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Background: Lower-grade glioma (LGG) is one of the most common malignant

tumors in the central nervous system (CNS). Accumulating evidence have

demonstrated that tryptophan metabolism is significant in tumor. Therefore,

this study aims to comprehensively clarify the relationship between tryptophan

metabolism-related genes (TRGs) and LGGs.

Methods: The expression level of TRGs in LGG and normal tissues was first

analyzed. Next, the key TRGs with prognostic value and differential expression in

LGGs were identified using the least absolute shrinkage and selection operator

(LASSO) regression analysis. Subsequently, a risk model was constructed and

Consensus clustering analysis was conducted based on the expression level of

key TRGs. Then, the prognostic value, clinicopathological factors, and tumor

immune microenvironment (TIME) characteristics between different risk groups

and molecular subtypes were analyzed. Finally, the expression, prognosis, and

TIME of each key TRGs were analyzed separately in LGG patients.

Results: A total of 510 patients with LGG from The Cancer Genome Atlas (TCGA)

dataset and 1,152 normal tissues from the Genotype-Tissue Expression (GTEx)

dataset were included to evaluate the expression level of TRGs. After LASSO

regression analysis, we identified six key TRGs and constructed a TRGs risk

model. The survival analysis revealed that the risk model was the independent

predictor in LGG patients. And the nomogram containing risk scores and

independent clinicopathological factors could accurately predict the prognosis of

LGG patients. In addition, the results of the Consensus cluster analysis based on

the expression of the six TRGs showed that it could classify the LGG patients into

two distinct clusters, with significant differences in prognosis, clinicopathological

factors and TIME between these two clusters. Finally, we validated the expression,

prognosis and immune infiltration of six key TRGs in patients with LGG.
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Conclusion: This study demonstrated that tryptophan metabolism plays an

important role in the progression of LGG. In addition, the risk model and the

molecular subtypes we constructed not only could be used as an indicator

to predict the prognosis of LGG patients but also were closely related to

the clinicopathological factors and TIME of LGG patients. Overall, our study

provides theoretical support for the ultimate realization of precision treatment

for patients with LGG.

KEYWORDS

tryptophan, metabolism, lower-grade glioma, prognosis, tumor immune
microenvironment

1. Introduction

Glioma, which deriving from the neuroepithelial tissue, is
one of the most common primary malignant tumors in the
central nervous system (CNS) (Yang et al., 2022). Gliomas are
responsible for approximately 30% of CNS tumors and 80% of
malignant intracranial tumors (Ostrom et al., 2022), with a high
incidence and mortality rate (Siegel et al., 2022). According to
the World Health Organization (WHO) classification system in
2021 for CNS tumors, gliomas are classified as WHO grade
I-IV. The lower-grade gliomas (LGGs), WHO grade II and III,
mainly include three subtypes with histological and molecular
characteristics: IDH mutant diffuse astrocytomas, IDH wild
type diffuse astrocytomas and IDH mutations combined with
1p/19q codeletions in oligodendrogliomas (Louis et al., 2016).
LGG exhibits significant intrinsic heterogeneity in its clinical
and histological features (Aoki et al., 2018), with some patients
expressing a long time progression-free survival (Brat et al.,
2015), while others still having a certain recurrence and malignant
transformation rates with poor survival prognosis, could rapidly
developing into the highly aggressive secondary glioblastoma after
standardized treatments (Xu et al., 2020). Since the uncertainty of
LGG prognosis poses a challenge to clinical management, there is
an urgent need for finding novel biomarkers to establish molecular
subtypes and predict the prognosis of LGG patients, in order to
support the more precise and individualized treatment.

Metabolism plays an important role in life activities and disease
development. Compared with normal tissues, tumor tissues have
significant metabolic abnormalities. Tumor cells can maintain

Abbreviations: ALDH2, aldehyde dehydrogenase 2; AOX1, aldehyde
oxidase 1; AUC, area under curve; CDF, cumulative distribution function;
CGGA, the Chinese Glioma Genome Atlas; CNS, central nervous system;
DE-TRGs, differential expression of tryptophan metabolism-related genes;
GTEx, genotype-tissue expression; GSEA, gene set enrichment analysis;
HPA, Human Protein Atlas; IDH1, isocitrate dehydrogenase 1; IDO1,
indoleamine 2,3-dioxygenase 1; IL4I1, interleukin 4-inducible-1; KYN,
kynurenine; LASSO, least absolute shrinkage and selection operator; LGG,
lower-grade glioma; MAOB, monoamine oxidase B; OS, overall survival;
PCA, principal component analysis; ROC, receiver operating characteristic;
TRGs, tryptophan metabolism-related genes; SLC36A4, solute carrier family
36 member 4; STAT1, signal transducer and activator of transcription 1;
TCGA, The Cancer Genome Atlas; TIME, tumor immune microenvironment;
WHO, World Health Organization; 1p/19q, chromosome 1 and the long arm
of chromosome 19.

their proliferation and progression by altering their metabolic
patterns to obtain essential nutrients from a nutrient-deficient
environment and change the tumor immune microenvironment
(TIME) (Warburg, 1956). Therefore, as one of the hallmark
features of tumors, metabolic reprogramming has an essential
function in the pathogenesis of tumors, providing the necessary
fundamental substance for the tumor cells and contributing to the
biological behavior of tumors (Vaupel et al., 2019). In mammals,
tryptophan, an essential amino acid, is associated with a variety
of biological processes. In recent years, the relationship between
tryptophan metabolism and tumors has been the focus of the
research. A growing evidence suggests that tryptophan metabolism
is involved in the development of tumors via multiple mechanisms.
For example, Bosnyák et al. (2016) reported the characteristics of
tryptophan metabolism in glioma patients and found that their
oligodendrocytes and neurons were able to intake tryptophan
and that the levels of the tryptophan catabolism production
quinolinic acid in the cerebrospinal fluid were increased, suggesting
that tryptophan metabolism is engaged in the pathophysiological
process of glioma. Study have found that the expression of
the speed-limiting enzyme in tryptophan catabolism process,
tryptophan 2,3-dioxygenase is upregulated in glioma and other
types of cancer, thus mediating the immune escape mechanism
of tumors (Prendergast et al., 2018). In addition, studies have
shown that Interleukin 4-inducible-1 (IL4I1), another enzyme in
the tryptophan metabolism, is negatively correlated with the overall
survival (OS) of glioma patients (Sadik et al., 2020). Nevertheless,
there is still a paucity of studies on the role of tryptophan
metabolism-related genes (TRGs) in LGG patients.

Therefore, this study extracted RNA sequencing data and
clinical characteristics of LGG patients from public databases and
intended to explore the expression pattern and prognostic value
of TRGs in LGG patients. And we also explored the correlation
between TRGs and clinicopathological factors and TIME of LGG
patients. Furthermore, we developed a risk model and molecular
subtypes by using the expression level of key TRGs to more
precisely predict the prognosis of LGG patients. Briefly, in this
study, we attempted to illuminate the clinical value of TRGs
in LGG patients using bioinformatics analysis and determined
the important role of tryptophan metabolism in LGG metabolic
reprogramming, in order to offer the theoretical support for more
precise and individualized treatment for LGG patients.
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2. Materials and methods

2.1. Acquisition and preprocessing of
LGG dataset and tryptophan-related
genes

The transcriptome data of 510 patients with LGG and 1,152
normal tissues were downloaded from the Cancer Genome Atlas
(TCGA) dataset (Wang et al., 2016) (TCGA-LGG)1 and the
Genotype-Tissue Expression (GTEx) dataset (Carithers et al.,
2015)2, respectively. After eliminating batch effects, a total of
1,662 tissues were regarded as the training cohort. Furthermore,
we used the Chinese Glioma Genome Atlas (CGGA) dataset
(Zhao et al., 2021)3 including 273 LGG patients as the validation
cohort. The patients with grade II and III glioma and complete
survival information were enrolled in this research. In this study,
the TRGs were obtained from the MSigDB database (Liberzon
et al., 2015)4 including KEGG_TRYPTOPHAN_METABOLISM,
REACTOME_TRYPTOPHAN_CATABOLISM, and WP_TRY
PTOPHAN_METABOLISM. After removing the duplicate genes,
a total of 50 TRGs were enrolled in this study (Supplementary
Table 1).

2.2. Identification of key
tryptophan-related genes

Firstly, we analyzed the expression patterns of 50 TRGs in 510
LGG patients and 1,152 normal tissues from the training cohort.
In this study, TRGs with P-value < 0.05 were considered as the
differential expressed TRGs (DE-TRGs). Next, we further evaluated
the prognostic value of 50 TRGs in 510 LGG patients from the
TCGA-LGG dataset using “survival” package to perform univariate
Cox regression. And a P < 0.05 was considered statistically
significant. Subsequently, the Venn diagram was utilized to
identify the overlapped TRGs between DE-TRGs and prognostic
TRGs. Finally, the least absolute shrinkage and selection operator
(LASSO) regression analysis was conducted for selecting and
identifying the key TRGs associated with the OS rate via the
“glmnet and survival” package in R software.

2.3. Construction of a prognostic risk
model based on the key TRGs

On account of the risk coefficients calculated from the LASSO
regression analysis, we established a risk model based on the key
TRGs and calculated the risk score for each LGG patient from the
TCGA-LGG dataset. Score = Coef-Gene1 × Exp-Gene1 + Coef-
Gene2 × Exp-Gene2 + Coef-Gene3 × Exp-Gene3 + . . .. . . + Coef-
GeneN × Exp-GeneN, in which Coef-GeneN represents the

1 https://portal.gdc.cancer.gov/, accessed on 1 October 2022

2 https://gtexportal.org/home/, accessed on 1 October 2022

3 http://www.cgga.org.cn/, accessed on 1 October 2022

4 http://www.broad.mit.edu/gsea/msigdb/, accessed on 1 October 2022

regression coefficient of GeneN and Exp-GeneN represents the
expression level of GeneN. According to the median risk score,
510 LGG patients from the TCGA-LGG dataset were classified into
different clinical groups: low- and high-risk groups. The Kaplan-
Meier survival curve and the Log-Rank algorithm were performed
to compare the OS of LGG patients between the low- and high-risk
groups. And the time-dependent receiver operating characteristic
(ROC) curves were used to calculate the area under curve (AUC)
values to assess the prognostic predictive performance of the risk
model via “survival ROC” in R software. In addition, we compare
the AUC values of our risk model with those of similar previous
models from other studies (Lai et al., 2022a; Zhang et al., 2022; Zhao
et al., 2022) to further validate the predictive performance of the
risk model.

2.4. Consensus clustering analysis and
molecular subtypes construction

In order to determine whether TRGs could classify LGG
patients, we carried out unsupervised K-means clustering analysis.
The “ConsensusClusterPlus” package in R software was utilized
with 1,000 times verifications to conduct the consensus clustering
analysis for subtyping the LGG patients from the TCGA-LGG
dataset according to the expression values of the key TRGs
in each sample of the TCGA-LGG dataset. We confirmed the
number of clusters and divided the LGG patients into different
molecular subtypes according to the criteria: the cumulative
distribution function (CDF) curve showed a smooth raising; the
intra-cluster correlation was highest and inter-group correlation
was lowest after clustering. Principal component analysis (PCA)
was carried out to check the accuracy of the molecular subtypes
via the “ggplot2” package in R software. At the same time, the
Kaplan-Meier survival curve and the Log-Rank algorithm were
performed to evaluate the prognosis between the two clusters. In
addition, we performed gene set enrichment analysis (GSEA) with
“c2.cp.all.v2022.1.Hs.symbols.gmt” from the molecular signatures
database to focus on differential aggregation of molecular pathways
between different clusters. A P-value < 0.05 was selected as
differential aggregation of pathways.

2.5. Clinical and prognostic analysis of
risk model and molecular subtypes

The primary endpoint of this study was OS in patients with
LGG. Univariate and multivariate Cox regression analyses were
used to investigate the association of age, gender, histological
grade, 1p/19q codeletion, IDH1 status, risk score, and molecular
subtype with OS to identify independent predictors of OS in LGG
patients. To enhance the clinical applicability, we constructed the
nomograms of 1-, 3-, and 5-year OS of LGG patients combined
the independent clinical predictors (including age, histological
grade, and IDH1 status) and risk score or molecular subtype
from the results of multivariate Cox regression analysis. After
1,000 bootstrap resamples, we calculated the C-index and plotted
the calibration curves to evaluate the predictive performance and
robustness of the nomograms.
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Furthermore, based on the clinicopathological factors of LGG
patients from the TCGA-LGG dataset, we explored the relationship
between risk scores or clusters and age, gender, histological type,
histological grade, 1p/19q codeletion, and IDH1 status of LGG
patients to further determine the clinical value of the risk model
and molecular subtype.

2.6. Tumor immune characteristics
analysis

The “ESTIMATE” package in R software was used to calculate
the stromal score, immune score, ESTIMATE score, and tumor
purity of each LGG samples. Violin plots were used to show the
differences between different groups. Subsequently, we explored the
levels of tumor microenvironment scores in different risk groups
or clusters. In addition, the relative infiltration abundance of 22
immune cells among each LGG samples were calculated based via
“CIBERSORT” algorithm. In each sample, the total of all estimated
immune cell type scores equals 1. Meanwhile, we compared the
relative infiltration abundance of immune cells in different risk
groups or clusters using spearman rank correlation analysis.

2.7. External validation of the TRGs
prognostic risk model and molecular
subtypes

In this analysis, 273 LGG patients from the CGGA dataset
were used as the external independent validation cohort to verify
the risk model and molecular subtype. According to the formula
developed in the training cohort, the risk score was calculated for
each LGG patient in the validation cohort. And we used the Kaplan-
Meier survival curves and the Log-Rank test to assess whether there
was a significant difference in OS between the low- and high-risk
groups. Besides, the prognostic prediction of the risk model was
validated using the time-dependent ROC curves to calculate the
1-, 3-, and 5-year AUC values in the validation cohort. Finally, we
verified the molecular subtypes and the prognostic value of two
distinct clusters based on the expression level of key TRGs in the
validation cohort.

2.8. Expression, prognostic value, and
TIME analysis of key TRGs

After searching the Human Protein Atlas (HPA) database
(Thul et al., 2017)5, we acquired the typical immunohistochemical
staining images to visualize the expression level of TRGs in
LGG tissues and normal tissues. Similarly, the prognostic
value of the above key genes was explored in the validation
cohort using the “survminer” R package. Spearman correlation
analysis was utilized to explore the correlations between
the key TRGs and the tumor microenvironment scores and
22 immune cells.

5 http://www.proteinatlas.org/

2.9. Statistical analysis

We used the Shapiro-Wilk normality test to assess whether
the samples obeyed a normal distribution. For samples that did
not satisfy the normal distribution, the Wilcoxon rank sum test
was used to compare the differences between the two groups.
The Kruskal-Wallis H-test, the Dunn’s test, and the Wilcoxon
rank sum test were performed to evaluate the differences in
clinicopathological features between the low-risk and high-risk
groups. In addition, the Chi-square test was used to explore the
differences in clinicopathological features between two molecular
subtypes. The Kaplan-Meier survival curve and the Log-Rank
test were used to perform the survival analysis of LGG patients.
Multivariate Cox regression analysis was applied to identify
the independent predictors of OS in LGG patients. Spearman
correlation were utilized to explore correlation coefficients. We
used R software (version 3.6.3) with its support packages to conduct
the statistical analysis and to plot the figures. A P-value < 0.05 was
considered significant statistically.

3. Results

3.1. Construction of a risk model based
on TRGs in LGG

3.1.1. TRGs expression patterns and the
construction of a prognostic risk model in LGG

The flow chart of this study was shown in Figure 1. A total
of 50 TRGs were obtained from MSigDB database. The heatmap
showed the transcriptional activity of 50 TRGs between LGG
patients from the TCGA-LGG dataset and normal tissues from
the GTEx dataset (Figure 2A). According to the criteria, 46
genes were identified as differential expression genes, in which
40 genes were upregulated and six genes were downregulated
in patients with LGG. Furthermore, univariate Cox regression
analysis showed that 34 out of 50 TRGs were related to the
prognosis of LGG patients (Figure 2B). Therefore, the 32 genes
overlapped between 46 DE-TRGs and 34 prognosis-related TRGs
were used for the subsequent analysis (Figure 2C). After that,
we conducted the LASSO regression analysis of the filtered
32 genes. Consequently, six candidate genes with non-zero
regression coefficients were retained as the key TRGs in LGG
(Figures 2D, E). Then, the key TRGs were utilized to construct a
TRG-based prognostic risk model. The formula was as follows: Risk
model = 0.0475∗IL4I1 + 0.0946∗STAT1 + 0.0314∗SLC36A4 + 0.0451∗

MAOB + 0.4665∗AOX1-0.1485∗ALDH2 (Figure 3A). And the
training cohort was fully classified into the low- and high-risk
groups according to the median value of risk scores. As shown in
Kaplan-Meier plot, the patients in high-risk group experienced an
obviously worse OS than the patients in low-risk group (HR = 4.07,
95% CI = 2.86–5.80, P < 0.001, Figure 3B). And the AUC values
based on the time-dependent ROC curve were 0.869, 0.835, and
0.733 at 1-, 3-, and 5-year, indicating the accurate prognostic
prediction of the risk model (Figure 3C). In addition, we compared
the AUC values of risk model constructed based on key TRGs
with those of similar models (Lai et al., 2022a; Zhang et al., 2022;
Zhao et al., 2022). And the results showed that our model have
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FIGURE 1

The flowchart of this study.

the prognostic predictive power with a moderate robustness
(Supplementary Figure 1). As shown in Figure 3D, the risk plots
demonstrated that the mortality rates of LGG patients elevated
as the risk scores increased. And the heatmap suggested the
expression features of the key TRGs in our risk model between the
low- and high-risk groups in the training cohort (Figure 3E).

3.1.2. Construction of a nomogram based on the
risk score and clinicopathological factors

In this analysis, we constructed the univariate and multivariate
Cox regression analysis to identity the independent prognostic
predictors in LGG patients. The results showed that the age
of patients (HR = 3.306, 95% CI = 1.919–5.693, P < 0.001),
histological grade (HR = 2.951, 95% CI = 1.614–5.395, P < 0.001),
IDH1 status (HR = 0.401, 95% CI = 0.224–0.717, P = 0.002),
and risk score (HR = 2.973, 95% CI = 1.655–5.338, P < 0.001)
were the independent prognostic predictors of the OS in

LGG patients (Figures 4A, B). Then we used the independent
predictors mentioned above to establish the nomogram for the
prediction of 1-, 3-, and 5-year OS in LGG patients with the
C-index = 0.827 (0.802–0.852), which indicated that the nomogram
was the ideal model for predicting the prognosis of LGG patients
(Figures 4C, D).

3.1.3. Correlation analysis of the risk score with
clinicopathological factors

To investigate the relationship between the risk model and
the clinicopathologic characteristics of LGG patients, we explored
the distribution of different clinicopathological factors in the low-
and high-risk groups (Supplementary Figure 2A). And we found
the age and histological grade were significant positive correlated
with the risk score. In addition, we observed that astrocytoma
1p/19q non-codel and IDH1 wild type subgroups had higher risk
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FIGURE 2

Screening for key TRGs in LGG patients. (A) The expression level of 50 TRGs between patients with LGG from TCGA-LGG dataset and normal tissues
from GTEx dataset. (B) Forest plots of univariate Cox regression analysis of 50 TRGs in LGG patients from TCGA-LGG dataset. (C) The Venn diagram
of overlapping between DE-TRGs and prognosis-related TRGs. (D,E) The LASSO regularized Cox regression analysis of key TRGs.

score, which were the poor prognostic factors in LGG patients
(Supplementary Figures 2B−G).

3.1.4. Evaluation of the tumor immune
characteristics between low- and high-risk
groups

In order to examine the correlation between the risk model
and the TIME, we calculated the immune score, stromal score,
ESTIMATE score, and tumor purity of LGG patients. The results
showed that the immune score, stromal score, and ESTIMATE
score had the positive correlations with the risk score, which
means that they were higher in high-risk patients than in low-
risk patients (Figures 5A−H). We next used the “CIBERSORT”
analysis to investigate the relative proportions of 22 immune
cells. As demonstrated in Figure 5I, 12 immune cells had
different infiltration between low- and high-risk patients. And the
infiltration of naive B-cells, T-cells resting CD4 memory, M0, M1,
M2 macrophages, and neutrophils was greater in the high-risk
group, which signified that the immune infiltration may play a
vital role in the poor prognostic for LGG patients. Finally, we

further specifically explored the correlation of risk scores with
markers of macrophage and neutrophil in LGG tissues to validate
the results of the previous immune infiltration analysis. As shown
in Supplementary Figure 3, the expression levels of markers of
neutrophil and macrophage were positively correlated with risk
scores, in accordance with the results of immune infiltration
analysis.

3.2. Construction of molecular subtypes
based on TRGs in LGG

3.2.1. Consensus clustering and the construction
of molecular subtypes based on the key TRGs

In addition, to further investigate the characteristic of TRGs
in LGG, we exploited the novel molecular subtype. Firstly, six
TRGs were selected for clustering. We found that the highest intra-
cluster correlation was obtained when K = 2 by increasing the
clustering variable (K) from 2 to 10 (Figure 6C and Supplementary
Figure 4). PCA revealed that LGG patients in TCGA cohort
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FIGURE 3

(A) Coefficients of the six selected genes and the risk score formula. (B) The Kaplan-Meier plot comparing the low- and high-risk groups in overall
survival (OS). (C) The ROC curve for low- and high-risk groups in the train cohort. (D) Scatter diagram of risk score and survival status in the train
cohort. (E) The expression features of six key TRGs between the low- and high-risk groups in the training cohort.

could be separated remarkably into two clusters according to
expression profiles of the six TRGs (Supplementary Figure 5A).
This meant that the six TRGs could effectively divide the LGG
patients from the training cohort into two clusters. Thus, the
molecular subtypes of two clusters can be precisely defined at
K = 2. Figures 6A, B represented the CDF of the consistent
clustering and the relative change in the area under the CDF
curve when K is different values, respectively. The six TRGs
expression profiles between the two clusters were presented in a
heatmap (Figure 6D). Except for ALDH2, the expression levels
of other TRGs were upregulated in cluster 1. The Kaplan-Meier
survival curve based two clusters showed that the prognostic of
cluster 1 was worse than that of cluster 2 (HR = 2.46, 95%
CI = 1.73–3.50, P < 0.001, Figure 6E). In addition, Supplementary
Figure 5B demonstrated the GSEA results of cluster 1 and
cluster 2 patients with LGG, and we found that cluster 2 were
enriched in interactions between immune cells and microRNAs in
tumor microenvironment pathway, PD-1 signaling pathway, MET
promotes cell motility pathway, neutrophil degranulation pathway,
and tryptophan metabolism pathway.

3.2.2. Construction of a nomogram based on
molecular subtypes and clinicopathological
factors

In order to explore the prognostic value of molecular subtype
in LGG patients, the univariate and multivariate Cox regression

analysis was carried to perform the survival analysis based on the
clinical data from the training cohort (Figures 7A, B). It could be
seen from Figure 7B that the age of patients, histological grade,
1p/19q codeletion, IDH1 status, and clusters were related to OS
of LGG patients. Excepted 1p/19q codeletion, age (HR = 3.478,
95% CI = 2.034–5.947, P = 0.074), histological grade (HR = 3.487,
95% CI = 1.916–6.347, P < 0.001), IDH1 status (HR = 0.319,
95% CI = 0.183–0.556, P < 0.001), and clusters (HR = 1.787,
95% CI = 1.063–3.001, P = 0.028) were all independent predictors
of prognosis in LGG patients. Furthermore, the independent
predictors mentioned above were employed to construct the
nomogram of 1-, 3-, and 5-year OS of LGG patients from the
training cohort with the C-index of predicted OS 0.79 (0.769–
0.811), suggesting that the nomogram had the superb ability to
predict the prognosis of LGG patients (Figures 7C, D).

3.2.3. Correlation analysis of molecular subtypes
with clinicopathological factors

The connections between clinicopathologic factors and
the molecular subtype were presented in a Sankey diagram
(Supplementary Figure 6A). There were significant differences
in the distribution of age, histological type, histological grade,
1p/19q codeletion, and IDH1 status between cluster 1 and cluster
2, while the distribution of gender between the two groups did
not have statistically significant differences (Supplementary
Figures 6B−G).
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FIGURE 4

The survival analysis of risk model in LGG patients from TCGA-LGG dataset. (A,B) The univariate and multivariate Cox regression analysis of OS in
LGG patients from the training cohort. (C) The nomogram for the prediction of 1-, 3-, and 5-year OS in LGG patients. (D) Calibration plot of the
nomogram in LGG patients.

3.2.4. Analysis of immunological features based
on molecular subtypes

In this section, we analyzed the discrepancy in TIME between
cluster 1 and cluster 2. The results suggested that cluster
1 had higher stromal score, immune score, and ESTIMATE
score than cluster 2, while the tumor purity in cluster 1 was
lower than that in cluster 2 (Figures 8A−D). In addition, the
“CIBERSORT” algorithm was utilized to calculate the distinction
of immune cell infiltration between cluster 1 and cluster 2, and the
outcomes demonstrated a significant discrepancy in the content of
immune cells between the two groups. The level of infiltration of
T-cells CD8, T-cells CD4 memory resting, M1 macrophages, and

neutrophils in cluster 1 were higher than that of cluster 2, while
cluster 2 had a higher proportion of T-cells CD4 naive infiltrating
compared to cluster 1 (Figure 8E). Overall, these results confirmed
that TRGs strongly affect the TIME in LGG patients.

3.3. External validation of the TRGs
prognostic risk model and molecular
subtypes

We chose the CGGA dataset as the validation set to further
verify the predictive prognostic performance of the TRGs signature.
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FIGURE 5

Relationship between the risk model and TIME. (A–D) Correlation analysis of risk score with tumor microenvironment scores (Stromal score,
immune score, ESTIMATE score, and tumor purity). (E–H) Comparison of tumor microenvironment scores between low- and high-risk groups. (I)
Differences in the infiltration level of immune cells between risk groups (***P < 0.001, **P < 0.01, *P < 0.05).

The outcomes were shown in Supplementary Figures 7A, B were
the survival time and survival state scatter diagram and the TRGs
expression heatmap between the low- and high-risk groups in
the validation cohort, respectively. The Kaplan-Meier analysis of
low- and high-risk groups indicated a significant difference in the
survival probability, and high-risk group experienced an obviously
worse OS than low-risk group (HR = 3.16, 95% CI = 2.18–
4.60, P < 0.001, Supplementary Figure 7C). The ROC curve
showed that the TRGs signature had excellent predictive efficacy
for 1-year (AUC = 0.713), 3-year (AUC = 0.791), and 5-year
(AUC = 0.735) survival (Supplementary Figure 7D). In addition,
we verified the molecular subtype in the validation cohort. The
results showed that when LGG patients from the validation cohort
were divided into two clusters, the intra-cluster correlation was
highest, which was in line with the findings described in the
validation cohort (Supplementary Figure 7E). Supplementary

Figure 7F showed the TRGs expression levels between two clusters
in the validation cohort. The Kaplan-Meier curve demonstrated
that the OS in cluster 1 is shorter than that in cluster 2
(Supplementary Figure 7G).

3.4. Expression, prognostic value, and
TIME analysis of TRGs

By searching in HPA database, we investigated the
expression of six TRGs at the protein level. The representative
immunohistochemistry staining images retrieved from the HPA
database reflected the protein expression level of the key TRGs in
LGG patients (Figure 9). We next explored the prognostic value
of six TRGs involved in our study. The Kaplan-Meier analysis
indicated that LGG patients with high expression of the IL4I1
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FIGURE 6

Consensus clustering analysis based on the key TRGs in LGG. (A) CDF curve distribution for consensus clustering. (B) Relative change in area under
CDF curve when k = 2–10. (C) Unsupervised clustering analysis based on the key TRGs. (D) Expression distribution of six key TRGs in cluster 1 and
cluster 2. (E) The Kaplan-Meier plot comparing the cluster 1 and cluster 2 in OS.

(HR = 2.28, 95% CI = 1.57–3.31, P < 0.001), STAT1 (HR = 2.39,
95% CI = 1.53–3.74, P < 0.001), SLC36A4 (HR = 1.82, 95%
CI = 1.24–2.67, P = 0.001), MAOB (HR = 3.17, 95% CI = 2.01–
5.00, P < 0.001), and AOX1 (HR = 1.86, 95% CI = 1.28–2.70,
P = 0.003) experienced a poor prognosis in the CGGA dataset,
while patients with high expression of the ALDH2 (HR = 0.35,
95% CI = 0.23–0.53, P < 0.001) had a better OS (Supplementary
Figure 8). Subsequently, Spearman correlation analysis was
performed to evaluate the correlation between the six TRGs and
stromal score, immune score, ESTIMATE score, and tumor purity
(Supplementary Figure 9A). The outcomes showed that IL4I1
had the strongest positive correlation with the stromal score
and the strongest negative correlation with the tumor purity
(Supplementary Figures 9B, C). Finally, the “CIBERSORT”
analysis was used to calculate the infiltration level of 22 immune
cells, and the correlation analysis showed a significant positive
relationship between STAT1 and M1 macrophages and a significant
negative relationship between IL4I1 and T-cells follicular helper
(Supplementary Figure 9D). Taken together, the above results
confirmed that TRGs strongly affect the immune infiltration in
patients with LGG.

4. Discussion

Glioma is one of the most common primary malignant tumors
in CNS (Yang et al., 2022). In recent years, there have been
significant progresses regarding the standard treatment of LGG,

including surgical resection, targeted radiation, and chemotherapy
(van den Bent et al., 2018; Wang and Mehta, 2019). However,
some patients with LGG still have a certain rate of recurrence
and malignant transformation after standardized treatment, which
can rapidly develop into highly aggressive secondary glioblastoma
with a poor survival prognosis (Xu et al., 2020). Therefore, it is of
great clinical importance to find an accurate biomarker to establish
the relevant molecular subtypes of LGG, as well as to predict the
prognosis of LGG patients, in order to support the more precise and
individualized treatment. In recent years, the relationship between
tryptophan metabolism and tumors has been the focus of the
research. Many studies have revealed that tryptophan metabolism
is participated in the pathogenesis of tumors, especially gliomas,
through multiple mechanisms (Kim and Tomek, 2021; Platten
et al., 2021). However, there is still a paucity of studies on the
combined effect of TRGs in LGG patients. Therefore, starting from
the differential expression of TRGs in LGG, we constructed a
stable and effective predictive risk model as well as established two
different molecular subtypes, then explored their relationship with
clinicopathological factors and TIME, so as to support more precise
and individualized treatment for patients with LGG.

In this study, we first explored the expression characteristics
of 50 TRGs in the TCGA-LGG dataset and identified 46 DE-
TRGs, of which 40 genes were upregulated and six genes were
downregulated in LGG patients. Additionally, the results of the
survival analysis on TRGs showed that the expression levels of 34
genes were significantly correlated with the OS of LGG patients.
By overlapping the DE-TRGs with the prognostic TRGs, we
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FIGURE 7

The survival analysis of molecular subtypes in LGG patients from TCGA-LGG dataset. (A,B) The univariate and multivariate Cox regression analysis of
OS in LGG patients from the training cohort. (C) The nomogram for the prediction of 1-, 3-, and 5-year OS in LGG patients. (D) Calibration plot of
the nomogram in LGG patients.

acquired 32 prognostic DE-TRGs. The LASSO regression analysis
was performed shortly after, and six key TRGs (IL4I1, STAT1,
SLC36A4, ALDH2, MAOB, and AOX1) were identified. Next, we
constructed a risk model containing six key TRGs to predict the
prognosis of LGG patients, thus dividing LGG patients into the
low- and high-risk group. The patients in the high-risk group
differed significantly from those in the low-risk group in terms
of prognosis, clinicopathological factors, and immune infiltration.
Multivariate Cox regression analysis suggested that the risk model
could be considered as an independent risk factor for predicting
the prognosis of LGG patients. Subsequently, we established a
nomogram containing risk scores and clinicopathological factors
in order to more accurately predict the prognosis of LGG patients
and to provide new perspectives and ideas for targeted therapy.

Moreover, we divided LGG patients into two molecular subtypes
based on the expression of six key TRGs. The Kaplan-Meier
survival analysis showed that OS was significantly shorter in
cluster 1 than in cluster 2. There were also remarkable differences
in the aggregation of molecular pathways, clinicopathological
factors as well as TIME between the two clusters. Then we
constructed a nomogram on the basis of molecular subtypes
and clinicopathological factors to further enhance the predictive
prognostic performance of molecular subtypes. Finally, we have
successfully validated the risk model and molecular subtype
through external validation, demonstrating their robust prognostic
value. Our study is crucial for the development of effective
molecular biomarkers to improve the clinical management and to
reduce the mortality in LGG patients.
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FIGURE 8

Relationship between the molecular subtypes and TIME. (A–D) Comparison of tumor microenvironment scores between cluster 1 and cluster 2
(Stromal score, immune score, ESTIMATE score, and tumor purity). (E) Differences in the infiltration level of immune cells between two clusters
(***P < 0.001, **P < 0.01, *P < 0.05).

Accumulating evidence have demonstrated that tryptophan
metabolic reprogramming is closely associated with the process
of tumor development (Platten et al., 2021). In this study, we
determined six TRGs that could serve as key genes for the
prognosis of LGG, including: IL4I1, STAT1, SLC36A4, ALDH2,
MAOB, and AOX1. Studies have shown that the overexpression
of IL4I1 is related to poor survival in glioma patients (Sadik et al.,
2020). It plays an essential role in tumor development mainly by
affecting tryptophan catabolism, which is mediated to produce I3P,
and it could lead to the production of indole metabolites and
kynurenine (KYN). The latter serves as a ligand to activate the
transcription factor AHR, which may enhance tumor progression
by promoting cancer cell movement (Sadik et al., 2020), inhibiting
T-cells activation and proliferation (Boulland et al., 2007), and
regulating the development and function of B-cells (Aubatin et al.,
2018). Signal transducer and activator of transcription 1 (STAT1)
is a transcriptional active factor that has been previously studied
to promote the progression of many tumors (Greenwood et al.,
2012; Arzt et al., 2014). It plays a pivotal role in indoleamine
2,3-dioxygenase 1 (IDO1) expression (Jeong et al., 2009). IDO1
is the rate-limiting step that catalyzes tryptophan catabolism
and mediates the conversion of tryptophan to KYN metabolite
(Blair et al., 2019). IDO1 metabolism can deplete the tryptophan
from the tumor microenvironment, leading to the impairment of
T-cells activation, thereby achieving immunosuppression of the
tumor microenvironment and escaping attack by the host immune
system (Terness et al., 2002). Solute carrier family 36 member 4
(SLC36A4) is an amino acid transporter protein with high affinity

for tryptophan (Pillai and Meredith, 2011). Previous studies have
found that tumor cells can transport the tryptophan metabolite
KYN into cytotoxic CD8+ T-cells by mediating SLC36A4. Then
PD-1 in the nucleus of the T-cells is upregulated by the activation
of AHR within CD8+ T-cells, thereby promoting tumor evasion
of immune monitoring and tumor progression (Murray et al.,
2014; Liu et al., 2018). Aldehyde dehydrogenase 2 (ALDH2) is a
mitochondrial enzyme participating in various physiopathological
processes (Chen C. H. et al., 2014), including catalyzing indole-
3-acetaldehyde to indole in tryptophan metabolism. Various
researches have found that ALDH2 may play an important part
in cancer development and progression (Moreb et al., 2012;
Andrew et al., 2015). Patients with high ALDH2 expression in
hepatocellular carcinoma have a good prognosis (Zhang and Fu,
2021), and the inhibition of ALDH2 expression could enhance
tumor cell proliferation, stemness and migration, resulting in poor
prognosis in lung adenocarcinoma patients (Li et al., 2019), which
is consistent with our findings. Monoamine oxidase B (MAOB) is
an enzyme responsible for the metabolism of serotonin and plays
an essential part in the degradation of the tryptophan metabolite
5-HT (Sadkowski et al., 2013; Jin et al., 2015). Compared to
normal tissues, MAOB is reduced in some types of cancer, while
elevated in other specific types (Chen P. H. et al., 2014; Hodorová
et al., 2018). Zhang et al. (2019) revealed that MAOB expression
was lower in endometrial cancer tissues than in normal tissues
and that downregulation of MAOB was associated with poorer
survival, which is consistent with our study. In contrast, Sharpe
and Baskin (2016) found that the expression level of MAOB
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FIGURE 9

The representative immunohistochemistry images for the key TRGs of LGGs and normal tissues in the HPA dataset. (A) AOX1, (B) ALDH2,
(C) SLC36A4, (D) IL4I1, (E) MAOB, and (F) STAT1.

was upregulated in gliomas, and that its expression level was
positively correlated with the pathological grade. Aldehyde oxidase
1 (AOX1),a flavin-containing monooxygenase, is one of the key
enzymes in the tryptophan catabolic process. It has been found that
deletion of AOX1 may lead to the accumulation of the tryptophan
metabolites kynurenine and nicotinamide adenine dinucleotide
phosphate (NADP) (Vantaku et al., 2020). AOX1 has been reported
to show a low expression level in breast cancer, prostate cancer,
colon cancer, and glioma cancers (Oster et al., 2011; Haldrup et al.,
2013; Stavrinou et al., 2015; Ozturk et al., 2016; Vantaku et al.,
2020), which are the same as our findings. Meanwhile, Stavrinou
et al. (2015) found that the higher WHO grade in astrocytomas
was associated with a decrease in intensity of AOX1 expression.
Interestingly, in the O6-benzylguanine protocol applied to patients
with recurrent malignant glioma, the lower the expression of AOX1
expression in patients, the more effective the treatment effect and
the lower the resistance to drugs, which in turn represents a
better prognosis for the patients with glioma (Quinn et al., 2009).
Nevertheless, our study showed that AOX1 is a risk factor for
the prognosis of LGG patients. In summary, our study identified
the predictive power of TRGs for the prognosis of LGG patients.
Further experiments, however, are still needed to clarify the actual
clinical significance of these TRGs prognostic biomarkers.

In this study, LGG patients were divided into a low-risk
group and a high-risk group by the risk model. Survival analysis
showed significant differences in prognosis between the two
groups. The TRGs risk model and the nomogram integrating

clinicopathological factors and IDH1 status of LGG patients could
independently predict the prognosis of LGG patients with a strong
generalization ability. They can systematically obtain accurate and
robust results in predicting the prognosis of LGG patients, helping
to more precisely assess the clinical outcomes of LGG patients
and provide a more personalized prognostic evaluation strategy for
LGG patients. Although the results of our analysis showed that
the risk score constructed based on TRGs was an independent
prognostic factor for LGG patients. However, by comparison with
similar risk models (Lai et al., 2022a; Zhang et al., 2022; Zhao
et al., 2022), our risk model may not be the optimal predictive
model for LGG patients. In contrast, the time-dependent ROC
curves showed that the AUC values of the risk model constructed
based on TRGs were all above 0.7 at 1-, 3-, and 5-year OS in
LGG patients, which suggested that our prognostic model had
a moderate robustness. Tumor immunotherapy has been a hot
topic in the field of oncology, such as targeting metabolism to
improve the tumor microenvironment (Suarez-Carmona et al.,
2017). The KYN can activate AHR, which inhibit the anti-tumor
immunity. Therefore, tumor immunity is a crucial event in LGG
involving tryptophan metabolism (Hinshaw and Shevde, 2019).
We analyzed the differences in immune infiltration between low-
and high-risk groups to further elucidate the mechanisms of
prognostic differences between risk groups. The results of the
ESTIMATE-immune analysis suggested that patients in the high-
risk group had higher immune scores, suggesting a dysregulation of
TIME and abnormal aggregation of immune cells in the high-risk
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group. Then we used the “CIBERSORT” algorithm to compare the
differences in immune cell infiltration between the low- and high-
risk groups and found that the high-risk group had higher levels
of macrophage and neutrophil aggregation. Moreover, we found
that the expression levels of markers of neutrophil and macrophage
were positively correlated with risk scores. The correlation between
each TRGs and immune infiltration was further analyzed, and
the findings revealed the highest correlation between IL4I1 and
immune score, and that AOX1, IL4I1, MAOB, and STAT1 all
had a positive correlation with macrophage infiltration. Glioma-
associated microglia and macrophages are abundant in glioma,
accounting for approximately 40% of tumor tissues (Delwar
et al., 2018). GBM loses its normal immune function during
tumor progression and could produce a variety of cytokines and
angiogenic factors, which is one of the important factors for a poor
prognosis of glioma (Voisin et al., 2010). It has been found that the
immune function of glioma-associated microglia and macrophages
will be influenced by the surrounding tumor tissue when it is
recruited to the TIME and transformed from a pro-inflammatory
phenotype to an anti-inflammatory phenotype, which acts as a
facilitator for the development of glioma (Gu et al., 2017; Henrik
Heiland et al., 2019). In addition, the number of circulating and
infiltrating neutrophils are correlated with the pathological grade
of glioma. In preclinical glioma models, neutrophils promoted
tumor growth and the number of neutrophils infiltrating was
associated with the resistance to treatment of acquired anti-
vascular endothelial growth factor. In the circulation, neutrophils
promote tumor growth by producing arginase I to induce
immunosuppression; in tumor areas, neutrophils secrete elastase,
which assists in glioma infiltration and tumor cell proliferation
(Rahbar et al., 2016; Massara et al., 2017). It is thus clear that
tryptophan metabolism plays a key role in tumor promotion and
immunosuppression in LGG.

With the gradual improvement of tumor pathology diagnosis
and refinement to the molecular subtype stage, the research of
precision medicine and the promotion of accurate diagnosis and
treatment will benefit tumor patients. The molecular subtype
can be used to predict the prognosis of patients with glioma
and direct clinical treatment. Glioma is a highly heterogeneous
tumor, and the molecular genetics vary greatly within gliomas
with similar histologic features, leading to a large discrepancy
in prognosis among individuals with the same WHO pathologic
histologic classification (Berghoff et al., 2017). LGG patients
can be classified into different molecular subtypes based on
gene expression characteristics, and this study has been widely
researched nowadays (Xiao et al., 2022). 2016 WHO has included
molecular pathology in the pathological diagnosis system and
redefined the pathological classification of glioma, which has
rapidly changed our recognition (Nabors et al., 2020). Mutations
in position 132 of the Isocitrate Dehydrogenase 1 (IDH1) gene
exist in more than 80% of LGG, and the patients with IDH1
mutations indicate a better prognosis (Berghoff et al., 2017). The
deletion of the short arm of chromosome 1 and the long arm
of chromosome 19 (1p/19q) occurs mainly in oligodendrogliomas
and, to a few extent, in astrocytomas, which is a hallmark of
oligodendrogliomas (Eckel-Passow et al., 2015). According to the
study (Berghoff et al., 2017), the prognostic value of IDH mutation
status is better than histological grade in the LGG, and the incidence
of 1p/19q codeletion in oligodendroglioma is as high as 80–90%.

Although IDH mutations are currently the most widely recognized
molecular biomarkers for the molecular subtype of LGG, none
of the precision therapies targeting IDH mutations have achieved
positive therapeutic outcomes (Machida et al., 2020). In our study,
TRGs could effectively divide LGG patients into two molecular
subtypes with significant differences in terms of prognosis and
immune cell infiltration, and were validated in the CGGA dataset.
The molecular subtype on the basis of tumor genetics could more
accurately determine the clinical prognosis of LGG patients and
provide a discriminant basis for tumors that are difficult to diagnose
and grade. The establishment of molecular subtype-guided LGG
prevention, treatment and drug research is expected to provide
both theoretical and practical support for the ultimate realization
of the precise diagnosis and treatment strategy for LGG patients.

In this study, we screened TRGs and established a tryptophan-
related risk model and molecular subtype based on the six
key TRGs, and provided the first comprehensive quantitative
assessment on the prognostic value of TRGs in predicting LGG
patients, revealing the clinical value of the TRGs risk models
and molecular subtypes. Our findings also provide novel insights
and perspectives on potential therapeutic strategies and antitumor
targets for LGG. Finally, there are some limitations of this study:
Firstly, all analyses were based on data from public databases
for model construction and validation. Therefore, large-scale
prospective studies as well as further in vivo and in vitro studies
to confirm the applicability and stability of the findings of this
study are urgently needed to completely investigate the mechanism
of tryptophan metabolism in LGG. Secondly, our study found a
high infiltration of macrophages and neutrophils in the high-risk
group of LGG patients. Also, the markers of macrophages and
neutrophils were highly expressed in LGG tissues in the high-risk
group. Next, we need to further validate the expression levels of
markers of macrophage and neutrophil in the high-risk and low-
risk groups by immunohistochemistry. Furthermore, in addition to
LASSO, there are also methods such as ridge regression or elastic
network regression that can be used for key gene screening (Lai
et al., 2022b,c). In this study, we only conducted LASSO regression
analysis to screen genes, and we need to further combine multiple
statistical methods for screening genes in the future to construct the
most consistent prediction model. In addition, the impact of TRGs-
based risk model and molecular subtype on immune infiltration
and its value in drug screening still need to be further explored.
Finally, the current large dataset lacks some important clinical
information, such as surgery, chemotherapy modalities, etc., and
therefore cannot be included in our study for analysis. Therefore,
we need to further clarify the significance of tryptophan metabolism
in guiding chemotherapy resistance and immune-related therapy in
large prospective clinical trials.

5. Conclusion

In summary, we conducted a comprehensive analysis of TRGs,
investigated the expression pattern and prognostic value of TRGs
in patients with LGG, and constructed a novel risk model and
molecular subtypes. Notably, both the risk model and molecular
subtypes we developed could accurately predict the prognosis of
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LGG patients and were further confirmed to be closely related to the
clinicopathological factors and TIME of LGG. Our findings suggest
new insights and perspectives for exploring potential therapeutic
strategies and anti-tumor targets for LGG, and provide theoretical
and practical support for the ultimate realization of precision
treatment for patients with LGG.
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