samples at F22
(Outer Boston Harbor) (Massachusetts Bay)
Number of samples Number of samples
Category Count=0 Count#0 | Count=0 Count#0

Pseudo-nitzschia spp. 124 5 98 2
Pseudo-nitzschia sp. 1
(delicatissima?) 129 0 100 0
Pseudo-nitzschia delicatissima 129 0 100 0
Pseudo-nitzschia delicatissima 74 55 47 53
complex
Pseudo-nitzschia pungens 104 25 86 14
Pseudo-nitzschia cf. pungens 128 1 100 0
Pseudo-nitzschia seriata 129 0 100 0
Pseudo-nitzschia cf. americana 129 0 99 1
Note: all sample counts are in units of cells/L

Clearly, the P. delicatissima complex has been detected more often than P. pungens at
Stations F23 and F22, it has the highest number of samples where the count was not
equal to O cells/L (see Table 5-2). Past research has suggested that the P. delicatissima
and the P. delicatissima-group prefer slightly different environmental conditions than P.
pungens, with the result that their abundance peaks are temporally separated (see

Downes-Tettmar et al. (2013)).° As part of Phase 2 output development work we
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graphed P. delicatissima complex and P. pungens on separate timelines (see Figure 5-3,
below). In Figure 5-3, the top two timelines show observations at Station F23 from
August 1995 to 2014; the bottom two timelines show samples taken at Station F22 from
2000 to 2014. Note that sampling at Pseudo-nitzschia sampling at Station F22 did not

start until the year 2000.
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Figure 5-3. Abundance of P. delicatissima complex and P. pungens at Stations F22 and
axis is limited to 10,000 cells/L for reasons of scale.



Figure 5-4, below, shows the full y-axis scale of P. delicatissima abundance at Station
F23 from 1992 to 2014. The massive event in 1998 dwarfs all other measurements,

hence our use of a truncated scale in other figures.

Pseudo-nitzschia delicatissima complex abundance (cells/L) at Station F23, 1992 - 2014
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Figure 5-4. P. delicatissima complex at Station F23 only, 1992 - 2014.

An enlarged view of P. delicatissima complex abundance at Station F23 from 1995 to
2014 is shown below in Figure 5-5, with the y-axis limited to 10,000 cells/L. Based on
this monitoring dataset there is no clear seasonal or annual signal in the presence of P.
delicatissima complex. However, it does appear that Station F23 had a greater number of

P. delicatissima complex observations with counts over 1,000 cells/L during the years

2011-2013.
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Pseudo-nitzschia delicatissima complex abundance (cells/L) at Station F23, 1995- 2014
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Figure 5-5. P. delicatissima complex abundance at Station F23, 1995 - 2014, limited scale.

Figure 5-6, below, shows P. delicatissima abundance at Station F22 between 2000 and
2014, with the y-axis truncated at 10,000 cells/L. As shown in the figure, P.
delicatissima complex has frequently been found at Station F22 since sampling started in

the year 2000, but there is no clear annual cycle.
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Pseudo-nitzschia delicatissima complex abundance (cells/L) at Station F22, 2000 - 2014
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Figure 5-6. P. delicatissima complex abundance at Station F22, 2000-2014.

Given the abundance of non-zero-count samples for P. delicatissima complex as opposed
to other categories of Pseudo-nitzschia, and the suggestion that morphology-based
groups, or individual species, have different environmental niches, we focused solely on
modeling the P. delicatissima complex.

Between 1995 and 2014 MWRA surface sampling for Pseudo-nitzschia at Station
F22 and F23 ranged from 4 to 12 samples per station per year.!” The observations made
at Station F22 and F23 were part of a much larger monitoring program as part of the

cleanup of Boston Harbor and the construction of the Deer Island Wastewater Treatment
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Plant and the offshore outfall pipe disposal site (referred to as ‘the outfall’).’* ¥ One of
the goals of this cleanup effort was to reduce the amount of macronutrients being released
into Boston Harbor, and there has been an approximately 80% decrease in ammonium
concentrations as a result of this effort.’® The drop in ammonium levels in outer Boston
Harbor after the outfall went online is shown below in Figure 5-7. Station 142 and F23
are both located in outer Boston Harbor, including data from both stations provides finer
temporal resolution of the ammonium concentration in outer Boston Harbor since

nutrient sampling at Station F23 and Station 142 were usually offset by a few days.
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Figure 5-7 shows that measured levels of ammonium at these stations dropped

dramatically after the outfall went online in September 2000.

Ammonium (NH4) concentration (uM) at Station F23 and Station 142, 1995 - 2014
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Figure 5-7. Ammonium concentrations at Station F23 and 142, 1995 - 2014.
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Ammonium (NH,) concentration (uM) at Station F23 and Station 142, and
Pseudo-nitzschia delicatissima complex counts at Station F23,1995- 2014
(Note log-scale on right vertical axis, zero values not shown)

50 10000000

43

1000000
~ 40
=
P 100000
=]
=
= 30
L:‘ 10000
5
g 25
g 1000
£ 20
=
g
g 15 100
=
< 10
10
" DA |
0 u m”ﬁ ”h || ‘ uHI.‘.mI LH‘L‘J\W\LIIH |H\.h_||1“\l \.\‘.H\.L.MHHI ) \Jl h|||.l‘,.|u||m|.me| 1 uI.M‘\ﬂﬂhmdh.thlhh\ u“\‘lmu.l‘.Ii\||\MI\.‘.L‘...“\HLIL\.I.H ‘I...‘\.‘h” 1

A

S o N DD DD DD X EH b S O D
o B s~ IS > P P P A AN N\ N\ O K
I L L N N R S PSP S LA RN

N v %) 3
O \Y - N
D D AR A A

v

B Ammonium (NH4) (uM) Surface Station 142 Year

» Ammonium (NH4) (uM) at Station F23

Pseudo-nitzschia delicatissima complex counts at Station F23

Data source: Massachusetts
‘Water Resources Authority

Figure 5-8. Ammonium concentrations at Stations F23 and 142, and P. delicatissima
complex abundance at Station F23, 1995 -2014. Note log10 scale on right vertical axis.

Figure 5-8, above, shows the concentrations of ammonium at Stations F23 and 142, and

P. delicatissima complex counts (using a log scale) at Station F23 from 1995-2014. The
largest recorded P. delicatissima complex bloom event at Station F23 occurred in August
1998, with a concentration of over 1.6 million cells/L. There has not been a bloom of the
same magnitude recorded at Station F23 since the outfall went online in September 2000,

however there have been multiple blooms with concentrations over 10,000 cells/L.
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In some parts of the world researchers have identified seasonal patterns in total
Pseudo-nitzschia abundance.*?° To visualize the possibility of broad seasonal trends in
P. delicatissima bloom sizes in Massachusetts Bay we categorized abundance counts into
six different size classes and graphed them by month of observation at Station F23 (see
Figure 5-9) and Station F22 (see Figure 5-10).

Through the MWRA monitoring program P. delicatissima complex has been
detected at Station F23 at the mouth of Boston Harbor in Massachusetts Bay at least one
time in every month from February to October (see Figure 5-9). Blooms of 10,000
cells/L or more have been detected in April, May, August, September, and October, but
not frequently. Of the 129 water samples examined from Stations 23, 74 samples had a
count of O cells/L, and 55 samples had a count of greater than O cells/L. The most
frequent count for all observations at Station F23 is 0 cells/L, shown as grey bars in
Figure 5-9. Figure 5-9 also shows that sampling efforts are not evenly distributed across
all months. For example, in the years 1995 to 2014 only 4 samples with P. delicatissima
complex counts have been taken at Station F23 during the month of May and only 1
sample has been taken in December. February has the highest number of total samples
(29), followed by August (20) and October (20). The striking finding is that despite
extremely limited winter sampling (essentially only February), P. delicatissima complex

has repeatedly been detected in every season at Station F23.
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Samples of Psudo-nitzschia delicatissima complex in bloom size categories, by month,
at Station F23 at the mouth of Boston Harbor in Massachusetts Bay, 1995-2014.
No samples from January or November.
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Figure 5-9. Samples for P. delicatissima complex at Station F23 from 1995 — 2014.
A total of 129 sample were collected at Station F23, results are shown by bloom size
category and month of sampling. For example: between 1995 and 2014 there were 29
samples collected in the month of February, 20 of those had counts of O cells/L (gray bars),

5 had counts ranging from 101 to 1,000 cells/L (pink bars), and 4 samples had counts
between 1,001 to 10,000 cells/L (brown bars).

To provide further spatial and temporal nuance, the 100 samples from Station F22
are shown below in Figure 5-10, grouped by bloom size category and month of sampling.
Note that no samples have been taken at Station F22 from November to January, and in
this 15-year data set only 4 samples have been take in the month of July. No sample at
Station F22 has recorded a bloom of 100,000 cells/L or more (see Figure 5-10). Of the
Station F22 samples, 47 samples found O cells/L for P. delicatissima complex. However,

at Station F22 sampling in the months of February through June and August through
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October has recorded bloom sizes of 1,000 cells/L or greater for Pseudo-nitzschia
delicatissima complex on multiple occasions. Despite temporal sampling coverage
limitations at Station F22, P. delicatissima complex has been detected in every season.
P. delicatissima complex sampling at Station F22 did not start until after the outfall went
online, so we have limited insight into the effects of the outfall on P. delicatissima
complex at that site. However, the dominant counter-clockwise circulation pattern in
Massachusetts Bay puts Station F22 slightly ‘upstream’ of the outfall.?* The repeated
presence of P. delicatissima complex at Station F22 since the year 2000 suggests that
these diatoms may also be present at other ‘upstream’ locations with limited influence

from the outfall-driven nutrients and greater influence from regional oceanic processes.
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Samples of Pseudo-nitzschia delicatissima complex, by bloom size category, by month,
at Station F22 in Massachusetts Bay off of Salem Sound, 2000-2014.
Note: No sampling November to January

14
0 cells/T.
11 to 100 cells/L

o 12 ,
s 101 to 1,000 cells/L
g m 1,001 to 10,000 cells/T,
° 10 m 10,001 t0100,000 cells/L
bl
& 100,001 or more cells’'L
E
g 8
=
£
$ 6
E
o
=
= 4
£
=
E
B ‘ ‘

. | I moi 1 1

Janwary  February  March April May Tune Tuly August  September Oectober November December
no no no
sampling Month sampling sampling

Data source: Massachusetts Water Resources Authority

Figure 5-10. Samples for P. delicatissima complex at Station F22 from 1995 to 2014, by
bloom size category and month of sample. Between 1995 and 2014 there were a total of
100 samples taken at Station F22.

Based on the 229 samples taken between 1995 and 2014 at Stations F22 and F23 it is
clear that P. delicatissima complex can be present, in varying abundance, in
Massachusetts Bay from February to October. There does not appear to be a clear
seasonal pattern for P. delicatissima complex presence or abundance (bloom size
category). Given its demonstrated presence in late fall (October) and late winter

(February) it is possible that P. delicatissima complex may be present in Massachusetts

Bay from November to January as well. The suggestion that P. delicatissima complex
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may be present year-round in and of itself warrants further attention from public health

authorities.

Enterococcus Abundance Data. Water quality data containing the laboratory
test results of Enterococcus abundance in recreational waters are published by the
Commonwealth of Massachusetts, Department of Public Health (MA-DPH).?? Beaches
classified as ‘Tier Two’ are sampled weekly during the summer bathing season.”* We
selected three marine beaches in the Tier Two category along the northern end of
Massachusetts Bay to use as our study sites for developing an Enterococcus model.
These three beaches are all within 15 miles of Buoy AO1 in northern Massachusetts Bay,
and similarly proximal to Station F22 (one of the P. delicatissima complex sampling
locations) as shown in Figure 5-11 below. These beaches are all at the upstream end of
the counter-clockwise circulation pattern generally found in Massachusetts Bay.?! It
stands to reasons that if there is any ocean-driven influence on Enterococcus levels at
coastal bathing beach areas such a signal would be most clear in these locations, close to
where waters from the Gulf of Maine enter Massachusetts Bay.* Due to their proximity
to Station F22, we believe that these ocean-facing marine beaches represented the best
chance of detecting any potential relationship between beach water quality as measured
by Enterococcus, and P. delicatissima complex abundance at Station F22. Despite their
physical proximity, it should be noted that the sampling program at beaches is not

coordinated with the MWRA sampling at offshore stations in Massachusetts Bay.
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Figure 5-11. Map of Enterococcus sampling locations and other data collection points.

In addition to being proximal to the offshore sampling locations, all three of these
beaches are within Essex County. According to the 2010 census data, the human
population in the tract containing each beach is similar.** Devereux Beach is located in
census tract 2031, population 4,557; Singing Beach is located within census tract 2181,
population 5,136; and Good Harbor Beach is located within census tract 2213, population

4,532.** The results of summer recreational water quality sampling at these three beaches
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from 2007 to 2014 are shown below in Figure 5-12, note the log scale on the vertical

axis.
Figure
Enterococcus (cells/100ml.) water sampling results at three marine beaches along
northern Massachusetts Bay, 2007 - 2014
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Figure 5-12. Enterococcus abundances at three study beaches, 2007 - 2014.

The threshold for an Enterococcus exceedance in recreational waters is 104 cells/100mL,
and as shown in Figure 5-12 (above) it is clear that these three beaches had very few
exceedances between 2007 and 2014. Although the threshold for exceedance is 104

cells/mL, we decided to create a binary response variable for Enterococcus with
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‘presence’ equal to any count over 10 cells/100mL, and ‘absence’ as any count of 10

cells/100mL or lower.

Phase 2: Model Development and Selection

In this section we describe our model development and selection process for a
suite of probabilistic models. First we describe the variables considered in model
development, the set of candidate models, and model selection for the probabilistic
presence/absence models of P. delicatissima complex in Massachusetts Bay. Then we go
through the same process for the probabilistic presence/absence models of Enterococcus

at three marine beaches in along the northern coast of Massachusetts Bay.

Probabilistic Model Development Using Logistic Regression. Our desired
product is a probabilistic predictive model that could be used for public health purposes,
not a mechanism-of-action explanation for P. delicatissima complex blooms or
Enterococcus abundance. However, we expect that our results could be used to generate
hypotheses for future research. Burnham and Anderson (2002) strong advise against
“highly iterative and interactive” model development and caution that such activities
should “be reserved for early exploratory phases of initial investigation.”*® To our
knowledge this work is the first attempt to model P. delicatissima complex abundance in
Massachusetts Bay. Pseudo-nitzschia modeling as a whole has a relatively short history,

and previous studies have produced mixed results with regards to environmental
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predictors and their potential influence on diatom abundance.”® We are not aware of any

predictive model for Enterococcus levels in northern Massachusetts Bay.

For both taxa our outcome variable of interest was a dichotomous outcome
(presence / absence) and all of the candidate models were logistic regression models. A
logistic regression equation is solved to provide probabilities of a dichotomous success
outcome at the observed values of the predictors, and the total probability curve is ‘S-
shaped’.® We used logistic regression models instead of linear models because our data
do not satisfy two important assumptions required for linear least squares modeling.?®
First, our outcome takes on only two possible values (0 or 1) and is therefore not
normally distributed (a requirement for least squares modeling).*?* Second, a linear
model structure assumes that a specific change in the predictor variable is associated with
the same change in the response probability no matter what the value of the predictor is
(i.e., where that predictor value occurs along the straight line), this is unlikely to be true
when the response variable is dichotomous.?® Overall, the advantage of logistic
regression with the logit function is that it models the log probability of a dichotomous

outcome event as a linear combination of the predictor variables.*

There are three main elements to parsing a logistic regression function, the odds
of a success, the logit function, and the odds ratio.?® These elements are described briefly

below.
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Odds of success: the ratio of the probability of a success, 7(x), to the
probability of failure. Odds vary between 0 and o as the probability
varies between 0 and 1.

Logit function: the natural log of the odds of success. The logit function
varies between -co and oo as the probability of success varies between 0
and 1. Logistic regression hypothesizes that the logit is linearly related to

the predictors.

Logit(x) =1n [m(x)/(1 —n(x))]

Odds ratio: The ratio of the odds for x; + 1 to the odds for x;. Where x
represents the predictor variables. The logistic regression model suggests
an additive/multiplicative relationship between a predictor and the odds,
with a multiplicative change in the odds of success associated with a one
unit increase in x;j, holding all else in the model fixed. The existence of a
relationship between predictor variables and the dichotomous outcome is

based on odds ratios through the use of the logit function.?

The statistical software package can calculate the probability of a success outcome for a
given logistic regression equation and values of predictor variables. It is this predictive
probability value that we are interested in, ultimately we will use these values to test the

hindcast performance of the selected model. In addition to the probability we will have
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to selection a prediction point above which the model will predict presence. The default
prediction point is 0.5, but values can range from O to 1. In practice, alternate prediction
points (based on odds ratios) can be used to optimize the predictive power of a model or
be applied for selective risk management.® In this work any probability above the
prediction point suggests the presence of the modeled organism, so any lowering of the
prediction point below 0.5 would make a prediction of presence more likely. If used in a
real-life public health decision-making space, where the prediction of organism presence
results in costly response activities, modelers might benefit from direct consultation with
response managers to find a realistically useful prediction point or suite of prediction
points. For a discussion of these tradeoffs in the context of harmful Pseudo-nitzschia

blooms see Lane et al. (2009) and Anderson et al. (2010).>*

Model Selection. Our chosen approach was an information-theoretic approach
rather than strict null hypothesis significance testing, this allowed for the inclusion of
exploratory models and a limited degree of iterative model development. The
information theoretic approach weighs competing models, the information criteria
measure used provides a quantitative measure of relative support for each model.*> For
our information criteria measure we use Akaike’s Information Criterion-corrected
(AICc), which is the AIC with an additional corrective term for small sample sizes.’® We
used R Studio software program and the ‘AICcmodavg’ package for R for all AICc
calculations.?””# Correlation matrix graphics (Figures 5-13 and 5-14) were generated
using the ‘corrplot’ version 0.73 package in R Studio.”
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Model Cross-Validation. There are multiple cross-validation methods for testing
models, involving some division between a ‘training’ dataset used to develop a model
and other data reserved to form the ‘test’ dataset on which to test the model’s predictive
performance (also known as cross-validation). One common practice is using 75% of the
total dataset for training and reserving 25% of the dataset for testing the model (this may
also be referred to as model validation).?®  After identifying the most supported model
according to AIC, we followed the cross-validation method used by Anderson et al
(2010).* In brief, this involved leaving out one year of data, fitting the model, and then
testing the model on the reserved year — this process was repeated for every year with

available data.*

Pseudo-nitzschia models and results of model selection using AICc. Here we
describe the development of a suite of predictive models for the presence / absence of P.
delicatissima complex in Massachusetts Bay and the selection of one model from that
suite. Note that in this work models do not attempt to predict bloom size, although that
may be of interest in future modeling work. The relationship between environmental
influences, bloom size, and domoic acid product by any species within the Pseudo-
nitzschia genus is the subject of ongoing research. Regional variation only adds to the
potential complexity. Pseudo-nitzschia presence is a precursor to potential domoic acid
(DA) production, but presence alone is not sufficient to indicate the presence of DA.

Therefore, in this first modeling attempt for Massachusetts Bay, we focus strictly on
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presence / absence of P. delicatissima complex. Additionally, we see this modeling
exercise using monitoring data as an opportunity to generate hypotheses which may be

further explored through purpose-designed experiments.

Pseudo-nitzschia model generation. We assembled a suite of response variables

and predictor variables from a variety of sources, all of which are biologically reasonable
according to the existing literature.’? These variables are shown below in Table 5-3. The
continuous variable of P. delicatissima complex count data (variable name ‘pn.count”)
was transformed into a binary response variable (variable name ‘binary0Q’ with values of
‘0’ representing absences, and values of ‘1’ representing presence).

The total data set was split into two parts, the training dataset and the test dataset.
The training dataset is the portion of the total dataset used to develop the model
coefficients for predictor variables, it includes both the response and predictor variables.
The test dataset is the portion where we use the model and observed predictor variable
values to make a prediction about the probability of success, we can then compare the
model’s predictions (i.e., the hindcast) to the actual observed outcome and assess model
performance. Our training dataset consisted of all possible cases, equal to 229 cases for
P. delicatissima complex samples, 32 of these cases were dropped during model selection
due to missing data for one or more predictor variables, leaving 197 cases. Of these 197
cases, 96 were observations with P. delicatissima complex present, the other 101 were

absence cases. Each single-year cross validation test set included from 3 to 18 cases.
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There was no test set for 1995 because of missing predictor variable data from that year.

The variables considered during the development of candidate models are shown below

in Table 5-3.

Table 5- 3. Variables use in P. delicatissima complex model development

Variable Variable description Units | Source

date Date, in the form of year.month.day na

month Month na

year Year na

station Station, either F22 (Massachusetts Bay, or F23 na MWRA
(entrance to Boston Harbor)
Count of Pseudo-nitzschia delicatissimq complex cells/

pn.count only, all other Pseudo-nitzschia categories L MWRA
excluded.

pn.In natural log of (pn.count) na calculated

binary0 Biqary .(O'=false, 1= true) for presence of P. na calculated
delicatissima complex

sal.station salinity at the at the station when sampling psu MWRA

chl.station Chlorophyll a at the station when sampling pg/L | MWRA

chl.station.In Natural log of chl.station na calculated

nh4 NH4, Ammonium uM MWRA

no2 NO2, Nitrogen Dioxide uM MWRA

no3 NO3, Nitrate uM MWRA

no2no3 NO2 + NO3, sum of individual measures uM MWRA

DON Dissolved Organic Nitrogen, DON = tdn — (no2 + uM calculated
no3 + nh4) 3!

partP particulate Phosphorous uM MWRA

po4 Phosphate uM MWRA

sio4 Silicate uM MWRA

sio4.ln Natural log of sio4 na Calculated

tdn Total dissolved Nitrogen uM MWRA
Total dissolved Phosphorous including dissolved

tdp orthophosphate and dﬁssolved organicgphosphate uM MWRA

PON particulate organic Nitrogen uM MWRA

watertemp.4401 | Daily average water temp at NOAA Buoy 44013, |,

3 Massachusetts Bay C NOAA
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Table 5- 3. Variables use in P. delicatissima complex model development

Variable Variable description Units | Source

watertemp.5d.av | Average of water temp for 5 days at NOAA Buoy |, C NOAA

2.44013 44013, Massachusetts Bay

watertempave,a0 Daily average water temperature at Buoy AO1,

1 ' Massachusetts Bay. Latitude: 42° 31'19“ N °C NERACOOS
Longitude: -70° 33'55“ W
Daily average turbidity Imeter depth at Buoy AO1,

turbidavg.a0l Massachusetts Bay. Latitude: 42°31'19“ N ntu NERACOOS
Longitude: -70° 33'55“ W
Zooplankton, sum of individual copepodites, ind/

700 nauplii, trochophore, veliger, zoea, and 3 MWRA
unidentified organisms. m

z00.In natural log of (zoo) na calculated

nn.p Eit;gnoof?’(/légi;;NO% to phosphate (PO4), na calculated

si.no3 Ratio of silicate to nitrate (sio4/no3) na calculated

si.po4 Ratio of silicate to phosphate (si04/no3) na calculated

e . tenths

Precipitation at Boston Logan Airport weather

prep-bos station, code GHCND:USW00014739 of - |NOAA
Precipitation at Boston Logan Airport weather tenths

prcp.day.before | station one day before sampling, code of calculated
GHCND:USW00014739 mm
Total precipitation at Boston Logan Airport tenths

prcp.5day.total weather station for 4 days before and on day of of calculated
sampling, code GHCND:USW00014739 mm
Merrimack River flow rate at USGS station F/

river.dis 01100000 "Merrimack River BL Concord River at sec USGS
Lowell, MA", cubic feet per second

river.ln natural log of (river.dis) na calculated
Average flow rate for Merrimack River for 2 Fé/

river.2wkavg weeks preceding sampling (including on day of sec USGS
sampling)

river. 1wkavg Average flow rate for' Merri‘mack River for 1 week | Ft*/ USGS
preceding sampling (including on day of) sec

river.30dave Average ﬂoyv rate for‘Mer‘rimaclf River for 30 Ft}/ USGS
days preceding sampling (including on day of) sec

river.30day.In natural log of (river.30davg) na calculated
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Table 5- 3. Variables use in P. delicatissima complex model development

Variable Variable description Units | Source
fluorescence (averaged for the day if more than
. . . MWRA,
fluo.avg one observation at station, negative values ug/L. caleulated
removed and treated as missing data)

A graphical correlation matrix is shown below in Figure 5-13. The size and intensity of
blue circles indicate positive correlations, red circles indicate negative correlations.
Blank or white-fill cells indicate a correlation coefficient near to zero. The correlation
matrix visualization clearly displays some notable strong positive correlations for
example, month and watertemp.44013, PON and partP and chl.station. Slightly less
strong positive correlations are visible between the variables po4, no3, no2no3, sio4, and
tdn. Strong negative correlations are apparent for the variables watertempavg.a0l with
both no3 and no2no3, along with zoo and po4. A slightly less strong negative correlation

is apparent between the variables si.po4 and sal.station, as well as month and no3.
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We developed a suite of a priori models to predict presence / absence of P. delicatissima
complex in Massachusetts Bay. These models were based on knowledge of major
physical and seasonal drivers influencing the Massachusetts Bay system, basic diatom

biology, and published studies where other researchers have attempted to model, or
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correlate environmental variables with, total Pseudo-nitzschia or Pseudo-nitzschia

delicatissima in other locations. Our set of ten candidate models is listed below in Table

5-4, the R Studio code for these models is included in Appendix A.

Table 5-4. Candidate models for P. delicatissima complex presence/absence

phosphate (nn.p)

Model Varlables. pred.l cting Number of .
Pseudo-nitzschia Rationale for model
number N parameters
delicatissima complex
temperature, sio4, nh4, no3, Lelong et al. (2012) describe
1 po4, zoo.In, prcp.day.before, 8 multiple variables influencing
salinity Pseudo-nitzschia species.”
temperature, hours of light Downes-Tettmar et al. (2013)
(no proxy), rainfall (proxy = e .
2 rep.5day.total), phosphate 4 significant correlations for P.
prep.oday. » PROSp ’ delicatissima.’
salinity
Anderson et al. (2010)
3 temperature, po4, (n03+no02), 4 variables for 10 cells/ml
month bloom threshold, discarding
latitude and longitude.*
o Andeson . G010
4 ( ro;c _ river. lwka )g 6 variables for 100 cells/ml
proxy = river. twkave), bloom threshold,*
month
e Lane et al. (2009), spring
5 temp - In(silicic acid) (proxy 3 season model, total Pseudo-
= sio4.In), In(chl a) . s
nitzschia.
In(silicic acid) (proxy = Lane et al. (2009), fall season
6 sio4.In), chl.station.In, 4 model, total Pseudo-
river.30day.In, no3 nitzschia.?
Kaczmarska et al. (2007),
summer/fall variable
7 no2no3, ratio of nitrate to ) significantly positively

correlated with P.
delicatissima and P.
pseudodelicatissima. ?
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Table 5-4. Candidate models for P. delicatissima complex presence/absence

Variables predicting

Model Pseudo-nitzschia Number of Rationale for model
number N parameters
delicatissima complex
Exploratory, based on results
in correlation matrix and
3 no2, siod, prep.day.before 3 evidence that P. delicati:vsima
complex can be present in all
seasons, might be a short-
term response.
9 tdn, si.no3, prcp.day.before 3 Explorator'y, based' on results
in correlation matrix.
temp,. silicate, chl.station, Combination of earlier
10 tdn, si.no3, prcp.day.before, 6
Jatitude, longitude exploratory models.
Loureiro et al. (2009) show
that in laboratory cultures P.
delicatissima preferentially
temp, silicate, chl.station, acquires NH4 but in limiting
11 no2no3, si.no3, 8 conditions may use urea as
prcp.day.before, DON, nh4 alternative N source, thus
levels of dissolved organic
nitrogen (DON) may
influence abundance.
The most common grazers of
diatoms are large organisms
12 z00.In, sio4, po4, nh4, 5 such as copepods (Sarthou et
prcp.day.before al 2005, quoting Smetacek
1999)*2, so zoo.In is a logical
potential predictor variable.
Exploratory model based on
13 temp, sio4, chl.station, nh4, 6 diatom bloom principles,
po4, prcp.day.before precipitation might be
depositing dust from the air.
Anderson et al. (2010)
Chesapeake Bay, best-fit
14 temperature, po4, (n03+no02), 6 logistic GLM, variables for

month, latitude, longitude

10 cells/ml bloom threshold
(total Pseudo-nitzschia),
including latitude, longitude.
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Table 5-4. Candidate models for P. delicatissima complex presence/absence

Variables predicting Number of
Pseudo-nitzschia Rationale for model

N parameters
delicatissima complex

Model
number

tdn, si.no3, prep.day.before, Exploratory model based on

15 latitude, longitude 3 results in correlation matrix,
exploratory.
16 Latitude, longitude 2 Only latitude and longitude

P. delicatissima complex model selection. The AICc results for this candidate set

are shown below (see Table 5-5). As a reminder, the AICc is the same as the AIC
described above with the addition of corrective term for small sample sizes.°

Table 5-5. AICc scoring for P. delicatissima complex candidate model set

Model AICc AAICc AICcWt  Cum.Wi

Number
10 8 263.17 0 098 0.98
11 10 27097 78 002 1
5 4 28808 2491 0 1
13 7 28821 25.03 0 1
4 7 29236 29.19 0 1
1 9 2936 30.43 0 1
3 6 29381 30.64 0 1
9 4 29527 321 0 1
15 5 29529 32.12 0 1
14 7 29531 32.14 0 !
2 5 29791 34.74 0 1
6 5 31284 49.67 0 1
12 6 31291 49.74 0 1
8 4 31633 53.16 0 1
16 2 31835 55.17 0 1
7 4 31943 56.26 0 1
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The AICc output tables have the following component columns:

e K, the number of parameters estimated,

e AlCc, the estimated distance from the proposed model to the true model,

e AAICc, the difference in AICc score between that model and the most supported

model in the set (listed first among all the models in the set),

e AICcWtindicates the total model weight.

e Cum.Wt, the cumulative weight of the models from the most supported on down,
As shown in the results above, Model 10 is the most supported model in this candidate
set. The other models have AAICc values greater than 7, so there is no support for those
models when compared to Model 10. There is no need to perform model averaging
because the weight (shown in column “AICcWt”) of the ‘best’ model is greater than
0.9.22 Based on the AICc score for our candidate set, the most supported predictive
model for the presence/absence of P. delicatissima complex in Massachusetts Bay is as
follows:
LOGIT(p) = —234.823 +
0.0505(watertemp.44013) - 0.0362(tdn) - 0.0251(si.no3)- 0.0089(sio4) —
0.0032(prcp.day.before) + 0.0367(chl. station) + 5.545(latitude)
Note that there is no coefficient provided by longitude. The performance of this model

on both the training and test datasets will be discussed in the later section on model

performance as part of Phase 3 (evaluate outputs).

Enterococcus candidate models and results of model selection using AICc.

Similar to the work for the P. delicatissima complex models described above, the
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Enterococcus candidate models were developed for a dichotomous response, presence or
absence of Enterococcus counts above 10 cells/100mL. The current threshold for a
recreational water quality exceedance is 104 cells/100mL?3, and our presence/absence
point of 10 cells/100mL is an order of magnitude lower than that. Of the 264 cases in the
training dataset 156 had a value of 10 cells/100mL. The training dataset was comprised
of recreational water quality samples taken weekly during the summer bathing seasons in
2007 to 2014 at three ocean-facing marine beaches: Devereux Beach in the town of
Marblehead, Singing Beach Point 1 in the town of Manchester-By-The-Sea, and Good
Harbor Beach in the town of Gloucester. Water quality results for all these and other
beaches are available online from the Commonwealth of Massachusetts.?

Enterococcus model generation. We selected these beaches because of their

proximity to sampling station F22 (where part of the P. delicatissima complex data was
collected) and to Buoy AO1 which provided data on water temperature, turbidity, and
chlorophyll a levels.® We limited our temporal range to 2007 to 2014 to allow for the
consideration of offshore turbidity data from Buoy AO1lin the model development

process. The variables considered during model development are shown below in Table

5-6.
Table 5-6. Variables considered in Enterococcus presence/absence model development
Variable name | Variable description Units Source
Date Date, in the form of year.month.day na
Month Month na
Year Year na
Latitude Latitude of‘samphng location, estimated to the na GoogleMap

second decimal place.
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Table 5-6. Variables considered in Enterococcus presence/absence model development

Variable name | Variable description Units Source
Longitude Longitude f’f sampling location, estimated to the na GoogleMap
second decimal place.
Enterococcus counts from water quality testing cells /
entero.count by local public health officials, reported to state- 100mL MA-DPH
level Department of Public Health.
entero.In Natural log of (entero.count) na Calculated
entero.exceed Binqry variable, if entero.count > 104 coded as na Calculated
' ‘1’, if entero.count <104 coded as ‘0’.
Binary variable, if entero.count > 10 coded as
entero.overl) ‘1°, ifyentero.count <10 coded as ‘0’. ha Calculated
human.pop. tract Human populatipn in the census tract containing count US. Census
the beach sampling point
dog.pop Dog population in the town containing the beach count Collected by
' sampling point author
Maximum daily temperature recorded at Boston tenths
tmax.bos Logan Airport weather station, code of °C NOAA
GHCND:USW00014739
Cumulative precipitation for sampling day plus 2
revious days (3 days total) recorded at Boston tenths
prep-bos.3day Eogan Airpz)]rt weati]ler station, code of mm Calculated
GHCND:USW00014739
Total precipitation on the day of sampling tenths
prcp.marblehead | recorded at Marblehead weather station, code of mm NOAA
GHCND:USC00194502
Maximum daily temperature recorded at
tmax.marblehead | Marblehead weather station, code °C NOAA
GHCND:USC00194502
Total precipitation on the day before the
Ere?g.rr:blhd.day. sampling day recorded at Marblehead weather f)efnrtrlll; NOAA
station, code GHCND:USC00194502
Cumulative precipitation for sampling day plus 1
revious days (2 days total) recorded at tenths
prep.mblhd.2day i/larbleheadywéathez statior)l, code of mm Calculated
GHCND:USC00194502
Cumulative precipitation for sampling day plus 4
revious days (5 days total) recorded at tenths
prep.mblhd.5day i/larbleheadyweathez station, code of mm Calculated

GHCND:USC00194502
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Table 5-6. Variables considered in Enterococcus presence/absence model development

Variable name | Variable description Units Source
Daily average chlorophyll a levels measured at

chl.a01 Buoy AO1, Massachusetts Bay. Latitude: 42° ug/L NERACOOS
31'19*“ N Longitude: -70° 33'55“ W

watertempave.a0 Daily average water temperature at Buoy AO1,

1 ) Massachusetts Bay. Latitude: 42° 31'19“ N °C NERACOOS
Longitude: -70° 33'55“ W
Daily average turbidity 1meter depth at Buoy

turbidavg.a0l AOQ1, Massachusetts Bay. Latitude: 42° 31'19“ N | ntu NERACOOS
Longitude: -70° 33'55“ W
Precipitation at Boston Logan Airport weather tenths

prep-bos statiolil, code GHCND:USW00014739 of mm | NOAA
Precipitation at Boston Logan Airport weather

. . tenths

prcp.day.before | station one day before sampling, code of mm calculated
GHCND:USW00014739
Merrimack River flow rate at USGS station

river.dis 01100000 "Merrimack River BL Concord River | Ft*/ sec | USGS
at Lowell, MA", cubic feet per second

river.ln natural log of (river.dis) na calculated
Average flow rate for Merrimack River for 2

river.2wkavg weeks preceding sampling (including on day of | Ft*/ sec | USGS
sampling)
Average flow rate for Merrimack River for 1

river.1wkavg week preceding sampling (including on day of Ft’/ sec | USGS
sampling)
Average flow rate for Merrimack River for 30

river.30davg days preceding sampling (including on day of Ft’/ sec | USGS
sampling)

river.30day.In natural log of (river.30davg) na calculated

The graphical correlation matrix for the variables considered in the Enterococcus model

development is shown below in Figure 5-14. The response variable of interest is

‘entero.over1(’ and there are some faint positive correlations between entero.over10 and

the variables representing precipiation and the variable chl.a01, as well as a faint negative

correlation with the variable tmax.marblehead. Other physical environmental
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correlations are visible, such as the strong postive correlation between month and water

temperature, and the faint positive correlation between ‘river.dis’ and "prcp.mblhd.5day.’
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Figure 5-14. Graphical correlation matrix of variables considered during Enterococcus
model development.

Based on the literature review results identifying potential influences on levels of

Enterococcus in the marine environment, the available data, and insights from early
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exploratory model development, we developed a set of 12 models for Enterococcus.

These models are described in Table 5-7 (below), the R Studio code for these models is

included in Appendix A.

Table 5-7. Candidate model set for Enterococcus presence/absence model.

Model
Number

Predictor variables

Number of
variables

Rationale

prcp.mblhd.day.before

Marblehead weather station is closer
to the sampling sites, and might
prove a better fit than the Boston-
based weather data. Or they might
be equal. Precipitation alone is often
used as a reason to close beaches.??

human.pop.tract

Mammalian fecal waste can
contribute Enterococcus to the
system, humans living in the census
tract might be more likely to
contribute Enterococcus via direct
shedding.?®

dog.pop

Mammalian fecal waste (including
dog waste) can contribute
Enterococcus to the local system.?

turbidity.a01

Enterococcus might persist longer at
higher levels of turbidity (which
may provide growth substrate)®*

watertemp.a0l

Higher water temperatures may
encourage Enterococcus
persistence.?* %

river.2wkavg

Correlation matrix showed slight
positive association, and rivers may
carry Enterococcus from land-based
sources.>

prcp.mblhd.2day

Precipitation is currently used as a
reason to close beaches before
testing is finished.?
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Table 5-7. Candidate model set for Enterococcus presence/absence model.

Model

Number of

Number Predictor variables variables Rationale
chl.a01 +
tmax.marblehead +
3 prcp.bos.day.before 6 A mixture of logical predictor
+prcp.mblhd.2day + variables.
human.pop.tract +
dog.pop
9 latitude + longitude 2 Location may be a predictor.
chl.a01 +
tmax.marblehead +
prcp.bosﬁﬁz.ngore A mixture of logical predictor
10 Fprep.m caay 9 variables, including latitude and
zvee?tre:;emp 01+ longitude for location information.
latitude + longitude
+river.lwkavg
The correlation matrix shows a
slightly stronger relationship with
prcp.bos.day before than with
prcp.mblhd.day.before, but both are
positively correlated. Precipitation
chl.a01 + is highly associated with surface
tmax.marblehead + runoff that moves fecal matter
11 prcp.bos.day.before + 6 containing Enterococcus from land
prcp.mblhd.2day + into water. Daily maximum air
human.pop.tract + temperature is used as a proxy for
dog.pop local sunshine (negatively correlated
with Enterococcus levels). Nutrients
and water column stratification that
favor higher levels of chlorophyll
might indicate favorable conditions
for Enterococcus persistence.
latitude + year + Water temperature, river output, and
12 watertemp.a01 4 proximity to riverine output may

+river.lwkavg

influence Enterococcus levels.
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Enterococcus model selection. The AICc scoring for the Enterococcus presence/

absence predictive model candidate set is shown below (see Table 5-8).

Table 5-8. AICc scoring results for Enterococcus candidate model set
Model

K AICc AAICc AICcWt Cum. Wt
Number

10 10 295.14 0 0.98 0.98
8 7 30345 8.31 0.02 0.99
11 6  305.69 10.55 0.01 1
12 5 317.64 22.5 0 1
9 3 319.93 24.79 0 1
2 2 320.27 25.13 0 1
7 2 32097 25.83 0 1
3 2 321.05 2591 0 1
4 2 3213 26.16 0 1
1 2 3234 28.26 0 1
5 2 323.82 28.68 0 1
6 2 324.36 29.22 0 1

Based on the AICc scores reported above, Model 10 is the most supported model.
Relative to Model 10, none of the other models in the candidate set are supported, their
AAICc values are all greater than 7. Additionally, the AICcWt for Model 10 is greater
than 0.9, so multi-model averaging does not need to be considered for model parameters
in this candidate set. Based on the AICc scores, the most supported predictive model for
Enterococcus presence/ absence at the three ocean-facing north coastal watershed
beaches used for our study is:
LOGIT (p) = 594.2 + 0.4087(chl.a01) — 0.0116(tmax. marblehead)
+ 0.0040(prcp.bos.day.before) — 0.0022(prcp. mblhd. 2day)

— 0.1733(year) + 0.1766(watertemp.a01) — 68.14(latitude)
+ 38.11(longitude) — 0.00003(river. lwkavg)
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The cross-validation performance of this model will be discussed in the section on model
performance as part of Phase 3 (evaluate outputs). The R Studio code used to generate,
selection, and perform cross-validation tests whose results are described in this section is

included in Appendix A.

Phase 3: Evaluate Outputs

As shown in Figure 5-1, Phase 3 of this research process involves evaluating the
outputs developed during Phase 2. Here we discuss the performance of the models
developed to predict the presence/absence of P. delicatissima complex and Enterococcus.
We will also address the following three questions related to model performance:

e [s there a useful level of predictive value (based on hindcast performance) that

could be used to protect human health?
e s further field sampling or experimental data suggested?
e Does this further the development of theory?

The discussion on model performance will be followed by a summary and conclusion.

Model Performance. We evaluated model based on four performance aspects,
sensitivity, specificity (also referred to as selectivity), false positive rate, and false
negative rate. Model sensitivity is the chance of detecting a true positive (TP), specificity

is the chance of detecting a true negative (TN).*® The false positive ratio (referred to as
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‘Type I’ error) is the chance of getting a false positive (FP) and the false negative ratio
(also known as ‘Type II” error) is the chance of getting a false negative (FN).?® The
equations for calculating these performance measures are summarized below:

e Sensitivity (chance of correctly predicting true positive) = TP/(TP+FN)
e Specificity (chance of correctly predicting true negative) = TN/(TN+FP)
e False Positive Rate (Type I error) = FP/(FP+TN)

e False Negative Rate (Type II error) = FN/(FN+TP)

In an ideal world both sensitivity and specificity would be high, and the false positive and
false negative rates would be low. However, there are likely to be tradeoffs between each
aspect of performance depending on the prediction point used. The default prediction
point for a dichotomous response model comparison is usually 0.5.2> However, it is
possible to use alternate prediction points if there are specific aspects of model
performance that are considered more important to the user. For example, if false
positives are extremely costly the user might want to minimize their likelihood.
Performance at default and alternative prediction points for the predictive models of

presence/absence for P. delicatissima complex and Enterococcus are discussed below.

Pseudo-nitzschia delicatissima complex presence/absence prediction model. Using

an information-theoretic approach we developed a model for the presence/absence of P.
delicatissima complex diatoms in Massachusetts Bay. The motivating question for this

model development was presented in chapter 3:
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e s it possible to hindcast levels of Pseudo-nitzschia populations measured in
Massachusetts Bay with reasonable accuracy using the datasets collected for
factors with known biological relevance to Pseudo-nitzschia growth?

We developed a model using a dataset containing 197 cases, re-fit the model with one
year left out, and then tested the model on that year. This created an ensemble of 19
different cross-validation experiments. Mean performance metrics for the areas of
sensitivity, specificity, false positive rate, and false negative rate for the cross-validation
experiments are summarized in Table 5-9. A graph showing the mean performance
metric scores at multiple prediction points is shown in Figure 5-15. The R Studio code
used to generate, selection, and perform cross-validation tests is included in Appendix A.

Table 5-9. Ensemble of Cross-Validation Performance Metrics: P. delicatissima
presence/absence prediction

Mean model performance values: P. delicatissima complex
presence/absence prediction
Default prediction Alternate prediction

point point
Prediction point value 0.5 0.3
Sensitivity 0.54 0.91
Specificity 0.52 0.20
False Positive Rate 0.48 0.80
False Negative Rate 0.46 0.09
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Mean Performance Metric Score - All Models, Years 1996-2014
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Figure 5-15. Mean performance metric score for ensemble of 19 cross-validation
experiments for P. delicatissima model.

At the default prediction point of 0.5 the model ensemble performed reasonably
well - seeming to balance sensitivity (0.54) and specificity (0.52), along with similar rates
of false positive (0.48) and false negative (0.46) predictions. In general, on the test
dataset at the default prediction point of 0.5 the model over-predicted the presence of P.
delicatissima complex.

In addition to the default prediction point of 0.5 we present the results from an
alternate prediction point of 0.3. We chose 0.3 because the test results indicated that at

this prediction point the sensitivity was over 0.90. Such a prediction point would be
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more conservative from a public health perspective as it would presumable capture
almost all of the true ‘presence events’ of P. delicatissima complex. The tradeoff for this
is poor performance (0.2) at detecting true negatives (cases where no P. delicatissima
complex were observed). In order to make a very rudimentary comparison of model
performance, we compared our model performance results to the only other dichotomous
prediction logistic regression model that we know of for Pseudo-nitzschia species on the
east coast of the U.S., the work of Anderson et al. (2010).* Although they used a
different approach for model development and testing they did report sensitivity and false
positive rates for their logit model.* Significant differences between this work and that of

Anderson et al. (2010) are summarized below in Table 5-10.
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Table 5- 10. Differences in Pseudo-nitzschia predictive modeling efforts for Chesapeake

Bay and Massachusetts Bay.

Authors

Anderson et al. (2010)*

Current work

Dichotomous ‘success’
outcome used in model

Small blooms (>10
cells/mL) of total Pseudo-
nitzschia species diatoms

Observed presence of P.
delicatissima complex
diatoms at two stations in

in Chesapeake Bay Massachusetts Bay
Total samples in dataset 6,989 229
Number (?f ?ases used for 6.989 197
model training
Time span 1985 to 2007 1995 to 2014

Latitude span (approximate)

37to 38.8 North

41.7 to 42.5 North

Surface salinity range at

False positive rate

© sall 0.5 to >18 psu 24 to 35 psu*
sampling sites
Default pre('h.ct.lon point 0.5: 0.34 0.54
Model sensitivity
Default pl’edICtI.OI.l point 0.5: 0.03 0.48
Model false positive rate
Alternate prediction point | 0.19 Chosen by Anderson etal. | 0.3
Al — i
ternate prediction .pf)lflt 0.75 091
Sensitivity
Alternat dicti int:
ernate prediction poin 0.09 0.80

*Recorded at Station 1427 and offshore Buoy AO1® in Massachusetts Bay.

The notable differences between the study by Anderson et al. (2010) in Chesapeake

Bay and our work in Massachusetts Bay only allows us to make a very tentative

comparison between these two models. In comparison to the work of Anderson et al.

(2010)**, our model was developed using a dataset over an order of magnitude smaller

(197 cases). A larger sample size might reduce the incidence of false positive predictions

because more incidents of P. delicatissima complex presence in the dataset would likely
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refine the predictive parameters. Another addition difference is that our study area has a
smaller salinity range with higher salinity values reflecting the openness of
Massachusetts Bay. Our study area is also further north and heavily influenced by the
Gulf of Maine circulation system.”* A model from the Chesapeake Bay region based on
samples from high salinity nearshore areas would allow for more direct inter-model
comparison. Simply identifying Chesapeake Bay Pseudo-nitzschia to the group or
species level might reveal interesting regional differences in abundance and bloom event
timing. In summary, our model is more over-predictive of P. delicatissima complex
presence in Massachusetts Bay than the model developed by Anderson et al. (2010) for
the presence of small blooms comprised of total Pseudo-nitzschia species in Chesapeake

Bay. Overall our model performance can be described as adequate.

Enterococcus presence/absence prediction model. Using an information-theoretic

approach we developed a model for the presence/absence of Enterococcus bacteria in
recreational waters at three beaches along northern Massachusetts Bay. The motivating
question for this model development was presented in chapter 3:

e s it possible to hindcast levels of Enterococcus populations in specific areas of
Massachusetts Bay with reasonable accuracy using the datasets collected for
factors with known biological relevance to Enterococcus growth?

We developed a model using a training dataset containing 261 cases (50 presence, 211

absence), and then tested the model’s hindcasting accuracy on a dataset containing 80
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cases (consisting of 10 presence and 70 absence cases). Model performance in the four
areas of sensitivity, specificity, false positive rate, and false negative rate for the training
and test datasets is summarized below in Table 5-11. The R Studio code used to
generate, selection, and perform cross-validation tests is included in Appendix A.

Table 5-11. Ensemble of Cross-Validation Performance Metrics: Enterococcus
presence/absence prediction

Ensemble of Cross-Validation Performance Metrics: Enterococcus
presence/absence prediction
Default prediction point Alternate Predlctlon

point

Prediction point value 0.5 0.1

Sensitivity 0.07 0.69

Specificity 0.86 0.37

False Positive Rate 0.03 0.52

False Negative Rate 0.82 0.20

At the default prediction point of 0.5 the model cross-validation performed
extremely poorly terms of sensitivity (0.07). The mean sensitivity was unable to
correctly predict true positives. However, the model had a very high mean specificity
(0.86) at the default prediction point. At an alternate prediction point of 0.1 the
performance improved. The mean cross-validation ensemble sensitivity increased to
0.68, specificity declined to 0.37, and the false negative rate was low at 0.20. Overall the
cross-validation results of the model for presence/absence of Enterococcus counts over

10 cells/100mL had poor performance. The range of mean performance metrics across
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prediction points is shown below in Figure 5-16. In Figure 5-16 the default and alternate

prediction points are indicated with a grey vertical dotted line. The alternate prediction

point of 0.1 is more conservative from a public health perspective because it gives

preference to higher sensitivity but also a higher false positive rate.

Mean Performance Metric Scores from All Cross-Validation Experiments, 2007-2014
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Figure 5-16. Mean performance metric score for ensemble of 8 cross-validation
experiments for Enterococcus model.

Discussion of Predictive Models.

The previous sections have described model generation, model selection, and

model cross-validation using year-by-year predictions generated with a model fitted by

leaving out the predicted year. Below we discuss the overall utility of the selected
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models for P. delicatissima complex and Enterococcus. We also discuss the question of
correlation between the abundance of P. delicatissima complex and Enterococcus in the
northern part of Massachusetts Bay. This section ends with suggestions for potential

future modeling efforts.

Pseudo-nitzschia delicatissima complex model. When predicting the
presence/absence of P. delicatissima complex our model performance can be described as
‘poor to adequate’ with a bias towards over-prediction of P. delicatissima complex
presence. One potentially encouraging result is that the model displayed high mean
sensitivity (0.91) and a low mean false negative rate (0.09) when tested at the alternate
prediction point (0.3). However the false positive rate was far higher than the false
negative rate at both the default (0.5) and alternate (0.3) prediction points when tested.
This bias towards over-prediction can be viewed as potentially more protective of public
health, but the cost of over-prediction depends on who is using the model and to what
purpose. In Massachusetts Bay the observed Pseudo-nitzschia abundance has varied
across seasons and years.”” Additionally, the literature reports intra-genus diversity in
terms of environmental variables that influence Pseudo-nitzschia abundance in different
regions,”* ? and there gaps in our knowledge about the dynamics of domoic acid
production.”

Given that there is currently no official sampling program for Pseudo-nitzschia

species in shellfish harvesting waters of Massachusetts, we suggest that a model such as
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ours could be used as a rough guide to identify times when more frequent sampling
should occur. Any type of response-based sampling would be more protective of human
health than the current status quo. A limitation to using our model as it stands is that of
the six parameters in the selected model three are based on macronutrient measurements
from water column samples, another is the chlorophyll @ measurement taken concurrently
at the station. In other words, over half of the model parameters are currently measured
in situ, with concurrent sampling for Pseudo-nitzschia. Two of the model parameters are
based on physical measurements taken at other places. Precipitation observations are
made at a land-based station to develop the variable ‘prcp.day.before’, and
‘watertemp.44013’ is based on water temperature measurements at buoy 44013
transmitted to shore with extremely high frequency. If remotely sensed proxies for the
macronutrient levels and chlorophyll measurements become available at a useful level of
resolution this could improve model development and forecasting. At the time of writing
no such measurements were available with both spatial-temporal resolution and sufficient
historical depth. However we expect that this will change in the future.

The results of our model selection and testing generate questions that could be
refined into hypothesis. For example, P. delicatissima complex has been observed in
Massachusetts Bay in all seasons so we chose to make a single annual model, but would
seasonal partitioning of the data lead to different models or improved performance? Such
an approach has been applied on the west coast of the U.S. where researchers developed

separate models for annual, spring, and fall-winter conditions.? In that study the authors
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observed that seasonality was a factor in model refinement, with only two predictor
variables (chlorophyll a and silicic acid) included across all three models.?> Another
potential question relates to the temporal coverage of the data used to generate our model.
The MWRA has 20+ years of sampling data, but is the limited annual coverage of 6-10
samples per year sufficient to capture the range of environmental conditions that may
influence P. delicatissima complex, or total Pseudo-nitzschia, abundance? Our model
was developed with samples that spanned the change in nutrient releases that
accompanied the opening of the Deer Island Wastewater Treatment Plant in September
2000. Our training dataset consisted of the most recent 25% of samples from each station
(roughly years 2011 to 2014), this might have influenced our model performance since
maximum nitrogen levels around Station F23 decreased after the opening of the Deer
Island Wastewater Treatment Plant.” In summary, the results of this model generation,
selection, and cross-validation test exercise lead us to conclude the following: 1) at the
alternate prediction point (0.3) model has some predictive (hindcast) value and could
potentially be used in public health protection efforts as long as the high false positive
rate does not result in costly managerial response actions without field sampling, 2) we
suggest that more field sampling in Massachusetts Bay is required to develop a more
accurate prediction model, and 3) there is tentative support for the influence of a small
suite of variables on P. delicatissima complex abundance in Massachusetts Bay which

may warrant further investigation.
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Enterococcus model. Our model for predicting the presence of Enterococcus
(defined as counts over 10 cells/100mL) at three ocean-facing marine beaches along the
northern coast of Massachusetts Bay performed poorly. In some ways this is not
surprising. Enterococcus levels at these three study beaches are generally low during the
summer months, especially in more recent years (see Figure 5-12, above, in the
Enterococcus data description section). The relatively rare cases where Enterococcus
levels are higher than 10 cells/100mL at these sites might be the result of stochastic
factors not considered in this model. In places where routine test results indicate
infrequent exceedances, it raises the possibility that these events are not driven by steady
inputs from fixed land-based sources. Rather, rare exceedances could be linked to
currently unrecorded phenomenon such as the presence of flocks of birds congregating
onshore or in the intertidal zone or contributions from other wildlife populations that may
shed Enterococcus through fecal waste. At present local health officials are allowed to
proactively close beaches based on rainfall events.?* In some locations with combined
sanitary and storm sewers this may be a sensible precaution. However at our three study
beaches precipitation the day before (prcp.bos.day.before) was a weaker predictor
variable than maximum temperature at Marblehead (tmax.mblhd) and chlorophyll a at
Buoy AO1 (chl.a01). The relationship between Enterococcus levels and

prcp.bos.day.before is shown below in Figure 5-17.
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Figure
Enterococcus counts (cells/100mL) at three North Coastal Watershed Beaches vs. Precipitation the day before the
Fnterococeus sample was taken as recorded at Boston Logan Airport (tenths of mms), Summer Bathing Season 2007-2014
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Figure 5-17. Enterococcus levels at three north coastal beaches vs. precipitation recorded at
Boston Logan Airport on the previous day.

As shown in Figure 5-17 (above) it is possible to have high Enterococcus levels at the
three study beaches after high, or low, levels of precipitation. Our poor model
performance, and the known natural variability of this system, supports the rationale for
direct water quality sampling as an appropriate strategy for water quality monitoring at
recreational waters. At this point we are unable to make accurate location-specific
predictions about Enterococcus abundance based on the available data for a limited suite
of relevant variables. In summary, the results of this modeling generation and selection

exercise lead us to conclude the following: 1) the most supported model from our
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candidate set has a low level of predictive (hindcast) value at the default prediction point
(0.5) and limited utility at a prediction point of 0.1, 2) direct field sampling as currently
conducted is a more useful approach for assessing Enterococcus presence in recreational
bathing waters, and 3) there is extremely tentative support for the relationship between
chlorophyll a levels and Enterococcus levels in the same area which may warrant further

direct investigation.

P. delicatissima complex and Enterococcus correlation. In addition to
modeling the presence/absence of P. delicatissima complex and Enterococcus, we were
interested in identifying any possible relationship between the two since levels of
Enterococcus and other fecal indicator bacteria are the current standards for recreational
and shellfish-harvesting water quality.?”*® This question was presented in Chapter 3:

e Does there appear to be any clear relationship between Enterococcus levels and

Pseudo-nitzschia levels in Massachusetts Bay?

There are very few cases where sampling for P. delicatissima complex at Station F22 and
Enterococcus at one of the three north coastal beaches occurred on the same day. For
Marblehead Devereux Beach there were 7 cases, for Manchester-By-The-Sea Singing
Beach there were 9 cases, and Gloucester Good Harbor Beach there were 7 cases. The
Spearman’s rank correlation coefficient test results for Enterococcus levels at each beach
and corresponding P. delicatissima complex counts at Station F22 are as follows:

e Station F22 and Marblehead Devereux Beach: -0.224
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e Station F22 and Manchester-By-The-Sea Singing Beach: -0.230

e Station F22 and Gloucester Good Harbor Beach: 0.167
Based on the available monitoring data at Station F22 (for P. delicatissima complex) and
three proximal north coastal beaches (for Enterococcus) there does not appear to be any
relationship between the abundance levels of these organisms. We stress that this
conclusion is based on field monitoring data alone, not on purpose-designed experiments
under laboratory controlled conditions. Observations at these locations spanning the
years 2007 to 2014 are shown below in Figure 5-18, note the log base 2 vertical scale. As
shown in Figure 5-18 (below), it is possible to have high Enterococcus levels without any
leading or lagging high P. delicatissima complex levels, and it is possible to have high P.
delicatissima complex levels without any clear leading or lagging signal in the

Enterococcus counts.
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Figure
P delicatissima complex at Station F22 (cells/100mL) and Enterococcus (cells/100mL)
counts at three marine beaches along northern Massachusetts Bay, 2007-2014
Note: Enferococcus sampling limited to summer months
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Figure 5-18. P. delicatissima complex at Station F22 and Enterococcus at three north
coastal beaches, 2007-2014.

Sample values of 0 cells/100mL are not shown in this figure due to natural log vertical
scale.

Neither population is sampled continuously, nor are there many instances of sample
collection for both organisms on the same day, and we acknowledge this limitation of the
data. A statistical investigation of correlation between the two organisms would have
required extensive temporal interpolation of abundances, and significant assumptions

about the doubling times, or die-off rates, of these organisms in this area. However,

given our limited understanding of P. delicatissima complex baseline population levels
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and reproduction rates, and the mixed literature results about Enterococcus sources in the
wild we did not think such assumptions would lead to useful results.

At present Enterococcus levels are sampled from late May to early September,
leaving only four or five potential opportunities for sample overlap in any given year
under the current MWRA monthly monitoring schedule. It is possible that higher
resolution sampling would reveal more common factors that could be subject to
examination, or at least a better understanding of P. delicatissima complex bloom
dynamics. The only clear commonality between P. delicatissima complex and
Enterococcus abundance is that chlorophyll a is a predictive parameter in both of our

selected models. Such an observation may be useful for future hypothesis development.

Suggestions for future work. The long-term goal of this work is to develop
simultaneous forecasts for multiple marine-sourced risks. The final element of our Phase
3 evaluation of outputs is to revisit the question raised in the previous chapter:

e Are there any field measurements for which public data do not readily exist which
scientific literature suggests would likely increase the predictive ability of these
models?

Based on our evaluation of the assembled data we have multiple suggestions, some of
which have already been mentioned (e.g., remote sensing measurements of
macronutrients). For Pseudo-nitzschia species in Massachusetts Bay increased temporal

resolution sampling would be useful for potentially identifying seasonal influences on
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presence/absence, or even bloom size levels. Future work could benefit from a purpose-
designed multi-year study with high temporal resolution that would have a better chance
of capturing the subtleties of nutrient dynamics as they relate to P. delicatissima complex
(or total Pseudo-nitzschia) abundance. Future work could also benefit from a broader
effort to acquire and compile nutrient data (or other multi-purpose data) that might have
scientific value for understanding the risk potential from multiple marine-based
organisms present in the system, as was suggested in Chapter 2.

We could not identify any publicly available datasets for trace metals in
Massachusetts Bay. Iron, copper, and lithium have been suggested as influences on
either Pseudo-nitzschia species abundance and/or domoic acid production. Sampling for
those metals, combined with mesocosm growth experiments under conditions mimicking
Massachusetts Bay, could potentially improve our understanding of Pseudo-nitzschia
responses to regional conditions and inform a predictive model.

Our model used Pseudo-nitzschia observations from the northern end of
Massachusetts Bay, but shellfish harvesting is more common in the southern part of the
Bay. Collecting Pseudo-nitzschia samples from the southern part of Massachusetts Bay
could help identify the spatial extent of Pseudo-nitzschia presence which (the MWRA
sampling ended for Pseudo-nitzschia at Station FO2 ended in 2010 as far as we know).
We note that there is a new, non-regulatory, pilot program in Massachusetts to engage

volunteers in collecting and analyzing plankton samples for potentially toxigenic
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species.*® We hope that the results of this and any subsequent program are collected and
made available to the general public through the MA-DMF.

Predictive modeling efforts for Enterococcus could benefit from increased
information capture at the time of sampling. For example, observations of wildlife
present in the area might indicate if high Enterococcus levels are from non-human
sources. In addition, recording physical variables such as water temperature at the time
and location of sampling might reveal subtle differences that contribute to Enterococcus
persistence. Some locations with persistently poor water quality have initiated microbial
source tracking efforts to identify Enterococcus to the species level and then match that
to known host organisms which may be present upstream. Although this might not be
necessary for the three beaches used in our study it is an important scientific development
which can be used in other situations. Another type of data which would be useful is
bather attendance counts for public beaches on every day of the summer bathing season,
not just bather presence at the time of sampling. At present these are not collected or
published for Massachusetts beaches in a coordinated way. Given that direct shedding of
Enterococcus by bathers has been suggested to impact water quality®® this information
would fundamentally improve our understanding of that potential loading source at
Massachusetts beaches.

The currently available data for Enterococcus and Pseudo-nitzschia spp. in
Massachusetts Bay is not collected for the purpose of developing predictive models or

exploring potential relationships between different types of marine-sourced risks. There
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is little overlap on sampling dates, and we found no mention in any public sources of
plans for coordination in future. Such coordination might add important scientific value
to data already being collected for routine monitoring purposes. For other marine-
sourced risks known to exist in Massachusetts Bay (e.g. Vibrio parahaemolyticus,
anthropogenic antibiotics, human enteric viruses) there are no equivalent long-term
monitoring programs. However, the Massachusetts Division of Marine Fisheries has
initiated a limited sampling program for Vibrio parahaemolyticus®®, but results are not yet
published in the same way as Enterococcus counts for recreational water quality. We
suggest that all state and federal monitoring programs with close ties to public health
should publish their data online in a timely fashion (no more than a 1-year time lag) as
this would facilitate data discovery and identify potential opportunities for coordination

and collaboration.

Summary Conclusion.

In this chapter we used an information-theoretic approach to develop a suite of
candidate models that we tested against each other to find the one with the most support
based on an information criteria measure. These models were developed a priori,
informed by our understanding of previous modeling efforts, the biology of Pseudo-
nitzschia spp. diatoms and Enterococcus bacteria, and our knowledge of the
Massachusetts Bay area. We used Akaike’s Information Criteria (AIC) to identify which

model in our candidate set had the most support, and was thus estimated to be the closest
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estimation of reality among the candidate models in the set. The publicly available data
used to develop our models was divided into two parts: 75% of the total cases in the
dataset were used for model selection, and the final 25% of cases were reserved for
testing the selected model.

The selected model for the presence/absence of P. delicatissima complex
performed poorly-to-adequately when tested. The model over-predicted the presence of
P. delicatissima complex, with a false positive rate of 0.8 at the alternate prediction point.
Such over-prediction may have public health value if the model were used to guide
managerial responses that started with low-cost water sampling efforts to confirm the
presence of potentially toxigenic organisms. The selected model for the
presence/absence of Enterococcus at three north coastal beaches performed poorly when
tested. It displayed 0.07 mean sensitivity and a high mean possible false negative rate
(0.82) at the default prediction point of 0.5. An alternate prediction point of 0.1 raised
the mean sensitivity (to 0.69) and decreased the mean false negative rate (0.20), but such
a low prediction point is so conservative it results in a model with very little utility.

In addition, we discerned no relationship between the presence or absence of
Enterococcus in recreational water samples and the presence or absence of P.
delicatissima complex in water samples taken further offshore. These results support the
argument for continued direct sampling for microbial risk factors at recreational bathing
waters or shellfish harvesting waters. In light of these results we suggest that a purpose-

designed high-temporal-resolution sampling effort for Pseudo-nitzschia species in
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Massachusetts Bay could dramatically improve our understanding of the dynamics of this
potentially toxigenic organism in the region. Ongoing water quality monitoring efforts,
experimental results, and remote sensing outputs (which continue to improve in

resolution) will all have value in understanding marine-sourced risks to human health.
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CHAPTER 6

CONCLUSION

This conclusory section brings together information from the previous chapters to
summarize the findings of this dissertation as they relate to the study area of
Massachusetts Bay and the neighboring coastal watersheds. The previous chapters dealt
with 1) frameworks to understand and organize both problem-framing and response
actions; 2) the human demographics of the study area followed by a review of the state of
knowledge about five marine-sourced risks that exist in the area and may
disproportionately affect the study population; 3) a method for investigating
interdisciplinary science questions and a discussion of the practice of data science; and 4)
development and testing of predictive models for two potentially harmful marine-

sourced risks using publicly available data.

Organizing Frameworks.

Chapter 1 introduced two frameworks that can be used to organize, understand,
and communicate information about environmental or health problems, and shape
possible solutions to those problems and evaluation measures. Those two frameworks

are the Driver-Pressure-State-Impact-Response (DPSIR) and the Driver-Pressure-State-
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Exposure-Effect-Action (DPSEEA) frameworks. The DPSEEA framework is a version
of the DPSIR that has been tailored for use in the public health and medical communities,

but both frameworks contain the same essential structure.

The DPSIR framework, being more general, has seen wide use in a variety of
research and policy assessment efforts, eleven such applications were described in
Chapter 1. These applications included identifying and framing environmental
challenges which may be unique to coastal megacities around the world'; understanding
historical influences on development practices in South Africa® 3; linking upstream
influences with downstream impacts on bathing beach water quality in Venice, Italy’;
identifying the forces influencing coastal wetland loss in Xiamen, China*; and contrasting
environmental management challenges in three coastal cities in different parts of South
America.’ In addition to the DPSIR applications, we presented summaries of two
DPSEEA applications where policy makers are developing solutions to interlinked
challenges that involve the natural environment, physical infrastructure, and health. One
example is from Sao Paulo, Brazil and the other is from Scotland, both examples
demonstrate the flexibility of the DPSEEA framework when addressing location specific

health challenges.

The work in Chapter 1 demonstrated that the DPSIR and DPSEEA frameworks
are useful for organizing information in a flexible and question-specific way across
multiple environmental and public health issues. The structure of these frameworks

allows people to see where alternative solutions might fit within a suite of possible
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responselaction choices. By specifying causal relationships in advance, users can also
identify evaluation measures that will allow policy makers to measure the success of an
implemented response/action. The framework structure also allows for identification of
data gaps which might need to be remedied before committing to a response/action.
Transparency and accountability are important components of policy-making and the use
of DPSIR and DPSEEA frameworks supports those principles. Through these integrating
frameworks researchers and policy-makers can identify which actions within complex

systems can best support environmental and human health.
Human Population Demographics and Marine-sourced Risks in Massachusetts Bay.

Chapter 2 introduced the study area, Massachusetts Bay and the neighboring
coastal watersheds, which includes the coastal city of Boston and much of the
surrounding metropolitan area. Proximity to the sea lends itself to the potential for
greater physical interaction with the ocean or locally harvested seafood, both avenues for
exposure to marine-sourced risks. Characteristics such as age distribution can influence a
population’s overall susceptibility to infectious agents® or toxins, so we used data from
the U.S. Census Bureau to examine human population demographics and dynamics in
Massachusetts Bay coastal watersheds at the year 2000 and year 2010 timepoints.”*
Using coastal watersheds as the spatial unit of interest, this chapter presented original
estimates of watershed populations along with important population characteristics such
as median income, and percent of population over age 65. Between 2000 and 2010 total

population increase in the coastal watersheds around Massachusetts Bay was less than 3
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percent, similar to the state as a whole. The Cape Cod watershed was the only
Massachusetts Bay watershed to see a total decrease in the resident population in the
same time period. The results showed that the Cape Cod watershed had both the highest
percent of residents over age 65, and the lowest median income among all watersheds,

indicating a potentially greater population-level susceptibility to marine-sourced risks.

Chapter 2 also described five categories of marine-sourced risk (enteric bacteria,
indigenous marine bacteria, enteric viruses, natural marine toxins, and anthropogenic
compounds) and then identified a specific example from each category known to exist in
the Massachusetts Bay area. The specific risks chosen were Enterococcus bacteria,
Vibrio parahaemolyticus bacteria, Hepatitis A Virus, Pseudo-nitzschia genus diatoms
which can produce the toxin Domoic Acid, and anthropogenic antibiotics. Each of these
risks is associated with a reportable illness in Massachusetts.”!! In Chapter 2 we
reviewed existing epidemiological data for these risks (at the national or state level if
available). Since epidemiological data for seafood-borne and recreational water-borne

risks is known to be incomplete!> !4

we also reviewed the biology of these risks in the
natural environment. The weight of evidence of existing epidemiological data combined
with the known natural history of these risks strongly suggests that each can be present
with varying abundance in Massachusetts Bay. Abundance of these risks is likely a
product of both environmental variability and human-driven influences. This chapter

closed with a matrix showing known influences on each example risk. Influences that

affect more than one type of risk are considered high value data types that would be
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useful in multi-risk modeling efforts. High value influences identified in this chapter
included both environmental influences (e.g., water temperature, sunlight, rainfall or
other freshwater input) and socio-economic influences (e.g., composition and volume of
anthropogenic nutrient releases, wastewater treatment type, and local human population).
If this same approach were used in a different location users could customize the marine-

sourced risks of interest, the influences identified, and the subsequent data needs.

Interdisciplinary Data Science.

The purpose of Chapter 3 was to present an overview of the data landscape that
currently exists for interdisciplinary environmental health researchers, and to provide a
generalized workflow that others could use to organize and plan interdisciplinary work.
In addition, Chapter 3 discussed the interrelated topics of big data, crowdsourced data,
data science, and the associated challenges and opportunities of evolving data sources.'*
18 Big data refers to millions, or billions, of records of a certain type, common examples
include financial transaction records, electronic medical records, and social network-
derived datasets.!?? The rise of big data has necessitated the development of new
analytical and technological tools to manage and query these datasets. Crowdsourced
data can be generated purposely (e.g., voluntary contributions to research efforts>,
aggregated commentary on the same topic) or anonymously (e.g., geo-referenced location

data from mobile phones, online search queries®*). Crowdsourced data may become big

data, and data scientists may combine crowdsourced data, big data, and traditional
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scientific data from multiple disciplines to ask new questions. Others are already using
crowdsourced data to try to detect regional patterns of certain infectious diseases?, but
success so far has been mixed.!> Although the modeling work in this dissertation does
not use crowdsourced data or big data, we expect that future environmental health work

may be able to take advantage of these sources.

Chapter 3 presented three examples of how researchers have combined
epidemiological and medical data with remote-sensing data to gain new insights into
diseases. Those three cases were 1) Rift Valley Fever in the Horn of Africa®®? 2)
cholera in Bangladesh?’, and 3) Kawasaki disease in Japan.?® Rift Valley Fever is caused

26:27 cholera is caused by bacteria spread through fecal-

by a virus spread by mosquitoes
contaminated food or water?’, and the cause of Kawasaki disease is unknown but
suspected to be an inhaled natural substance such as an aerosolized fungus or bacteria.?®
Through our generalized workflow process we showed that investigations of different
diseases can follow the same general workflow even when the research products are very
different. In all cases the first phase of interdisciplinary work is to review the existing
scientific literature and identify potentially relevant data sets. The second phase of
interdisciplinary work is to produce outputs, such outputs may include disease maps,
historical timelines, prediction maps, or predictive models. The third phase of this

interdisciplinary work is to evaluate the outputs from the second phase and assess their

utility. The evaluation phase asks the following questions:

e s there a useful level of predictive value in the output product?
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e s further field sampling needed to better understand the system?

e Do these outputs further the development of theory?

As with any exploratory endeavor, it is possible that initial attempts to reveal linkages
between environmental factors and human health may raise more questions than they

ansSwer.

This dissertation asked questions about marine-sourced risks in Massachusetts
Bay. To that end we included a list of datasets relevant to investigating marine-sourced
risks in Massachusetts Bay at the end of Chapter 3. This list included multi-year
monitoring datasets for Pseudo-nitzschia species diatoms and Enterococcus bacteria in
different parts of Massachusetts Bay, we were unable to locate comparable datasets for
anthropogenic antibiotics, Hepatitis A Virus, or Vibrio parahaemolyticus. We used the
identified data sets of environmental variables, socio-economic variables, and marine-

sourced risks to develop probabilistic models, discussed in Chapter 4.

Marine-sourced Risk Models.

The purpose of Chapter 4 was to use publicly available data to develop
probabilistic predictive models for the presence / absence of the diatom Pseudo-nitzschia
delicatissima complex and the bacteria Enterococcus, both of which have been shown to
be present in Massachusetts Bay at different times. We used an information-theoretic
approach to select the most supported model from a suite of logistic regression models

developed a priori. Each model represented a unique hypothesis to explain the
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presence/absence P. delicatissima complex or Enterococcus, each model was developed
using our understanding of the biology of these organisms, our knowledge of the
Massachusetts Bay system, and the results of previous modeling efforts from other

locations (where available).

We used public, but unpublished, data from the Massachusetts Water Resources
Authority containing Pseudo-nitzschia delicatissima complex counts to develop a
dichotomous presence/absence response variable for P. delicatissima complex.?”: %
Potential input variables were developed using macronutrient measurements from
sampling stations in Massachusetts Bay along with weather, riverflow, and
oceanographic records from other public sources.*!** Similarly, to develop the
Enterococcus presence/absence response variable we used public data from bathing
beach water quality testing, published by the Commonwealth of Massachusetts
Department of Public Health, Bureau of Environmental Health.** Weather records,
oceanographic observations, and census records from other public sources were used to
develop the predictor variables for Enterococcus abundance.’!* The total dataset
containing response and predictor variables was used to generate and identify the most
supported model. Cross-validation testing involved removing one year of data, fitting the
model on the remaining year, and then using the fitted model to make predictions for the
missing year. For the P. delicatissima complex there were 19 years of available data, and

thus an ensemble of 19 cross-validation experiments. For Enterococcus we used 7 years

of data and thus had 7 cross-validation experiments.
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We tested the hindcast performance of each predictive model against its
respective training dataset and measured performance in four areas: sensitivity,
specificity, false positive rate, and false negative rate. This allowed us to see how closely
the cross-validation results of hindcast probabilistic predictions matched observed
responses. The P. delicatissima complex predictive model was biased towards over-
prediction of diatom presence, there was a high false positive rate when tested on the
training dataset. There was a very low false negative rate. Although the model was not
highly accurate in predicting either presence or absences, the bias towards over-
prediction suggests that such as model could be used to guide low-cost response efforts
such as increased field sampling to detect the presence of P. delicatissima complex or
any Pseudo-nitzschia species in Massachusetts Bay. Potential improvements in model
utility could be achieved through remote sensing of predictor (input) variables such as

macronutrients; at present macronutrients are measured through direct field sampling.

The Enterococcus predictive model was biased towards under-prediction, it had a
high false negative rate. Overall the model had poor performance, suggesting that the
current method of direct field sampling has more relevance to public health protection at
the three beaches which we used at data sources for Enterococcus response. One
potential limitation in our model development is the low frequency of high Enterococcus
counts at these beaches, especially in more recent years. In addition to the predictive
models we examined the data for any signs of a relationship between P. delicatissima

complex abundance at offshore sampling stations and Enterococcus levels at three north
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coastal bathing beaches. Our data for this comparison was limited to cases where
sampling for both organisms occurred on the same day, Marblehead Devereux Beach had
7 cases, Manchester-By-The-Sea had 9 cases, and Gloucester Good Harbor Beach had 7
cases. The Spearman's rank correlation coefficient test results indicated no statistically
significant relationship between the presence of these two organisms at their sampling

locations.

Summary Conclusion.

The purpose of this dissertation was to 1) discuss the utility and applicability of
the DPSIR and DPSEEA organizing frameworks, 2) examine human demographics in
coastal watersheds around Massachusetts Bay and identify marine-sourced risks that may
affect those populations through a review of epidemiological and biological data for five
different kinds of risk, 3) discuss the current opportunities and challenges for
interdisciplinary environmental health science research, and 4) develop probabilistic
predictive models for two marine-sourced risks known to exist in Massachusetts Bay.
Long-term data collected for other purposes shows that the potentially toxigenic diatom
Pseudo-nitzschia delicatissima complex has repeatedly been present in Massachusetts
Bay during all seasons and at varying abundance over the past twenty years. Other
regions where molluscan shellfish are regularly harvested for human consumption have
implemented direct monitoring for Pseudo-nitzschia species, including Washington
State®® and Great Britain.>® Such an approach may be warranted in Massachusetts Bay

until the accuracy of predictive models reaches a satisfactory level. At present there may
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be unrecognized consumption of the neurotoxin domoic acid produced by Pseudo-
nitzschia genus diatoms via shellfish harvested in Massachusetts Bay, and a growing
body of research suggests that consumption of any amount of domoic acid may be
harmful to mammals.’”#! This suggests that there is a potentially under-appreciated

public health risk receiving very little attention at present in Massachusetts.

While we recognize the value of direct sampling to monitor for marine-sourced
risks, sampling for all known human health risks that exist in the nearshore coastal
environment may simply be beyond the scope of public health authorities. In such cases
a multi-risk predictive modeling effort built upon existing data and a thorough
understanding of local system dynamics may help guide public health protection efforts.
Predictive modeling, combined with direct sampling as needed and follow-up action by
public health authorities, has the potential to reduce exposure to marine-sourced risks that
may harm humans who interact with, or consume raw seafood harvested from, coastal

ocean waters.
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APPENDIX A: COMPUTER CODE

The original R Studio software code for the 16 candidate set models for P.
delicatissima complex.

Cand.set<- list()

Cand.set[[1]]<-glm(formula = binary(Q ~ watertemp.44013 + sio4+ nh4 + no3 + po4 +
z0o.In + prcp.day.before + sal.station, family = binomial(logit), data = delicat.data)
Cand.set[[2]]<-glm(formula = binary0 ~ watertemp.44013 + prcp.5day.total + po4
+sal.station, family = binomial(logit), data = delicat.data)

Cand.set[[3]]<-glm(formula = binary0 ~ watertemp.44013 + po4 + no2+no3 + month,
family = binomial(logit), data = delicat.data)

Cand.set[[4]]<-glm(formula = binary0 ~ watertemp.44013 + po4 +sal.station + sio4 +
river.1wkavg + month, family = binomial(logit), data = delicat.data)
Cand.set[[5]]<-glm(formula = binary0 ~ watertemp.44013 + sio4 + chl.station, family =
binomial(logit), data = delicat.data)

Cand.set[[6]]<-glm(formula = binary0O ~ sio4 + chl.station + river.30davg + no3, family =
binomial(logit), data = delicat.data)

Cand.set[[7]]<-glm(formula = binary0 ~ no2+no3 + nn.p, family = binomial(logit), data
= delicat.data)

Cand.set[[8]]<-glm(formula = binary0 ~ no2 + sio4 + prcp.day.before, family =
binomial(logit), data = delicat.data)

Cand.set[[9]]<-glm(formula = binary0O ~ tdn + si.no3 + prcp.day.before, family =
binomial(logit), data = delicat.data)

Cand.set[[10]]<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat.data)

Cand.set[[11]]<-glm(formula = binaryQ ~ watertemp.44013 + sio4 + chl.station +
no2+no3 + si.no3 + prcp.day.before + DON + nh4, family = binomial(logit), data =
delicat.data)

Cand.set[[12]]<-glm(formula = binary0 ~ zoo.In + sio4 + po4 + nh4 + prcp.day.before,
family = binomial(logit), data = delicat.data)

Cand.set[[13]]<-glm(formula = binaryQ ~ watertemp.44013 + sio4 + chl.station + nh4 +
po4 + prcp.day.before, family = binomial(logit), data = delicat.data)
Cand.set[[14]]<-glm(formula = binaryQ ~ watertemp.44013 + po4 + no2+no3 + month +
latitude + longitude, family = binomial(logit), data = delicat.data)
Cand.set[[15]]<-glm(formula = binary(O ~ tdn + si.no3 + prcp.day.before + latitude +
longitude, family = binomial(logit), data = delicat.data)
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Cand.set[[16]]<-glm(formula = binary( ~ latitude + longitude, family = binomial(logit),
data = delicat.data)

R Studio output for AICc test of 16 candidate models for P. delicatissima complex
#Model selection based on AICc results

aictab(Cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort = TRUE)
Model selection based on AICc :

K AICc Delta_ AICc AICcWt Cum.Wt LL

ModI0 8 263.17 0 0.98 098 -123.2
Modll 10  270.97 7.8 0.02 1 -124.89
Mod5 4 288.08 2491 0 1 -139.94
Mod13 7 288.21 25.03 0 1 -136.82
Mod4 7 292.36 29.19 0 1 -138.9
Modl1 9 293.6 30.43 0 1 -137.34
Mod3 6 293.81 30.64 0 1 -140.7
Mod9 4 295.27 32.1 0 1 -143.54
Modl5 5 295.29 32.12 0 1 -142.51
Modl14 7 295.31 32.14 0 1 -140.38
Mod2 5 297.91 34.74 0 1 -143.81
Mod6 5 312.84 49.67 0 1 -151.28
Modl2 6 31291 49.74 0 1 -150.26
Mod8 4 316.33 53.16 0 1 -154.07
Modl6 2 318.35 55.17 0 1 -157.15
Mod7 4 319.43 56.26 0 1 -155.62
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The original R Studio software output with summary information for Model 10 of P.
delicatissima complex presence/absence is shown below. Model 10 was the most
supported model in the candidate set.

> mod10<-glm(formula = binary0 ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat.data)

> summary(mod10)

Call:

glm(formula = binary0 ~ watertemp.44013 + tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit),
data = delicat.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.7788 -1.1235 -0.3695 1.0860 1.9061

Coefficients: (1 not defined because of singularities)

Estimate Std. Error zvalue  Pr(>z|)
(Intercept) -2.35E+02  1.10E+02 -2.129 0.03327 *
watertemp.44013  5.05E-02  3.02E-02 1.674 0.09404
tdn -3.62E-02  2.18E-02 -1.66 0.09694 .
si.no3 -2.52E-02  7.81E-03 -3.222 0.00127 **
sio4 -8.95E-03  5.17E-02 -0.173 0.86251
prcp.day.before -3.30E-03  2.60E-03 -1.265 0.20575
chl.station 6.71E-02  6.57E-02 1.02 0.30773
latitude 5.55E+00  2.60E+00 2.136 0.03269 *
longitude NA NA NA NA

Signif. codes: 0 “***”0.001 ***0.01 “* 0.05 ‘> 0.1 * 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 272.97 on 196 degrees of freedom
Residual deviance: 246.41 on 189 degrees of freedom
(32 observations deleted due to missingness)
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AIC: 262.41

Number of Fisher Scoring iterations: 5
#R code for the Hosmer and Lemeshow goodness of fit test for Model 10 for P.
delicatissima complex.

> hi<- hoslem.test(mod 108y, fitted(mod10), g=10)
> hl

Hosmer and Lemeshow goodness of fit (GOF) test

data: mod108y, fitted(mod10)
X-squared = 10.437, df = 8, p-value = 0.2357

Cross-validation for the P. delicatissima model involves leaving out one year of data,
fitting the model on remaining years, then using that model generate predictive
probabilities for the missing year.

# Generate predictive probabilities for each year, write results to text files
load(" c:/Desktop/RStudio/2016-03-20 workspace.RData")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat.data)

delicat_no95 <- read.csv(" c:/Desktop/delicatissima data by year/delicat_no95.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat_no95)

mod10.predict <-predict(mod10, delicat_no95, type="response")
delicat_no95$predict.values<-predict(mod10, delicat_no95, type="response")
delicat95 <- read.csv(" c:/Desktop/delicatissima data by year/delicat95.csv")
delicat95$predict.values<-predict(mod10, delicat95, type="response")

delicat_no96 <- read.csv(" c:/Desktop/delicatissima data by year/delicat_no96.csv")

delicat96 <- read.csv(" c:/Desktop/delicatissima data by year/delicat96.csv")
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mod10.predict <-predict(mod10, delicat_no96, type="response")
delicat96S$predict.values<-predict(mod10, delicat96, type="response")
write.table(delicat96, " c:/Desktop/delicat96predict.txt", sep="\t")

delicat_no97 <- read.csv(" c:/Desktop/delicatissima data by year/delicat_no97.csv")

mod10<-glm(formula = binary0 ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat_no97)

delicat_no97$predict.values<-predict(mod10, delicat_no97, type="response")
delicat97 <- read.csv(" c:/Desktop/delicatissima data by year/delicat97.csv")
delicat97$predict.values<-predict(mod10, delicat97, type="response")
write.table(delicat97, " c:/Desktop/delicat97predict.txt", sep="\t")

delicat_no98 <- read.csv(" c:/Desktop/delicatissima data by year/delicat_no98.csv")
delicat98 <- read.csv(" c:/Desktop/delicatissima data by year/delicat98.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat_no98)

delicat98$predict.values<-predict(mod10, delicat98, type="response")
write.table(delicat98, " c:/Desktop/delicat98predict.txt", sep="\t")

delicat_no99 <- read.csv(" c:/Desktop/delicatissima data by year/delicat_no99.csv")
delicat99 <- read.csv(" c:/Desktop/delicatissima data by year/delicat99.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
delicat_no99)

delicat99$predict.values<-predict(mod10, delicat99, type="response")
write.table(delicat99, " c:/Desktop/delicat99predict.txt", sep="\t")

del_no2000 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2000.csv")
del_2000 <- read.csv(" c:/Desktop/delicatissima data by year/del_2000.csv")
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mod10<-glm(formula = binary0Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2000)

del_2000$predict.values<-predict(mod10, del_2000, type="response")
write.table(del_2000, " c:/Desktop/delicat2000predict.txt", sep="\t")

del_no2001 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2001.csv")
del_2001 <- read.csv(" c:/Desktop/delicatissima data by year/del_2001.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2001)

del_20018$predict.values<-predict(mod10, del_2001, type="response")
write.table(del_2001, " c:/Desktop/delicat2001predict.txt", sep="\t")

del_no02002 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2002.csv")
del_2002 <-read.csv(" c:/Desktop/delicatissima data by year/del_2002.csv")

mod10<-glm(formula = binary0Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2002)

del_2002$predict.values<-predict(mod10, del_2002, type="response")
write.table(del_2002, " c:/Desktop/delicat2002predict.txt", sep="\t")

del_no2003 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2003.csv")
del_2003 <-read.csv(" c:/Desktop/delicatissima data by year/del_2003.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2003)

del_2003$predict.values<-predict(mod10, del_2003, type="response")
write.table(del_2003, " c:/Desktop/delicat2003predict.txt", sep="\t")

del_no2004 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2004.csv")
del_2004 <- read.csv(" c:/Desktop/delicatissima data by year/del_2004.csv")
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mod10<-glm(formula = binary0Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2004)

del_2004$predict.values<-predict(mod10, del_2004, type="response")
write.table(del_2004, " c:/Desktop/delicat2004predict.txt", sep="\t")

del_no2005 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2005.csv")
del_2005 <- read.csv(" c:/Desktop/delicatissima data by year/del_2005.csv")

mod10<-glm(formula = binary(Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2005)

del_2005$predict.values<-predict(mod10, del_2005, type="response")
write.table(del_2005, " c:/Desktop/delicat2005predict.txt", sep="\t")

del_no2006 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2006.csv")
del_2006 <- read.csv(" c:/Desktop/delicatissima data by year/del_2006.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2006)

del_2006$predict.values<-predict(mod10, del_2006, type="response")
write.table(del_2006, " c:/Desktop/delicat2006predict.txt", sep="\t")
del_no2007 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2007.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2007)

del_2007 <- read.csv(" c:/Desktop/delicatissima data by year/del_2007.csv")
del_2007$predict.values<-predict(mod10, del_2007, type="response")
write.table(del_2007, " c:/Desktop/delicat2007predict.txt", sep="\t")

del_no2008 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2008.csv")
del_2008 <-read.csv(" c:/Desktop/delicatissima data by year/del_2008.csv")
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mod10<-glm(formula = binary0Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2008)

del_2008$predict.values<-predict(mod10, del_2008, type="response")
write.table(del_2008, " c:/Desktop/delicat2008predict.txt", sep="\t")
del_no02009 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2009.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no02009)

del_2009 <- read.csv(" c:/Desktop/delicatissima data by year/del_2009.csv")
del_2009$predict.values<-predict(mod10, del_2009, type="response")
write.table(del_2009, " c:/Desktop/delicat2009predict.txt", sep="\t")

del_no2010 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2010.csv")
del_2010 <-read.csv(" c:/Desktop/delicatissima data by year/del_2010.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2010)

del_2010$predict.values<-predict(mod10, del_2010, type="response")
write.table(del_2010, " c:/Desktop/delicat2010predict.txt", sep="\t")

del_no2011 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2011.csv")
del_2011 <-read.csv(" c:/Desktop/delicatissima data by year/del_2011.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2011)

del_2011$predict.values<-predict(mod10, del_2011, type="response")
write.table(del_2011, " c:/Desktop/delicat201 1predict.txt", sep="\t")

del_no2012 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2012.csv")
del_2012 <-read.csv(" c:/Desktop/delicatissima data by year/del_2012.csv")
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mod10<-glm(formula = binary0Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2012)

del_2012$predict.values<-predict(mod10, del_2012, type="response")
write.table(del_2012, " c:/Desktop/delicat2012predict.txt", sep="\t")

del_no2013 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2013.csv")
del_2013 <- read.csv(" c:/Desktop/delicatissima data by year/del_2013.csv")

mod10<-glm(formula = binary(Q ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2013)

del_2013$predict.values<-predict(mod10, del_2013, type="response")
write.table(del_2013, " c:/Desktop/delicat2013predict.txt", sep="\t")

del_no2014 <- read.csv(" c:/Desktop/delicatissima data by year/del_no2014.csv")
del_2014 <-read.csv(" c:/Desktop/delicatissima data by year/del_2014.csv")

mod10<-glm(formula = binaryQ ~ watertemp.44013 +tdn + si.no3 + sio4 +
prcp.day.before + chl.station + latitude + longitude, family = binomial(logit), data =
del_no2014)

del_2014$predict.values<-predict(mod10, del_2014, type="response")
write.table(del_2014, " c:/Desktop/delicat2014predict.txt", sep="\t")

#End of Delicatissima work.

This section of Appendix A includes the code relevant for Enterococcus predictive
modeling.

Cand.set<- list()

Cand.set[[1]]<-glm(formula = entero.over10 ~ prcp.mblhd.day.before, family =
binomial(logit), data = entero_allyear)

Cand.set[[2]]<-glm(formula = entero.over10 ~ human.pop.tract, family =
binomial(logit), data = entero_allyear)

Cand.set[[3]]<-glm(formula = entero.over10 ~ dog.pop, family = binomial(logit), data =
entero_allyear)
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Cand.set[[4]]<-glm(formula = entero.over10 ~ turbidity.a01, family = binomial(logit),
data = entero_allyear)

Cand.set[[5]]<-glm(formula = entero.overl0 ~ watertemp.a0l , family =
binomial(logit), data = entero_allyear)

Cand.set[[6]]<-glm(formula = entero.over10 ~ river.2wkavg, family = binomial(logit),
data = entero_allyear)

Cand.set[[7]]<-glm(formula = entero.over10 ~ prcp.mblhd.2day , family =
binomial(logit), data = entero_allyear)

Cand.set[[8]]<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + human.pop.tract + dog.pop , family =
binomial(logit), data = entero_allyear)

Cand.set[[9]]<-glm(formula = entero.over10 ~ latitude + longitude , family =
binomial(logit), data = entero_allyear)

Cand.set[[10]]<-glm(formula = entero.over10 ~ chl.a0l + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_allyear)

Cand.set[[11]]<-glm(formula = entero.over10 ~ tmax.marblehead + +prcp.mblhd.2day +
year + watertemp.a0l +river.Iwkavg, family = binomial(logit), data = entero_allyear)

Cand.set[[12]]<-glm(formula = entero.over10 ~ latitude + year + watertemp.a01l
+river.1wkavg, family = binomial(logit), data = entero_allyear)

#Identifying the most supported model for Enterococcus prediction using AIC
> aictab(Cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL, sort =
TRUE)

Model selection based on AICc :
K AICc Delta_ AICc AICcWt Cum.Wt LL

Modl0 10 295.14 O 0.98 0.98 -137.24
Mod8 7 30345 8.3l 0.02 0.99 -144.56
Modll 6 305.69  10.55 0.01 1 -146.72
Modl12 5 317.64 225 0 1 -153.73
Mod9 3 31993 2479 0 1 -156.93
Mod2 2 320.27  25.13 0 1 -158.12
Mod7 2 32097  25.83 0 1 -158.47
Mod3 2 321.05 25091 0 1 -158.51
Mod4 2 3213 26.16 0 1 -158.63
Modl 2 3234 28.26 0 1 -159.68
Mod5 2 323.82  28.68 0 1 -159.89
Mod6 2 32436  29.22 0 1 -160.16
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The original R Studio output summary information for Enterococcus
presence/absence Model 10 is shown below. Model 10 was the most supported
model in the candidate set.
> mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude +
longitude +river.1wkavg, family = binomial(logit), data = entero_no2014)
> summary(mod10)

Call:
glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +
prcp.mblhd.2day + year + watertemp.a01 + latitude + longitude +
river.1wkavg, family = binomial(logit), data = entero_allyear)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.3840 -0.6159 -0.4452 -0.2978 2.4745

Coefficients:

Estimate Std. Error  z value Pr(>|z|)
(Intercept) 5.94E+03  2.77E+03 2.147 0.03177 *
chl.a01 4.09E-01 1.96E-01 2.09 0.0366 *
tmax.marblehead -1.17E-02 4.67E-03 -2.496 0.01254 *
prep.bos.day.before 4.09E-03 1.51E-03 2.702 0.00689 **
prcp.mblhd.2day -2.28E-03 1.54E-03 -1.482 0.13826
year -1.73E-01 7.59E-02 -2.284 0.02236 *
watertemp.a01 1.77E-01 8.42E-02 2.098 0.03591 *
latitude -6.81E+01  3.27E+01 -2.087 0.03687 *
longitude 3.81E+01 1.93E+01 1.972 0.04856 *
river.lwkavg -3.60E-05 3.40E-05 -1.057 0.29034

Signif. codes: 0 “**** 0.001
*¥%20.01 “*70.05°70.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 317.27 on 340 degrees of freedom
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Residual deviance: 274.47 on 331 degrees of freedom
(8 observations deleted due to missingness)
AIC: 294.47

Number of Fisher Scoring iterations: 5

#Code for Enterococcus model fitting with one year left out of model then
predictive probability values generated for the left out year.
#

mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2007)

summary(mod10)

mod10.predict <-predict(mod10, entero_no2007, type="response")
entero_no2007$predict.values<-predict(mod10, entero_no2007, type="response")
entero2007$predict.values<-predict(mod10, entero2007, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a0l + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2008)
entero_no2008$predict.values<-predict(mod10, entero_no2008, type="response")
entero2008S$predict.values<-predict(mod10, entero2008, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2009)
entero_no2009$predict.values<-predict(mod10, entero_no2009, type="response")
entero2009$predict.values<-predict(mod10, entero2009, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2010)

entero_no2010$predict.values<-predict(mod10, entero_no2010, type="response")
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entero2010$predict.values<-predict(mod10, entero2010, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2011)
entero_no2011$predict.values<-predict(mod10, entero_no2011, type="response")
entero2011$predict.values<-predict(mod10, entero2011, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2012)

entero_no2012 <- read.csv(" c:/Desktop/entero_no2012.csv")

mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2012)
entero_no2012$predict.values<-predict(mod10, entero_no2012, type="response")
entero2012$predict.values<-predict(mod10, entero2012, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a01+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no2013)
entero_no2013$predict.values<-predict(mod10, entero_no2013, type="response")
entero2013$predict.values<-predict(mod10, entero2013, type="response")
mod10<-glm(formula = entero.over10 ~ chl.a01 + tmax.marblehead +
prcp.bos.day.before +prcp.mblhd.2day + year + watertemp.a0O1+ latitude + longitude
+river.1wkavg, family = binomial(logit), data = entero_no02014)
entero_no2014$predict.values<-predict(mod10, entero_no2014, type="response")

entero2014$predict.values<-predict(mod10, entero2014, type="response")
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#Code to save files with year-by-year predictive probability added
write.table(entero2007, "c:/Desktop/entero2007predict.txt", sep="\t")
write.table(entero2008, "c:/Desktop/entero2008predict.txt", sep="\t")
write.table(entero2009, "c:/Desktop/entero2009predict.txt", sep="\t")
write.table(entero2010, "c:/Desktop/entero2010predict.txt", sep="\t")
write.table(entero2011, "c:/Desktop/entero201 1predict.txt", sep="\t")
write.table(entero2012, "c:/Desktop/entero2012predict.txt", sep="\t")
write.table(entero2013, "c:/Desktop/entero2013predict.txt", sep="\t")
write.table(entero2014, "c:/Desktop/entero2014predict.txt", sep="\t")

# End of Enterococcus work
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