
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhijie Han,
Chongqing Medical University, China

REVIEWED BY

Qihang Yuan,
Dalian Medical University, China
Yingjun Zhao,
Xiamen University, China

*CORRESPONDENCE

Zhijia Xia

Zhijia.Xia@med.uni-muenchen.de

Chao Cheng

Mr_chengchao@126.com

Peihua Lu

lphty1_1@njmu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Multiple Sclerosis
and Neuroimmunology,
a section of the journal
Frontiers in Immunology

RECEIVED 04 November 2022

ACCEPTED 17 January 2023
PUBLISHED 07 February 2023

CITATION

Zhao S, Chi H, Yang Q, Chen S, Wu C,
Lai G, Xu K, Su K, Luo H, Peng G, Xia Z,
Cheng C and Lu P (2023) Identification and
validation of neurotrophic factor-related
gene signatures in glioblastoma and
Parkinson’s disease.
Front. Immunol. 14:1090040.
doi: 10.3389/fimmu.2023.1090040

COPYRIGHT

© 2023 Zhao, Chi, Yang, Chen, Wu, Lai, Xu,
Su, Luo, Peng, Xia, Cheng and Lu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 07 February 2023

DOI 10.3389/fimmu.2023.1090040
Identification and validation of
neurotrophic factor-related gene
signatures in glioblastoma and
Parkinson’s disease

Songyun Zhao1†, Hao Chi2†, Qian Yang3†, Shi Chen3†, Chenxi Wu4,
Guichuan Lai5, Ke Xu6, Ke Su2, Honghao Luo7, Gaoge Peng2,
Zhijia Xia8*, Chao Cheng1* and Peihua Lu4,9*

1Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi,
Jiangsu, China, 2Clinical Medical College, Southwest Medical University, Luzhou, China, 3Clinical
Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 4Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical
University, Wuxi, Jiangsu, China, 5Department of Epidemiology and Health Statistics, School of Public
Health, Chongqing Medical University, Chongqing, China, 6Department of Oncology, Chongqing
General Hospital, Chongqing, China, 7Department of Radiology, Xichong People’s Hospital,
Nanchong, China, 8Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-
University Munich, Munich, Germany, 9Department of Clinical Research Center, Wuxi People’s Hospital
of Nanjing Medical University, Wuxi, Jiangsu, China
Background: Glioblastoma multiforme (GBM) is the most common cancer of the

central nervous system, while Parkinson’s disease (PD) is a degenerative neurological

condition frequently affecting the elderly. Neurotrophic factors are key factors

associated with the progression of degenerative neuropathies and gliomas.

Methods: The 2601 neurotrophic factor-related genes (NFRGs) available in the

Genecards portal were analyzed and 12 NFRGs with potential roles in the

pathogenesis of Parkinson’s disease and the prognosis of GBM were identified.

LASSO regression and random forest algorithms were then used to screen the key

NFRGs. The correlation of the key NFRGs with immune pathways was verified using

GSEA (Gene Set Enrichment Analysis). A prognostic risk scoring system was

constructed using LASSO (Least absolute shrinkage and selection operator) and

multivariate Cox risk regression based on the expression of the 12 NFRGs in the

GBM cohort from The Cancer Genome Atlas (TCGA) database. We also

investigated differences in clinical characteristics, mutational landscape, immune

cell infiltration, and predicted efficacy of immunotherapy between risk groups.

Finally, the accuracy of the model genes was validated using multi-omics mutation

analysis, single-cell sequencing, QT-PCR, and HPA.

Results:We found that 4 NFRGs weremore reliable for the diagnosis of Parkinson’s

disease through the use of machine learning techniques. These results were

validated using two external cohorts. We also identified 7 NFRGs that were

highly associated with the prognosis and diagnosis of GBM. Patients in the low-

risk group had a greater overall survival (OS) than those in the high-risk group. The

nomogram generated based on clinical characteristics and risk scores showed

strong prognostic prediction ability. The NFRG signature was an independent

prognostic predictor for GBM. The low-risk group was more likely to benefit from

immunotherapy based on the degree of immune cell infiltration, expression of

immune checkpoints (ICs), and predicted response to immunotherapy. In the end,
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2 NFRGs (EN1 and LOXL1) were identified as crucial for the development of

Parkinson’s disease and the outcome of GBM.

Conclusions: Our study revealed that 4 NFRGs are involved in the progression of

PD. The 7-NFRGs risk score model can predict the prognosis of GBM patients and

help clinicians to classify the GBM patients into high and low risk groups. EN1, and

LOXL1 can be used as therapeutic targets for personalized immunotherapy for

patients with PD and GBM.
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Introduction

Glioblastoma, also known as glioblastoma multiforme (GBM), is

classified as a grade IV glioma by the World Health Organization and

is the most common primary brain tumor, and the most aggressive

form of malignancy (1). Despite the significant advances in molecular

understanding of GBM pathogenesis, such as the IDH mutation

status (2), the median patient survival time is just 14–16 months,

and the 5-year survival rate is only 6.8% (3). The prognosis for GBM

patients is still poor, despite rigorous treatment strategies such as

surgical resection, radiation therapy, and chemotherapy. Most of the

molecular targeted therapies and immunotherapies are in clinical

trials, there is need for the development of more effective treatment

strategies for GBM (4–6).

Parkinson’s disease (PD) is the second most common neurological

disorder after Alzheimer’s disease, which affects roughly 1.2% of

individuals over 65 (7, 8). The primary symptom of Parkinson’s

disease is loss of motor coordination brought on by the degradation

of dopamine neurons in the substantia nigra (SN), which is followed by

striatal dopaminergic depletion and the development of Lewy bodies

(PD) (9, 10). Factors such as oxidative stress, aging, genetics, and

environmental factors may all have a role in the degenerative loss of

dopaminergic neurons in Parkinson’s disease (11).

Cancer is characterized by unrestrained cell growth and resistance

to cell death, which is in contrast to the excessive neuronal cell death

observed in PD (12). In depth analysis of the pathogenesis of the two

diseases suggests that patients with neurodegenerative diseases such

as PD are less likely to develop cancer (13). Reports from

epidemiological studies also point to a decreased risk of main nerve

center (CNS) tumors in Parkinson’s disease patients (14, 15). At the

genomic level, genes such as the p53 tumor suppressor gene and the

epidermal growth factor receptor EGFR that are downregulated in PD

are often upregulated in tumors (16, 17). Therefore, there is need for

better understanding of potential pathological mechanisms and

genetic targets of PD and GBM that will help identify possible

shared drug targets to treat both diseases.

Nerve growth factor (NGF), brain-derived growth factor (BDNF),

and other proteins that make up the neurotrophic factors family are

crucial for the growth, survival, and apoptosis of neurons (18).

Neurotrophic factors regulate cell development and apoptosis by

interacting with extracellular receptors and transmitting signals about
02
neuronal cell survival and apoptosis to the cell interior (19). Several

studies have shown that BNDF expression is reduced in patients with

several neurodegenerative diseases, including Parkinson’s disease, and

that reduced BDNF levels are an important cause of cognitive

impairment in these patients (20). Additionally, numerous studies

carried out on animal models have demonstrated that raising plasma

BDNF levels may enhance cognition (21–23). On the other hand,

neuronal proliferation in the tumor microenvironment is essential for

the development of cancer, and neurotrophic factors are essential for

the communication between tumor cells and nerves (24). Elevated

plasma levels of BDNF have been found in several types of cancer and

play an important role in tumor proliferation, survival, migration, and

invasion (25). Neurotrophic growth factors generated by cancer cells

can also stimulate the formation of neurons in solid tumors, while the

release of neurotransmitters from nerve endings stimulates tumor

growth and enhances tumor angiogenesis (26, 27). NGF regulates

glioma growth and induces cell differentiation through the

involvement of the Promyosin receptor kinase A (TrkA) receptor

(28). Astrocytes mediate paracrine secretion through glial cell-derived

neurotrophic factor (GDNF) and RET (Rearranged during

Transfection) signaling to regulate glioma cell invasion. The

knockdown of GDNF or its receptor in glioma cells significantly

reduces tumor progression in vitro (29, 30).

The recent advancements in molecular biology and microarray

sequencing technologies has led to the identification of new

biomarkers with prognostic and diagnostic potential for various

neurodegenerative diseases and neuro-oncology (31, 32). Although

several studies have investigated the role of neurotrophic factors in

various cancers, neurodegenerative diseases, and cerebrovascular

lesions, there is still a gap in identifying neurotrophic factor-related

genes with diagnostic potential for PD and exploring

immunotherapeutic targets affecting the prognosis of GBM. In this

study, GEO and TCGA datasets were used analyze the relationship

between differences in expression of NFRGs and the diagnosis of PD

and the prognosis of GBM. We then analyzed the potential of two

NFRGs—EN1 and LOXL1—as therapeutic targets common to PD

and GBM. We also developed a prognostic model for GBM based on

NFRGs to showcase the value of NFRGs in predicting the prognosis of

GBM patients, enhancing the diagnosis of PD patients, and exploring

more efficient personalized therapeutic regimens through a thorough

analysis of genomic data and clinically relevant data.
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Materials and methods

Source of raw data

Three PD datasets, GSE7621, GSE20163, and GSE49036, were

downloaded from the NCBI Gene Expression Omnibus (GEO;

https://www.ncbi.nlm.nih.gov/geo/). The GSE7621 and GSE49036

datasets were generated using the GPL570 (HG-U133 Plus 2)

Affymetrix Human Genome U133 Plus 2.0 array, while the

GSE2016 dataset was generated using GPL96 [HG-U133A]

Affymetrix Human Genome U133A array. GSE7621 dataset

consisted of 16 brain nigrostriatal samples from Parkinson’s disease

patients and 9 normal nigrostriatal samples from controls. GSE20163

dataset, which served as an external validation cohort, consisted of 8

PD brain substantia nigra samples and 9 control samples. GSE49036

was used as a validation cohort for clinical staging and included brain

substantia nigra samples from 8 Braak stage 0, 5 Braak stages 1-2, 7

Braak stages 3-4 and 8 Braak stages 5-6 patients.

RNAseq data, mutation data, and clinicopathological

characteristics of TCGA-GBM, consisting of 169 glioma samples,

were retrieved from the UCSC Xena website (https://xena.ucsc.edu/)

Gene expression data for 249 glioma patients were retrieved from the

China Glioma Genome Atlas (CGGA) data portal (http://www.cgga.

org.cn) and were used to generate a validation model. All expression

data were retrieved in TPM format. Batch correction and integration

of the two sets of gene expression data were carried out using the
Frontiers in Immunology 03
“limma” and “sva” (33) packages in R. The detailed flow chart is

shown in Figure 1.

2601 neurotrophic factor-related genes were downloaded from

the GeneCard database (https://www.genecards.org/) (34).

Differential gene expression analysis was performed on the TCGA

cohort using the “limma” package in R, with | log2FC | > 1.0 and FDR

(false discovery rate) < 0.05 as the thresholds. The cutoff p-value of

the differentially expressed NFRGs (DENFRGs) for the GEO cohort

was set to 0.05, which satisfied the condition of |log2FC|>0.5 The

“affy” package in R was used to perform background calibration,

normalization, and log2 conversion on all GEO raw data sets (35, 36).

The expression values of multiple probes that matched the same gene

were averaged. Protein interactions and gene enrichment analysis was

carried out using the differentially expressed genes identified from the

GEO cohort. The hub genes in the network were screened and

visualized using “Cytoscape” software following PPI (Protein-

Protein Interaction Networks) analysis on the String online platform.
Characteristic genes in Parkinson’s disease

To identify signature genes, we used two machine learning

methods: LASSO regression analysis and random forest. LASSO is

utilized as a dimensionality reduction approach to perform variable

screening and complexity adjustment when fitting a generalized linear

model. The LASSO analysis was carried out with a penalty parameter
FIGURE 1

A detailed flow chart showing the NFRGs in GBM and PD.
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and a 10-fold cross-verification using the glmnet program (37). RF

(Random Forest) is a combination of classifiers with a tree-like

structure, and a minimum error regression tree was built to select

key variables using the software package “randomForest”. After

tenfold cross-validation, the eight genes with the highest relative

importance were used to measure predictive performance.
Functional enrichment and gene
set enrichment analysis

The “clusterProfiler” package of R software was used to carry out

the functional enrichment analysis, which included KEGG and GO

analysis (38). We adjusted the P values using the Benjamini -

Hochberg (BH) technique. A computational technique was used in

the gene set enrichment analysis to identify genes that exhibited

statistically significant and consistent changes between two biological

states. 10,000 permutation tests were used to determine the most

important and pertinent signaling pathways. Genes with a corrected

P-value and false discovery rate (FDR) below 0.05 were considered to

be significant. Statistical analysis and ridge mapping were carried out

using the “clusterPro” package in R, which is a non-parametric

unsupervised analytic method that is widely employed to evaluate

gene set enrichment outcomes in microarrays and transcriptomes. It

is primarily used to determine if certain metabolic pathways are

enriched across samples by transforming the expression matrix of

genes across samples into the expression matrix of gene sets (39).

FromMSigDB, 50 reference gene sets for hallmark genes were chosen.

Gene set variation analysis (GSVA) using the ‘GSVA’ package in R

was performed to provide insight into the heterogeneity of biological

processes between different clusters.
Development and validation of prognostic
features in GBM

Batch effects between TCGA and CGGA data were removed by

creating precise models using the “sva” package in R. Selected NFRGs

underwent Minimum Absolute Shrinkage and Selection Operator

(LASSO) regression analysis, with the “glmnet” package in R being

used to minimize the number of genes in the final risk model. Models

were then built using multivariate Cox regression analysis using the

following equation: risk score = (Expi), where Expi was the expression

value for each NFRG and was the matching regression coefficient (40,

41). The median risk score was used to split all patients into high- and

low-risk groups. The “survminer” and “ggrisk” packages in R were

used to create survival curves and risk maps to display the disparities

in survival and status of each patient. A separate external cohort, the

CGGA cohort, was also employed to evaluate the effectiveness of the

prognostic model.

A nomogram was created using risk score and clinicopathological

features. Calibration charts were internally validated to ensure accuracy

of the models. Decision curve analysis (DCA) was carried out using

“ggDCA” package in R to evaluate the net clinical benefit of the models

(42). We also plotted subject operating characteristic curves using the

“timeROC” package in R to evaluate how well risk scores performed in

predicting 1-year, 3-year, and 5-year OS in LGG patients (43).
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Prognostic characteristics of the tumor
immune microenvironment
and mutation landscape

The relative enrichment scores of tumor-infiltrating immune cells

(TIICs) were calculated using the R script ssGSEA (single-sample

genomic enrichment analysis). We utilized CIBERSORT to calculate

and compare the proportion of immune cell types between the low-

and high-risk categories, with the sum of all anticipated immune cell

type scores in each sample being equal to 1 (44). The TICCs data was

downloaded from TIMER 2.0 (http://timer.cistrome.org). The results

from TIMER, CIBERSORT, amounts, MCP-counter, xCELL, and

EPIC algorithms were also compared between the two groups. The

“oncoplot” function in the “maftools” package of the R software was

used to create two waterfall plots to compare the specific mutation

characteristics between the high- and low-risk groups.
Gene set cancer analysis database

The tumor genomic analysis platform GSCALite (http://bioinfo.

life.hust.edu/web/GSCALite/) integrates genomic data for 33 tumor

types from the TCGA library, GDSC (Genomics of Drug Sensitivity in

Cancer), CTRP (The Cancer Therapeutics Response Portal) medication

response data, and normal tissue data from GTEX (Genotype-Tissue

Expression) for comprehensive genomic analysis (45).
Immunotherapeutic response prediction
and drug sensitivity assessment

The Immunological Cell Abundance Identifier (ImmuCellAI) is a

computer program launched in 2020 to predict immunological

checkpoint reactions based on the abundance of TICCs, particularly

certain T cell subpopulations. Comprehensive immunogenomic

analysis findings are provided by the Cancer Immunome Atlas

(TCIA) online software. Using a scale from 0 to 10, the

Immunophenotype Score (IPS) quantifies the immunogenicity of

tumors (46). IPS can be used to predict response to immune

checkpoint inhibitors. The “prophytic” package in R was used to

compute the half-maximal inhibitory concentration (IC50) of

samples from the high and low risk score groups in order to test

the ability of the risk score to predict sensitivity of samples to

chemotherapy and molecular medicines. Zaoqu Liu et al. from the

First Affiliated Hospital of Zhengzhou University developed THE

BEST website (http://rookieutopia.com/). The database contains

sequencing data from a variety of tumors after treatment with

immune checkpoint inhibitors
Tumor Immune Single Cell Hub database

Tumor Immune Single-Cell Hub (TISCH; http://tisch.comp-

genomics.org) is an extensive single-cell RNA-seq database

dedicated to TME. It enables comprehensive analysis of TME

heterogeneity across different datasets and cell types.
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QT-PCR and immunohistochemistry

Human astrocytes (HA), U87 and A172 glioma cells, obtained

from the Center for Experimental Medicine, Southwestern Medical

University. All cells were grown in 10% fetal bovine serum-

supplemented DMEM. Cells were incubated at 5% CO2 and 37°C.

TRIzol reagent was used to isolate RNA, while PrimeScriptTM RT kit

was used to perform reverse transcription. Quantitative PCR was

carried out using Takara’s SYBR Green PCR Master Mix on the

StepOnePlus system. Ploidy changes at the gene level were

determined using the 2-DDCT method, with GAPDH as the

normalization gene. The primer sequences involved in this study

are as follows.

EN1:FORWARD : GAAGAACGAGAAGGAGGACAAGCG,

REVERSE: CGTGGTGGTGGAGTGGTTGTAC.

LOXL1:FORWARD : GAAGAACCAGGGCACAGCAGAC,

REVERSE ATGTCCGCATTGTAGGTGTCATAGC.

GAPDH:FORWARD : ATGGGGAAGGTGAAGGTCG,

REVERSE : GGGGGTCATTGATGGCAACAATA. Each PCR

reaction was performed in triplicate.

Transcriptomics and proteomics methods were used to study

protein expression at the RNA and protein levels in human tissues

and organs, using data found in Human Protein Atlas (HPA, https://

www.proteinatlas.org/).
Statistical analysis

All analyses were conducted using R version 4.1.1, 64-bit6.

Prognosis and patient survival in various subgroups were compared

using Kaplan-Meier survival analysis and the log-rank test. The

nonparametric Wilcoxon rank sum test was used to compare

continuous variables between the two groups, while Kruskal-Wallis

test was employed for comparisons among more than two groups.

Univariate and multivariate Cox regression (R package “survival”)

analyses were used to identify clinical traits with prognostic potential

in the high- and low-risk groups. Spearman correlation analysis was

used to assess correlation coefficients. P < 0.05 was regarded as

statistically significant in all statistical investigations. The ROC

curves, the nomogram model and the Concordance Index were

generated using the “survivalROC”, “rms” and the “pec” (C-index)

packages in R, respectively. The changes in gene expression between

the two isoforms were determined using principal component

analysis (PCA).
Results

Identification of neurotrophic
factor-related genes associated
with Parkinson’s disease and GBM

The limma package was used for background correction and

normalization of expression data from the GSE7621 dataset. Batch

effects were removed using the sva package, and the box plot

corresponding to the processing results is shown in Figure 2A. The
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expression of each of the 145 differentially expressed genes (DEGs) in

the GEO cohort is shown in Figure 2B. GO analysis revealed that the

DEGs were enriched in “positive control of kinase activity” in the

biological process (BP) category, “neuronal cell body” in the cellular

component (CC) category and the “nuclear glucocorticoid” in the

Molecular Function (MF) category (Figure 2D). KEGG pathway

analysis showed that the DEGs were more closely related to

“Neuroactive ligand-receptor interaction” (Figure 2C). We also

constructed PPI networks to investigate the interaction of the

proteins encoded by the DEGs based on betweenness centrality,

with the central genes in the network being marked in

red. (Figure 2E).

We identified 847 DEGs from differential gene expression analysis

of NFRGs between tumor and normal tissues of the TCGA-GBM

cohort. Out of the total DEGs, 489 genes were down-regulated

whereas 358 genes were up-regulated in tumor tissue (Figure 3A).

Univariate Cox regression analysis identified 104 differentially

expressed NFRGs with prognostic potential for GBM in the TCGA

cohort (Figure 3B). We then determined the NFRGs that overlapped

from the univariate cox analysis of the TCGA cohort and the

differentially expressed NFRGs obtained from the GEO cohort. A

total of 12 NFRGs overlapped between the two cohorts indicating that

they were associated with the occurrence of Parkinson’s disease and

prognosis of GBM (Figure 3C). Figure 3D shows the correlation of the

expression of these 12 NFRGs in the TCGA cohort, while Figure 3E

shows the localization of these 12 NFRGs on chromosomes, with EN1

being localized on chromosome 2.
Selection of Parkinson’s disease signature
genes using LASSO regression and random
forest algorithm

Two machine learning algorithms were used to identify key genes

among the 12 NRFGs. The best lambda for the LASSO algorithm was

0.138 after ten cross-validations. Due to higher accuracy in

comparisons, we used the minimum criterion for the LASSO

classifier, and identified 4 key genes, including IRF7, EN1, PLOD3,

and LOXL1 (Figures 4A, B). The influence of the number of decision

trees is shown in Figure 4C. The x-axis shows the number of decision

trees, while the y-axis shows the mistake rate. The top 8 key genes

with relative relevance scores identified using the random forest

technique were PCSK1, S100A4, EN1, CEBPB, IRF7, L1CAM,

PLOD3, and LOXL1 (Figure 4D). Four key genes, IRF7, EN1,

PLOD3, and LOXL1, overlapped from results of lasso regression

and random forest algorithm analysis (Figure 4E). Figure 4F shows

the correlation of these four feature genes in the GEO cohort.
Diagnostic efficacy and enrichment
analysis of characteristic genes

We then estimated the diagnostic performance of the four key

genes. The AUC values of the ROC curves were 0.799 for LOXL1

(Figure 5A), 0.778 for PLOD3 (Figure 5B), 0.861 for IRF7 (Figure 5C),

and 0.819 for EN1 (Figure 5D). GSEA was used to evaluate the
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signaling pathways associated with the signature genes. Our results

showed that LOXL1 (Figure 5E), PLOD3 (Figure 5F), IRF7

(Figure 5G), and EN1 (Figure 5H) were mainly associated with

functions of the nervous system and the transmission of

neurotransmitters. For example, EN1 was strongly correlated with

spinal cerebellar ataxia and dopaminergic synapse-related pathways.

The GSVA results demonstrated the correlation of the four signature

genes with the HALLMARK pathway (Figure 5I).
Assessment of the microenvironment in PD

We also quantified the ssGSEA enrichment scores for several

immune cell subpopulations, associated PD functions or pathways,

and healthy controls. A heat map was used to display the number of

TIICs and immunological responses in each sample (Supplementary

Figure 1A). Supplementary Figures 1B, C show heat maps displaying

the relationship between TIICs and immune function, with darker red

denoting a stronger correlation between the two. The association

between the four key NFRGs and immune-related pathways in the

ssGSEA data was also demonstrated using a heat map

(Supplementary Figure 1D). These results indicated that the four

NFRGs play a role in the immune microenvironment of PD.
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Internal and external data validation
of characteristic genes

In the GSE7621 internal validation cohort, the expression of EN1

and LOXL1 was lower, while the expression of IRF7 and PLOD3 was

higher in PD tissues than in normal controls (Figure 6A). The

expression of the four signature genes in the GSE20163 external

validation cohort was similar to that in the internal validation cohort,

except for IRF7 (Figure 6B). The difference in results may be due to the

small sample size. In the GSE49036 dataset consisting of patients with

Parkinson’s disease at different Braak stages, there was significant

difference in the expression of EN1, PLOD3 and LOXL1 in the

different Braak stages 0 to 6 of Parkinson’s disease. However, there

was no significant difference in expression of IRF7 among the different

stages (Figures 6C–F). These results suggest that these NFRGs play a

role in the pathogenesis and progression of Parkinson’s disease.
Construction and validation of predictive
models for NFRGs in GBM

A risk-scoring model was developed based on the 12 NRFGs

obtained in Figure 3 to identify potential prognostic biomarkers for
A B

D E

C

FIGURE 2

Expression of differential NFRGs in Parkinson’s disease, enrichment analysis, and construction of protein interaction network. (A) Box line plot of the
GSE7621 dataset samples corrected for batch-to-batch differences after removal. (B) Heat map showing the expression of all DEGs in Parkinson’s
samples. (C) Network diagram of KEGG enrichment analysis. (D) Circle diagram of GO enrichment analysis. (E) Interaction plots of proteins. Red
represents hub genes.
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GBM. The NFRGs with prognostic potential were subjected to LASSO

regression analysis to reduce the number of genes in the final risk

model. Ten NFRGs were identified from this step (Figures 7A, B).

Multivariate Cox analysis identified 7 NFRGs, including EN1,

TUBB2A, HSPB1, LOXL1, RGS4, L1CAM, and GPR143 as

independent prognostic factors. Risk scores were calculated

using the following formula: risk score = expression level of EN1*

0.17 + expression level of TUBB2A* 0.09 + expression level of

HSPB1*0.14+ expression level of LOXL1*0.19 + expression level of

RGS4*0.09 + expression level of L1CAM*0.08 + expression level

of GPR143*0.20.

Patients in the TCGA cohort were classified into high-risk and

low-risk groups based on the median risk score. Survival curves

revealed that patients in the high-risk group had lower overall

survival (OS) compared to the low-risk group in the TCGA and

CGGA cohorts (Figures 7C, D, P<0.05). Furthermore, the risk score

was effective at predicting OS in the TCGA cohort. (AUCs for 1-, 3-,
Frontiers in Immunology 07
and 5-year OS were 0.734, 0.823, and 0.942, respectively; Figure 7E).

However, since GBM patients have dismal prognosis, the AUC values

in the CGGA sample were not favorable (Figure 7F). In both the

TCGA and CGGA cohorts, the area under the curve (AUC) for

the risk score over three years was greater than the AUC values for the

other clinicopathological features (Figures 7G, H). Risk maps were

used to display survival results from the TCGA and the CGGA

cohorts, while heat maps were used to display variations in the

expression of the seven NFRGs across the various risk groups

(Figures 7I, J).

PCA and t-SNE analyses were then performed using the NFRG

classification in the expression profiles of the seven models. In the

TCGA cohort (Supplementary Figures 2A, B) and the CGGA cohort

(Supplementary Figures 2C, D), our signatures yielded results

indicating a different distribution between the high-risk and low-

risk groups. These findings imply that prognostic model can

distinguish between high and low risk groups.
A B

D

E

C

FIGURE 3

Identification of prognosis-related NFRGs in GBM patients in the TCGA cohort. (A) Volcano plot of DEGs. (B) Forest plot of univariate cox analysis.
(C) The intersection of DEGs and univariate cox results for the GEO cohort. (D) Correlation analysis of 12 NFRGs. (E) Chromosomal localization of 12
NFRGs.
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Establishment of a prognostic
nomogram and clinical features

Univariate and multivariate Cox analyses showed that risk scores

were independent prognostic factors for GBM patients compared to

other common clinical characteristics (Figures 8A, B). In the CGGA

cohort, results of both univariate and multivariate cox analyses showed

that risk score was a prognostic factor independent of age, IDHmutation

status, or MGMTp_methylation status (Supplementary Table 1). To

determine the clinical application of the risk models, age, sex, IDH

mutation status, and risk score were included in a nomogram used to

predict overall survival in patients with GBM based on the TCGA cohort

(Figure 8C). We found that the risk score had the biggest influence in

predicting OS, an indication that prognosis of GBM could be predicted

using a risk model based on the seven NFRGs. At 1, 1.5, and 2 years, the

calibration curves demonstrated a reasonable agreement between

expected and observed values (Figure 8D). The three-year DCA curves

(Figure 8E) and the temporal c-index values (Figure 8F) indicated that

our model has the highest net benefit and that the risk model constructed

based on the 7 NFRGs has more influence in clinical decision-making

than the traditional model. The histogram of the chi-square test showed

that risk grouping was only associated with whether IDH was mutated

(Figure 8G). To validate these findings, we evaluated the relationship

between risk score and clinical characteristic and found that individuals

without IDH mutations were associated with higher risk scores

(Figures 8H–J).
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NFRGs risk score predicts
immune cell infiltration

To determine the relationship between risk scores and immune

cells and functions, we measured the enrichment scores of various

immune cell subpopulations, associated activities, or pathways using

the “cibersort” and “ssGSEA”. The low-risk group was associated with

a larger infiltration of monocytes and M2-type macrophages

(Figure 9A). In addition, the high-risk group showed a higher type

2 interferon response compared to the low-risk group, while the low-

risk group had a higher type 1 interferon response (Figure 9B). The

risk score was associated with the quantity of immune cells in the

GBM tumor microenvironment determined by several methods using

Spearman correlation analysis (Figure 9C). Furthermore, we

discovered that a small number of immune checkpoints, namely

CD48 and IDO1, were substantially expressed in the low-risk group

compared to the high risk group (Figure 9D). These results imply that

although patients in the high-risk group have a worse prognosis, they

may be more responsive to immunotherapy due to their more active

immune function. GSEA was used to investigate potential changes in

biological function between risk groups based on the various

prognoses of patients in the high-risk and low-risk groups. We

chose the top 8 enriched signaling pathways based on normalized

enrichment scores (NES) and p-values (Figure 9E). Surprisingly,

lower risk scores were associated with Alzheimer’s disease and

Parkinson’s disease, which is in line with the theme of our study.
A B

D E F

C

FIGURE 4

Selection of Parkinson’s disease-related hallmark genes among NFRGs. (A) Ten cross-validations of the LASSO model’s improved parameter selection. Each
curve represents on gene. (B) Construction of linear models (Lasso) and visualization by coefficients. (C) The best lambda is where vertical dashed lines are
drawn. The error rate for random forests with the number of classification trees. (D) Importance ranking of all selected genes. (E) lasso regression analysis
and random forest for the intersection of genes. (F) Spearman correlation analysis of the four NFRGs. *p < 0.05, **p < 0.01, ***p < 0.001.
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Mutation landscape of risk groupings and
multi-omics mutation analysis of NFRGs

To determine the molecular mechanisms driving the abnormal

expression of these seven NFRGs, we explored the many histological

levels, including genomes and copy numbers. Analysis of single

nucleotide gene variant (SNV) data revealed that missense

mutat ions in NFRGs were the most f requent var iant

categorization in the TCGA-GBM cohort, whereas single

nucleotide polymorphism was the most common variation type.

Among the SNV categories, C>T showed the highest prevalence

(Supplementary Figure 3A). To summarize the ratio of pure and

heterozygous mutations in the sample’s NFRGs, copy number

variation was examined (Supplementary Figure 3B). We found

that 17 GBM patients had mutations, with L1CAM mutations

being the most common (Supplementary Figure 3C). Additionally,

the Spearman’s correlation coefficient analysis of between copy

number variations and gene expression showed that L1CAM copy

number variations were downregulated in GBM whereas TUBB2A,

HSPB1, LOXL1, RGS4, and GPR143 copy number variations were

upregulated (Supplementary Figure 3D). Heterozygous variants of

HSPB1 were present in most samples, and individual analysis

showed that LOXL1 and L1CAM were copy number deletions.

Whereas the pure-sibling mutation of GPR143 is mainly a copy
Frontiers in Immunology
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number reduction (Supplementary Figures 3E, F), HSPB1 and

L1CAM primarily amplified pure heterozygous mutations,

suggesting that abnormal gene expression may be caused by both

copy number variation and single nucleotide variation. The

relationship between NFRGs expression and the activity of

pathways linked to cancer was further examined. The findings

demonstrated that NFRGs contributed to the inhibition of

hormonal pathways in GBM patients and activation of the EMT,

PI-3K-AKT, and TSC-mTOR pathways (Supplementary Figure 3G).

We further explored the differential expression of NFRGs in the

GDSC and Cancer Therapy Response Portal databases, their

corresponding drug sensitivity (Supplementary Figures 3H, I).

This suggested that the expression of the proposed risk profile

genes may be exploited to develop agents for sensitizing drugs as

well as predict chemotherapeutic drug sensitivity in patients.

In further experiments, we examined the correlation between risk

score and tumor mutational load (TMB) (Supplementary Figure 4B)

as well as differences in TMB among different risk subgroups

(Supplementary Figure 4A). Results showed that the TMB was

higher in the low-risk group. Thus, we generated two waterfall plots

to explore the detailed mutational characteristics between high- and

low-risk populations. The results indicated that PTEN, TP53, and

TTN were the most commonly mutated genes in both risk groups

(Supplementary Figures 4C, D).
A B D

E F

G H

IC

FIGURE 5

Construction, diagnostic efficacy, and enrichment analysis of histograms of characteristic NFRGs. (A–D) ROC curves for calculating the signature genes’
diagnostic performance. (E–H) The main signaling pathways associated with specific genes identified using GSEA. (I) Correlation of signature genes with
pathways using GSVA analysis.
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NRFGs risk score predicts treatment
response assessment

Analysis of the violin plots designed to demonstrate the link

between IPSs and risk groups, showed that high IPSs indicate stronger

responses to PD-1 and CTLA-4 blockers (Figures 10A–D). Using the

“pRRophetic” R package, we explored the potential sensitivity of

clinical agents in the high-risk and low-risk groups. Agents available

for the treatment of gliomas, such as nilotinib (Figure 10E), had a

higher IC50 in patients of the high-risk group, whereas ABT737 and

KU-55933 had a higher IC50 in patients of low-risk groups

(Figures 10F, G). To understand the association between risk scores

of NFRGs and the benefits of immunotherapy, we investigated a

cohort of lung cancer patients treated with PD-1 checkpoint

inhibitors (GSE135222) using the BEST database. The ROC curve

analysis demonstrated that NFRGs was effective in predicting

immunotherapy responsiveness, with low NFRGs expression score

correlating with higher degree of immune response to anti-PD-

L1 (Figure 10H).
7 NFRGs in single-cell RNA sequencing

Using the single-cell dataset GSE141982 from the TISCH

database, we investigated the expression of 7 NFRGs in the GBM

TME. It was observed that the GSE141982 dataset was enriched with

several cell types of 16 cell populations and 4 cell subpopulations
Frontiers in Immunology 10
(Supplementary Figure 5A). Most endothelial cells, monocyte

macrophages, and CD8+ T cells expressed HSPB1 and TUBB2A.

The expression of the other NFRGs, which are primarily found in

tumor cell cells, was low (Supplementary Figures 5B, C).
QT-PCR and immunohistochemistry

By analyzing the neurotrophic factor-related genes in PD and

GBM, we found that EN1 and LOXL1 we important players in both

diseases. In the human protein atlas, the protein expression of EN1

(Figures 11A, B) and LOXL1 (Figures 11C, D) were higher in GBM

relative to normal cortical tissue. RT-qPCR results confirmed the

higher expression of EN1 and LOXL1 in both GBM cell lines

(Figures 11E, F).
Discussion

In clinical practice, the diagnosis of PD is mainly based on

neurological examination when patients with PD present with

motor symptoms. Currently, the etiology of PD is still not fully

understood. For this reason, there is no cure or intervention to delay

the progression of the disease, and PD is only treated symptomatically

through medication and rehabilitation (47). Moreover, most patients

have advanced neurological symptoms at the time of diagnosis (48).

Similar to PD, patients with GBM are diagnosed through clinical
A B

D E F

C

FIGURE 6

Expression validation of characteristic NFRGs. (A) Characterization of NRGs expression in the internal validation cohort (GSE7621). (B) Characterization of
NRGs expression in the external validation cohort (GSE20163). (C–F) Expression of characteristic NRGs in different stages of PD (GSE49036).
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examination and neuroimaging methods. Therefore, it is imperative

to study the underlying pathogenesis of PD and GBM and identified

biomarkers for early identification to promote timely treatment of

neurological symptoms before they appear.

Although the pathways affected in PD and GBM are highly

similar, it has been reported that those that regulate cell

proliferation and metabolism play opposite roles in the two

diseases. For example, p53 inhibits GBM cell proliferation by

blocking cell cycle progression and promoting apoptosis; however,

in PD, increased p53 expression upregulates the expression of a-
Frontiers in Immunology 11
synuclein and its subsequent aggregation in which promotes disease

progression (49, 50). The PTEN/PI3K/Akt signaling pathway is

down-regulated in PD and up-regulated in GBM (51, 52). An

increase in PTEN in PD leads causes inhibition of pro-survival

signaling pathways resulting in neuronal cell death. In mouse

models, was found that depletion of PTEN attenuated the loss of

dopaminergic cells and reduced the symptoms of PD (53).

Overexpression of EGFR activated the PTEN/PI3K/Akt signaling

pathway in GBM, and mutations in PTEN and phosphorylated Akt

have been linked to poor prognosis of GBM patients (52, 54).
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FIGURE 7

Development and validation of prognostic models for GBM patients. (A) The 10-fold cross-validation LASSO analysis found seven prognostic genes. Each
curve represents one gene. (B) Plots illustrating the coefficient profiles for seven prognostic NRGs. The best lambda is where vertical dashed lines are
drawn. (C, D) Survival curves showing the risk stratification ability of TCGA and CGGA cohorts. (E, F) AUC values for TCGA and CGGA cohort risk
groupings at 1, 3, and 5 years. (G, H) AUC values for 3-year clinical characteristics and risk groups for the TCGA and CGGA cohorts. (I, J) The risk plots of
survival status of each sample in the TCGA and CGGA cohorts. Heat map showing the expression of each gene’.
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Since their discovery, neurotrophic factors have been found to

play important roles in many processes such as survival, growth, and

differentiation of nerve cells in the peripheral and central nervous

systems. It has been found that neurotrophic factors can improve the

survival and function of nigrostriatal dopaminergic neurons. They

can also promote the survival and synaptic plasticity of mature

neurons and protect neurons from damage (55). Neurotrophic

factors have also been widely reported in gliomas. For example,

GDNF which is released by glioma cells can promote tumor

growth, an action that is dependent on the presence of microglia

(56). The development of immunotherapy has triggered an increasing

number of investigations into the clinical efficacy of targeting

immune checkpoints, including early diagnosis, combination

therapy, and treatment prediction in patients with various types of

tumors. Individual neurotrophic factor family members are now

considered to be biomarkers for predicting cancer development and

prognosis (57). Overactivation of the immune system concurrently

can induce or stimulate the onset of neurodegeneration and cancer, as

well as local or systemic inflammatory reactions (58). In GBM,

specific cytokines generated by tumor cells suppress the effects of

immune response and allow tumor cells to evade the immune system.

Elevated cytokine levels induced by cellular stress in PD can result in

neuronal cell death (59). In addition to this, BDNF is thought to
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produce anti-tumor immune responses during the development and

differentiation of neurons (60). Currently, few studies have explored

the neurotrophic factors in both PD and GBM and identify factors

driving the pathogenesis of PD, as well as the associated

immune mechanisms.

In this investigation, we first used the analysis of variance and

univariate cox to characterize 12 NFRGs influencing the prognosis of

GBM and PD development. Subsequently, we applied two machine

learning algorithms to analyze the 12 NFRGs and selected four

distinctive NFRGs from two external validation cohorts which were

thought to potentially affect the development of PD. The lasso

regression analysis and multivariate cox analysis were performed on

the 12 NFRGs in the TCGA-GBM cohort, resulting in the creation of

a 7-NFRGs model. A validation investigation was conducted on the

developed NFRGs risk score model and to determine its capacity to

accurately predict the prognosis of GBM patients. Based on

expression levels of the screened 7-NFRGs, a risk score was

generated for each patient, and the patients were classified into high

and low-risk groups based on the median risk score. Columnar plots

containing clinicopathological variables were created. Calibration

curves showed a good correlation between predicted and observed

values. In addition, conventional clinical features including age,

gender, and IDH mutation status were used to predict the
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FIGURE 8

Prognostic value of risk scores and clinical characteristics in GBM patients. (A) Univariate and (B) multivariate COX analysis for evaluating the prognostic
signature and clinical features (including age, race, gender, and IDH state). (C) Nomogram of risk groupings and clinical characteristics for predicting
survival at 1, 1.5, and 2 years. (D) Calibration curves for testing the agreement between actual and predicted outcomes at 1, 1.5, and 2 years. (E) DCA
curves of risk scores and clinical characteristics for the TCGA cohort at 3 years. (F) The concordance index (C-index) for the TCGA cohort. (G) Bar charts
of clinical characteristics associated with risk grouping determined by chi-square test. (H–J) Variations in risk scores among the TCGA cohort’s various
clinical characteristic groupings *p < 0.05, **p < 0.01, ***p < 0.001.
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prognosis of GBM. In conclusion, the constructed model had the

largest net return, showing that the developed NFRGs risk model is

clinically important in decision-making and implementation of

individualized anti-tumor treatment.

In this work, we found that seven NFRGs, EN1, LOXL1, TUBB2A,

HSPB1, RGS4, L1CAM, and GPR143t, together constitute a stable risk

score for GBM. In PD, three NFRGs, EN1, LOXL1, and PLOD3, were

identified to influence the disease course of PDpatients. EN1 and LOXL1

have the potential to be targets for immunotherapy in GBM and PD

patients. The EN1 gene encodes homeobox protein engrailed-1 and its

mutations were first discovered to cause abnormal growth and

development in Drosophila (61). In humans, EN1 expression affects

multiple neuronal cell types and can profoundly regulate central nervous

system development (62). Hypermethylation of EN1 has been reported

in many cancers, including colorectal cancer, prostate cancer, and

glioma, and the degree of methylation correlates with tumor grade and

patient prognosis (63–65). In a recent study, Chang et al. found that EN1
Frontiers in Immunology 13
can regulate the Hedgehog signaling by modulating Gli1 expression and

levels of primary cilia transport-associated protein TULP3. Therefore, be

used as a diagnostic and prognostic marker for glioblastoma (66). In

addition, it was reported that EN1 participates in the regulation of

maturation and survival of midbrain dopaminergic neurons, and

polymorphisms in the EN1 gene may be a potential genetic risk factor

for sporadic PD (67). In mice models, EN1 and EN2 were found to not

influence the survival of dopaminergic neurons during development but

also regulators of neuroprotective physiological functions of neurons

(68). The LOX family proteins are copper-dependent monoamine

oxidases that are mainly involved in the polymerization of collagen

and elastin in the extracellularmatrix (ECM), hence increase the stability

of ECM (69). The expression of LOX family genes is influenced by the

IDH1 status of gliomas (70). LOXL1 increases aggressiveness of gliomas

by affecting the anti-apoptotic ability of Wnt/b-linked protein signaling

(71). Another study found that LOXL1 stabilizes the co-protein BAG2 by

blocking K186 ubiquitination, which enables glioma cells to resist
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FIGURE 9

Prediction of the tumor microenvironment and immune cell infiltration by the 7-NFRGs risk score. (A) Differences in immune cell infiltration levels
between high and low-risk groups. (B) Differences in immune function between high and low-risk groups. (C) Immune cell bubble map. (D) Differences
in immune checkpoint between high- and low-risk groups. (E) GSEA analysis focusing on the differential enrichment of KEGG pathways. *P < 0.05, **P <
0.01, ***P < 0.001, ns ≥ 0.05.
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apoptosis under non-adherent conditions (72). In contrast, few studies

have reported the role of LOXL1 in degenerative neurological diseases.

One hypothesis is that LOXL1 protein for aggregates and is actively

cleared by autophagy in cells from patients with shedding syndrome

(XFG), a cellular defect also found in neurodegenerative diseases such as

AD and PD (73).

For GBMs, the mainstay postoperative treatment is the Stupp

regimen, i.e. temozolomide concurrent radiotherapy + temozolomide

adjuvant chemotherapy. However, the extremely heterogeneous and

aggressive nature of GBM results in low survival rate and high

recurrence in a large number of patients (74). Similarly, levodopa

preparations are the most effective and commonly used drugs for PD,

although the disease is incurable and there is no effective drug to delay

the progression of the disease. Immunotherapy has emerged as a

potential treatment for various diseases, especially for neurological

diseases (75). Extensive characterization of the tumor

microenvironment (TME) is essential to the identification of

reliable prognostic markers and immunotherapy targets in GBM.

The high heterogeneity of GBM and the inherent immune evasion
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mechanism of tumors lead to poor outcomes of GBM patients

receiving immunotherapy. In addition, GBM patients have poor

prognosis due to the low PD-L1 expression, low tumor mutational

load, and depletion of tumor-infiltrating T cells (76, 77).

In the TCGA cohort, several forms of immune infiltration prediction

and immunotherapy prediction models were developed. We found that

patients in the low-risk group had better prognosis and immunotherapy

outcomes. The developed NFRGs risk score model was found to

accurately predict the prognosis of patients with GBM, and column

line graphs based on this model can help doctors in developing

customized targeted treatments. Currently, despite many clinical trials

on immunotherapy, there are the efficacy of immunotherapy for GBM is

not well understood. Even though it appears to be the most effective

method of treating Parkinson’s syndrome, immunotherapy for PD is yet

to be clinically applied due to limited evidence. In future, experimental

and clinical cohort studies should explore the associated molecular

pathways based on the present findings. Such studies will have

significant therapeutic value and promote the application of precision

medicine in GBM and PD patients.
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FIGURE 10

Prediction of pharmaceutical and immunotherapy for various risk groupings. (A–D) The comparison of the relative distribution of immunophenoscore
(IPS) between high and low-risk groups. (E–G) IC50 values for patients in the high- and low-risk groups based on Nilotinib, ABT737, and KU-55933 to
assess the sensitivity of chemotherapeutic agents. (H) Evaluation of anti-PD-L1 therapy in the GSE135222 cohort by NFRGs.
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FIGURE 11

Immunohistochemistry and QT-PCR. (A, B) Protein expression levels of EN1 in normal cerebral cortex and GBM. (C, D) Protein expression levels of
LOXL1 in normal cerebral cortex and GBM. (E) RT q-PCR analysis of EN1 expression in various types of glioma cells. (F) RT q-PCR analysis of LOXL1
expression in various types of glioma cells. *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance.
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